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Quantifying wood decomposition 
by insects and fungi using 
computed tomography scanning 
and machine learning
Sebastian Seibold 1,2,3*, Jörg Müller4,5,13, Sebastian Allner6, Marian Willner6, Petr Baldrian 7, 
Michael D. Ulyshen 8, Roland Brandl9, Claus Bässler 5,10, Jonas Hagge 11,12 &  
Oliver Mitesser 4,13

Wood decomposition is a central process contributing to global carbon and nutrient cycling. 
Quantifying the role of the major biotic agents of wood decomposition, i.e. insects and fungi, is thus 
important for a better understanding of this process. Methods to quantify wood decomposition, such 
as dry mass loss, suffer from several shortcomings, such as destructive sampling or subsampling. 
We developed and tested a new approach based on computed tomography (CT) scanning and semi-
automatic image analysis of logs from a field experiment with manipulated beetle communities. We 
quantified the volume of beetle tunnels in wood and bark and the relative wood volume showing signs 
of fungal decay and compared both measures to classic approaches. The volume of beetle tunnels was 
correlated with dry mass loss and clearly reflected the differences between beetle functional groups. 
Fungal decay was identified with high accuracy and strongly correlated with ergosterol content. Our 
data show that this is a powerful approach to quantify wood decomposition by insects and fungi. 
In contrast to other methods, it is non-destructive, covers entire deadwood objects and provides 
spatially explicit information opening a wide range of research options. For the development of 
general models, we urge researchers to publish training data.

In the world’s forests, 73 ± 6 Pg (Petagram,  1015 g) of carbon is currently stored in deadwood representing about 
8% of the global forest carbon  stock1. The decomposition of deadwood is, thus, a central ecosystem process deter-
mining release rates of carbon and  nutrients1–3. Wood decomposition rates depend on climatic  conditions2 and 
intra- and interspecific differences in wood traits (e.g. wood density, lignin, nitrogen or phosphorous content)4–6, 
but also on the communities of  decomposers2,7,8. Microbes, particularly fungi, and arthropods, particularly ter-
mites and beetles, are the main biotic agents of wood  decomposition7,9,10. While insects mainly degrade wood 
mechanically by creating larval tunnels and fragmenting woody  material7, fungi degrade wood chemically, e.g. by 
use of extracellular enzymes or oxidative  processes10,11. Moreover, interactions between organisms, for example 
insects and fungi or between fungi and bacteria, can affect wood  decomposition9,12,13. Despite the importance of 
wood decomposition as an ecosystem process, many aspects regarding its drivers remain unclear.
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Wood decomposition has been studied from a technical perspective focusing on construction  timber14 as well 
as from an ecological perspective in laboratory  experiments13,15. Ecological studies of wood decomposition and 
decomposer communities in the field, however, are logistically challenging compared to other substrates like leaf 
litter due to the size of deadwood items and the long time needed for the decay. In addition, the measurement 
of wood decomposition faces a number of methodological  challenges16–18. The most widely applied method to 
quantify decomposition is estimating dry mass loss of an item or density loss over a certain time  period18,19. Dry-
ing, however, alters decomposer communities and eradicates many species, especially when high temperatures 
are  used20, making it a form of destructive sampling. Approaches based on dry mass loss thus do not allow to 
repeatedly assess the progress of decomposition within the same log as a whole and it is even problematic for 
initial measurements since endophytic fungi present in living wood influence fungal community  assembly21.

When decomposition under natural conditions or over several time steps is to be studied, subsamples have to 
be taken from a log, e.g. a disc or stem section, which are then dried to calculate dry mass or density of the study 
log based on the ratio of fresh and dry mass. Taking subsamples, however, suffers from limited accuracy since 
wood is a heterogenous substrate and heterogeneity within and between logs increases during the decomposition 
 process22,23. Subsamples may thus not be representative of the rest of the log due to variation in wood charac-
teristics, such as wood density, distribution of heart- and sapwood or presence/absence of branches. Especially 
when trying to quantify the decomposition by insects, this approach may lack accuracy since insects are not 
distributed homogeneously within  wood22 (Fig. 1). There are non-destructive methods to measure wood density, 
such as resistograph, Pilodyn or nail-withdrawal  measurements24, and also measuring chemical or biological 
characteristics of wood, such as pH, lignin, enzyme or ergosterol  concentration25–27 is less destructive. Both 
types of approaches, however, suffer from limited representativeness since they are also based on subsampling, 
i.e. small amounts of wood extracted for example with a drill. Moreover, the measured chemical and biological 
characteristics mainly represent the activity of fungi and  bacteria26, but not of insects. Another disadvantage of 
subsampling is that any mechanical disturbance of the bark can influence physical processes, such as drying, 
and the colonization of fungi by providing entry ports for  spores28,29.

