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A B S T R A C T

Since 2018, severe droughts have affected a significant part of central Europe, causing premature leaf senescence 
in European beech (Fagus sylvatica L.). The correlation between the vitality of Fagus sylvatica L. and various geo- 
ecological and biological determinants (such as elevation, slope, aspect, tree age, and soil properties) concerning 
hydrological drought stress is still not well understood, especially when integrating multiple geographical 
datasets. In addition, the determination of crown condition by remote sensing and geo-ecological parameters is 
still under development; it would allow the assessment of an area-wide forest health status. Our analysis 
incorporated annual field data from the German National Forest Condition Survey (Waldzustandserhebung, 
WZE) as a response variable and employed geo-ecological parameters derived from a digital elevation model, soil 
properties and vegetation indices from a Sentinel-2 time series to explain and predict the crown defoliation of 
European beech throughout the drought-impacted period spanning 2016–2022 across the federal states 
Schleswig-Holstein, Lower Saxony, and Hesse of Germany. In a second step, the results of the modeling were used 
for mapping of crown defoliation in Hesse, Lower Saxony and Schleswig-Holstein. By employing Gradient 
Boosting Machines and Random Forest for regression analysis, the study uncovered the relationships between 
crown defoliation and the used predictors. Training was conducted on 80 % of the dataset, with the remaining 
20 % serving as a test set for model validation. Regression findings based on static explanatory variable sets were 
improved by dynamic explanatory variables such as estimates of soil moisture, vegetation index metrics, and 
diameter at breast height. Furthermore, we identified key predictors for mapping crown defoliation of Fagus 
sylvatica L. and recommended using vegetation indices as additional predictors for future studies. The modeling 
results provided comparably accurate estimates compared to WZE estimates (R2 of 0.794 and RMSE of 7.646 %) 
during testing. Topographic and static soil predictors were significant, with soil moisture being a particularly 
influential variable for model optimization. Based on the predicted crown defoliation, beech trees with low to 
moderate crown defoliation predominated in beech distribution areas across the examined federal states, while a 
small number of beech trees with high defoliation were identified mostly in South Lower Saxony and Hesse. The 
annual variations in the proportions of beech trees showing increasing and decreasing crown defoliation indicate 
that the condition of the crown temporarily deteriorated when soil moisture decreased, but beech trees recovered 
after prolonged periods of drought. Additionally, beech trees in the study region exposed to declining soil 
moisture may suffer from medium-term declines in vitality. The predicted crown defoliation data can be utilized 
for future climate-adaptive management practices in European beech forests.

1. Introduction

Climate conditions influence the structure and function of forest 

ecosystems, thereby playing an essential role in maintaining forest 
health (Jump et al., 2006; Allen et al., 2010; Dulamsuren et al., 2017; 
Hartmann et al., 2022). Severe droughts have affected extensive areas of 
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central Europe since 2018, resulting in multiple forest damages, 
including insect infestation in coniferous forests and premature leaf 
senescence in deciduous broadleaf tree species (Hlásny et al., 2021; 
Obladen et al., 2021; Thonfeld et al., 2022; Schmied et al., 2023; Mathes 
et al., 2024). The European beech (Fagus sylvatica L.), a dominant species 
in Europe, has experienced a decline in vitality, resulting in dieback 
(Bosela et al., 2016; Braun et al., 2021; Arend et al., 2022; Neycken 
et al., 2022; Langer and Bußkamp, 2023). This species, characterized by 
its highly competitive ability, exhibits sensitivity to drought conditions. 
Consequently, it may face increasing threats from heatwaves and 
droughts induced by climate change within parts of its distribution 
range (Leuschner, 2020).

The distribution of Fagus sylvatica L. predominantly correlates with 
the temperate and warm temperate climatic zones of Europe. It extends 
geographically from southern Sweden through to southern Italy and 
from Spain eastwards to Greece (Peters, 2013; Rukh et al., 2023). With a 
share of 16 % of the stocked forest area, the European beech is the most 
common deciduous tree species in German forests, ranking third in 
distribution after the conifers spruce and pine (BMEL, 2023). 
Geographical factors such as relief, climate, or bedrock can significantly 
influence the growth and distribution of beech trees. These factors 
collectively contribute to variations in microclimates and soil condi
tions, shaping the ecological niche of European beech forests (Kolář 
et al., 2017; Dutcă et al., 2022; Weigel, et al., 2023). Soil properties play 
crucial roles in influencing the growth and development of Fagus syl
vatica (Buhk et al., 2016). Beech trees generally prefer well-drained soils 
with a balanced texture. Soils with a balanced mixture of sand, silt, and 
clay are often ideal for tree growth (Coile, 1952; Greacen and Sands, 
1980; Ampoorter et al., 2011; Soong et al., 2020). The optimal soil 
texture for the growth of beech trees is typically identified as silt soils. 
These soils maintain a balance between efficient drainage and the ca
pacity to retain water, thereby providing ideal conditions for water 
availability to beech trees (Scharnweber et al., 2013).

The condition of beech forests in Germany has changed significantly 
in recent years. Many studies have revealed that soil water-related 
variables affect the vitality of European beech. For example, Weigel 
et al. (2023) have proven that hydrological drought stress influences the 
growth of European beech along a steep precipitation gradient in 
northern Germany. The study by Obladen et al. (2021) demonstrated 
significant beech dieback following hot droughts in 2018 and 2019. 
Beech trees generally require well-drained soils (such as silt soil) to 
prevent waterlogging (Packham et al., 2012), which can lead to root 
asphyxiation and diseases (Jung, 2009). Numerous studies have shown 
that droughts can cause trees to shed leaves prematurely, reducing their 
ability to photosynthesize, weakening their vitality, and directly 
impacting beech mortality rates (Archambeau et al., 2020; Obladen 
et al., 2021; Arend et al., 2022). Thus, soil water content plays an 
essential role in the health of forests. It is among others determined by 
soil properties, topographic variables such as elevation, aspect, and 
slope, as well as climatic conditions (Qiu et al., 2001; Clinton, 2003; 
Moeslund et al., 2013).

