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A B S T R A C T   

The effects of forest management on species richness and diversity have become important research interests. 
The need to maintain biodiversity for forest ecosystem functioning has led to the question of how strongly and in 
what ways forest management modifies the diversity and abundance of different species groups. It is well known 
that many forest species rely on specific structures that may be modified by forest management. Assessing the 
impact of forest management on species richness may therefore require identification of structural properties. For 
this literature review we identified a large set of structural attributes that can serve as potential drivers of the 
richness of different species groups. Most studies included here focused on only one or a few structural attributes 
as explanatory variables and a limited number of species groups as dependent variables; we therefore analyzed 
the available publications across species and structural properties. We gathered 410 relationships of structure 
and species richness out of 85 studies from the temperate region in Europe. Positive, negative, and neutral (non- 
existent) correlations between species richness and the presence of specific structural properties in European 
temperate forests were then compiled. Canopy gaps and structural attributes related to old-growth successional 
stage such as stand age and the share of large old trees were mostly positively correlated with species richness of 
the different taxa. Especially old-growth structures were ranked high in the reviewed literature. The structural 
attributes that were mainly positively correlated with species richness or the richness of groups of species may be 
used for further development of biodiversity monitoring concepts and forest management.   

1. Introduction 

Even though forest management aims to fulfill multiple ecosystem 
functions and services in many regions of Europe (Felipe-Lucia et al., 
2018; Manning et al., 2018), it is increasingly criticised for compro-
mising forest biodiversity (Halme et al., 2010; Jakobsson et al., 2021; 
Meyer, 2013; Niemelä et al., 2005; Schulze and Ammer, 2015; Winkel 
and Volz, 2005). Nature conservation and forest management have thus 
often been in conflict. Nonetheless, both wood production and biodi-
versity conservation, among other ecosystem functions and services, are 
necessary. Balancing trade-offs and conflicts are therefore important 
aspects of forest management (Cosyns et al., 2020) and decision-making 
requires evidence-based knowledge. The exact effects of forest man-
agement on biodiversity or species richness, however, are difficult to 
capture. Chaudhary et al. (2016), Dieler et al. (2017) and Paillet et al. 
(2010) summarised many studies on the effects of forest management on 

biodiversity and found negative, positive, and contradictory results. 
However, only Chaudhary et al. (2016) explored differences between 
the applied forest management measures based on the existing litera-
ture. Lack of detail about the silvicultural management of the compared 
studies might have led to their somewhat vague results. Different kinds 
of silvicultural management regimes including various types, intensities, 
and frequencies of interventions result in different forest structures 
(Penone et al., 2019) and make comparisons between studies nearly 
impossible. 

It is also not possible to fully record and monitor species richness; it is 
therefore necessary to develop comprehensive methods of biodiversity 
assessment by proxies (Caro and Girling, 2010). Specific species groups 
or indirect parameters such as forest structures may serve as suitable 
indicators. Within the last decades multiple approaches have been 
proposed for assessing biodiversity in forests (Burrascano et al., 2021; 
Marchetti, 2005; Noss, 1999). However, attempts to agree on a common 
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Table 1 
Overview of studies that reported on a correlation between structural attributes in temperate forests and species richness of one or several taxa.  

Reference arthropods bats birds bryophytes fungi lichens molluscs trees vascular plants 

