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1. INTRODUCTION

Practicing sustainable forest management requires
information on both the status of and change in stand
parameters. Such information is available on a large
spatial scale from regional forest inventories (RFI). The
major purpose of RFI is the estimation of parameters at
the administrative district level. Yet most dendrometri-
cal variables, such as timber volume per hectare, are
also required at the forest stand level. In most cases only
a few sample plots, sometimes even none, are situated in
each forest stand. This makes provision of relevant
stand-level information almost impossible as long as the
estimations are solely based on RFI data. 

Remote sensing can be used to bridge the gap between
the coarse spatial resolution of information obtained
from the usually wide-meshed RFI sampling grid and
the need for precise data for each of the relatively small
forest stands. Recent studies have presented various
methods to increase the precision of spatial predictions
by combining forest inventory and remote sensing data.
Approaches for predicting target variables for small
areas can be classified into parametric (NÆSSET, 1997;
MEANS et al., 2000; NÆSSET, 2004; HOLLAUS et al., 2007)
and non-parametric regression methods, such as the fre-
quently-applied most similar neighbor (MSN) method
from MOEUR and STAGE (1995) using canonical correla-
tions between the target and the auxiliary variables
(ANTTILA, 2002; MALINEN, 2003; NOTHDURFT et al., 2009).
In the three latter studies the MSN method was extend-

ed to k-MSN, which included more than one neighbor for
the prediction of the target variable. BREIMAN (2001) pre-
sented another nonparametric approach, the random
forest (RF) approach an enhanced regression and classi-
fication tree technique. In some recent comparative
studies, RF proved to be superior to other imputation
techniques (HUDAK et al., 2008; ESKELSON et al., 2009;
LATIFI et al., 2010). According to CROOKSTON and FINLEY

(2008), RF can also be used to determine nearest neigh-
bors (LATIFI et al., 2010). STRAUB et al. (2010) showed
that a parametric approach and the k-nearest neighbor
(k-NN) method resulted in approximately the same pre-
diction error. However, in general, there is no single
method which outperforms all others in all possible
applications.

Nowadays, the potential of aerial stereo images (ASI)
and airborne laser scanning (ALS) data for the estima-
tion of dendrometrical variables has been examined in
several studies (e.g. JÄRNSTEDT et al., 2012; NURMINEN et
al., 2013; STRAUB et al., 2013, RAHLF et al., 2014). These
studies indicate that while the accuracy of predictions of
forest attributes with ASI can be similar to that with
ALS; predictions based on ALS always have a smaller
root-mean-square error (RMSE). Yet ALS data are not
readily available everywhere due to their high cost. Cur-
rently, ASI data are about a half to a third of the cost of
ALS data (WHITE et al., 2013). Moreover, ASI data pro-
vide additional information that cannot be acquired from
ALS data such as color or even a normalized difference
vegetation index if a near infra red band is available. In
the state of Hessen, Germany, ASI data are readily
available as they are used in double sampling for strati-
fication as a standard inventory design. In this approach
the aerial images are used in the first phase to stratify
sample plots into age classes and dominant tree species
groups (SABOROWSKI et al., 2010). Such classification is
not easily achieved with ALS (WHITE et al., 2013). How-
ever, ALS data enable the calculation of both surface and
terrain heights from the same data source, whereas ASI
data merely allow the crown surface to be modeled by
means of digital photogrammetry using image matching
techniques (NUSKE and NIESCHULZE, 2004). Thus, for the
ASI data, an additional terrain model is required in
order to derive vegetation heights. Such a terrain model
may be available from land surveying offices or a previ-
ous ALS flight campaign. As some of the laser pulses
pass through the upper canopy layer, ALS may even pro-
vide additional height information on sub-canopy layers
and hence on stand structure. Furthermore with ASI, it
is often difficult to derive photogrammetric heights in
deep shadows (LILLESAND et al., 2004). 
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The target variables in this study are the total timber
volume and the timber volume of European beech
(Fagus sylvatica L.) trees with a DBH over 60 cm (com-
mon target diameter in Hessen, Germany). In many
inventories European beech trees with a DBH ≥ 60 cm,
were estimated separately to achieve higher precision in
this class in view of the high value of the timber. 

The main objectives of the study were to compare i)
the suitability of auxiliary variables derived from ASI
and ALS to predict the timber volume per hectare for
each forest stand in the study area (total timber volume
and timber volume of beech trees with DBH ≥ 60 cm),
and ii) the precision of the nonparametric prediction
methods k-MSN and RF. As part of the first aim we also
investigated whether a systematic spatial shift had
occurred and whether the auxiliary variables can be
aggregated to speed up the calculations.