To quantitatively disclose the relationships between the vitality of 
European beech and various environmental conditions, measurable in
dicators of beech forest health are necessary. Previous studies have 
utilized crown defoliation as an indicator of beech vitality to explore its 
correlation with climatic factors (Seidling, 2007; Sousa-Silva et al., 
2018; Ognjenović et al., 2022). For example, visibly sparse foliage 
associated with defoliation is considered an indicator of declining vi
tality in beech trees due to drought stress (Ognjenović et al., 2022). The 
German National Forest Condition Survey (Waldzustandserhebung, 
WZE) employs a comprehensive systematic terrestrial point-sampling 
design to monitor annual crown defoliation and additional parameters 
describing tree vitality. The regular sampling grid covers different 
geographical gradients, and the grid size is chosen so that the results are 
representative at the federal state level. However, it is not possible to 
make a differentiated statement about the vitality of individual forest 

stands. The WZE survey is conducted in accordance with the interna
tionally harmonized manual of ICP Forests (Ferretti et al., 2020) and has 
been applied in a variety of studies (Aden et al., 2010; Knapp et al., 
2024). The methodology for assessing forest condition involves visually 
examining individual trees on the ground to identify their health status 
or visible damage. The main evaluation metric is crown defoliation, 
measured by comparing needle or leaf loss in 5 % increments against a 
benchmark tree. The WZE plots are geolocated. Thus, they can be 
matched with geo-ecological parameters and satellite data to model area 
wide forest health status and reveal further forest system understanding.

Despite the availability of WZE data as measurable indicators and the 
increasing interest in monitoring beech forest health, current research is 
insufficient to support large-scale modeling of the vitality of Fagus syl
vatica, revealing a notable gap that this study aims to fill. For example, 
previous studies either relied on field measurements or only explained 
the relationships between environmental factors and beech vitality 
derived from remote sensing data without area-wide mapping of crown 
condition in beech trees (Rohner et al., 2021; Ognjenović et al., 2022; 
Weigel, et al., 2023). However, utilizing multi-geographical data to 
monitor large-scale forest disturbances has become a critical method
ology. The availability of data for ecological predictions, including sat
ellite or aerial imagery and other remote sensing data, has significantly 
increased (Rammer and Seidl, 2019). Geographical data, such as digital 
elevation models and soil properties, are frequently used for ecological 
research modeling (Hörsch, 2003; Seidl et al., 2011; Balzter et al., 2015; 
Fang et al., 2016; de Sousa et al., 2020; Ågren et al., 2021). Numerous 
studies have employed satellite data to evaluate the health of forests 
(Wang et al., 2010; Lausch et al., 2016; Pause et al., 2016; Lausch et al., 
2017; Massey et al., 2023; Grabska-Szwagrzyk and Tymińska-Cza
bańska, 2024). Vegetation indices (VIs) derived from multispectral 
remote sensing spectral bands offer continuous data on vegetation 
conditions across time and space. These indices are frequently utilized to 
monitor beech forests (Lukasova et al., 2014; Hlásny et al., 2015; Olano 
et al., 2021; West et al., 2022). For example, the short-wave infrared 
(SWIR) and red-edge bands of Sentinel-2 are closely associated with 
hydrological drought stress (Ghulam et al., 2007; Liu et al., 2021; Xu 
et al., 2024).

Regarding methodologies, machine learning (ML) regression algo
rithms such as Random Forest (RF) and Gradient Boosting Machines 
(GBM) have gained widespread popularity (Izquierdo-Verdiguier and 
Zurita-Milla, 2020; Singh et al., 2021; Abdul Gafoor et al., 2022; Li et al., 
2024). ML is a powerful tool for understanding and predicting dynamics 
in ecological systems, surpassing traditional methods in flexibility, ac
curacy, and handling complex, high-dimensional datasets (Recknagel, 
2001; Liu et al., 2018; Christin et al., 2019; Schratz et al., 2021; Ezzati 
et al., 2023).

There is a lack of studies integrating diverse datasets for explaining 
and mapping crown defoliation across large regions. This study aims to 
explain crown defoliation by employing data from the German National 
Forest Condition Survey (WZE) and to use the modeling results to map 
crown defoliation at the federal state level ranging from Northern 
Lowlands to Central Uplands of Germany and address the following 
research questions: 

1. Can crown defoliation of Fagus sylvatica L. be explained by inte
grating field estimates from the WZE/ICP Forests design with mul
tiple geo-ecological and Sentinel-2 data?

2. What are the most important predictors for accurately describing 
crown defoliation?

3. Can the resulting models be used to map crown defoliation?
4. Are there regional variations in beech crown condition and annual 

changes that can be derived from mapping results?
5. Is there a medium-term trend (2016–2022) for deterioration or re

covery in crown condition visible through the modeling?
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2. Material and methods

2.1. Study region

The study area includes three German federal states: Schleswig- 
Holstein, Lower Saxony, and Hesse (Fig. 1). The area spans 
84,600 km2, with 27 % covered by forests (Thünen Institute, 2014). The 
mean annual temperature ranges from 8.5 to 9.7 ◦C. The approximately 
400 km-long precipitation gradient shows a decrease in mean annual 
precipitation (1948–2017) from nearly 850 mm in the oceanic North
west to under 500 mm in the sub-continental Southeast (Weigel et al., 
2023; Leuschner et al., 2023). The ecological niches of Fagus sylvatica 
span from the North German Lowlands to the low mountain ranges. The 
distribution of Fagus sylvatica aligns with the topography in the study 
area, with Lower Saxony and Hesse having more beech areas than 
Schleswig-Holstein. The WZE plots are evenly distributed across the 
beech-covered area (Fig. 1). According to the dominant tree species map 
of Germany (2017/2018) by Blickensdörfer et al. (2024), beech forests 
cover 31.39 %, 18.04 %, and 44.95 % of the forested area in 
Schleswig-Holstein, Lower Saxony, and Hesse, respectively.

2.2. National Forest Condition Survey data (WZE)

The WZE crown defoliation data for Fagus sylvatica L. from 
2016–2022 were provided by the Northwest German Forest Research 
Institute (NW-FVA) and used as response variables. The fieldwork was 
conducted annually in July and August using the WZE approach 
(Ferretti et al., 2020). The WZE approach is a systematic method for 
terrestrial observation, where data on the crown condition of the main 
tree species is collected and assessed annually in a standardized manner 
across Germany. There are 1150 WZE cluster plots in the study region. 
Each cluster plot consists of four survey points located 25 m from the 
plot center in each cardinal direction (Fig. 2).

At each survey point six trees are selected (Fig. 2) and crown defo
liation is visually assessed for all (up to six) trees on a scale from 0 % 
(healthy) to 100 % (dead) in 5 % increments. To exclude mixed-species 
plots, we only selected WZE plots in pure beech stands based on the 
dominant tree species map by Blickensdörfer et al. (2024) and further 
verified the tree species on each plot through visual aerial image 

interpretation. The use of orthophotos enabled the visual exclusion of 
survey points on which coniferous trees, such as Norway spruce (Picea 
abies L.), were visible. In total, 504 pure beech survey points from 1150 
WZE cluster plots were selected as reference data (Fig. 1). Next, we 
calculated the average crown defoliation per survey point for each year. 
This value was used as the response variable for modeling.

