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Abstract

Passive acoustic monitoring (PAM) has gained increasing popularity to study

behaviour, habitat preferences, distribution and community assembly of birds

and other animals. Automated species classification algorithms like ‘BirdNET’

are capable of detecting and classifying avian vocalizations within extensive

audio data, covering entire species assemblages. PAM reveals substantial poten-

tial for biodiversity monitoring that informs evidence-based conservation. Nev-

ertheless, fully realizing this potential remains challenging, especially due to the

issue of false-positive species detections. Here, we introduce an optimized

thresholding framework, which incorporates contextual information extracted

from the time-series of automated species detections (i.e. covariates on quality

and quantity of species’ detections measured at varying time intervals) to

improve the differentiation of true and false positives. We verified a sample of

BirdNET detections per species and modelled species-specific thresholds using

conditional inference trees. These thresholds were designed to minimize false-

positive detections while maximizing the preservation of true positives in the

dataset. We tested this framework for a large dataset of BirdNET detections

(5760 h of audio data, 60 sites) recorded over an entire breeding season. Our

results revealed considerable interspecific variability of precision (percentage of

true positives) within raw BirdNET data. Our optimized thresholding approach

achieved high precision (≥0.9) for 70% of the 61 detected species, while

species-specific thresholds solely relying on the BirdNET confidence scores

achieved high precision for only 31% of the species. Conservative universal

thresholds (not species-specific) reached high precision for 48% of the species.

Our thresholding approach outperformed previous thresholding approaches

and enhanced interspecific comparability for bird community analyses. By

incorporating contextual information from the time-series of species detections,

the differentiation of true and false positives was substantially improved. Our

approach may enhance a straightforward application of PAM in biodiversity

research, landscape planning and evidence-based conservation.

Introduction

Over the past decades, passive acoustic monitoring

(PAM) has developed rapidly (e.g. Darras et al., 2019;

Gibb et al., 2019; Sugai et al., 2019), especially driven by

the availability of low-cost, energy efficient autonomous

recording units (Hill et al., 2018). The ability to sample

biodiversity at high temporal resolution is an outstanding

feature of PAM, which results in extensive time-series

data of detections of species vocalizations (Ross

et al., 2023). Hence, compared to traditional observer-

based methods, PAM enhances species detectability
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(Darras et al., 2019; Metcalf, Barlow, Marsden,

et al., 2022; P�erez-Granados et al., 2018) and thus reduces

methodological issues regarding interspecific variation in

detectability (Boulinier et al., 1998; K�ery & Schmidt, 2008)

or observer biases (Kułaga & Budka, 2019; Schmidt

et al., 2023). PAM is particularly valuable to detect rare

and secretive species (Bota et al., 2023; Picciulin et al.,

2019). Although not without limitations and imperfec-

tions, for example its restriction to vocalizing species

(Darras et al., 2019), PAM can thus make a substantial

contribution to biodiversity monitoring (Chhaya

et al., 2021; Ross et al., 2023), which is needed to identify

and understand threats for biodiversity and to provide

evidence for conservation management (Lindenmayer

et al., 2022; Sutherland et al., 2004).

Compared to cetaceans or bats, PAM of birds is a

young field with specific challenges mainly due to noisy

acoustic environments and the high complexity and varia-

tion of species’ vocalizations (Kahl et al., 2021; Priyadar-

shani et al., 2018; Ross et al., 2023). Ecoacoustic indices

correlate with species richness but lack information on

species identities (Gasc et al., 2017). Therefore, numerous

researchers have identified species from sound recordings

by human listening and demonstrated advantages of PAM

(Darras et al., 2018, 2019). Nevertheless, human-based

species identification is limiting large-scale PAM applica-

tions (Gibb et al., 2019). Thus, various tools for auto-

mated detection of focal species have been developed

(Florentin et al., 2020; Katz et al., 2016; Zwart

et al., 2014). The deep artificial neural network ‘BirdNET’

is one of the first available algorithms covering entire bird

communities. In its first release, BirdNET was able to

detect vocalizations of 984 bird species from Europe and

North America (Kahl et al., 2021). The algorithm was

recently extended to cover 6000 bird species worldwide

(https://github.com/kahst/BirdNET-Analyzer).