Ammer and Schubert (1999) x         
Bae et al. (2018)   x       
Bardat and Aubert (2007)    x      
Begehold (2017)   x       
Blaser et al. (2013)     x     
Boch et al. (2013a)      x    
Boch et al. (2013b)         x 
Bouget (2005) x         
Bouget et al. (2013) x         
Bouget et al. (2011) x         
Bouget et al. (2014) x         
Bouvet et al. (2016)  x x       
Brin et al. (2011) x         
Burrascano et al. (2008)         x 
Burrascano et al. (2017)         x 
Charbonnier et al. (2016a)  x        
Charbonnier et al. (2016b)  x x       
Chumak et al. (2015) x         
Czeszczewik et al. (2014)   x       
De Groot et al. (2016) x         
Díaz (2006)   x       
Di Giovanni et al. (2015) x        x 
Dormann et al. (2020)         x 
Erdmann et al. (2006) x         
Friedel et al. (2006)    x  x    
Friess et al. (2019) x         
Grevé et al. (2018) x         
Gunnarsson et al. (2004) x         
Hanzelka and Reif (2016)   x       
Hauck et al. (2013)      x    
Heidrich et al. (2020) x x x x x x    
Heinrichs and Schmidt (2013)        x  
Hofmeister et al. (2015)    x x x    
Hohlfeld (1997)   x       
Horak et al. (2014) x    x x    
Humphrey et al. (2002)    x  x    
Ingle et al. (2020) x         
Jukes et al. (2002) x         
Kaufmann et al. (2018)    x  x   x 
Király et al. (2013)    x  x    
Krah et al. (2018)     x     
Kubartová et al. (2009)     x     
Kubiak et al. (2016)      x    
Kusch and Schotte (2007)  x        
Laiolo (2002)   x       
Laiolo et al. (2004)   x       
Lange et al. (2014) x         
Leidinger et al. (2020) x        x 
Loch (2002) x         
Machar et al. (2019)   x       
Mag and Ódor (2015)   x       
Magura et al. (2000) x         
Márialigeti et al. (2009)    x      
Márialigeti et al. (2016)         x 
Mazziotta et al. (2016)    x x x   x 
Moning et al. (2009)      x    
Moning and Müller (2009)   x   x x   
Müller (2005) x  x       
Müller et al. (2007)     x     
Müller et al. (2008) x         
Müller et al. (2015)    x      
Müller et al. (2018) x         
Nascimbene et al. (2013)      x    
Nordén et al. (2003)     x     
Ódor et al. (2014)    x  x    
Paltto et al. (2008)    x  x    
Penone et al. (2019) x   x x x   x 
Petritan et al. (2012)        x  
Poulsen (2002)   x       
Preikša et al. (2016)    x x x    
Przepióra et al. (2020)   x       
Rosenvald et al. (2011)   x       
Sabatini et al. (2014)         x 
Schauer et al. (2018) x         

(continued on next page) 
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approach have, to date, largely failed. 
To bypass the problem of quantifying different management regimes, 

a forest’s potential for biodiversity may be examined by its structural 
characteristics (Larrieu and Gonin, 2008). Many existing studies have 
focused on the direct or indirect effects of structural properties on the 
diversity of different species or species groups (Zeller et al., 2022). 
Whether those structural properties result from silvicultural manage-
ment or natural succession is often unclear due to the long history of 
forest use in Europe and may even be irrelevant for most species. It is 
therefore of value to quantify present structures and to determine which 
structural characteristics and species groups correspond with each 
other. To our knowledge, a systematic compilation of the many studies 
on the relationships between species or groups of species and forest 
structural attributes is not yet available. In fact, the relationship be-
tween structural attributes at different spatial scales and biodiversity has 
been identified as a major knowledge gap in forest ecology (Ammer 
et al., 2018). We chose species richness as proxy for biodiversity, even 
though it is only one aspect of biodiversity. Many studies used species 
richness as measure for biodiversity and we aimed at a large number of 
studies to be included in our analysis. However, our study consequently 
shows limitations, as the use of other measures than species richness, 
such as species diversity or composition might have led to different 
results. 

We collected and analysed 85 studies providing 410 correlations 
between structural attributes and species richness of different taxa in the 
temperate region of Europe. Additionally, our study revealed knowledge 
gaps by identifying the least frequently examined structural attributes 
and species groups, both of which could be promising fields for future 
investigations. Our results enhance the development of biodiversity 
monitoring schemes and multi-purpose forest management strategies. 
Herewith, we contribute to the realignment of silvicultural practices 
towards an increased awareness of specific important forest structures 
for biodiversity. 

We conducted our review study along the following research 
questions:  

I. Which structural attributes are correlated with the species richness of 
different taxa according to existing literature? 