2.3. Topographic factors, soil properties, and Sentinel-2 data

For demonstrating the relationships between crown defoliation and 
environmental factors, we utilized constant predictors including topo
graphic variables (elevation, slope, aspect) and soil profile information, 
and dynamic predictors such as soil moisture and remotely sensed 
vegetation indices (VIs), along with diameter at breast height (DBH) for 
regressions (Table 1). The topographic variables were obtained from the 
European Digital Elevation Model (EU-DEM) with a 25-meter spatial 
resolution, available through the Copernicus Land Monitoring Service 
(https://land.copernicus.eu/). Soil profile information was sourced 
from SoilGrids, a global digital soil mapping system (Poggio et al., 
2021). Soil moisture data for the entire soil depth were provided by the 
Helmholtz Centre for Environmental Research upon request (Zink et al., 

Fig. 1. Overview of the selected WZE survey plots with beech in the study region (left), tree species distribution (middle), and elevation (right) in the federal states of 
Schleswig-Holstein (S), Lower Saxony (LS), and Hesse (H).

Fig. 2. Schematic representation of the cross-cluster plot design of the National 
Forest Condition Survey (WZE) (Ferretti et al., 2020).
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2016). Soil moisture data were collected through single-profile mea
surements from spatially distributed sensor networks, including 10 
cosmic-ray neutron stations and lysimeters at 40 sites in Germany 
(Boeing et al., 2022). Additionally, we included the following VIs from 
Sentinel-2 images as predictors: Normalized Difference Red Edge index 
(NDRE), Normalized Difference Moisture Index (NDMI), Normalized 
Burn Ratio (NBR), Distance Red and SWIR (DRS), and Moisture Stress 
Index (MSI) (Table A1). The DBH information was obtained from the 
WZE database, and any missing data were filled in using nearby DBH 
values. DBH is the only explanatory variable measured at the WZE 
survey point level, while topographic and soil predictors, along with VIs, 

cover the entire study area. DBH was therefore only used for comparing 
models but not utilized to map crown defoliation of European beech.

We calculated the sums of the Soil Moisture Index from the previous 
year between January and December (SMI_PA: previous annual SMI) 
and the current year between January and August (SMI_CA: current 
annual SMI) as metrics for training our models (Table 1). For example, 
the average crown defoliation of a WZE survey point in 2018 was 
explained by its soil moisture metrics from January to December 2017 
(SMI_PA) and January to August 2018 (SMI_CA). The selection of 
SMI_PA helps determine whether there is a time delay in beech trees’ 
response to drought stress.

Sentinel-2 data were acquired and preprocessed to obtain VI time 
series, using the Framework for Operational Radiometric Correction for 
Environmental monitoring (FORCE, Frantz, 2019). The preprocessing 
involved topographic normalization using the Shuttle Radar Topog
raphy Mission (SRTM) digital elevation model from the United States 
Geological Survey (USGS), as well as radiometric and atmospheric cor
rections. Additionally, clouds and cloud shadows were removed using 
the threshold-based delineation with the Fmask algorithm as imple
mented by FORCE (Frantz et al., 2018). We resampled all Sentinel-2 
bands to 20 m using the nearest neighbor method to capture the spec
tral reflectance of beech trees (Fig. 2). Co-registration was performed to 
correct pixel displacement issues, which can be as high as 11 m within 
individual Sentinel-2 frames, as noted by the European Space Agency 
(2020). This displacement can add noise to the time series data. After 
preprocessing, Analysis Ready Data (ARD) at Level-2 are generated to 
support the computation of Vegetation Indices (VIs) in the Time Series 
Analysis (TSA) module. For each VI we extracted its maximum value 
observed in the time from July to August per year as a phenological 
metric using non-interpolated VI values. These values were utilized to 
model and explain crown defoliation, e.g. peak NBR values from 2019 
were utilized to explain and predict the average crown defoliation in 
2019.

2.4. Modeling approach

We employed two machine learning (ML) algorithms, Random Forest 
(RF) and Gradient Boosting Machines (GBM), to investigate the rela
tionship between crown defoliation and environmental factors and 
evaluate algorithm performances. The RF constructs multiple decision 
trees during training and averages their predictions for regression tasks, 
thereby improving predictive accuracy and reducing overfitting 
compared to a single decision tree (Ali et al., 2012). Each decision tree in 
a Random Forest is trained on a bootstrapped sample, which is a random 
subset of the training data selected with replacement. This ensures that 
each tree learns from a slightly different dataset, increasing the diversity 
among the trees and, thus, the robustness of the model. Overall, RF of
fers multiple benefits, notably reducing overfitting, evaluating feature 
importance, and demonstrating superior generalizability and robustness 
(Segal, 2004; Jaiswal and Samikannu, 2017). GBM can achieve high 
prediction accuracy by combining multiple weak learners, typically 
decision trees, into a strong learner through an iterative process 
(Ridgeway, 2007; Touzani et al., 2018). Although GBM can overfit if not 
properly tuned, they offer parameters (such as the number of trees, tree 
depth, and learning rate) that can be adjusted to prevent overfitting. 
Proper tuning via cross-validation can significantly enhance the 
robustness and generalization to unseen data (Vulova et al., 2020).

There are two steps for regressions. We defined five sets of predictor 
variables and compared their performance when explaining crown 
defoliation (Table 2). Then, we used the predictor set that achieved the 
best evaluation metrics (R2 and RMSE) to train a new model without 
reducing the sample size for mapping crown defoliation. When incor
porating DBH into regressions and comparing its influence on crown 
defoliation with other explanatory variables, the sample size was 
reduced, since DBH is available on the survey point level only and not 
for the whole beech forest area. Hence, without using DBH for mapping, 

Table 1 
Explanatory variables in machine learning models. *The ratio of silt to sand was 
used (See 2.4).