Nevertheless, false-positive species detections (i.e. mis-

classified sounds) are an inherent problem of classifica-

tion algorithms like BirdNET (Clement et al., 2022;

Rhinehart et al., 2022). False-positive detections are par-

ticularly problematic, since occupancy of threatened spe-

cies may get overestimated and negative population

trends may remain undetected (Rydell et al., 2017). As a

result, decision-making in conservation management may

be misguided, which demonstrates the need for the devel-

opment of robust data post-processing methods in PAM

to utilize its benefits for biodiversity research. Several

studies provided valuable guidance on designing and opti-

mizing PAM field studies (Froidevaux et al., 2014; Met-

calf, Barlow, Marsden, et al., 2022; Sugai et al., 2020).

However, a standardized workflow for PAM data post-

processing has not been established yet and false-positive

species detections hinder ecological analyses of PAM data

(Barr�e et al., 2019; Clement et al., 2022; Rhinehart

et al., 2022). To realize the full potential of PAM in large-

scale and long-term applications, a minimization of false-

positive detections of all species, not just selected or com-

mon ones, is required. Several approaches have been pro-

posed to address false-positive detections, for example

logistic regression (Barr�e et al., 2019; Bota et al., 2023),

boosted regression trees (Knight et al., 2020), occupancy

models (Clement et al., 2022; Rhinehart et al., 2022;

Wright et al., 2020) and hierarchical modelling (Cham-

bert et al., 2018; Cole et al., 2022). However, these

approaches have only been demonstrated for a selected

set of (common) species but not for entire species assem-

blages. Mitigation of false positives in large-scale bird

monitoring applications comes with unique challenges

due to extensive sources of noise and varying species

assemblages (Lauha et al., 2022; Priyadarshani

et al., 2018). Interspecific differences of false-positive rates

have been identified as a challenge but remain unevalu-

ated at the community scale (Knight et al., 2020; P�erez-

Granados, 2023). Typically, automated species classifica-

tion algorithms provide a continuous confidence score as

a measure of the quality of a detection. In BirdNET appli-

cations, some authors applied universal confidence score

thresholds (a minimum confidence score below which

data are discarded) across species to reduce false positive

(Sethi et al., 2021; Wood et al., 2021). However, interspe-

cific differences of false-positive rates can be substantial,

and false-positive rates remain unknown without human

validation (Barr�e et al., 2019; Cole et al., 2022; Metcalf,

Barlow, Bas, et al., 2022).

In this study, we present an optimized thresholding

framework for data post-processing of automated species

detection data. Our primary objective was to identify

species-specific thresholds that maximize the precision

[i.e., the number of correctly classified detections divided

by the total number of correctly and incorrectly classified

detections (Knight et al., 2017)]. We anticipated that

including features derived from the time-series of auto-

mated species detections, that is variables related to the

quality (confidence score) and quantity of detections cal-

culated at varying time intervals, would improve the dif-

ferentiation between true and false positives, as

biologically meaningful information on detection proba-

bility is included (Chambert et al., 2018; Madhusudhana

et al., 2021; Metcalf, Barlow, Bas, et al., 2022). Further-

more, we expected that these aggregated time-series fea-

tures (ATF) could especially contribute to an

optimization of the trade-off between precision and recall

(Knight & Bayne, 2019). We expected that threshold

models incorporating ATF would differentiate true- and

false-positive detections with higher accuracy than a

threshold solely based on the BirdNET confidence score.
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As a result, fewer true positives would need to be dis-

carded while false positives would be minimized com-

pared to previous thresholding approaches, hence

optimizing both precision and recall. We tested this opti-

mized thresholding approach on a large dataset from a

realistic bird monitoring application and compared it to

previous thresholding approaches. This not only allowed

us to evaluate the effectiveness of our thresholding

approach but also provided general insights into the per-

formance of the BirdNET algorithm in extended PAM

studies of entire bird species assemblages with low-cost

autonomous recording units like AudioMoth.

Materials and Methods

(1) Automated audio recording followed by (2) automated

species classification are two basic and well-established

steps of the PAM workflow (Gibb et al., 2019, Fig. 1).

However, (3) data post-processing is an essential third step

preceding ecological analyses with PAM data (Barr�e

et al., 2019; Knight & Bayne, 2019). Our species-specific

thresholding approach specifies the data post-processing in

the PAM workflow. This approach is composed of three

phases: (a) human validation of a sample of detections per

species, (b) modelling of candidate threshold models and

Figure 1. Workflow scheme of passive acoustic monitoring, including three basic steps (left: 1. Automated audio recording, 2. Automated

species classification, 3. Data post-processing) and our species-specific thresholding approach, which consists of three phases (a. Human

validation, b. Threshold modelling, c. Threshold selection). In the species-specific thresholding approach, a sample of the raw species detections is

used to derive optimized thresholds for each species.
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(c) final selection of optimized species-specific thresholds

(Fig. 1). All analyses were conducted with R 4.2.2 (R Core

Team, 2023), accessed via R Studio (Posit team, 2023).