To provide a better understanding of the functional importance of different decomposer groups, it may be 
desired to quantify the contribution of each group separately. This is only partly possible with the currently 
available approaches to quantify wood decomposition. Approaches focusing on mass or density loss can only 
quantify total decomposition by all organisms. While exclusion of fungi in the field is unfeasible given the small 
size of fungal spores, insects exclusion, e.g. with cages, can be used to compare decomposition with and without 
 insects16. The observed difference in decomposition rates with and without insects, however, is not only caused 
by the direct effects of insects but also by indirect effects mediated by insect-fungi  interactions2,7,30. Past research 
attempting to elucidate patterns of wood decay and insect activity within logs involved making observations 
of fungal or insect damage visible on disks or boards cut from the  logs31–33. In addition to being destructive, 

Figure 1.  Heterogeneous distribution of tunnels generated by wood decomposing insects along the log can 
substantially affect the extrapolation of wood decomposition level from tree discs (indicated by black outlines). 
A specific disc might be located in areas with low or high decomposition activity. Scan by M. Gossner.



3

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16150  | https://doi.org/10.1038/s41598-022-20377-3

www.nature.com/scientificreports/

however, this painstaking approach is limited by the minimum thickness achievable using a saw and cannot be 
used for highly decomposed wood. Further progress in this area will thus require new methodology to quantify 
direct effects of insects and fungi.

In summary, approaches to quantify wood decomposition in a non-destructive way that represent com-
plete deadwood items and are able to quantify both the results of fungal and insect activity are important to 
increase our understanding of the decomposition process. One promising approach is computed tomography 
(CT)  scanning19,34, a method capable of measuring wood density or a proxy of wood density in a non-destructive 
way for logs up to several meters in  length35. CT scanning is widely applied in the timber industry to measure 
wood quality, detect failures and optimize yield of sawn  timber36. First attempts have applied CT scanning for 
deadwood, for example to monitor changes in wood structure due to decomposition by  fungi34, to measure the 
extent and shape of termite  nests37,38 or the temporal development of larval tunnels of the cerambycid Mono-
chamus scutellatus39. Yet, ecological studies using CT scanning for quantifying wood decomposition of different 
decomposer groups are missing.

To evaluate the potential of CT scanning for quantifying wood decomposition by insects and fungi, we used 
experimental conifer deadwood placed in mesocosms to create defined beetle communities. Communities con-
sisted of bark beetles or wood-boring beetles, as well as control logs without beetles, to create contrasts in the 
effect of insects on wood decomposition. We quantified for the first time wood decomposition by insects and 
fungi separately using CT scanning and semi-automatic picture recognition. To measure the volume of beetle 
tunnels, we applied a segmentation approach based on thresholding and to recognize areas affected by fungal 
activity, we used a deep learning approach (convolutional neural networks, CNN) which appears promising 
for assessing wood decomposition  patterns40. To evaluate the potential of our novel approach, we compared 
the results of this approach to dry mass loss as a traditional measure for wood decomposition and to ergosterol 
measurements as a proxy for fungal activity.

Results
For the logs of the 1st batch (after 1.5 years), decomposition by beetles was quantified by the volume of tunnels. 
Each pixel could be classified as either background, bark, wood, or insect generated tunnel in bark or wood 
(Fig. 2a,b,e,f). Misclassification due to shrinkage cracks and fungal decay, however, occurred (Fig. 2c,d) and are 
indicated by relative “beetle tunnel” volume of 0.5% in control logs without beetles (Fig. 3). In general, signifi-
cant differences in beetle tunnel volume could be linked to beetle activity with differences between beetle guilds 
(Fig. 3). The fraction of tunnel volume was more than four times (and significantly) greater in mesocosms with 
wood-boring beetles compared to the control without beetles. Activity of bark beetles showed a tendency (not 
significant) with an increase in relative tunnel volume of about 50% compared to the control.