2. MATERIAL 

2.1 Study area
The study area is located in Krofdorfer Forest, in Hes-

sen, Germany. The elevation ranges from 200 m to about
400 m. The forested area is stocked mainly with Euro-
pean beech (Table 1). European beech forests are the
natural forest ecosystems in large regions in central
Europe. Current silviculture programs in Germany pay
more attention to close-to-nature objectives than in the
past. This is the reason why forests that are mainly
stocked with European beech become increasingly
important. Regional inventory data from the first quar-
ter of 2010 is available for the entire forest. ASI data are
available for 1625 ha and ALS data for 1178 ha. The
1060 ha over which these datasets overlap define the
study area. ALS and ASI data were obtained in 2009. 

2.2 Remote sensing data

The digital ASI data were recorded by a large-format
matrix camera (Z/I imaging, serial number: DMC01-122)
on 29 July 2009. The spatial resolution of the ASI is
20 cm and the overlap of the images is 70% in longitudi-
nal and 40% in latitudinal direction. The four channels
red, green, blue, and near infrared (NIR) were recorded
with a radiometric resolution of 12 bit. A Global Naviga-
tion Satellite System and Inertial Measurement Unit
(GNSS/IMU) system recorded the position of the image
center and the rotation angles continuously during the
flight. 

Every location of the study area was covered by at
least two, but mostly three, overlapping images (ASI) so
that a digital surface model (DSM) could be derived via
stereoscopic analysis. Photogrammetric heights were
measured automatically using the image matching rou-
tine, based on the normalized cross-correlation algo-
rithm, in the add-on module eATE (enhanced Automatic
Terrain Extraction) for the commercial photogrammetry
software LPS (Intergraph 2014). To calculate above-
ground vegetation heights to a high resolution using the
ASI-DSM, a digital terrain model (DTM) with a spatial
resolution of 5 m x 5 m obtained from the Hessian land
surveying office (Hessische Verwaltung für Bodenman-
agement und Geoinformation) was used. The DTM was
available for the entire state and was generated using a
combination of ASI and ALS data (hvbg 2014).

From the ALS data, a DSM and a DTM were derived.
The ALS flight campaign (flying height: 300 m) took
place between 9th and 10th July 2009. The scanning fre-
quency was 240 kHz with an aperture angle of 16°,
using the TopEye MK3 scanner system. Laser scanning
systems usually emit short, intense pulses, and the time

Tab. 1

Description of forests within the study area based on RFI data. The stem volume 
of the tree was calculated using an existing routine implemented in the BWINPro forest
growth simulator based on stand height curves and tree volume functions (NAGEL, 1999).

Beschreibung der Wälder innerhalb des Untersuchungsgebietes 
mit Hilfe einer regionalen Inventur. Das Derbholz der Bäume 

wurde mit einer Funktion des Waldwachstumssimulators BWINPro 
mittels Bestandeshöhenkurven und Volumenfunktionen berechnet (NAGEL, 1999). 
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interval measured between the emission of a pulse and
the detection of the reflected signal is used to calculate
the distance between the laser system on the airplane
and the object. Knowing the position of the laser system,
the height of the objects above mean sea level can be
derived. The data were classified into a ground and top
surface using proprietary algorithms by the vendor; the
algorithm is not available to us. 

In this study the digital surface models, and hence the
digital vegetation models, were represented by point
clouds. The spatial distribution of the ALS and the
image-based points (vectors with north, east, and height
values) was, thus, irregular. The average density of ALS
data classified as topmost surface was 60 points per m2,
and 24 points per m2 for the DSM derived from ASI. The
point density of the ALS data set was quite high (rela-
tive to other studies (e. g. HOLLAUS et al., 2007, HUDAK et
al., 2008), because it was originally acquired to analyze
leaf area index (FLECK et al., 2011). The average density
of ALS points classified as terrain was 6 points per m2.
For some small areas, height measurements were not
available. Photogrammetric measurements became less
reliable or even impossible in regions with low contrast,
such as in deep shadows or in areas with highly recur-
rent structures. Therefore, the resulting point cloud
from image matching may contain areas with sparse
points or even small gaps (usually much smaller than

1 m2). However, most forest stands within the study area
could be represented by a high point density. 