Variable (unit) Spatial 
resolution 
(m)

Temporal 
resolution

Source

Topographic ​ ​ ​
Elevation (m) 25 constant EU-DEM (https:// 

land.copernicus.eu/)Slope (◦)
Aspect
Soil profile information ​ ​ ​
Bulk density of the fine 
earth fraction (cg/cm3)

250 constant SoilGrids (https:// 
www.isric.org/ 
explore/soilgrids)Cation exchange capacity 

of the soil (mmol(c)/kg)
Volumetric fraction of 
coarse fragments (>
2 mm) (cm3/dm3 (vol‰))
Proportion of clay 
particles (< 0.002 mm) in 
the fine earth fraction (g/ 
kg)
Total soil nitrogen content 
(cg/kg)
Soil pH (pHx10)
Ratio of ‘proportion of silt 
particles (≥ 0.002 mm and 
≤ 0.05 mm) and sand 
particles (> 0.05 mm) in 
the fine earth fraction’*
Soil organic carbon 
content in the fine earth 
fraction (dg/kg)
Organic carbon density 
(hg/m3)
Organic carbon stocks (t/ 
ha)
Soil moisture ​ ​ ​
Sums of Soil Moisture 
Index from the previous 
year between January and 
December (SMI_PA)

1300 dynamic German Drought 
Monitor (https:// 
www.ufz.de/index. 
php?en=37937)

Sums of Soil Moisture 
Index from the current 
year between January and 
August (SMI_CA)
Remote sensing (S2 
Vegetation Indices)

​ ​ ​

Peak of Normalized 
Difference Red Edge index 
(NDRE)

20 dynamic

Peak of Normalized 
Difference Moisture Index 
(NDMI)
Peak of Normalized Burn 
Ratio (NBR)
Peak of Distance Red and 
SWIR (DRS)
Peak of Moisture Stress 
Index (MSI)
Tree parameter ​ ​ ​
Diameter at breast height 
(DBH) (cm)

- dynamic WZE
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more samples were retained to train models for mapping. In other 
words, DBH was excluded as it was not based on beech pixels and was 
not available for each study year. The ML model used for mapping was 
unable to predict crown defoliation when the predictors contained NA 
values. DBH should be available at an area-wide level from 2016 to 
2022; once this data is obtained, the model will be able to produce 
values for crown defoliation and subsequently map it. Ultimately, DBH 
was not measured annually for the entire beech area during the actual 
fieldwork.

When comparing predictor sets, the five model types are incremen
tal. The original resolutions of explanatory variables remained un
changed at this stage. The M_geostat model considers all constant 
environmental parameters (elevation, slope, aspect, and constant soil 
properties) to explore their influence on crown defoliation. The M_geo 
model adds the dynamic soil moisture data into the M_geostat model, the 
M_geobio incorporates DBH in the M_geo model and thus shows a 
relation to beech vitality, while the M_geors additionally integrates in
dividual remote sensing VI based on the M_geo, demonstrating the 
relationship between remotely sensed data and beech crown condition. 
The M_geobiors combines all available predictors and is therefore 
considered a reference for the comparison of the other models.

Due to the strong correlation between VIs calculated using similar 
spectral bands (Fig. A1), we used only one VI each time to train a remote 
sensing related model (Table 2). It is important to identify which VI and 
bands are highly correlated with the crown condition of beech trees. 
Additionally, we observed a strong correlation (r = − 0.88) between the 
proportion of sand particles (> 0.05 mm) and silt particles (≥ 0.002 mm 
and ≤ 0.05 mm) in the fine earth fraction, as determined by Spearman’s 
correlation coefficients. Considering that sand and silt together with clay 
are the three main particles in soil structure, we did not arbitrarily 
remove any of them. To compromise on multicollinearity (Alin, 2010), 
we used the ratio of ‘proportion of silt particles (≥ 0.002 mm and ≤
0.05 mm) and sand particles (> 0.05 mm) in the fine earth fraction’ 
(‘silt/sand’), as a new metric for regressions. Overall, there are no other 
explanatory variables correlated with each other using Spearman’s 
correlation coefficients with high correlation coefficient more than 0.75. 
Importantly, compared to traditional statistical models (Kärvemo et al., 
2023), RF and GBM are more robust in handling multicollinearity (Garg 
and Tai, 2013; Derraz et al., 2023), offering an advantage for our study.

For mapping crown defoliation, all raster layers were resampled to 
20 m to facilitate the raster data processing, in accordance with the 
spatial resolution of Sentinel-2 data. By excluding DBH, more samples 
were used at this stage to train a model than at the stage of developing 
the predictor sets, since DBH was only available at a point level and not 
for each beech pixel. Even though we found that including more samples 
increases the correlation between ‘Organic carbon stocks’ and ‘Soil 
organic carbon content in the fine earth fraction’ after resampling (r=
0.86), we did not remove them for mapping. The primary goal at this 
stage is area-wide mapping with a 20-meter resolution. Furthermore, the 
medium-term changes in crown defoliation from 2016 and 2022 were 
estimated by the predicted results for each year using a linear regression 
approach.

2.5. Training and testing sets

Overall, 80 % of the explanatory variables were used to train the RF 
and GBM regression models and 20 % were used to test the performance 
of the models, which was evaluated using RMSE and R2. Ten-fold cross- 
validation was used to train the GBM and RF models (Ali et al., 2012). 
Besides, hyperparameters were used for fine-tuning. In terms of GBM, 
the depth of trees (interaction.depth) was tuned from 1 to n-2 (n refers to 
the number of explanatory variables in a model) with increments of 2. 
The number of trees (n.trees) was tuned from 100 to 1000 with in
crements of 50. Three values of the learning rate (shrinkage) were 
evaluated during tuning (0.01, 0.05, and 0.1). The minimum observa
tions in terminal nodes (n.minobsinnode) were tuned using three values 
(6, 8, and 10) (Kuhn and Johnson, 2013; Vulova et al., 2020).

The sample sizes for the ten defined classes of crown defoliation vary 
depending on the number of samples per class (Table 3). Due to the 
limited sample size of each 5 %, we defined each 10 % as a class offering 
an overview of sample distributions. The sample size (in total 1297) in 
Table 3 is applicable for comparing the five model types applied, 
whereas the model for mapping crown defoliation contains 2793 sam
ples (Table A2).

All procedures were conducted using QGIS, FORCE, and the statis
tical computing language R (RStudio Team, 2021). The R package ‘caret’ 
was utilized for training ML models, and ‘terra’ and ‘raster’ were 
employed for processing raster layers and mapping crown defoliation. 
Medium-term changes in crown defoliation were aggregated using zonal 
statistics in QGIS and displayed as hexagons for improved visualization.

3. Results

3.1. Model performance displayed by predictor sets

RF and GBM showed strong relationships between crown defoliation 
and the selected explanatory variables. RF almost outperformed GBM in 
all models, showing similar performance overall (Table 4). With regard 
to the remote sensing models, the best results were achieved using the 
NBR. The evaluation metrics for model type M_geors using other VIs are 
presented in Table A3.