The evaluation of dry mass loss in the control and both treatment groups revealed qualitatively similar results 
and identical significance rating (Fig. 3). Spearman rank correlation between beetle tunnel volume and mass 
loss was highly significant (p < 0.001) with coefficient ρ = 0.49 (Fig. 4). Separating the data set into wood vs. bark 
revealed significant differences between mesocosms with wood-boring beetles and the control for both wood 
(Fig. 5a) and bark (Fig. 5b). The differences between mesocosm with bark beetles and the control was higher 
when only bark was considered, but the effect was not significant (Fig. 5).

Decomposition by fungi after 3.5 years was characterized by pixels appearing either brighter or darker than 
the surrounding wood, indicating higher and lower density, respectively (Fig. 6; see also Appendix “Expert 
annotation”). Many logs showed patterns of cracks typical for brown rot fungi and we observed darker coloration 
for both early- and latewood. Average volume affected by decay was about 20% resembling the level in expert 
annotation. Evaluation of results of the CNN aiming to detect areas showing signs of decomposition by fungi 
using cross validation yielded an F1 score of 0.74 with accuracy of 93%, sensitivity of 77%, specificity of 95%, 
and precision of 70%. Correlation between the volume of wood showing signs of fungal decay and ergosterol 
content were highly significant (Fig. 4).

Discussion
Methods to quantify wood decomposition by different decomposer groups in a non-destructive way that consider 
complete logs instead of subsamples have been lacking. Using a wood decomposition experiment with manipu-
lated beetle communities, we tested the ability of CT scanning combined with semi-automatic image recognition 
to quantify wood decomposition by insects and fungi. Volumes of tunnels created by beetles derived from CT 
scanning data was significantly correlated to dry mass loss and clearly revealed that the relative importance of 
beetles to wood decomposition varies among functional guilds. The wood volume affected by fungal decay could 
be quantified utilizing a machine learning approach which yielded high classification accuracy and high correla-
tion between estimated volume affected by fungal decay and ergosterol content (as a proxy for fungal biomass).

Dry mass loss is a traditional measure to quantify wood decomposition but with the disadvantage of being a 
form of destructive sampling due to the high temperatures killing decomposer communities and of being limited 
to rather small deadwood objects or subsamples of large  objects16,20. Both beetle tunnel volume and dry mass loss 
revealed significant differences between control and wood-boring beetles, but only weak differences between 
control and bark beetles. The strong effect of wood-boring beetles compared to bark beetles reflects the ecology 
of both guilds with wood-boring beetles excavating larger amounts of wood and supports the hypothesis that 
large-bodied wood-boring beetles are the major decomposers among  beetles7. Our results indicate that both 
approaches are in principle suitable to quantify wood decomposition by beetles as well as differences between 
guilds. While quantifying wood volume consumed by insects provides insight into the direct contributions 
of these organisms to wood loss from ecosystems, it should be noted that previous work suggests that insect-
mediated reductions in wood volume do not guarantee losses in wood mass if fungal activity varies between 
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Figure 2.  Computed tomography images of cross sections (a–d) and unrolled bark (e–f) after 1.5 years of 
decomposition. (a,c,e) Show raw images before segmentation and (b,d,f) show detected beetle tunnels in green 
and yellow. Correct identification is highlighted in (b) for beetle tunnels (1) and beetle larvae (2). Detection 
errors are highlighted in d including areas affected by fungal decay (3) and shrinkage cracks (4) falsely classified 
as beetle tunnels as well as challenges related to bark decay. Detached bark (5) can lead to overestimation of 
beetle tunnel volume under the bark while bark loss (6) leads to underestimation. (e,f) Show projections of the 
unrolled bark layer with the vertical axes representing the longitudinal stem axis.
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 treatments32. Our results, however, show that higher reductions in wood volume due to beetle activity were overall 
associated with higher mass loss, even if the strength of this correlation was only moderate.