Automated audio recording

The audio data used in our study were recorded at 60 beech

forest sites in Hainich National Park in central Germany

(51.09° N, 10.43° E). The forest of Hainich National Park is

formed by a mixture of broadleaved tree species, dominated

by European beech (Fagus sylvatica). We mounted one

AudioMoth (versions 1.0.0 and 1.1.0, technically equivalent)

in waterproof IPX7 cases at 1.5 m height to tree trunks at all

sites. AudioMoth devices are capable of recording large

amounts of audio data automatically (Hill et al., 2018). They

were configured to record sound at a sampling rate of

32 kHz, with amplifier level (gain) set to medium. Audio-

Moth recordings covered the regional breeding season of for-

est birds from 18th March until 7th June 2021 (80 days).

Audio data were recorded for 30 s at intervals of 10 min

throughout day and night for the whole study period (5% of

time), totalling 5760 h (96 h per site) of audio data. We

chose this high-temporal-resolution sampling scheme because

it records acoustic species assemblages more efficiently regard-

ing completeness of species than sampling schemes with lower

temporal resolution or limited to a certain daytime (Metcalf,

Barlow, Marsden, et al., 2022; Wood et al., 2021).

Automated species classification

We employed the artificial neural network ‘BirdNET’ in its

first version (Kahl et al., 2021) (available at https://github.

com/kahst/BirdNET) to automatically detect and classify

avian vocalizations in the audio recordings. We kept

default settings (min_conf = 0.1, sensitivity = 1, spp = 1,

overlap = 0) since effects of adjusting BirdNET parameters

have not been evaluated yet (P�erez-Granados, 2023). Bird-

NET provided a list of species and corresponding confi-

dence scores (continuous values from 0.1 to 0.99) for ten

3-s intervals for each 30 s audio file. We deactivated the

use of eBird species distribution data (Sullivan et al., 2009)

within the BirdNET processing to avoid a premature exclu-

sion of species. However, before proceeding with subse-

quent analyses, we limited the species set to the breeding

birds of the study region (Gedeon et al., 2015), resulting in

a list of 110 species (Table S1).

Species-specific thresholding

Human validation

The first step of our species-specific thresholding approach

(Fig. 1) was the validation of a sample of 225 BirdNET

detections per species, adapted from Barr�e et al. (2019), Met-

calf, Barlow, Bas, et al. (2022). For each species, 25 detections

per 0.1 class of the confidence score were selected randomly

from the entire pool of BirdNET detections. For some species,

there were less than 25 available detections in certain classes,

leading to reduced sample sizes. An experienced ornithologist

(D.S.) validated the sample by listening to the 3-s audio snip-

pets with studio headphones (AKG K701) and assigned

whether they were true or false positives. Audio snippets were

extracted using the tuneR package (Ligges et al., 2018). Detec-

tions that could not be identified at species level (e.g., unspe-

cific calls or fragments of songs) were considered false

positives. In cases where no true-positive detection was identi-

fied among the top 25 detections in the sample for a species,

human validation was stopped. Only species with at least one

validated true-positive detection were included in the subse-

quent analyses.

Threshold modelling

Secondly, we modelled species-specific thresholds to mini-

mize false-positive detections (Fig. 1). Confidence scores

are provided as a metric of the quality of a species detec-

tion, but initial validation checks of BirdNET detections

indicated that there were considerable percentages of false

positives also among detections with high confidence

scores for several species (e.g. Marsh tit, Grey-headed

woodpecker, Spotted flycatcher, Eurasian woodcock).

Hence, we calculated ATF from the species detection time-

series per site to be used as additional predictors. We basi-

cally assumed that a species detection that is embedded in

a time interval with many high confidence score detections

of that species at the sampling site is more likely to be a

true-positive detection than a detection (with similar confi-

dence score) from a time interval at the site with overall

less and lower confidence score detections. We calculated

simple statistical parameters that aggregate information on

the quality (average, median, maximum and minimum of

confidence scores) and the quantity (number of detections

with different minimum confidence scores) at different

time intervals from the time-series of BirdNET detections

for each species per site (Table S2). The selection of the sta-

tistical parameters was guided by the intention to align

them with interspecific differences in the distribution of

true and false positives along the confidence score contin-

uum (Rhinehart et al., 2022).