2.3 Field Measurement

The RFI is carried out approximately every ten years.
It was conducted as double sampling for stratification,
with a 100 m x 100 m grid in the first phase. This
100 m x 100 m grid is constant over time. The perma-
nent plots were located using a differential global posi-
tioning system, and marked for repeated inventories. At
each phase-one grid point, a plot of 13 m radius was
 surveyed. One of eight strata was assigned to each of
these phase-one sample plots by the visual interpreta-
tion of aerial images. The strata were defined by age
class ([0-40], [41-80], [81-120], [121-∞] in years) and
dominant tree species (deciduous or coniferous). In the
second phase, a predefined proportion of first-phase
sample plots was selected from each stratum (Figure 1),
and two concentric circles of 13 m (DBH ≥ 30 cm) and
6 m (7 cm ≤ DBH < 30 cm) radius were surveyed on the
ground (HESSEN-FORST, 2012). Second-phase plots of
higher age classes had a higher probability of selection,
leading to a higher representation of European beech
trees with DBH ≥ 60 cm (Table 1) in the sample. In total,
193 phase-two plots were established within the study
area and a total of 1746 trees were surveyed, including
63% European beech, 16% common oak, 7% Norway
spruce and 14% other tree species. The average stem
density on the RFI plots was 1678 stems per ha. The
DBH was measured for each selected tree, but height
measurements were only recorded for one tree per
species, layer, and plot. In the upper canopy layer, a
dominant tree was chosen for height measurement,
whereas in each of the lower canopy layers, an average
tree was chosen  (HESSEN-FORST, 2012).

3. METHODS 

3.1 Auxiliary variables
The auxiliary variables were calculated for 25 m x 25 m
subareas in which the study area were subdivided.

The vegetation heights based on both remote sensing
data sources (ASI and ALS) were used separately but
similarly. To capture the variation within the
25 m x 25 m subareas, we discretized the heights into a
raster of 5 m x 5 m pixels. Pixels without any vegetation
height measurements were removed from the data set.
Beyond vegetation heights, both remote sensing data
sources also contained additional information. The ALS
data provided extra information on the calibrated inten-
sity, and the ASI data included spectral information. The
spectral information was used to calculate the normal-
ized difference vegetation index (NDVI)

(1)

according to LILLESAND et al. (2004). The NDVI was
assigned to all image vegetation heights from ASI data. 

For each of the 25 m x 25 m subareas different auxil-
iary variables in a different resolution are available:
Vegetation heights original points and 5 m square raster
values, NDVI, intensity of the reflected laser pulse and

Fig. 1

Spatial distribution of RFI-plots. 
Dots indicate plots with European beech with DBH ≥ 60 cm.

Räumliche Verteilung der RFI-Plots. 
Punkte markieren Plots mit dicken Buchen (BHD ≥ 60 cm).
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roughness parameter (variance of the vegetation
heights). The 5 m square raster was employed to identify
if the auxiliary variables can be aggregated previously to
speed up the calculations. For each of the subareas sim-
ple descriptive statistics were calculated for each vari-
able: Arithmetic mean, percentiles (0.05, 0.25, 0.5, 0.75,
0.95), skewness, kurtosis. Together with these descrip-
tive statistics, for the vegetation heights (points and
raster) the proportion of height measurements in the
five height classes ([0, 2], [2, 5], [20, 25], [25, 30], [30, ∞])
were used as predictor variables. One height class [5, 20]
had been omitted because it is a linear combination of
the other height class proportions. We found that alter-
native classifications such as different class widths and
total number of classes as well as alternative percentiles
did not change the results notably. Preliminary tests
using alternative classifications varying in the number
and the widths of the classes (e. g. [0, 1], [1, 2], … ,
[28, 29], [30, ∞]) showed differences of less than 2% with
respect to the RMSE in the resulting target variables.

The sets of auxiliary variables employed have been
provided in Table 2. Variable sets ALS.1-ALS.4.int relate
to airborne laser scanning data, and ASI.1-ASI.4.NDVI
to aerial stereoscopic image data. “Height metrics
(raster)” and “height metrics (points)”, “NDVI”, “intensi-
ty”, and “roughness index” all represent the statistics of
the respective parameters defined in this section above.
Variable sets ALS.4.int and ASI.4.NDVI contain the
complete set of available auxiliary variables for the
respective data source. 

Since the points of the DSM and DTM were not mea-
sured at the same locations, the vegetation heights were
calculated by local interpolation of the DTM heights for
both data sets. Therefore a two-dimensional linear
regression model 

(2)

was fitted separately to the DTM height measurements
of each single 25 m x 25 m subarea. East and north indi-

cate the coordinates of DTM points. The size of the sub-
areas was approximately equal to the area of RFI plots.
As mentioned above, the image-based vegetation heights
were calculated by employing the 5 m x 5 m DTM raster,
which was interpreted as a point cloud, whereas the
ALS-based vegetation heights were derived by obtaining
the difference between the heights of the points classi-
fied as topmost surface and as terrain. The DTM height
at any DSM point location was again estimated by a
local regression model for the corresponding subarea. 