For bark beetles, both approaches have their weaknesses. While neither approach found strong significant 
effects of bark beetles, dry mass loss revealed a slightly stronger effect than the CT-based approach. This may 
be attributable to losses of bark resulting from bark beetle  activity41. While this may lead to overestimation of 
dry mass loss of wood and bark by bark beetles, it has mixed effects on our volume-based CT-approach. When 
bark is still attached but loose (Fig. 2d), the volume of bark beetle tunnels is overestimated. However, when the 
bark has fallen off before scanning, bark beetle tunnels cannot be quantified and thus effects of bark beetles 
are underestimated. Whether over- or underestimation prevails likely depends on the decomposition stage. 
Further improvement of post-processing of the image analysis may help to reconstruct or estimate the volume 
of missing bark.

A clear advantage of the CT-based approach is that beetle effects can be quantified for wood and bark sepa-
rately, even if the accuracy is lower for bark. Wood-boring beetles contributed significantly to wood decom-
position for both wood and bark. This mirrors the behavior of their larvae tunneling into the sapwood and in 
some species even into the heartwood, but also generating cavities under the bark, such as pupal  chambers42. 

Figure 3.  Relative volume of beetle tunnels [%] and dry mass loss [%] (both including bark) at the after 
1.5 years of decomposition for mesocosms containing bark beetles or wood-boring beetles and the control 
without beetles. Significant results are indicated above the data groups.

Figure 4.  (a) Correlation between beetle tunnel volume and dry mass loss (both including bark). (b) 
Correlation between volume affected by fungi and ergosterol content. Correlations are based on Spearman’s rank 
tests and plotted lines are the regression line according to a linear model. Note that data in (a) were recorded 
after 1.5 years and data in (b) from different samples after 3.5 years.
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As expected, the effect of bark beetles was restricted to the bark although the observed trend was not signifi-
cant. This may be due to challenges related to quantify the volume of cavities under the bark described above. 
Furthermore, not all bark beetle tunnels may be detected due to their small diameter when using CT scanners 
with limited spatial resolution. Similarly, visual inspection of images revealed that not all small-diameter tunnels 
were detected in wood. Advances of CT technology or the use of micro-CTs34 may be helpful to obtain a higher 
detection rate of small diameter tunnels.

Beetle tunnel volume larger than zero for control logs indicated that the thresholding approach produces 
false positives that were mainly associated with radial cracks due to shrinkage (Fig. 2d). Combining thresholding 
with geometry recognition that separates tunnels from cracks based on the shape may help to reduce this kind 
of error. Maximum dry mass loss for control logs in the 1st batch attributable to fungal decay were about 5% 
(see Fig. 3). We also observed negative dry mass loss, i.e. an increase in dry mass, which may to some degree be 
due to the input of biomass and external nutrients by colonizing  fungi43. However, the more likely explanation 
is heterogeneity in wood density and water content within logs causing inaccurate dry mass values when using 
stem sections or other forms of subsampling to estimate dry mass of larger deadwood objects which is one weak-
ness of the dry-mass based approach.

Visual inspection of images by experts revealed that fungal decay was associated with either brighter or 
darker pixels compared to unaffected wood (Fig. 6; Appendix “Expert Annotations”). Bright colors indicate high 
densities likely due to a high moisture content associated with recent fungal  activity34. Darker pixels indicate 
lower densities which is likely a result of wood degradation by fungi. Density reduction was observed in either 
early- or latewood or in both. These different patterns could be caused by different fungal species but also the 
same fungus can cause different patterns with regard to early- and latewood depending on year ring  width34. 
Using deep learning to quantify the volume of wood altered by fungal decay achieved reliable levels of accuracy 
and F1 score. Strong correlation between the relative volume of fungal decay and ergosterol content indicates 
that CT-based measures of fungal decay reflect fungal biomass in deadwood. The disadvantage of ergosterol 
content and other chemical or physical measures of fungal decay (e.g. enzyme profiles and activity) is that they 
are only based on subsamples of deadwood objects and thus do not provide information for complete deadwood 
 objects44. Dry mass loss may represent complete logs (when complete logs are dried and weighed), but provides 
only an overall measure of decomposition combining all decomposer groups and information is not spatially 
explicit. Our approach combining CT scanning and deep learning provides volume-based and spatially explicit 
information on wood decay by fungi for complete deadwood objects. We showed that the accuracy of fungal 
decay recognition can be high, at least when training data of logs are used which are of similar size, age, decay 
stage and have a similar water content. The accuracy may be lower when samples are more heterogenous than 
in our case or when predictions are made outside of the environmental space defined by the training data. For 
example, water content associated with fungal activity depends on the decomposition stage and the involved 
wood-decomposing fungi which may thus affect CT  images34. Training data should therefore be selected carefully 
to represent the full gradient of wood condition. To be able to develop general models that can be applied widely, 
training data including segmented and annotated images from different researchers should be made available 
in public databases. Note that a CT-based approach to quantify wood decay by fungi relies on visible changes in 
wood structure and may thus underestimate fungal activity during early stages of wood decay.