2. Materials and methodology 

2.1. Literature search 

Relevant literature was identified and collected from the period of 
June to December 2020 by searching the online databases Scopus, ISI 
Web of Science, and Google Scholar (Table 1). The following keywords 
were used for the different databases, each in combination with the 
different species groups (in brackets): 

Forest AND structure AND (diversity OR species richness) AND 
temperate AND NOT tropical AND (fungi OR fungus OR bird OR lichen 
OR beetle OR arthropod OR aranea OR spider OR moth OR necropha-
gous, phytophagous OR plant OR bat OR bryophyte OR moss OR true 

bug). After the search, a manual selection of the search results was 
necessary, as unsuitable studies that did not fulfill our requirements had 
to be excluded. We selected only studies that defined their examined 
forests as ‘temperate’. If information on the biome was lacking, we used 
the definition of the temperate region by Olson et al. (2001). A further 
requirement for the selected studies was that they reported on a corre-
lation of certain structural attributes (resulting either from natural forest 
development, silvicultural management, or unknown origin) with spe-
cies richness of one or several taxa. The correlations could either be 
simple linear correlations or effects in more complex models indicating a 
relationship between forest structure and species richness. We collected 
only studies including species richness of single species or species groups 
as output variable. All structural attributes occurring during our search 
were included without preselection. Studies with species diversity or 
number of individuals as output variable were not included. Studies on 
attributes concerning climatic conditions, soil, management, or distur-
bance were not included. We focused only on structural attributes, in-
dependent of their origin. 

The following studies were included in our analysis: 

2.2. Literature analysis 

Arthropods were summarised as one group due to the small sample 
size in the subgroups. Studies providing more detailed analyses on single 
species were categorised into the species groups. An analysis at the 
single species level would have led to a very small sample size. Trees 
were treated as a separate subgroup of vascular plants. Due to the het-
erogeneity of the examined studies concerning sampling methods, 
sampling time, plot size and forest type, we conducted a count-based 
analysis of the examined studies. We analysed the number and type of 
correlations (positive, negative, or no correlation between structure and 
species richness) over all studies for each structural attribute and for 

Table 1 (continued ) 

Reference arthropods bats birds bryophytes fungi lichens molluscs trees vascular plants 

Scherber et al. (2014) x         
Schmidt (2005)         x 
Seibold et al. (2014) x         
Seibold et al. (2016) x         
Seric Jelaska et al. (2010) x         
Setiawan et al. (2016) x         
Slezák and Axmanová (2016)    x     x 
Sobek et al. (2009) x         
Svoboda et al. (2010)      x    
Ujházy et al. (2017)         x 
Wei et al. (2020)         x  

Table 2 
Number of included studies and number and type of correlations per species 
group.  

species group n 
studies* 

n 
correlations 

type of correlation    

positive negative no 
correlation 

Arthropods 32 147 82 9 56 
Lichens 19 67 50 8 9 
Birds 18 50 45 4 1 
Bryophytes 15 57 35 8 14 
Vascular 

plants 
14 37 19 11 7 

Fungi 11 40 26 5 9 
Bats 5 8 3 1 4 
Trees 2 3 1 2 0 
Molluscs 1 1 1 0 0 
Sum 117 410 262 48 100 

*Total number of studies: 85. Some included studies examined more than 1 
species group, leading to a higher than 85 total number of studies in this table. 
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each species group. In this way, we could identify the most frequently 
studied structural attributes and their correlations with different species 
groups, as well as knowledge gaps. 

3. Results 

3.1. Most and least frequently examined species groups in literature 

The most frequently examined species group was arthropods, with 
32 studies providing 147 cases of correlated structure-diversity 

relationships (Table 2). The species richness of lichens, birds, bryo-
phytes, vascular plants, and fungi were examined by between 10 and 20 
studies each, providing between 40 and 67 correlations per species 
group. The least frequently studied species groups were bats, trees (due 
to the subdivision and overlap with vascular plants), and molluscs. The 
studies were distributed throughout Europe; however, most studies had 
been conducted in Germany and France (Fig. 1). The examined studies 
were located only in the temperate regions of the indicated countries. 

Fig. 1. Map of the number of included studies per country.  