In our study, using only static variables to explain crown defoliation 
has led to substantial accuracy, with the M_geostat showing a RMSE of 
8.715 % and R2 of 0.754 at testing for RF, and a RMSE of 8.858 % and R2 

of 0.746 at testing for GBM, respectively. When including the dynamic 
SMI metrics into regressions (M_geo), the RMSE at testing decreased and 
R2 increased both using RF and GBM. When further incorporating DBH 
into regressions (M_geobio), the evaluation metrics were improved using 
GBM. However, the performance of the M_geobio was only slightly 
improved by DBH. This similarly occurred in the model M_geors 
including ‘peak of NBR’ based on the M_geo using both RF and GBM. 

Table 2 
The applied model types with various predictor sets for modeling crown defo
liation. *Only one VI was used each time.

Model Predictor sets

M_geostat Elevation, Slope, Aspect, Soil profile information
M_geo Elevation, Slope, Aspect, Soil profile information, SMI_PA and 

SMI_CA
M_geobio Elevation, Slope, Aspect, Soil profile information, SMI_PA and 

SMI_CA, DBH
M_geors* Elevation, Slope, Aspect, Soil profile information, SMI_PA and 

SMI_CA, Peak of VI (NDRE, NDMI, NBR, DRS, MSI)
M_geobiors* Elevation, Slope, Aspect, Soil profile information, SMI_PA and 

SMI_CA, DBH, Peak of VI (NDRE, NDMI, NBR, DRS, MSI)

Table 3 
The sample size per crown defoliation class for training and testing five models. 
A total of 1297 samples were used to compare five model types. 1039 samples 
were used for training the models, while the remaining 258 samples were used 
for testing the models for validation. The sample represents the average crown 
defoliation for beech trees at a WZE survey point.

Crown defoliation (%) All Training Testing

0–10 227 179 48
>10–20 161 126 35
>20–30 290 238 52
>30–40 297 238 59
>40–50 185 146 39
>50–60 78 65 13
>60–70 40 32 8
>70–80 8 7 1
>80–90 2 0 2
>90–100 9 8 1
Total 1297 1039 258
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Despite this, the M_geors of RF, using topographic, static, and dynamic 
soil properties and ‘peak of NBR’, achieved the lowest RMSE and highest 
R2 at testing (RMSE = 7.700 %, R2 = 0.815). When using all explanatory 
variables (M_geobiors), including DBH and NBR together in M_geo, 
evaluation metrics slightly improved during testing with GBM. This 
improvement, however, is not evident when using RF by M_geobiors.

Fig. 3 depicts the relative variable importance identified by model 
M_geors with the best evaluation metrics. The variable importance in 
M_geors provided the relative percentage scores for each predictor. 
However, variable importance for the same predictor sets differed 
greatly based on the ML algorithm employed (Fig. 3). As for M_geors 
using RF, topographic and soil properties were particularly influential, 
with 100 % importance for ‘Cation exchange capacity of the soil’. 
However, remotely sensed ‘Peak of NBR’ and ‘Ratio of proportion of silt 
particles (≥ 0.002 mm and ≤ 0.05 mm) and sand particles (> 0.05 mm) 
in the fine earth fraction’ contributed the largest relative percentages 
importance (100 % and 97.15 %, respectively) in GBM modeling, fol
lowed by ‘Slope’, ‘Aspect’, ‘SMI_CA’ and ‘SMI_PA’ with 65.87 %, 
64.99 %, 64.78 % and 61.79 %, respectively. ‘Peak of NBR’ contributed 
27.50 % importance and ‘Proportion of clay particles (< 0.002 mm) in 
the fine earth fraction’ and ‘SMI_CA’ were the least influential predictors 
(both less than 1 %) using RF.

3.2. Predicted crown defoliation and variations among federal states

3.2.1. Validation of the model used for mapping
The model applied for mapping achieved high accuracy (R2 = 0.794 

and RMSE = 7.646 %) when validated by WZE observations of crown 
defoliation (Table A4), with topographic and soil properties as the most 
influential factors (Table A5), confirming the robustness of RF when 
handling two highly correlated predictors ‘Organic carbon stocks’ and 
‘Soil organic carbon content in the fine earth fraction’ (part 2.4).

We compared predicted and WZE observed crown defoliation for the 
entire study region and each federal state (Fig. 4). The testing data for 
validation covers crown defoliation ranging from 0 % to 100 %, 
showing a strong correlation between predicted and WZE observed 
crown defoliation. Higher crown defoliation was predominantly 
observed in Hesse and Lower Saxony. Beech trees in Schleswig-Holstein 
showed low to moderate crown damage condition (less than 70 %), but 
there is limited testing data available. When comparing predictions to 
WZE observations, high crown defoliation is often underpredicted.

3.2.2. Distribution of predicted crown defoliation across federal states
Crown defoliation maps were generated as raster layers for each year 

from 2016 to 2022 (Fig. 5; Fig. A2) and displayed the results for 2022 in 
the main text (Fig. 5). The largest part of the mapped area has crown 
defoliation values in the class 10–40 % for Hesse (90.22 % of the total 
beech area, 374,505.92 ha) and Lower Saxony (92.08 % of the total 
beech area, 191,354.12 ha), and 0–30 % for Schleswig-Holstein 
(94.46 % of the total beech area, 56,122.2 ha). Beech areas with high 
crown defoliation (>70 %, referring to the last three classes in Fig. 5) did 
not constitute the majority, but were identified in different sizes, such as 
742 ha, 111.36 ha, and 0.04 ha in Hesse, Lower Saxony, and Schleswig- 
Holstein, respectively (Table A6).

3.3. Annual change detection and medium-term trends in predicted crown 
defoliation across federal states

We calculated changes in the proportions of beech trees with 
increasing and decreasing crown defoliation over consecutive years 
(Fig. 6). Considering that the model predicted continuous crown defo
liation and the comparison between predictions and reference data 
indicated an underestimation (Fig. 4), a 2 % threshold was applied to 
assess the actual changes in the predicted results. This threshold was 
implemented to mitigate the issue of false negatives associated with the 
model (Radke et al., 2005; Kennedy et al., 2007).

Focusing on the period from 2016 to 2017, most of the beech area 
showed stable crown defoliation values. 36.65 %, 21.22 %, and 38.28 % 

Table 4 
Evaluation metrics for testing all models. The best evaluation metrics are shown 
in bold. *Results are applicable for NBR.

Algorithm Model RMSE test (%) R2 test (-)

RF M_geostat 8.715 0.754
M_geo 7.784 0.807
M_geobio 7.817 0.807
M_geors* 7.700 0.815
M_geobiors* 7.790 0.812

GBM M_geostat 8.858 0.746
M_geo 8.159 0.787
M_geobio 7.884 0.799
M_geors* 7.867 0.800
M_geobiors* 7.745 0.806

Fig. 3. Relative variable importance revealed by model M_geors. Red lines mark groups of A. topographic, B. soil properties, and C. remotely sensed variables, 
respectively.
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of the beech area in Schleswig-Holstein, Lower Saxony, and Hesse, 
respectively, exhibited a decrease in crown defoliation. These rates 
surpassed those of increasing defoliation in each respective federal state. 