All ATF were calculated for 12 different time intervals

centred on the detections’ timestamp. We varied the time

interval length at three temporal scales, meaning that we

included information from temporally adjacent detections

(�3, �6, �9 and �12 s), files (�10, �20, �30 and

�40 min) and days (�12, �24, �36 and �48 h). Extend-

ing the time interval is biologically meaningful in the way
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that the predictors may better fit the varying song charac-

teristics and temporal activity patterns among bird species

than the original BirdNET confidence scores, which are

based on 3 s (Kahl, 2020). By incorporating information

from temporally adjacent detections, the predictors may

capture different durations or repetition patterns of vocal-

izations (Benedict & Najar, 2019). Predictors integrating

information from 20 to 80 min may capture vocalizations

of species with distinct diel activity peaks [e.g. dawn or

dusk chorus (Farina & Ceraulo, 2017)], while those calcu-

lated for time intervals of 24–96 h may capture distinct

seasonal activity peaks, such as those of migratory species

(Thompson et al., 2017). Together with the original Bird-

NET confidence score, we ended up with 169 predictor

variables per species.

We employed conditional inference trees (Hothorn

et al., 2006) to identify threshold values along the contin-

uous scales of the predictor variables, which maximize the

differentiation into true- and false-positive detections for

each species (Fig. 2). Conditional inference trees partition

a dataset into binary subsets recursively and select the

most significant predictor variables based on statistical

tests. They are robust to overfitting (M€uller &

B€utler, 2010). For methodological details on conditional

inference trees, see Hothorn et al. (2006) and M€uller and

B€utler (2010). Conditional inference trees were fitted

using the ctree function from the partykit package

(Hothorn & Zeileis, 2015). Specific parameter settings are

provided in the R code (03_threshold_modelling.R).

For each of the 61 investigated species, we fitted condi-

tional inference trees of two different model types. Type 1

models were designed to assess the performance of the 169

predictor variables independently. Setting maximum tree

depth in the ctree function to one allowed for either zero or

one split based on the selected predictor variable (see, e.g.,

Fig. 2A). Consequently, we fitted a total of 169 type 1 models

for each species. Type 2 models were designed to allow inter-

actions between combinations of predictor variables. Hence,

we used all 169 variables as single predictor variables as well

as all possible combinations of them, respectively. To allow

for up to two split levels, we set the maximum tree depth to

two. This means that threshold rules can consist of two con-

ditions, for example a minimum confidence score combined

with a minimum number of detections per time interval

(see, e.g., Fig. 2B). Accordingly, we fitted 14,365 type 2

models for each of the 61 species.

Threshold selection

Finally, we selected optimized species-specific threshold

rules out of all available models (Fig. 3). Our primary

objective was to minimize false-positive detections in the

BirdNET data. Therefore, the precision defined as the

ratio of true positives to the total of false and true posi-

tives (Knight et al., 2017) was the main selection criterion

for an optimized threshold rule. We only considered

threshold rules leading to the terminal node of a model

that provided the maximum precision (Fig. 2).

Figure 2. Examples of threshold selection with conditional inference trees for the Grey-headed woodpecker (Picus canus). FP, false-positive

detections, TP, true-positive detections. Panel (A) shows an example of a type 1 model with maxdepth = 1, and panel (B) shows an example of a

type 2 model with maxdepth = 2 and two predictor variables (conf = original BirdNET confidence score, int09_ndets99 = number of detections

with confidence ≥0.99 in a time interval of �12 h). As an example, the right branch of the tree in panel (B) can be read as follows: The

percentage of true-positive detections (=precision) increases up to 95.2% when their confidence score is >0.82 and they are embedded in a 24-h

interval in which at least once a Grey-headed woodpecker was detected with confidence score of 0.99 at the recording site. With the type 1

model (A), percentage of true-positive detections can only be pushed to 64.4% when filtering confidence score >0.82.
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However, the recall, defined as the ratio of true positives

included after thresholding to the total of all human-

validated true positives (Knight et al., 2017), should also be

considered within the selection process, as a model with max-

imum precision could (in a worst case) only include a mini-

mum of the available true positives, meaning that many true

positives are discarded. Accordingly, we assessed the model

performance by calculating the weighted sum of the precision

p and the recall r: model performance = p 9 w + r 9 (1 –
w). The weighting factor w as well as the model performance

can take values from zero to one. As low precision is more

likely to bias ecological inferences than lower recall (Metcalf,

Barlow, Bas, et al., 2022), we chose w = 0.75. This means that

precision was three times higher weighted than recall, effec-

tively moderating the trade-off between minimal false-

positive rates and maximum inclusion of true positives

(Knight & Bayne, 2019).