3.2 Derivation of the predictor variables

Since only a few tree heights were available on each
plot, we calculated the timber volume of all trees using
an existing routine in the BWINPro forest growth simu-
lator based on stand height curves and tree volume func-
tions (NAGEL, 1999). The total stem volume per hectare
of all living trees on plot i (Vi) was estimated by 

(3)

with mi the number of trees on plot i, rij the radius (m) of
the concentric circle in which tree (i, j) was measured,
and vij the timber volume of the respective tree.

3.3 Prediction methods 

k-MSN regression

Local smoothing approaches can be considered as solu-
tions provided for locally-defined regression problems.
The k-nearest neighbor (k-NN) prediction of the target
variable y = f (x) was calculated using the following equa-
tion:

(4)

where N(x) is the index set of the k-NNs related to the 
p-dimensional vector of auxiliary variables x in the fea-
ture space and the target variable y. With this approach,
the dendrometrical variables were predicted for a target

Tab. 2

Sets of auxiliary variables used for spatial prediction of timber volume 
(number of variables). 

Satz von Hilfsvariablen, die für die räumliche Vorhersage 
des Vorrats verwendet worden sind (Anzahl der Variablen).
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area from the mean value of variables from “similar”
plots, where similarity between a target subarea and the
reference subarea comprising an inventory plot was
measured by means of the auxiliary variables and a dis-
tance function.

In this study we used the distance function from
MOEUR and STAGE (1995):

(5)

In this equation � represents the canonical coefficients
and �2 the squared canonical correlations. It takes into
account correlations among the auxiliary variables as
well as their explanatory power by canonical correlation
analysis. 

Random forest

Regression trees are commonly used to select relevant
auxiliary variables from a high-dimensional variable set.
However, a single regression tree often is not sufficiently
robust for predictions. Therefore, BREIMAN (2001) intro-
duced the RF technique, in which a sequence of regres-
sion trees is built via bootstrapping. Each tree is fitted to
a subsample of the complete data set. In addition, the

optimum splitting variable is chosen from only a subset
of the auxiliary variables randomly chosen at each node.
The collection of all regression trees is then used in the
prediction phase. The resampling approach avoids over-
fitting and provides robust results, because questions of
interaction among the variables are handled automati-
cally (VENABLES and RIPLEY, 2007). The R-package ran-
domForest (LIAW and WIENER, 2002; R CORETEAM, 2013)
was used for all calculations and additionally provides
information on variable importance as defined by
BREIMAN (2001). The importance is estimated by out-of-
bag estimates – after each tree construction the value of
a variable is randomly permuted and the corresponding
tree is then fitted again. The output is the percent
increase in misclassification rate as compared to the
case with all variables intact (BREIMAN, 2001).

Prediction of the target variable at stand level

For each of the 25 m x 25 m subareas, the total volume
and the volume of larger European beech trees were pre-
dicted using RF and k-MSN approaches. Then, at the

Tab. 3

Results of cross validation of 14 different sets of
 auxiliary variables (cf. Table 2) predicting the total
 timber volume per hectare. The best performing k, 

in case of the k-MSN is reported here. Absolute RMSE
and bias are shown in m3 ha–1 additionally the relative
RMSE is reported (relative to the arithmetic mean).
RF(13) and RF(5) denote that random forest has been
applied with the 13 and 5 best auxiliary variables.

Ergebnisse der Kreuzvalidierung von 14 verschiedenen
Sätzen von Hilfsvariablen (vergl. Tabelle 2) für die

 Vorhersage des Gesamtvorrates je Hektar. 
Für die Vorhersagen mittels k-Nächste-Nachbarn wird

das k, das zu dem geringsten RMSE (Wurzel der
 mittleren quadratischen Abweichung) führt, wieder -
gegeben. Der Absolute RMSE und der systematische
Fehler werden in m3 ha–1 dargestellt. Zusätzlich wird 
der relative RMSE (relativ zum arithmetischen Mittel-
wert) gezeigt. RF(13) und RF(5) bezeichnen Random
Forests mit den 13 und 5 wichtigsten Hilfsvariablen. 

Tab. 4

Results of cross validation of 14 different sets of
 auxiliary variables (cf. Table 2) predicting the timber
volume of European beech (DBH ≥ 60 cm) per ha. 

The best performing k, in case of the k-MSN 
is reported here. Absolute RMSE and bias are shown 

in m3 ha–1 additionally the relative RMSE 
is reported (relative to the arithmetic mean). 

RF(11) and RF(3) denote that random forest has been
applied with the 11 and 3 best auxiliary variables.