A similar percentage of beech trees with decreasing crown defoliation 
(21.19 %) was identified from 2017 to 2018 in Lower Saxony, while no 
noticeable differences were observed for Schleswig-Holstein and Hesse 

Fig. 4. Comparison between predicted and WZE observed crown defoliation from all years.

Fig. 5. Mapped area with Fagus sylvatica for all crown defoliation classes for all three federal states in the year 2022.
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in terms of the percentages of beech trees showing increasing and 
decreasing crown defoliation. Noticeable changes occurred from 2018 to 
2019, with 74.46 % of beech trees in Schleswig-Holstein and 56.12 % in 
Lower Saxony exhibiting increases in predicted crown defoliation. In 
contrast, this increase was not apparent in Hesse, with only 23 % of 
beech trees showing an increase in defoliation. Interestingly, from 2019 
to 2020, more beech trees in Schleswig-Holstein exhibited a noticeable 
decrease in crown defoliation, up to 42.22 %, whereas in Hesse, a higher 
percentage of beech trees showed an increasing trend in defoliation 
(33.07 %) compared to those displaying a decreasing trend (5.18 %). No 
noticeable changes were observed in any federal states from 2020 to 
2021. However, from 2021 to 2022, 29.83 % of beech trees in Lower 
Saxony showed an increasing trend in defoliation. In contrast, a higher 
percentage of beech trees in Schleswig-Holstein and Hesse exhibited 
decreasing crown defoliation compared to those showing increasing 
crown defoliation.

Medium-term trends from 2016 to 2022 were defined into 
‘increasing’, ‘stable’ and ‘decreasing’. Fig. 7(a) and (b) depict the spatial 
distribution of the medium-term trends in crown defoliation and the 
mapping results from 2022, respectively. According to the results, the 
‘stable’ class was predominant, while the area from central to eastern 
Lower Saxony was identified with medium-term increasing crown 
defoliation. However, this area is not a primary distribution zone for 
Fagus sylvatica in the study region (Fig. 1). The area with increasing 
trends had low to moderate crown defoliation in 2022, as illustrated in 
Fig. 7(b). In addition, the medium-term decreasing trend in crown 
defoliation, which was observed in Lower Saxony, showed a much 
smaller area compared to other regions classified as ‘increasing’ and 
‘stable’.

Fig. 6. Annual changes in the proportions of beech trees classified as ‘increasing’ (positive y-coordinates) and ‘decreasing’ (negative y-coordinates) in crown 
defoliation.

Fig. 7. (a) Medium-term trends in crown defoliation from 2016 to 2022 shown in 2 km-spacing (horizontal and vertical) hexagons; (b) mapped crown defoliation for 
2022 in 10 km-spacing hexagons, where the mean predicted crown defoliation is calculated using all beech pixels with a 20 m resolution; (c) mean predicted crown 
defoliation for a zoomed area in 2022, and (d) the medium-term trend in crown defoliation for the same zoomed area.
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4. Discussion

4.1. Important environmental factors describing crown defoliation

The Identification of environmental factors that describe crown 
conditions of Fagus sylvatica L. well is important in order to represent 
information for forest health - which has so far only been surveyed at 
sampling points - by means of regionalization approaches in the area. 
Successfully mapping crown condition will be beneficial for forest 
management. Results from machine learning regressions using various 
predictor sets demonstrate that relationships between crown defoliation 
and environmental factors can be found, whereby topographic and soil 
properties, DBH, and remotely sensed data are proven to be associated 
with crown defoliation. This aligns with the findings of Anderegg et al. 
(2015) that drought and climatic factors interact with biotic factors to 
influence defoliation in trees. In our study, the use of DBH did not 
significantly improve the model performance. Since it was not utilized 
for mapping, our discussion did not focus on a detailed examination of it.

Topographic and soil profile information played a crucial role in 
explaining crown defoliation and provided a solid foundation for model 
performance as these factors represent long-term environmental con
ditions. Although the integration of dynamic predictors, such as SMI and 
NBR only marginally improved model performance, this improvement 
highlights their importance in capturing short-term variability that 
static predictors alone do not account for. We assume that dynamic 
predictors, although they contribute minimally overall, are therefore a 
valuable addition to static predictors. Compared to previous studies 
(Leuschner et al., 2023; Weigel et al., 2023), we did not directly include 
climate data such as precipitation as explanatory variables. However, 
the SMI is a composite product with e.g. precipitation and temperature, 
and offers a unique advantage of combining soil and climate indicators, 
which has been discussed by Xu et al. (2024). Beech trees are susceptible 
to water deficits during the growing season. Studies have disclosed that 
soil water deficits affect the vitality of European beech and triggered tree 
mortality (Carsjens et al., 2014; Leuschner, 2020; Meyer et al., 2022; 
Schmied et al., 2023; Rukh et al., 2023). Soil moisture for the whole soil 
depth was therefore closely related to crown defoliation and improved 
the evaluation metrics in regressions. In addition, the soil moisture sums 
from preceding years were demonstrated to be associated with crown 
defoliation, indicating a lag effect between droughts and crown dieback. 
It has been widely discussed that beech trees not only experienced im
mediate physiological stress after droughts, but also exhibited pro
nounced symptoms of defoliation and crown decline in the subsequent 
year (Frei et al., 2022; Arend et al., 2022).

Remotely sensed data has demonstrated its ability to explain crown 
defoliation. However, it is important to note that the peak of a VI mainly 
reflects crown condition from a satellite perspective. Thus, it is linked to 
crown defoliation but does not represent a causal relationship. Our re
sults demonstrate that utilizing NBR calculated using band 8 A and 12 
achieved better performance in explaining crown defoliation than using 
other VIs (Table A3). Band 8 A is a band in the near-infrared (NIR) 
range, whereas band 12 represents the short-wave infrared (SWIR). As 
previously demonstrated by Ghulam et al. (2007) and Wang et al. 
(2018), near-infrared (NIR) and short-wave infrared (SWIR) bands are 
effective for assessing vegetation water content and are closely related to 
vegetation cover. The NBR was initially employed to assess the extent of 
burned areas but has since been utilized to detect a range of forest dis
turbances (König et al., 2023; Xu et al., 2024). The effectiveness of the 
NBR in identifying changes in vegetation health and structure makes it a 
valuable tool for monitoring not only fire impacts but also other dis
turbances such as disease, pest infestations, and deforestation. In our 
case, the crown condition of beech trees may be better reflected by band 
8 A and 12 than by other visible bands (e. g., Band 4 and 5, as detailed in 
Tables A1 and A3). Despite NBR not playing a significant role in the RF 
model (Fig. 3; Table A5), it enhanced the model performance. NBR 
played a significant role in the model using GBM, contributing 100 % to 