Out of all available models, we selected those as candi-

dates for optimized thresholding that exhibited the high-

est available model performance for each species (Fig. 3).

Due to the multicollinearity of the aggregated time-series

features, numerous candidate models with identical model

performance were found for some species, while only one

optimal candidate model was identified for others. Conse-

quently, we obtained a matrix representing candidate

models for each species, indicating that models exhibited

the highest performance. Hence, we faced a classical set

cover problem in optimization. In the set cover problem,

the goal is to select a subset of elements from a given col-

lection such that every element in the original collection

is covered by at least one element in the subset. In our

context, each species represents an element in the original

collection, and the candidate models correspond to the

elements in the subset we are trying to select. Hence, we

Figure 3. Performance of all available models per species as a metric of precision and recall. Models with maximum performance are marked by

red crosses (=candidate models for optimized thresholds). Gradient colours indicate the model performance, calculated as the weighted sum of

precision and recall. Point size is scaled by the number of models with identical performance. We regarded precision values ≥0.9 as ‘high

precision’ (marked by a dashed line). Species are sorted by maximum model performance.
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applied the set cover algorithm from the lpSolve package

(Berkelaar & Cs�ardi, 2023) to find the minimum set of

unique models required to ensure that at least one opti-

mized model is retained for each species.

Performance evaluation

To evaluate the performance of our optimized species-

specific thresholding approach, we compared the optimized

thresholds to the type 1 models with BirdNET confidence

score as predictor variable. We refer to these type 1 models

as basic thresholds in the following since they have the sim-

plest possible tree architecture and rely on the original mea-

sure of detection quality from BirdNET. Additionally, we

fitted logistic regressions with confidence score as predictor

to identify species-specific thresholds, as proposed by Barr�e

et al. (2019). For species where no logistic threshold could

be derived, we set performance metrics to raw values without

any thresholding. To contrast the species-specific approaches

with non-species-specific ones, we applied three universal

confidence score thresholds (UNI10: confidence score ≥0.1,
equals no thresholding when using BirdNET default settings;

UNI50: ≥0.5; UNI90, ≥0.9) to the data. Universal confidence

score thresholds were applied to BirdNET data previously

(Sethi et al., 2021; Wood et al., 2021). To test whether the

optimized thresholds improved the thresholding perfor-

mance, we compared them to the five other threshold types

by testing their effects on four performance metrics (preci-

sion, recall, model performance, number of species with pre-

cision ≥0.9) with Bonferroni-corrected Wilcoxon tests.

To optimize the number of predictor variables for

future applications, we assessed the individual impact of

the 169 predictors on the optimized thresholding using a

backward selection approach. We iteratively removed pre-

dictors based on their length of time intervals from the

pool of all candidate models. Similarly, we reduced the

statistical parameters included in the models stepwise.

Unlike time intervals, these parameters lack a straightfor-

ward ranking. Hence, we assessed their effects on the

average model performance using a bootstrapping

approach with 999 permutations. Finally, we removed the

predictors with lowest effect on model performance first

and selected the optimized thresholds out of the remain-

ing candidates for each iteration.

Results

Interspecific variability of BirdNET
performance

Overall, the BirdNET algorithm identified 10 848 360

bird detections within the 5760 h of audio material. We

validated detections of 61 out of the 110 considered

species as true positives. We found substantial interspe-

cific variation of the distribution of confidence scores

within the human-validated detections. While for some

species (e.g. Blackbird Turdus merula, Chaffinch Fringilla

coelebs) nearly all validated detections were true positives

independent of confidence scores, for other species, only

few true positives were found close to maximum confi-

dence scores (e.g. Grey-headed woodpecker Picus canus)

(Table S3).