Fig. 2. Ranking of the studied species groups according to number and type of correlations with species richness.  
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3.2. Ranking of examined species groups in literature 

In the literature review, arthropods were the most frequently 
examined species group, with 82 positive correlations, 9 negative cor-
relations, and 56 cases where no correlation was found (Table 2 and 
Fig. 2). The second most frequently examined species group was lichens, 
for which 50 positive correlations, 8 negative correlations, and 9 cases of 
no correlation and were found. Further species groups according to their 
occurrence in the literature were bryophytes, birds, fungi, and vascular 
plants. Here, between 50% (vascular plants) and 90% (birds) of the 
correlations were positive (Table 2 and Fig. 2). The greatest share of 
negative correlations between structural attributes and species richness 
was found for vascular plants (11 out of 37). Very rarely examined 
species groups were the groups of molluscs, bats, and trees, and thus did 
not provide enough evidence for this study. 

3.3. Ranking of examined structural attributes in literature 

The most frequently studied structural attributes in the literature 
reviewed here are ranked in Fig. 3, and include the type of correlation 
found (no correlation, negative, or positive correlation). We focussed on 
the 15 most frequently reported structural attributes; these can be 
considered as evidence of the correlations between structural attributes 
and species richness. 

Light availability at the forest floor produced by canopy gaps, stand 
age, the share of oak, the share of old-growth forest, as well as large, old 
trees, were the structural attributes with the highest positive correla-
tions with species richness. (Fig. 3 and Table A1). Diversity of deadwood 
and light availability at the forest floor produced by canopy gaps were 
examined most frequently over all included studies (33 correlations 
each). The share of conifers and the share of beech were negatively 
correlated with species richness in nearly half and in more than half the 
cases, respectively. 

3.4. Matrix of correlations found in literature 

We further examined the types of correlations observed between 
structural attributes and species richness of different taxa (Fig. 4). 

The species richness of arthropods was most clearly positively 
correlated with canopy gaps, the share of oak, a general forest mosaic, 
and the share of conifers. Positive correlations with bat species richness 
were found for gaps and the amount of deadwood, but the sample size 
was low. The species richness of birds was mostly positively correlated 
with nearly all attributes except the share of conifers, where only 
negative correlations were found. Bryophyte species richness was 
mostly positively correlated with tree species richness, but with a mosaic 
forest structure only negative correlations were found. Species richness 
of fungi had the most positive correlations with deadwood diversity. 
The species richness of lichens was mostly positively correlated with 
gaps and stand age, but other structural attributes connected to old- 
growth characteristics were also positively correlated. The mollusc 
species richness was positively correlated with stand age, but only one 
study was found. For tree species richness as a subgroup of vascular 
plants, only the share of oak was positively correlated. The low number 
of studies can be explained by the fact that some studies analysed total 
species richness of vascular plants and examined tree species richness 
separately. Vascular plant species richness yielded a heterogeneous 
picture of all types of correlations. Gaps, stand age, the share of oak and 
conifers, as well as old-growth elements were positively correlated with 
vascular plant species richness. (Fig. 4). 

In summary, the type of correlation between structural attributes and 
species richness depended strongly on the species group. The clearest 
correlation was found for gaps providing light, the share of oak, and the 
structural attributes related to the old-growth successional stage as 
indicated through stand age, the share of old-growth, and large, old 
trees. 

Fig. 3. Ranking of 15 most frequently studied structural attributes according to the number and type of correlations with species richness.  
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3.5. Identified knowledge gaps 

The least examined species groups regarding correlations with forest 
structure were bats, molluscs, and tree species as subgroups of vascular 
plants. The division into the subgroup of trees resulted in a small sample 
size. The least frequently examined structural attributes were specific 
microhabitats or deadwood items of a specific size and habitat 

continuity. Those structures were specific and therefore only occurred in 
one study each. 