Binary segmentation of the CNN prediction can vary slightly for adjacent slices especially at the border 
between fungi-affected wood and unaffected wood. This happens because the continuous fungi prediction 

Figure 5.  Relative beetle tunnel volume [%] after 1.5 years of decomposition for mesocosms containing bark 
beetles or wood-boring beetles and the control without beetles separately for bark and wood. P-values of 
pairwise and Holm-corrected t tests are given above the data groups.
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(confidence level) with a 2D CNN is slice-independent and binarized with a threshold (Fig. S2). This could be 
prevented by extending the network to 3D at the cost of increased labeling and training effort. A very similar 
effect could be reached by mildly blurring the network predictions along the longitudinal axis to even out 
irregularities. Therefore, this specifically seems appropriate as spread of fungi decay is more likely in longitu-
dinal direction leading to less variation than is expected in radial  direction34,45,46. As an alternative to classical 
segmentation and deep learning, classification by traditional machine learning, e.g. a random forest classifier, 
could be used. As a supervised learning approach, it utilizes generic (nonlinear) features and provides good 
accuracy based on ground truth labels with little training data. One example for a machine learning classifier 
with an interactive training editor with live feedback is  Ilastik47. However, we selected a deep learning approach 
as it bears the potential to outperform this approach given a sufficient amount of training data.

The spatially explicit information where fungi and insects are active in deadwood opens a wide range of 
options for further research. This includes the analysis of ecological differences between species, e.g. differences in 
tunnel sizes, which may explain the functional role as well as the interactions between insect species and between 
insects and fungi. Three-dimensional patterns of tunnels of different beetle species (Fig. 7a) may show whether 
different insect species avoid each other, for example due to competition or intra-guild  predation48. Moreover, 
linking spatial information of insect tunnels to patterns of fungal communities and decay (Fig. 7b,c) can help 

Figure 6.  Computed tomography images of cross sections after 3.5 years of decomposition showing the raw 
images (a,c) and the corresponding prediction from the CNN model (b,d). White shading in b and d indicate 
a high probability of fungal decay, while dark shading indicate either wood with low probability of decay or 
cracks. Fungal decay was indicated either by darker (1) or brighter pixels (2) than the decayed wood or by 
perpendicular crack systems typical for brown rot (3). Note that cracks were not counted towards that area 
affected by fungal decay.
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to understand the role of insects as vectors and insect tunnels as entry ports for fungal spores and  hyphae28,31. 
Another field of research includes spatial patterns of decay within deadwood and its  drivers34. Fungal and insect 
species differ in moisture and temperature preferences and thus, colonize different parts of deadwood  logs42,49. 
Linking spatial distribution patterns of insects and fungi to microclimatic conditions within deadwood can help 
to better understand how habitat heterogeneity drives biodiversity. Finally, sampling of fungal communities and 
chemical variables could be spatially informed, i.e. sampling could be conducted at locations that show low and 
high fungal activity.