Performance of optimized thresholds

Precision increased up to more than 0.9 (termed as high

precision in the following) for 70% of the 61 species by

optimized thresholding (Fig. 4). Basic thresholds reached

high precision for 31% of the species. The thresholds

from logistic regression, as proposed by Barr�e

et al. (2019), reached high precision for 56% of the spe-

cies. The logistic thresholds also performed better than

our basic thresholds; however, they failed to identify

thresholds for 31% of the species. When applying univer-

sal thresholds, precision was highly heterogeneous across

species and reached high precision for 10% (UNI10),

26% (UNI50) or 48% (UNI90) of the species.

Our optimized thresholds significantly increased the

precision compared to the three universal and two other

species-specific thresholds (Figure S1). Furthermore, the

optimized thresholds significantly increased the recall

compared to the UNI90 threshold and no difference was

found compared to the logistic thresholds; however, recall

was lower compared to the UNI10, UNI50 and basic

thresholds (Figure S2). The metric of model performance

of the optimized thresholds was significantly higher com-

pared to all but the basic thresholds (Figure S3). Number

of species with high precision was significantly higher

with the optimized thresholds compared to all other

threshold types (Table S4).

After applying the set cover optimization to the candi-

date models with maximum performance per species, 41

unique type 2 models remained. Fifty-three of the 169

aggregated time-series features were included in the for-

mulas of these models (Table S5). Predictor variables cov-

ering all 12 time intervals were included, but one of the

14 statistical parameters (number of detections with con-

fidence ≥0.99) became redundant.

Post-hoc reduction of predictor variables

Overall, the performance of optimized thresholds decreased

when ATF were removed iteratively (Fig. 5). Regarding the

maximum length of time intervals, the percentage of spe-

cies with high precision stayed at its maximum of 70%

when predictors integrating more than �12 h were
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Figure 4. Comparison of precision between three universal thresholds (non-species-specific filtering above a certain confidence score: UNI10:

confidence score ≥0.1, UNI50: confidence score ≥0.5, UNI90: confidence score ≥0.9), and three species-specific thresholds, derived from logistic

regression (using script from Barr�e et al., 2019) and our own thresholds derived from conditional inference trees (CIT): basic thresholds (only

original BirdNET confidence score was used as predictor) and the optimized thresholds (all 169 aggregated time-series features included as

predictors). The dashed line marks a precision of 0.9, which we termed as precision. Plot (A) shows the distribution of precision as boxplots, and

plot (B) shows the species-specific values.
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included. The mean model performance just slightly

increased when predictors integrating more than �12 h

were included. Similar patterns were observed for the

reduction of statistical parameters. Removing the seven

least informative parameters revealed no effect on the per-

formance but removing the remaining eight parameters

reduced model performance constantly. Removing all ATF

(i.e. limiting the predictors to the confidence score) caused

the most pronounced drop in model performance and per-

centage of species with high precision.

Discussion

Our study demonstrated high heterogeneity of precision

in automated bird species detections among species.

Hence, BirdNET confidence scores do not provide a uni-

form measure of detection quality across species but seem

to depend on species abundance, at least in noisy real-

world applications. It appears essential to implement

species-specific post-processing of BirdNET data to ensure

the comparability of classification errors among species.

Otherwise, inferences regarding habitat preferences or

population trends may be biased (Barr�e et al., 2019; Met-

calf, Barlow, Bas, et al., 2022) or, as a worst case, harm

threatened species through wrong conservation priorities

(Russo & Voigt, 2016; Rydell et al., 2017).

The utilization of ATF substantially improved the dif-

ferentiation of true and false species detections in our

optimized thresholding approach. Optimized thresholds

particularly outperformed non-species-specific universal

confidence score thresholds, which were applied in previ-

ous studies (Sethi et al., 2021; Wood et al., 2021), empha-

sizing the importance of species-specific threshold

adaptation (Cole et al., 2022; P�erez-Granados, 2023). The

vast improvement of correct species classification achieved

through the usage of ATF may be explained by their bio-

logical significance. By incorporating information from

temporally adjacent detections, the ATF serve as proxies

of species-specific temporal dynamics of detection proba-

bilities and are fitted to the actual data. Hence, they

Figure 5. Effects of stepwise reduction of aggregated time-series features [(A) reduction of time interval length; (B) reduction of statistical

parameters] on the performance of optimized species-specific threshold models. High precision = precision ≥0.9, performance measures are

explained in detail in the methods section. Predictors were ordered according to (A) the time interval length and (B) the average effect on model

performance, derived from bootstrapping with 999 permutations. All species: species with at least one validated true-positive detection from

passive acoustic monitoring. The dashed line separates the models including simply the original BirdNET confidence score, which is based on a 3-s

interval, from the aggregated time-series features.