Fig. 4. Matrix of correlations between structural attributes and species richness of different species groups. Full circles represent the highest number of reported tests 
of correlations; this was the correlation between deadwood diversity and arthropods. Smaller shares of the circle show the relative number of reported correlations 
compared to the highest possible number of correlations. 
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4. Discussion 

4.1. Results summary 

The first question to be answered by our study was: 
Which structural attributes are correlated with the species richness of 

different taxa according to existing studies? 
The existence of canopy gaps and structural attributes that are 

related to old-growth phases such as large diameter trees, stand age, and 
deadwood were found to be important for many species groups (Fig. 4). 
This is in agreement with many other studies that have identified old 
trees (Humphrey et al., 2002; Knuff et al., 2020; Machar et al., 2019; 
Mag and Ódor, 2015; Moning and Müller, 2009), deadwood (Blaser 
et al., 2013; Gunnarsson et al., 2004; Przepióra et al., 2020), and 
increasing stand age (Hofmeister et al., 2015; Kaufmann et al., 2018; 
Mazziotta et al., 2016; Moning and Müller, 2009) as important struc-
tures. The importance of canopy gaps presumably results from the fact 
that many species groups are favoured by increasing light availability 
and temperature at the forest floor, e.g., vascular plants and arthropods. 
It may also be attributed to stages where natural disturbances or silvi-
culture provide abiotic conditions that are related to early successional 
phases. Those phases are known to be positively related to floristic and 
faunal diversity (Hilmers et al., 2018). Also, the positive effect of 
deadwood on saproxylic species has been shown to be much higher in a 
lighter environment than under shady conditions (Lettenmaier et al., 
2022). For the species groups of molluscs, bats, and trees, only a few 
studies were found that examined correlations with structural attributes. 
The evidence of our results for these species groups is therefore low. 

Contradicting results concerning the share of spruce and beech can 
result from studies being located in different altitude ranges. The share 
of spruce can have positive effects on biodiversity in its natural range, 
meaning in mountain areas (Málǐs et al., 2012). In lowlands, however, 
where it non-native and is or was mostly part of monocultures, it can 
rather be an indicator for a low biodiversity (Farská et al., 2013). Both 
positive and negative correlations of beech with species richness can 
result from occurrence of beech. In managed beech forests the structural 
homogeneity and the low light availability due to a closed canopy layer 
can lead to a low species richness. More natural beech forests with low 
human intervention, however, can provide a high structural heteroge-
neity and have a high variability in light conditions. Those beech forests 
therefore belong to the richest habitats for forest biodiversity (Schneider 
et al., 2021). Also selectively managed beech forests can bear a high 
potential for species richness (Brunet et al., 2010). Especially the setting- 
aside of old beech trees can provide important habitats (Hofmeister 
et al., 2016). 

Some of the structural attributes have been long known to foster 
biodiversity, but our study also showed that there is no single forest 
structure that could serve as a simple safeguard for biodiversity. 
Depending on the species group or single species, a range of different 
structural attributes are needed to ensure and foster high species rich-
ness over the long term. This finding was previously stated in the habitat 
heterogeneity hypothesis (MacArthur and MacArthur, 1961). Our re-
sults confirm the benefits of increasing the share of old-growth stages in 
forests to foster their capacity to support a range of different taxa 
(Kaufmann et al., 2018; Machar et al., 2019; Moning and Müller, 2009). 
Spatial scale seems to play a key role in supporting all successional 
stages, as high habitat heterogeneity at the landscape scale can foster 
biodiversity (Schall et al., 2018). Larger canopy gaps that are part of the 
resulting structure, which foster different successional stages, were 
found to correlate with high species richness of many species groups 
(Leidinger et al., 2020; Przepióra et al., 2020; Svoboda et al., 2010). 
Since gaps also result from thinning and final harvests, no trade-offs 
between wood production and nature conservation are related to these 
structural elements. This is not the case for microhabitats and dead-
wood, however, which occur more frequently in unmanaged than in 
managed forests (Larrieu et al., 2012; Martin et al., 2021) and correlate 

with high species richness. These structural attributes do therefore need 
special attention. 