its significance (Fig. 3), but the model shows a bit lower performance 
compared to RF. This may indicate that using remotely sensed VI as a 
side predictor makes the model more robust instead of considering it as a 
main predictor. RF considers multiple decision trees and averages the 
importance of predictors across many decisions. A predictor that is 
important in some trees may not be as significant in others. This aver
aging process smooths out the importance values, resulting in less pro
nounced differences among variable importances. In contrast, GBM 
calculates how much each predictor reduces the loss function at each 
split. If a predictor is very important during the early boosting phases, it 
can receive a heavy weight, thereby assigning it greater significance. In 
our study, NBR achieves 100 % variable importance from GBM but only 
27.50 % from RF (Fig. 3), indicating that GBM assigned its entire weight 
to NBR. This is due to the emphasis on NBR’s central role in minimizing 
errors during the initial iterations. Conversely, RF distributes impor
tance more evenly across several features.

Uncertainties exist when using remotely sensed NBR peaks in re
gressions. According to our study design, a 20-meter resolution for pixels 
was adopted, for incorporating all six trees belonging to the same survey 
point (Fig. 2). There may still be positional inaccuracies between the six 
trees from a WZE survey point and a Sentinel-2 pixel. Mixed spectral 
signals may be generated due to other land classes. This issue may more 
likely influence the beech plots that suffer severe leaf losses, as the 
spectral signals of understory vegetation are mixed into the same pixels 
of pure beech plots. The understory vegetation may also result in the 
underestimation of crown defoliation in models (Fig. 4), whereby higher 
VI did not represent denser canopy of target beech trees but likely the 
detection of understory vegetation. To fully leverage the capabilities of 
WZE estimates in remote sensing applications, achieving a strong 
alignment between WZE and remotely sensed time-series data is critical. 
According to the WZE/ICP Forests plot design, six proximate trees were 
selected at each of four points located around a reference point. The 
morphology of these six trees is naturally often different. As a result, 
there may be a discrepancy between the crown defoliation acquired by 
terrestrial estimation and the VI metrics obtained from remote sensing 
data. In other words, the WZE/ICP Forests design is rather optimized for 
the precise and accurate statistical estimation of target crown defolia
tion but is not designed to be linked to satellite data. Similarly, this issue 
has been discussed by Blickensdörfer et al. (2024). Combining national, 
terrestrial survey and remote sensing data in forestry remains a chal
lenge, as indirectly summarized by Fassnacht et al. (2024). Therefore, 
we recommend that VIs should be used more cautiously when deriving 
crown condition estimates from them.

4.2. Beech crown condition and annual developments for each federal 
state

Mapping crown defoliation provides area-related information to 
assess tree crown damage and compare regional differences, which is 
beneficial for forest management. The extensive mapping of crown 
defoliation in beech forests yields valuable insights, such as identifying 
beech plots with low to severe damage. This method - combining WZE/ 
ICP Forests grid data with area-related geo-ecological and remote 
sensing data - offers a comprehensive overview for crown defoliation, 
enhancing our understanding of forest health and the consulting of 
forest managers. The mapping results indicate that most beech trees 
experienced low to moderate crown damage over the research years, 
with variations in the severity of damage observed across the three 
federal states from north to south. A greater number of healthy to 
minimally damaged beech trees were observed in Schleswig-Holstein, 
followed by Lower Saxony. In contrast, beech trees in Hesse clearly 
exhibited more moderate to severe damage (Fig. 5; Fig. 7(b); Fig. A2). 
These findings are in accordance with the WZE/ICP Forests grid data 
results.

Furthermore, detecting annual changes in the proportions of beech 
trees exhibiting increasing and decreasing trends in crown defoliation is 
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essential for assessing beech health under the influence of dynamic 
predictors (soil moisture and vegetation index). Since we have discussed 
the important predictors in Section 4.1, we shift our focus to spatial 
patterns of dynamic predictors.

Our findings demonstrate that there are regional differences among 
the three federal states based on mapped crown defoliation. In 
Schleswig-Holstein, where beech trees exhibited a low-level damage, 
more beech trees with increasing crown defoliation were observed from 
2018 to 2019. Beech trees there showed a greater capacity for recovery, 
as more trees with decreasing crown defoliation from 2019 to 2020 were 
identified compared to Lower Saxony and Hesse. This indicates a posi
tive improvement in tree health. Healthy trees may appear more sus
ceptible to drought stress, but they tend to recover faster (Haase and 
Hellwig, 2022). In Lower Saxony, where beech trees exhibited low to 
moderate crown damages, a high percentage of beech trees with 
increasing crown defoliation was also identified from 2018 to 2019, but 
no evident recovery was observed later. The rise in beech trees with 
increasing crown defoliation noted from 2021 to 2022 in Lower Saxony 
indicates a decline in tree vitality. Moreover, beech trees in Hesse with 
moderate to high crown defoliation experienced less changes compared 
to the other two federal states. In summary, the magnitude of annual 
changes appears to be linked to the damage level in crown condition.

In terms of uncertainties, limited samples of high crown defoliation 
(>60 %) can affect model performance, hindering the accurate predic
tion of high crown defoliation compared to low to moderate defoliation. 
Larger training samples benefit the prediction of low to moderate 
defoliation. There may be limitations in using a 2 % threshold to detect 
actual changes. Reducing the threshold to decrease false negatives can 
often lead to an increase in false positives. Consequently, the analysis 
might falsely identify changes in crown defoliation. To our knowledge, 
limited studies have mapped crown defoliation using the WZE design or 
discussed annual changes in beech trees. Thus, we recommend that 
future studies focus on the issue of threshold selection. Furthermore, the 
ML models utilized in this study are only capable of predicting area-wide 
crown defoliation for the current year and do not provide future fore
casts. To accurately evaluate future crown defoliation, timely data on 
relevant predictors is essential for training new models that can map 
corresponding crown defoliation.

4.3. Medium-term trend in crown defoliation

Overall, no medium-term deterioration or recovery was observed in 
the mapped crown defoliation for European beech. Some beech plots in 
Lower Saxony exhibited signs of potentially deteriorating crown con
dition. This contradicts the WZE grid data showing a continuous dete
rioration of crown condition in Hesse during the observation period and 
a sudden deterioration in Lower Saxony. In Schleswig-Holstein WZE 
crown defoliation was only increased in 2019; this moderate reaction is 
probably due to the oceanic climate and moderate climate change to 
date in Schleswig-Holstein.