Ergebnisse der Kreuzvalidierung von 14 verschiedenen
Sätzen von Hilfsvariablen (vergl. Tabelle 2) für die
 Vorhersage des Holzvorrat von dicken Buchen
(BHD ≥ 60 cm) je Hektar. Für die Vorhersagen 

mittels k-Nächste-Nachbarn wird das k, das zu dem
geringsten RMSE (Wurzel der mittleren quadratischen
Abweichung) führt, wiedergegeben. Der Absolute RMSE

und der systematische Fehler werden in m3 ha–1
 dargestellt. Zusätzlich wird der relative RMSE 
(relativ zum arithmetischen Mittelwert) gezeigt. 
RF(11) und RF(3) bezeichnen Random Forests 
mit den 11 und 3 wichtigsten Hilfsvariablen. 
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forest stand level, the target variables were predicted by
calculating the averages over the subareas in the stand.

3.4 Validation methods

Comparison of prediction methods and auxiliary
 variables

The spatial prediction methods (k-MSN and RF) were
compared using two different groups of auxiliary vari-
able sets derived from the ASI and ALS data which were
completed by NDVI and intensity respectively. Precision
and accuracy were evaluated for the different prediction
approaches and the two data sources with RMSE and
bias in comprehensive leave-one-out cross validations. 

Position errors 

A systematic spatial shift between the remote sensing
data and the terrestrial sample plots can be a peculiar

source of prediction error. To examine where systematic
position errors may have affected prediction precision,
the RFI sampling grid was sequentially shifted in x and
y direction in 5 m steps. After each shift, a cross valida-
tion was carried out. 

Testing differences of prediction errors

We tested the significance of the observed differences
between prediction errors of two groups (auxiliary vari-
able sets and prediction methods). Prediction errors are
the absolute diviations between the observed and pre-
dicted values for each plot. Means of plotwise differences
of absolute prediction errors are tested one-sided against
the null-hypothesis of zero mean differences (�=0.05)
using the t-test if the data are normally distributed or
otherwise the Wilcoxon signed rank test. We checked
whether the data follow a normal distribution (null-
hypothesis) using the Shapiro-Wilk test (�=0.05). 

Tab. 5

Means of plotwise differences of absolute prediction errors (alternative-hypothesis) 
are tested one-sided against the null-hypothesis of zero mean differences (� = 0.05) 

using a t-test (B) if the data are normally distributed or otherwise a Wilcoxon signed rank test (A).
The normal distribution was tested using a Shapiro-Wilk test (� = 0.05). 

Durchschnittliche plotweise Abweichung der absoluten Vorhersagefehler. 
Es wird einseitig gegen die Null-Hypothese getestet, dass die mittleren Abweichungen Null 

sind (H1: mittlere Abweichung > 0; � = 0.05). Wenn die Daten normalverteilt sind, 
wird ein t-Test (B), sonst ein Wilcoxon Rangsummen Test (A) verwendet. 

Die Normalverteilungsannahme wird mit dem Shapiro-Wilk Test (� = 0.05) getestet. 
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4. RESULTS
4.1 Effects of the different data sources using
 identical prediction methods
Results of the k-MSN and RF are shown in Table 3

and 4. ALS data and ASI differed only slightly in terms
of there precision and accuracy. For total timber volume,
a comparison of the corresponding variable sets revealed
that, with the exception of ALS.1 and ASI.1, the preci-
sion of the estimate with ASI data was only marginally

lower than that with ALS data. For the ALS.1 and ASI.1
data, the RMSE was even smaller for the ASI data than
the ALS data. For the prediction of the volume of large
European beech trees (DBH ≥ 60 cm), no auxiliary vari-
able set was clearly more precise than another, in four of
the 8 data sets (Table 4) the ASI data led to more precise
results. 

The smallest RMSE for the total volume prediction,
was obtained for an ALS data set with RF (Table 3) and

Fig. 2

Scatterplot of observed and predicted timber volume in m3 ha–1, using variable set ASI.4.NDVI 
for k-MSN and 3 different ASI variable sets for RF.

Streudiagramm von beobachteten und vorhergesagten Holzvorräten in m3 ha–1. Es wird das Hilfsvariablenset ASI.4.NDVI 
für die k-Nächste-Nachbarn-Methode und 3 verschiedene Hilfsvariablengruppen für Random Forest verwendet. 
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Fig. 3

RMSEs (m3 ha–1) resulting from relocations of the RFI sampling grid 
and RF predictions with variable set ASI.4.NDVI.

RMSEs (Wurzel der mittleren quadratischen Abweichung, m3 ha–1) 
verursacht durch eine Verschiebung des RFI-Rasters und darauf basierende 

Random Forest Vorhersagen mit dem Hilfsvariablensatz ASI.4.NDVI. 