Conclusion
We tested a novel approach combing CT scanning with semi-automatic image analysis as a measure to quantify 
the role of beetles and fungi in the process of wood decomposition. Our measures of beetle tunnel volume and 
wood volume affected by fungal decay revealed high accuracy and strong correlation with traditional measures 
(i.e., dry mass loss and ergosterol content, respectively). Moreover, differences between functional guilds of 
beetles were captured. Compared to existing methods, this approach has several advantages: (i) it is possible to 
quantify the contribution of insects and fungi to wood decomposition separately; (ii) sampling is non-destructive 
and can thus be used to generate time series without interrupting succession and altering conditions; (iii) it is 
not based on subsampling (i.e. stem sections), but represents entire logs and is thus unbiased by heterogeneity 
within deadwood objects; (iv) it provides spatially explicit information which opens plenty of options for fur-
ther studies (e.g., regarding interactions between species or heterogeneity within deadwood). Despite the many 
advantages offered by this approach, its utility is likely to diminish as decomposition proceeds and it becomes 
increasingly difficult to distinguish between insect galleries and cracks in the wood. Currently, the size and the 
fragility of highly decomposed bark and wood are logistically challenging as long as logs have to be transported to 
be scanned by a stationary scanner. Mobile CT-scanners, however, are currently developed which may soon allow 
to scan logs, even of large size, in the field. To make use of future progress in CT-technology and automatic image 
recognition, we urge researchers to share segmented imagery as training data for developing general models for 
detecting decay by insects and fungi which can be applied for a wide range of substrates.

Figure 7.  Computed tomography allows spatial analyses of beetle and fungal activity patterns and species 
interactions. (a) Shows the 3-D structure of beetle tunnels in a deadwood log reconstructed from automatically 
detected tunnel structures (generated with X-AID 3D volume viewer). In (b) and (c), areas of fungal decay 
(white) are located close to beetle tunnels indicating that both taxa are closely interacting.
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Methods
Decomposition experiment. To achieve controlled conditions of wood decomposition, we set up an 
experiment using mesocosms in the Bavarian Forest National Park, in southeastern Germany. In March 2015, 
foresters of the national park felled 60 to 80 years old Norway spruce (Picea abies) trees without signs of insect 
or fungal infection at a single forest stand. From these trees, we cut 122 logs of 53 cm length ranging from 16 to 
20 cm in diameter. We cut a 3 cm long disc at the edge of each log. The fresh mass was recorded for each disc and 
each remaining 50 cm log with accuracy of 0.1 g. Discs (including bark) were dried at 65 °C until mass remained 
constant and dry mass was measured. We calculated the dry mass of the respective logs (including bark) as 
dry mass log = (fresh mass log/fresh mass disc) × dry mass disc. To control for colonization of logs by insects, 
we placed logs inside cages (mesocosms) made up of white polyester mesh with 1000 mesh per square inch 
measuring 40 cm × 40 cm × 60  cm2. Two logs were assigned randomly to one of 61 mesocosms. 26 mesocosms 
served as control without beetles, 20 mesocosms were assigned to the treatment bark beetles and 15 mesocosms 
to the treatment wood-boring beetles. All mesocosms of the treatment bark beetles contained 20 individuals of 
Ips typographus and of none to three further bark beetle species: Hylastes cunicularius (10 cages, 10 individuals 
each), Dryocoetes spec. (7 cages, 10 individuals each), Pityogenes chalcographus (15 cages, 20 individuals each). 
All mesocosms of the treatment wood-boring beetles contained four individuals of Monochamus sutor and five 
individuals of none to seven further wood-boring beetle species: Tetropium castaneum (10 cages), Rhagium 
inquisitor (10 cages), Molorchus minor (5 cages), Acanthocinus griseus (2 cages), Clytus lama (4 cages), Antaxia 
quadripunctata (10 cages), Chrysobothris chrysostigma (1 cage), Callidium violaceum (4 cages). These species 
were chosen because they are typical of the early-successional community colonizing dying conifers as well as 
fresh coniferous deadwood and they are feeding on the phloem, cambium or xylem (Table S1). Beetles were col-
lected in the same study region using pheromone traps for Scolytinae and hand collection for Cerambycidae and 
Buprestidae. The experiment was conducted at five plots within the Bavarian Forest National Park with 5, 4 and 
3 replicates per plot of control, bark beetle and wood-boring beetle treatments (one plot received 6 mesocosms 
of the control treatment), respectively.