ª 2024 The Authors. Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London. 525

D. Singer et al. Time-series Features Boost Acoustic Monitoring

 20563485, 2024, 4, D
ow

nloaded from
 https://zslpublications.onlinelibrary.w

iley.com
/doi/10.1002/rse2.385 by N

O
R

T
H

W
E

ST
 G

E
R

M
A

N
 FO

R
E

ST
 R

E
SE

A
R

C
H

 IN
ST

IT
U

T
E

, W
iley O

nline L
ibrary on [19/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



encapsulate study-specific information on the likelihood

to observe a species at a specific time of the year or day

in a certain habitat.

Several previous studies successfully utilized spatio-

temporal information to improve the differentiation of

true and false positives, for example for fin whales (Mad-

husudhana et al., 2021), two frog species (Chambert

et al., 2018), two bat species (Clement et al., 2022) or five

to six bird species (Metcalf, Barlow, Bas, et al., 2022; Rhi-

nehart et al., 2022). However, none of them utilized

information from the detection time-series comparable to

the ATF in our thresholding approach. Hence, results are

not directly comparable. Furthermore, such case studies

including a limited set of species clearly differ from the

extent of field studies (Rhinehart et al., 2022). As our

species-specific thresholding approach has revealed high

performance in an extended field study (240 days of

audio data from 60 sites) including an entire assemblage

of 61 species, it demonstrated applicability for compre-

hensive PAM studies.

Nevertheless, there is potential for future development

of the utilization of ATFs. Since we validated a random

sample of species detections, stratified by species and

BirdNET confidence score but not by site or time, the

derived species-specific threshold rules operate as an aver-

age threshold at the scale of the complete dataset but do

not fully consider site- and time-specific differences of

BirdNET performance within species. Hence, we implic-

itly assumed that performance of BirdNET is spatio-

temporally consistent within the study area. This assump-

tion may be challenged for some species, as intra-specific

classifier performance can vary significantly across sites

(Metcalf, Barlow, Bas, et al., 2022). Especially in studies

that cover a broader environmental gradient, automated

classifier performance is known to vary (Lauha

et al., 2022). As our results demonstrate, BirdNET perfor-

mance already varies largely between species. Hence, opti-

mized thresholds based on ATF are a substantial

contribution to improve the interspecific comparability of

BirdNET results, even though future research should

focus on spatio-temporal variation of the performance of

optimized thresholds. When accounting for spatio-

temporal variation, the performance for (locally) rare spe-

cies may be enhanced. However, accounting for spatio-

temporal variation of the thresholds would require a

much larger effort of human validation when covering

entire species assemblages and numerous sites. We

hypothesize that sites could be pre-classified based on

their raw BirdNET detection time-series; hence, human

validation could be additionally stratified based on clus-

ters of sites with similar data structure to improve the site

specificity but reduce the required amount of human

validation.

We are aware that our thresholding approach may be

statistically more basic than approaches in the majority of

the recent studies, which relied on more advanced statisti-

cal models [e.g. boosted regression trees (Knight

et al., 2020), occupancy models (Clement et al., 2022;

Rhinehart et al., 2022; Wright et al., 2020) and hierarchi-

cal modelling (Chambert et al., 2018; Cole et al., 2022)].

However, regarding the high performance we consider

this as an advantage, as we intended to design a straight-

forward thresholding approach that is applicable by a

wide audience. Our approach yields thresholds, which

consist of up to two conditions for species-specific filter-

ing of big data in extended PAM field studies. The

threshold conditions are directly derived from the time-

series of BirdNET detections and do not require external

environmental information, as included by Metcalf, Bar-

low, Bas, et al. (2022). Furthermore, conditional inference

trees are statistically robust and intuitively interpretable

(Hothorn et al., 2006; M€uller & B€utler, 2010). Compared

to models relying on Bayesian statistics (Chambert

et al., 2018; Clement et al., 2022; Cole et al., 2022; Rhine-

hart et al., 2022), conditional inference trees may be

much more accessible to average PAM users in biodiver-

sity research and conservation. Therefore, our threshold-

ing approach may help to bridge the science-practice gap

in conservation (Fabian et al., 2019).