Fig. 4

Predicted timber volume (m3 ha–1) based on RF using the 13 most important auxiliary variables 
from variable set ASI.4.NDVI for total volume (left) and using the complete auxiliary variable set 

for beech volume of trees with DBH ≥ 60 cm (right). Spatial resolution: 25 m x 25 m.

Mittels Random Forest vorhergesagter Holzvorrat (m3 ha–1). 
Für den Gesamtvorrat (links) werden die 13 wichtigsten Hilfsvariablen des Hilfvariablensatzes 

ASI.4.NDVI verwendet und für den Vorrat der dicken Buchen (BHD ≥ 60 cm, rechts) 
werden alle Hilfsvariablen verwendet. Die räumliche Auflösung beträgt 25 x 25 m.
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for the prediction of the volume of larger European
beech trees, for an ASI data set (ASI.4.NDVI with RF,
Table 4). 
Using the additional information of intensity and

NDVI as well as the vegetation height led to a decrease
in precision in all cases of ALS and ASI data for both
target variables (compare ALS.2 and ALS.2.int, ASI.2
and ASI.2.NDVI, ALS.4 and ALS.4.int, ASI.4 and
ASI.4.NDVI, cf. Table 3 and 4). The differences were
mostly not significant (Table 5b). 
By using spatially discretized raster height informa-

tion in addition to pointwise height measurement,
RMSE increased from 109.72 m3 ha–1 to 113.86 m3 ha–1

(ALS.2 and ALS.4, total volume) for ALS variables and
from 115.83 m3 ha–1 to 122.22 m3 ha–1 (ASI.2 and ASI.4,
total volume). This trend was similar for both response
variables. Using only raster data (ALS.3 and ASI.3), pre-
cision was lower still (compare ALS.3 and ALS.2, ASI.3
and ASI.2). The raster data provided the additional ben-
efit of reduced computing time. The difference in preci-
sion was not significant for most results (Table 5c).

4.2 Effects of prediction methods using identical
data sources

The RF approach was only carried out with the com-
plete variable sets ALS.4.int and ASI.4.NDVI. Within

the latter, also for two groups of the most important ASI
variables. These two groups were determined by ranking
the auxiliary variables according to their variable impor-
tance. Two steep drops were observed after the inclusion
of the 5th and 13th ranked variable in the prediction of
total timber volume and after the inclusion of the 3rd and
11th ranked variable for the timber volume of large Euro-
pean beech trees. These drops were used as cut-off
points. By reducing the number of auxiliary variables
used in the predictions to the most important ones, we
assumed no notable increase in prediction error would
result. For all 8 RF variants reported in Table 3, 4, and
Figure 2, a random forest of 500 regression trees was
created. Larger numbers of regression trees did not
essentially change the precision of the predictions. Using
the set of 13 and 11 most important auxiliary variables,
respectively, instead of the complete variable set, led
only to a slight, mostly insignificant decrease in preci-
sion of total volume predictions (cf. Table 5d)

The cross validation (Table 3 and 4) revealed that the
precision of RF with ALS variables (RMSEtotal volume =
104.67, RMSElarger beech = 73.73) was similar to RF with
ASI variables (RMSEtotal volume = 112.89, RMSElarger beech =
69.10) and the precision of RF was similar to that of 
k-MSN for both target variables (ALS: RMSEtotal volume =
116.43, RMSElarger beech = 76.41; ASI: RMSEtotal volume =

Fig. 5

Predicted timber volume (m3 ha–1) for 86 forest stands based on RF 
using 13 most important auxiliary variables from variable set ASI.4.NDVI for total volume (left) 

and using the complete auxiliary variable set for beech volume (DBH ≥ 60 cm, right).

Mittels Random Forest vorhergesagter Vorrat (m3 ha–1) für 86 Bestände. 
Für den Gesamtvorrat (links) werden die 13 wichtigsten Hilfsvariablen des Hilfvariablensatzes ASI.4.NDVI 

verwendet und für den Vorrat der dicken Buchen (BHD ≥ 60 cm, rechts) werden alle Hilfsvariablen verwendet. 
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129.33, RMSElarger beech = 76.87). Generally, the RF was
found to be approximately unbiased. 

Since the RF has stochastic components, the RMSE
and bias of predictions varied among repeated RFs. This
variation was negligible, from a practical point of view.
However, the auxiliary variables that best explained the
target variables differed among the repeated RFs. This
was found to be affected by the correlations among some
auxiliary variables. In all cases no one auxiliary variable
was clearly dominant. Yet, for all repeated RFs, auxil-
iary variables with height-related predictors dominated
in the set of most important variables identified.

k-MSN and RF tend to underestimate total volume
and volume of larger European beech on plots with a
very high total volume per hectare and overestimate on
plots with a low timber volume. Particularly for plots
with zero measurements, all methods predicted a non-
zero volume, usually below 100 m3 ha–1. This particular
error was lower for RF than with k-MSN (Figure 2). This
“bias towards the mean” was often observed in NN-
methods and can be explained by the fact that the near-
est neighbors of units at the extremes resulted in more
moderate values.