The stable medium-term trend observed in Hesse may be attributed 
to the moderate to high level of crown defoliation. Beech trees that are 
moderately to severely damaged may be not as susceptible to drought 
stress as healthy beech trees. However, this trend in Hesse could also be 
attributed to the model’s underestimation of crown defoliation. In other 
words, the model may not accurately predict high crown defoliation 
(Fig. 4). Consequently, the actual medium-term trend for Hesse was not 
detected by the linear regression. This is because the mapped crown 
defoliation for each year appeared lower and thus depicted the beech 
forests as healthier than they actually were. While beech trees in 
Schleswig-Holstein experienced evident deterioration, they showed re
covery later, as discussed above. This also indicates that the physio
logical responses of Fagus sylvatica L. to drought are complex. On the 
other hand, the soil moisture sums in Hesse and Schleswig-Holstein did 
not show a continuous decrease from 2016 to 2022, when compared to 
Lower Saxony. Still, a continuous decrease in soil moisture can result in 

the deterioration of beech crown condition. According to Leuschner 
et al. (2023), although beech mortality is currently lower in northern 
Germany, most of this region is expected to become unsuitable for beech 
growth within the next tree generation.

Furthermore, it is crucial to emphasize that in our study, crown 
defoliation was the sole indicator of the vitality of beech trees. However, 
research by van der Maaten et al. (2024) suggests that crown condition 
post-drought is a less reliable measure of tree vitality compared to ring 
width analysis. Additional indicators, such as insect infestations and the 
mortality rate, also reflect the health of beech forests (Meyer and 
Schmidt, 2011; Brück-Dyckhoff et al., 2019). Therefore, it is essential 
that modeling approaches take into account a broader range of physi
ological parameters to assess the vitality of beech trees 
comprehensively.

5. Conclusions

In this study we present a crown defoliation modeling approach for 
Fagus sylvatica L. on a federal state level by combining National Forest 
Condition Survey data (WZE) with a variety of geo-ecological variables 
and Sentinel-2 with high accuracy. Our findings have implications for 
evaluating the potential for mapping crown defoliation data using geo- 
ecological and remote sensing data, as we evaluated topographic and 
soil characteristics associated with crown condition and built machine 
learning models that map crown defoliation data. Topographic variables 
and static soil properties form the basis for explaining crown defoliation, 
while dynamic soil moisture and vegetation index (VI) metrics improve 
modeling accuracy. The comparison between predictions and WZE ob
servations confirms the robustness of our models. Our study reveals the 
uncertainty in the positional accuracy of WZE data in relation to pixels 
derived from remotely sensed data. It highlights the challenges posed by 
mixed pixels, a topic that requires further optimization in subsequent 
studies.

The models show that most beech trees exhibited low to moderate 
crown condition in the study region. A higher number of trees with 
moderate to severe crown defoliation were observed in Hesse, followed 
by Lower Saxony and Schleswig-Holstein. Furthermore, healthy and 
minimally damaged beech trees were more susceptible to decreases in 
soil moisture but could recover faster than beech trees with moderate 
and high crown defoliation. Beech forests facing continuously 
decreasing soil moisture and drought stress may be experiencing 
medium-term deterioration in crown condition. Overall, our study not 
only demonstrates the interrelations among these variables but also 
utilizes environmental parameters to map crown defoliation across 
extensive areas, providing a valuable tool for evaluating beach health on 
a regional basis. This approach can serve as a stepping stone for using 
geo-ecological and remote sensing data to map the grid data of tree 
crown condition from the WZE survey. The WZE grid data can be 
evaluated at a national level, too. The grid width is chosen so that the 
results are representative for the respective federal state. However, only 
point-data are available in space and time. This means that area-wide 
information and forecasts on crown condition cannot be generated. 
The advantage of a modeling approach would therefore be the region
alization of the WZE grid data and the forecast of crown condition.

The model developed can be extended beyond the three federal 
states to the national level in Germany. It is also helpful to use the model 
to make statements for smaller biogeographical regions than the federal 
states. Various physiological variables related to tree functioning should 
be integrated and collectively utilized in future studies to improve the 
models. The aim is to develop a generalized model for the area-wide 
monitoring of European beech forests and other tree species based on 
the WZE grid data.
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Aden, C., Schmidt, G., Schönrock, S., Schröder, W., 2010. Data analyses with the WebGIS 
WaldIS. Eur. J. For. Res. 129, 489–497. https://doi.org/10.1007/s10342-010-0370- 
7.

Ågren, A.M., Larson, J., Paul, S.S., Laudon, H., Lidberg, W., 2021. Use of multiple LIDAR- 
derived digital terrain indices and machine learning for high-resolution national- 
scale soil moisture mapping of the Swedish forest landscape. Geoderma 404, 
115280. https://doi.org/10.1016/j.geoderma.2021.115280.

Ali, J., Khan, R., Ahmad, N., Maqsood, I., 2012. Random forests and decision trees. Int. J. 
Comput. Sci. Issues (IJCSI 9 (5), 272.

Alin, A., 2010. Multicollinearity. Wiley Interdiscip. Rev. Comput. Stat. 2 (3), 370–374. 
https://doi.org/10.1002/wics.84.

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., 
Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H. (T., Gonzalez, P., Fensham, R., 
Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., 
Semerci, A., Cobb, N., 2010. A global overview of drought and heat-induced tree 
mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259 
(4), 660–684. https://doi.org/10.1016/j.foreco.2009.09.001.

Ampoorter, E., De Frenne, P., Hermy, M., Verheyen, K., 2011. Effects of soil compaction 
on growth and survival of tree saplings: a meta-analysis. Basic Appl. Ecol. 12 (5), 
394–402. https://doi.org/10.1016/j.baae.2011.06.003.

Anderegg, W.R.L., Hicke, J.A., Fisher, R.A., Allen, C.D., Aukema, J., Bentz, B., Hood, S., 
Lichstein, J.W., Macalady, A.K., McDowell, N., Pan, Y., Raffa, K., Sala, A., Shaw, J. 
D., Stephenson, N.L., Tague, C., Zeppel, M., 2015. Tree mortality from drought, 
insects, and their interactions in a changing climate. N. Phytol. 208 (3), 674–683. 
https://doi.org/10.1111/nph.13477.

Archambeau, J., Ruiz-Benito, P., Ratcliffe, S., Fréjaville, T., Changenet, A., Muñoz 
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