Our thresholding approach simply requires a time-

series of confidence scores from a classification algorithm

and a rather small sample of 225 human-validated detec-

tions from the actual study area. A trained observer can

validate the sample of audio snippets in near real-time, so

the effort totals about 15 min per species. Therefore, it

may be well adaptable to studies in other habitat types,

regions and in acoustic monitoring of other taxonomic

groups like bats. In principle, it is even adaptable to auto-

mated image classification in camera-trapping applica-

tions as this also provides time-series of confidence scores

(Tabak et al., 2019). However, our chosen approach to

validate BirdNET detections by listening to 3-s audio

intervals may underestimate true-positive detections in

some cases, as BirdNET may be able to correctly identify

fragments of calls or songs of certain species that a

human observer is not able to identify within a 3-s inter-

val. Hence, it could be worth to prolong the time interval

used for human validation in future applications.

As the backward selection of predictors demonstrated

(Fig. 5), including statistical parameters calculated at time

intervals of 9 s can substantially improve predictive power

compared to the models that only include BirdNET confi-

dence scores. Among the statistical parameters, the maxi-

mum and average of confidence scores yielded the most

information. Consequently, it may already be highly

informative to calculate maximum and average confidence
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scores for two adjacent BirdNET detections. Average con-

fidence scores at a time interval of 9 s also improved the

performance in a previous study (Wood et al., 2021).

Nevertheless, the set cover optimization revealed that 41

unique model formulas are required to identify at least

one optimized threshold for all species. These 41 model

formulas included 53 of the 169 ATF, aggregating confi-

dence score information at all 12 time intervals and only

one statistical parameter became redundant. Therefore,

vast potential for reducing computational costs lies not in

limiting the set of ATF, but rather in excluding uninfor-

mative combinations of ATF from the model formulas

within in the thresholding modelling step.

It is likely that the selected optimized thresholds are

not transferable one-on-one to other regions or habitat

types with different species assemblages or other record-

ing devices (Cole et al., 2022). Automated species recog-

nition is generally known to perform differently across

regions; therefore, site- or region-specific adaptations

need to be made (Cole et al., 2022; Lauha et al., 2022;

Metcalf, Barlow, Bas, et al., 2022). As the available Bird-

NET algorithm is trained on ‘weak labels’ that may

include significant amounts of noise and non-target spe-

cies (Kahl et al., 2021), researchers should make use of

the new possibility to train BirdNET based on ‘strong

labels’, for example own labelled data from regional audio

collections, to improve its classification performance

(Ghani et al., 2023; McGinn et al., 2023).

Our study unequivocally established the efficacy of

aggregated time-series features in enhancing species-

specific post-processing of data derived from passive

acoustic bird monitoring. We designed a species-specific

thresholding approach that minimizes false-positive spe-

cies detections for an entire assemblage of bird species in

an extended, realistic bird monitoring application. It also

efficiently balances the trade-off between maximizing pre-

cision and recall. Due to the statistical simplicity of the

underlying conditional inference trees, it may be straight-

forward to apply even by users not used to deal with

complex statistical models. Hence, our optimized species-

specific thresholding approach may enhance the applica-

tion of PAM to inform evidence-based conservation

efforts. Independent from the choice of conditional infer-

ence trees, we also encourage other researchers to con-

sider the inclusion of aggregated time-series features into

their models, as they turned out to vastly enhance the

performance of classification models to distinguish true-

and false-positive species detections.
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cision of our optimised thresholds, derived from condi-

tional inference trees (CIT Optimised, all 169 aggregated

time series features included as predictors) and three uni-

versal thresholds (non-species specific filtering above a

certain confidence score: UNI10: confidence score ≥0.1,
UNI50: confidence score ≥0.5, UNI90: confidence score

≥0.9) and two species-specific thresholds, derived from

logistic regression (using script from Barr�e et al., 2019)

and our own basic thresholds (only original BirdNET

confidence score was used as predictor). Differences were

tested by Bonferroni corrected paired Wilcox-tests.
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recall of our optimised thresholds, derived from condi-

tional inference trees (CIT Optimised, all 169 aggregated

time series features included as predictors) and three uni-

versal thresholds (non-species specific filtering above a

certain confidence score: UNI10: confidence score ≥0.1,
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logistic regression (using script from Barr�e et al., 2019)
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Figure S3. Pairwise (per bird species) comparison of the

model performance (calculated as weighted sum of preci-

sion and recall) of our optimised thresholds, derived from

conditional inference trees (CIT Optimised, all 169 aggre-

gated time series features included as predictors) and
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≥0.1, UNI50: confidence score ≥0.5, UNI90: confidence
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were tested by Bonferroni corrected paired Wilcox-tests.
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