4.3 Possible effect of the position error

The effects of systematic position errors on prediction
precision were examined using RF and the variable set
ASI.4.NDVI. The different RMSE values resulting from
virtual relocations of the sampling grid are shown in
Figure 3. A minimum RMSE was obtained if the RFI
sampling grid was shifted by (5 m, –5 m) for large Euro-
pean beech tree volume and by (–5 m, 0 m) for total vol-
ume. However, the relative change in RMSE was negligi-
ble in comparison with the total RMSE using the
original sampling grid without relocation. 

4.4 Map of volume predictions for the entire 
study area

For each subarea, both target variables were predicted
(Figure 4) using the RF approach. For predictions of the
total volume, 13 auxiliary variables were used whereas
the complete set of auxiliary variables was used to pre-
dict the volume of large European beech trees
(DBH ≥ 60 cm). Figure 5 shows predictions of both target
variables for the subareas in each of the 86 forest
stands.

5. DISCUSSION 

5.1 Effects of the different data sources 
The major finding of our study was that spatial predic-

tions based on ALS data are mostly but not always more
precise than those based on ASI data. However, the dif-
ferences in this study are small and usually insignificant
in terms of the plotwise differences in prediction errors.
This is consistent with results of previous studies (JÄRN-
STEDT et al., 2012; NURMINEN et al., 2013; STRAUB et al.,
2013). The precise height measurements and the more
detailed characterization of the vertical stand structure
with ALS do not necessarily lead to more precise spatial
predictions. Using only the discretized raster informa-

tion leads to similar accuracy compared to using the
point based metrics, with a very high resolution. A high
covariate resolution is therefore not important to achieve
a high accuracy. The high spatial autocorrelation of the
target as well as the auxiliary variables may have an
effect here.

The average total volume of the RFI-plots was
320 m3 ha–1, the relative RMSE for the best performing
ALS model was 33% and for the best performing ASI
model was 35% or about 105 m3 ha–1 respectively
113 m3 ha–1 (cf. Table 3). This is also in accordance with
results of preceding studies (JÄRNSTEDT et al., 2012; NUR-
MINEN et al., 2013; STRAUB et al., 2013; BREIDENBACH et
al., 2010). The RMSE of the simple sample mean is given
by the standard deviation in volume per hectare and, in
our study, it was 159 m3 ha–1. Compared to this simple
predictor, our RF-approach achieved a 30% increase in
precision. For the timber volume of large European
beech trees (DBH ≥ 60 cm), the RMSE was about
70 m3 ha–1 compared to the standard deviation
100 m3 ha–1 (cf. Table 1). In the studies by Järnstedt et
al. (2012) and NURMINEN et al. (2013), still smaller
RMSEs were attained. This could be explained by the
relatively homogenous forests at their study sites and
the smaller total timber stock. A comparison of the rela-
tive RMSEs obtained in our study to those of JÄRNSTEDT

et al. (2012) shows that the results are similar. STRAUB

et al. (2013) studied highly structured forests and
obtained results comparable with ours. These earlier
studies showed a general, yet still small increase in pre-
cision with ALS data over ASI data, this is in general
consistent with the results of our study. 

Remote sensing approaches generally still miss viable
solutions to automatically detect single trees in Central
European conditions and thus rely on vague proxies to
estimate the number of trees per hectare. Estimation of
volumes for certain species is even harder due to the
unsolved problem of reliable species recognition from
remote sensing data in closed stands. Thus, our predic-
tion error is comparable to studies based on remote sens-
ing but still high in comparison to terrestrial invento-
ries, especially in case of larger beech trees. Further we
believe that an increase of spatial and spectral resolu-
tion and advances in image processing will lead to better
auxiliary variables such as number of trees, average
crown sizes and species group.