4.2. Forest management and species richness 

Our findings largely confirm the current knowledge of drivers of 
species richness in forests. We were able to demonstrate the importance 
of several structural attributes that can be provided even in production 
forests. There are strong indications that the retention of old-growth 
attributes such as habitat trees and deadwood in managed forests 
significantly contributes to species conservation (Fedrowitz et al., 2014; 
Storch et al., 2020; Thorn et al., 2020a). Czerepko et al. (2021a) found 
no differences between a strict forest reserve and managed parts of 
Bialowiza forest, possibly resulting from a high naturalness of the forest 
even in the managed parts. A small retention section in a heavily 
managed forest stand might not, however, be enough to ensure the 
habitats of specialized species; these would need specific conservation 
approaches (Fedrowitz et al., 2014). All structural characteristics known 
to positively influence species richness in forests appeared in our liter-
ature search. The most frequently mentioned structural properties are 
known to be impacted or shaped by silvicultural management. At first 
glance, from a nature conservationist’s perspective, this can be seen as 
negative. Tree size heterogeneity can, for example, be decreased by 
thinning from below (Zeller et al., 2021). In commercially managed 
stands, especially the old-growth and decay phases are often missing due 
to final tree harvests. This usually leads to lower deadwood volumes 
than in forests that have been unmanaged for centuries (Winter et al., 
2005). Consequently, it has repeatedly been requested that forest 
patches should be set aside to permit development of features that are 
known to be typical of old-growth forests (Thorn et al., 2020b) which 
have been found to correlate with a higher species richness (Czerepko 
et al., 2021a). Forest management can take these findings into account 
and can, for example, ensure a minimum of 5–10 habitat trees per 
hectare that are excluded from any future harvests (Bütler et al., 2013). 
Such measures may also provide the combination of large living and 
dead trees that are known to contribute to biodiversity (Spînu et al., 
2022). In many parts of Europe forest management aims to increase 
continuous-cover forests (Larsen et al., 2022; Pommerening and Mur-
phy, 2004). This will increase their resemblance to primeval forests 
(Hobi et al., 2015; Meyer et al., 2003; Stillhard et al., 2022). It will thus 
contribute to conserving and restoring the natural biodiversity in 
managed forests (Meyer and Schmidt, 2008). In particular, young and 
very old successional phases are often rare in managed forests (Faust-
mann, 1995) and light-dependent species that occur mostly in those 
phases cannot find their needed habitats (Hilmers et al., 2018). 
Light-dependent species may also be outcompeted in later stages by 
shade-tolerant tree species such as European beech (Meyer, 2005). Most 
light-demanding tree species are important hosts for phytophagous in-
sects and mites (Brändle and Brandl, 2001). Since tree species richness 
was found to be positively correlated with stand productivity (Ammer, 
2019; Zeller et al., 2018) conservation and production-oriented goals do 
not necessarily conflict. Silvicultural management can be used to spe-
cifically shape stand structure and satisfy different needs. Depending on 
their management, commercially cultivated forests can provide forest 
biodiversity and at the same time be stable, resilient, and productive. In 
managed forests, gaps might be best introduced through single-tree or 
patch-wise harvesting (Muscolo et al., 2014). Management-induced gaps 
and other disturbances may, however, attract non-native species 
(Czerepko et al., 2021a). The aim of forest management – increasing 
species richness or preserving native species – therefore has to be 
considered. Other measures that foster small scale structural heteroge-
neity instead of large scale homogeneous continuous-cover forests or 
large clear-cuts are also possible. Deadwood items of different sizes and 
tree species might be left in the stand, while old trees above harvesting 
age can provide microhabitats. These measures would need to be eval-
uated under the overall aim of wood production, including conflicts and 
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trade-offs (Pohjanmies et al., 2017; Zeller et al., 2021). How trade-offs 
can be balanced under the pressure of climate change and increasing 
demands on forest ecosystem functions and services will remain a big 
challenge going forward. Encouragingly, recent concepts and reports 
show that compromises can be found (Mergner, 2021; Sierota and 
Míscicki, 2022). 

4.3. Forest structural attributes in species monitoring 

The clear relationships between structural attributes and species 
richness of many species groups provide the basis for using forest 
structure in species monitoring programs. Yet, those structures alone do 
not guarantee the actual presence of species or species groups. Com-
plementing more detailed species monitoring, forest structural attri-
butes can at least provide a first insight into the state of a forest 
concerning its potential for biodiversity, especially under conditions of 
modest financial resources (Larrieu and Gonin, 2008; Zeller et al., 
2022). 