In November 2016, i.e. 1.5 years after colonization of wood by beetles, we collected one log from each meso-
cosm (“1st batch”). Logs were carefully wrapped in paper to avoid the loss of bark or frass during transport. 
Logs were then scanned individually by a Philips iCT SP computed tomography scanner with helix scan mode 
120 kVp, slice thickness of 0.67 mm and pixel spacing of 0.29 mm. After scanning, logs were dried at 65 °C until 
mass remained constant at Technische Hochschule Rosenheim and dry mass was determined. Note that one 
advantage of a CT-based approach to quantify wood decomposition is that individual logs can be monitored 
over longer periods since it is a non-destructive form of sampling. Here, we scanned each log only once since 
we aimed at comparing the CT-based approach to dry mass loss which required drying the logs and thus inter-
rupting the decomposition process.

The second log from each mesocosm was collected in November 2018, i.e. 3.5 years after the wood was colo-
nized by beetles (“2nd batch”), and scanned by a Philips Ingenuity Flex X-ray computed tomography scanner with 
helix scan mode 120 kVp, slice thickness of 0.8 mm and pixel spacing of 0.34 mm. As an estimation of variation 
in fungal  biomass50, ergosterol concentration was measured for two wood samples of each log. Wood samples 
were taken before scanning by drilling 15 cm and 35 cm from one end of each log using a 8 mm auger operating 
perpendicular to the stem axis. Both samples of a log were pooled and total ergosterol was extracted with 10% 
KOH in methanol and analysed by high‐performance liquid chromatography (HPLC)51.

All methods were carried out in accordance with relevant guidelines and regulations.

Processing of CT-data. Each pixel of the reconstructed CT images (1024 × 1024 pixels) indicated the opac-
ity level of the material in Hounsfield Units (HU), which are scaled relative to water attenuation level. In a first 
step of the analysis of both batches, the bearing area (i.e. the patient table) of the CT device was identified by 
a characteristic opacity level resulting from the synthetic surface after averaging over all slices. The area below 
(and including) the borderline was replaced by the transmission level of the surrounding air (black). Beetle spe-
cies included in the experiment are most active during the first two years of  succession52, while decomposition 
by fungi increases with  succession53. Thus, processing of CT data obtained in 2016 (1st batch) focused on detect-
ing beetle tunnels and quantifying tunnel volume, while processing of CT data obtained in 2018 (2nd batch) 
focused on recognizing and quantifying wood affected by fungal activity.

Approach 1: Recognition of beetle tunnel volume (1st batch). Tunnels created by beetles in the 1st batch were 
identified by a segmentation approach which is typically applied for detection problems with high-contrast 
images and can be implemented rapidly with reproducible outcome. Thresholding in combination with binary 
morphological operations like erosion, dilation, opening, or closing were utilized to create feature  maps54 dis-
tinguishing between pixels with and without a specific desired attribute, starting with wood detection and 
separation of bark from inner wood, for details see Appendix “Wood and bark detection”. Air filled cavities 
appeared as dark gray pixels and could thus be detected by a similar hysteresis thresholding approach as for 
wood  detection54, see Appendix “Cavity detection”. After cavity detection, drillings and shrinkage cracks could 
be identified by their geometrical characteristics and thus be separated from beetle tunnels. Remaining cavities 
were tagged as beetle tunnels. However, larvae within tunnels as well as refilled tunnels were not discriminated 
from wood yet. Larvae provide good contrast and appear bright in the CT images. A larva mask was generated 
by thresholding and refined by checking for direct connection to a detected tunnel and validation of size. Thus, 
erroneous classification of other moisture-containing parts of the wood as larvae could be avoided. Refilled tun-
nels could not be detected robustly; however, they contributed negligibly to the entire cavity volume and could 
be neglected. Finally tunnel volume was determined by counting pixels representing beetle tunnels separately for 
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the bark, wood and the complete log. In addition, a graphical three-dimensional representation of beetle tunnels 
could be generated by combining 2D mask images utilizing the 3D volume viewer from MITOS GmbH, Garch-
ing Germany. Virtual bark unrolling (Fig. 2e,f) provided a radial view on the log.