4.4. Critique – Influence of search pattern on included studies 

We focussed on the search of correlations between structural attri-
butes and the species richness of different species and species groups. 
Studies that examined a correlation of forest or stand structure on total 
species richness were not included. We considered those studies to be 
too general to answer our research questions and to differentiate be-
tween the different species groups. As our search pattern was open to all 
structural attributes that were named as such, no pre-selection was 
conducted that could have influenced the search results in advance. 
Each structural attribute found during the literature search was added to 
the analysis. Note that our review can only highlight correlations; it 
cannot identify the quantitative effects of structural properties on the 
absence or presence of species or groups of species. 

4.5. Critique – Focus of studies on positive effects 

Non-existent or negative relationships of structural properties and 
species richness of different species groups are often not considered 
worth publishing (DeVito and Goldacre, 2019). This may have led to the 
result that most correlations reported in the literature were positive. But 
in fact, our results show that there are sometimes contradictory corre-
lations (Fig. 3). 

4.6. Critique – Comparability of studies 

As in most meta-analyses, the examined studies were not comparable 
with respect to many factors such as plot size, forest type, or sampling 
method (Burrascano et al., 2021); also they were conducted at different 
times. The correlations between structural attributes and species rich-
ness might therefore be strongly context dependent. Further, the defi-
nition of biodiversity always has to be considered. Depending on the 
focus of the highest possible number of species or ‘naturally occurring’ 
species composition, different structural attributes would be needed. 
Our study focussed on literature that examined species richness without 
evaluating species assemblages and their functions. The concept of 
species richness is controversially discussed (Hillebrand et al., 2018) 
since it is not only the number of species that matters. Instead, a certain 
species richness needs to be evaluated in relation to the typical local 
species community and the functions that different species fulfil in an 
ecosystem (if those are known at all). 

4.7. Critique – Stand scale vs. Landscape scale 

Most of the studies found in the literature were case studies con-
ducted at the stand level. But the habitat heterogeneity theory (Mac-
Arthur and MacArthur, 1961) indicates that structural heterogeneity at 

the landscape level would probably best provide a small-scale mosaic of 
a variety of structures and habitats (Schall et al., 2018). Especially for 
vascular plants, lichens, bryophytes, and vertebrates, it has been shown 
that habitat continuity at the landscape scale is an important driver of 
biodiversity (Kolb and Diekmann, 2004; Nordén et al., 2014; Wulf, 
2004). 

4.8. Critique – Soil properties not included 

The focus of our study was on the above-ground structures that 
correlate with biodiversity, as those structures could easily be recorded 
in biodiversity monitoring programs or inventories. Soil related surveys 
are often too expensive to be included in species monitoring programs, 
and they depend on monetary resources and taxonomic expertise. With 
the aim of identifying structures that can be included in a biodiversity 
monitoring program, we focused on above-ground structures only. 
Nonetheless, the greatest share of biodiversity is usually located 
belowground (insert Wardle, 2002; Bakker et al., 2019). Soil biota play 
important roles in ecosystem functioning (insert Brussaard et al., 1997; 
Yang et al., 2018) and it has been repeatedly stated that they should 
receive greater attention in biodiversity monitoring (insert Burrascano 
et al 2021, Zeiss et al 2022). Furthermore, soil properties provide 
important information on the state of biodiversity (Bispo et al., 2009) 
and soil health. Some measures of soil health as suggested by Zeiss et al. 
(2022) could easily be included in ongoing monitoring (available 
phosphorous, total nitrogen, organic carbon, pH-value), whilst others, 
such as microbial activity and biomass, are more expansive and more 
complicated to include. 

4.9. Critique – Limitations of species richness as measure for biodiversity 

Species diversity as measure of biodiversity is often criticized for not 
showing developments in species composition. A high species richness 
could hide extinct species as long as other species appeared at that 
location. For lichen, species richness showed to be a valid indicator for 
forest naturalness (Czerepko et al., 2021b). For a more complete picture 
on the state of a forest in terms of biodiversity, additional measures, e.g. 
species composition should be examined (Fleishman et al., 2006). Spe-
cies richness was the most common measure in literature and most 
studies had used a different and thus non-comparable set of variables. 
We therefore used species richness as simple measure in our analysis but 
are aware of the shortcomings of that aspect. Its dependency on spatial 
scale is a further challenge to be considered in biodiversity monitorings 
(Hillebrand et al., 2018). 