Approach 2: Recognition of wood affected by fungal decay (2nd batch). In 2018, the decomposition process had 
obviously advanced with the physical structure of the wood often being strongly deteriorated. Many logs showed 
typical signs of brown rot, such as rectangular crack systems and dark brownish color. Processing of CT data 
thus aimed at detecting regions affected by fungal decay and quantifying the corresponding volume. Classical 
segmentation did not reveal solid results for the 2nd batch since cracks and beetle tunnels strongly intermingled 
(results not shown). Most challenging in segmentation of the 2nd batch was the detection of distributed areas 
affected by fungal decay which was represented by a diverse range of gray levels and textures. For binary seg-
mentation of visible fungal decay present vs. absent, we chose a deep learning approach which has been shown 
to recognize complex structures more  reliably55.

Before feeding image segments into the machine learning algorithm they were offset corrected and normalized 
by a factor of 2500 HU to yield values in a range from 0 to 1. The upper interval boundary of 1 corresponds to a 
maximum level of 250% of water attenuation and provided the upper limit of a sufficient opacity range. Dark val-
ues near 0 indicated air. We labeled 197 cross-sections of the 2nd batch to cover a wide feature range by providing 
pixel-wise expert annotations (see Appendix “Expert annotation”). Each pixel was either labeled as background 
or fungal decay. A 2D convolutional neural network (CNN) was applied to operate on 48 pixel × 48 pixel input 
patches providing a sufficient amount of expert labeled training data. The adopted CNN architecture was very 
similar to the U-Net  architecture55 and is illustrated in Appendix “Convolutional neural network” (Fig. S1). The 
output of the neural network indicated the probability of fungal decay being present in each pixel of the image. 
The threshold value for transforming probability values (interval [0, 1]) to a binary segmentation decision was 
chosen to maximize the F1 score of the validation  dataset56. The F1 score is the harmonic mean of precision, i.e. 
the fraction of pixels classified correctly as affected by fungi among the pixels classified as affected by fungi, and 
sensitivity, i.e. the fraction of pixels classified correctly as affected by fungi among all pixels actually affected by 
fungi. In addition, we evaluated accuracy (proportion of correct predictions among the total number of cases, 
i.e. fraction of pixels representing true fungal affection correctly classified among all pixels actually affected by 
fungi) and specificity, i.e. fraction of those that were not judged correctly as not affected out of those that are actu-
ally not affected (true negatives). Quality indicators are formally defined in the Appendix. Prediction reliability 
slightly decreased towards the borders of the image patches. Therefore, the 48 × 48 patches were extracted in an 
overlapping fashion with an offset of 12 pixels between corresponding pixels of two neighboring patches in a row 
or column. This ‘shift’ by 12 pixels results in an overlap of 75% of the pixels in the two patches. Predictions were 
recombined after distance-from-center-driven cosine weighting of contributing pixels. This increased prediction 
time but substantially improved image quality. Finally, the volume of wood showing signs of fungal decay could 
be estimated by counting those pixels that indicated the presence of fungal decay.

Image processing was realized with Python 3.657. For basic image manipulation (e.g. morphological operations 
like opening or closing) we used the implementation of the scientific Python package Scipy (version 1.3.158). 
Deep learning package Keras (version 2.2.559) was utilized with machine learning platform  TensorFlow60 to 
implement the convolutional neural network.

Statistical analyses. Statistical analyses were conducted in R version 3.6.361. To compare the relative vol-
ume of beetle tunnels identified by segmentation for bark, wood, and the entire log between beetle guilds and 
control treatment we utilized a beta regression model, function gam with family betar in package mgcv (version 
1.8-31) to account for proportional data and Tukey post-hoc test for pairwise comparisons. The same test was 
applied to relative dry mass loss. Correlations between relative beetle tunnel volume and dry mass, as well as 
between ergosterol and relative fungal decay volume were evaluated by Spearman rank tests.

Data availability
The entire labelled data set for training and testing the CNN is compiled here: https:// figsh are. com/s/ d413d 
84da8 476ea aef5e. All other datasets used during the current study are available from the corresponding author 
on reasonable request.
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