5. Conclusions and outlook 

Our approach, focussing on structural attributes instead of the 
category managed vs. unmanaged forests, has the advantage of ana-
lysing measurable forest structures across studies. It also provides in-
sights into the diverse relationships between structural attributes and 
species richness of different species groups. Such insights support the 
development of efficient monitoring concepts based on forest structure, 
where a sampling of species is not possible or where classical species 
monitoring can be extended by assessing relevant structural attributes. 
In silvicultural management planning, fostering certain structures is 
similarly more efficient and convincing if reliable data indicates the 
most important structures. 
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Püttsepp, Ü., Suz, L.M., Vanguelova, E.I., Vesterdal, L., Soudzilovskaia, N.A., 2019. 
Belowground biodiversity relates positively to ecosystem services of European 
forests. Front. For. Glob. Change 2, 6. https://doi.org/10.3389/ffgc.2019.00006. 

Bardat, J., Aubert, M., 2007. Impact of forest management on the diversity of corticolous 
bryophyte assemblages in temperate forests. Biol. Conserv. 139, 47–66. https://doi. 
org/10.1016/j.biocon.2007.06.004. 

Begehold, H., 2017. Einfluss naturschutzorientierter Buchenwaldbewirtschaftung auf die 
Waldstruktur und die Diversität von Brutvögeln. Vogelwarte 55, 127–128. 

Bispo, A., Cluzeau, D., Creamer, R., Dombos, M., Graefe, U., Krogh, P.H., Sousa, J.P., 
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Table A1 
Number of studies and number and type of structural attributes in correlation 
with species richness.  

Structural 
attribute 

n 
studies* 

n 
correlations 

type of correlation    

positive negative no 
correlation 

gaps - light 22 33 28 2 3 
deadwood - 

diversity 
11 32 15 2 15 

deadwood - 
amount 

14 26 12 1 13 

tree species 
richness 

15 24 15 0 9 

forest structure - 
vertical 

3 21 6 2 13 

stand age 9 19 17 0 2 
tree species - 

oak 
8 18 14 0 4 

forest structure - 
mosaic 

5 16 9 4 3 

vascular plant 
species 
richness - 
general 

5 16 8 2 6 

tree species - 
conifer 

5 14 8 6 0 

share of old 
growth 

11 13 12 0 1 

diameter - mean 3 11 3 0 8 
tree species - 

beech 
6 11 4 7 0 

coverage 3 10 2 4 4 
diameter - big 

old trees 
8 9 9 0 0 

Sum 128 
(88) 

273 162 30 81 

*Most frequently examined correlations between structural attributes and spe-
cies richness. Sorted by number of correlations. Total number of studies: 88. 
Most studies examined more than 1 structural attribute leading to higher sum of 
studies. 
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Friedel, A., Oheimb, G.V., Dengler, J., Härdtle, W., 2006. Species diversity and species 
composition of epiphytic bryophytes and lichens – a comparison of managed and 
unmanaged beech forests in NE Germany. Feddes Repert. 117 (1-2), 172–185. 
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Isacsson, G., Krǐstín, A., Lachat, T., Larrieu, L., Magnanou, E., Maringer, A., 
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Lettenmaier, L., Seibold, S., Bässler, C., Brandl, R., Gruppe, A., Müller, J., Hagge, J., 
2022. Beetle diversity is higher in sunny forests due to higher microclimatic 
heterogeneity in deadwood. Oecologia 198 (3), 825–834. 

Loch, R., 2002. Statistisch-ökologischer Vergleich der epigäischen Spinnentierfauna von 
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submontanen Buchenwäldern. Dissertation, Freising - Weihenstephan. 

Muscolo, A., Bagnato, S., Sidari, M., Mercurio, R., 2014. A review of the roles of forest 
canopy gaps. J. For. Res. 25, 725–736. https://doi.org/10.1007/s11676-014-0521- 
7. 

Nascimbene, J., Dainese, M., Sitzia, T., 2013. Contrasting responses of epiphytic and 
dead wood-dwelling lichen diversity to forest management abandonment in silver fir 
mature woodlands. For. Ecol. Manage. 289, 325–332. https://doi.org/10.1016/j. 
foreco.2012.10.052. 
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