While the remote sensing data were collected in July
2009, the terrestrial survey was carried out few months
later in the first quarter of 2010. This might be another
source of prediction error. But in this case, no trees were
harvested in the interim and the error possible occurred
because of tree growth can be assumed very small if one
considers the rather long production periods of forests
compared to the short delay of the terrestrial survey.
Moreover, the main objective of this study was to
 compare the suitability of auxiliary variables derived
from ASI and ALS data. The time between the acquisi-
tion of the ASI and the ALS data was less than one
month, what can only have negligible effects on the dif-
ferences of prediction errors arising from the two data
sets. 
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5.2 Effects of prediction methods 

Our study shows that the precision of RF and k-MSN
is similar irrespective of the remote sensing data source.
We also tested regression based approaches that showed
higher errors in terms of RMSE. However, one can not
conclude by this, that regression based approaches are
in generally less precise. We could not find a clear inter-
action between the two nonparametric prediction meth-
ods and the source of remote sensing data. Moreover, we
found that neither the NDVI of ASI nor the intensity of
ALS provided relevant additional information for spatial
prediction of timber volume per hectare, although the
spectral information of ASI enables the visual interpre-
tation of tree species (WHITE et al., 2013). The NDVI did
not seem to improve the volume predictions in our case.
The suitability of other spectral variables, in combina-
tion with height metrics, should be tested in further
studies for other areas and target variables. STRAUB et
al. (2013) stratified their subareas by the dominant tree
species group (deciduous and coniferous) using a logistic
regression model fitted to extra training data, what
resulted in slightly smaller RMSEs. However, extra
training data, especially for large European beech trees,
is not readily available as yet. 

Lower RMSE values for timber volume predictions of
large European beech trees result from a relatively large
number of plots with correctly predicted timber volume
of zero (cf. Figure 2). If one considers only plots contain-
ing large European beech trees and predictions larger
than zero, the RMSE would become approximately as
high as for the total volume. Whereas larger relative
RMSE values for timber predictions of large beech trees
results from the fact that the threshold has also to be
identified by remote sensing data. When predicting vari-
ables for areas which do not belong to the target popula-
tion (for example beech trees, DBH = 55 cm), the result-
ing error is extremely high, as the observed stem volume
is 0 m3 ha–1. 

Using k-MSN or, more general, k-NN methods, the
final prediction is calculated as the mean of the k-near-
est neighbor units. Although MCROBERTS (2012) pointed
out that the effect of weighting might be small, we
believe it is still recognizable. Therefore, we additionally
tested a local polynomial regression method, in which a
variable number of NN were weighted by distance
through the application of kernel functions. Our first
tests did not lead to notable reductions in RMSE.
 However, we intend to undertake further tests with 
local polynomial regression and different parameteriza-
tions. 

More flexible methods could also be applied for the
interpolation of the DTM, e.g. a geostatistical approach
in which the DTM heights are averaged with weights
depending on their distance to a DSM point (CRESSIE,
1993). Likewise a nonparametric smoothing approach
based on two-dimensional splines (FAHRMEIR et al., 2007)
could be appropriate. The latter two approaches were
tested. However, the two-dimensional linear regression
proved to be sufficiently precise and flexible to derive
local DTM values within small subareas and was very
fast. 

5.3 Effect of the position error

We also investigated if the prediction error can be par-
tially explained by a spatial shift between the remote
sensing data and the terrestrial sample plots. There are
slight increases in precision when shifting the terrestrial
sample plots appropriately, however the optimum shift
directions differ between the two target variables. The
rather high spatial autocorrelation of the target as well
as the auxiliary variables might lead to a low effect of
shifting the RFI-plots. 

6. CONCLUSIONS

Our study has shown that the precision of RF and 
k-MSN is similar irrespective of the remote sensing data
source. The auxiliary variables that explained the target
variables in the best differed among the repeated RFs,
probably because of the high correlation among the aux-
iliary variables. The height-related predictors were iden-
tified as the most important variables when using vari-
able importance evaluation. Spatial predictions based on
ALS data are only slightly more precise than those
based on ASI. The advantage of ALS data over ASI data
vanishes, when predicting volume of larger beech trees.
This can be explained by the fact, that there is a strong
connection between the upper canopy layer and the large
beech tree volume. In that case the best performing vari-
able set, which would be chosen in practical applications,
is even based on ASI data. The need of an additional ter-
rain model if using ASI data should be taken into
account in this context. Since most of the differences of
ASI and ALS prediction errors are not significant, one
can only conclude that the data sources lead to generally
comparable results. Acquisition of ALS data is consider-
ably more expensive than of ASI data, which are often
already available from other monitoring projects. Thus
one would commonly prefer ASI data for periodically
predicting timber volume at stand level.

7. ABSTRACT

Practical forest management requires information on
dendrometrical forest parameters in a high spatial reso-
lution, particularly interesting is the timber volume.
Nearest neighbor techniques and the random forest
approach were employed in this study to predict timber
volume per hectare (total stem volume and stem volume
of large beech trees, DBH ≥ 60 cm) at forest stand level.
The predictions were based on sample plot data from a
regional forest inventory and selected sets of auxiliary
variables derived from two different remote sensing data
sources – airborne laser scanning (ALS) data and aerial
stereo images (ASI) – to quantify and compare predic-
tion precision. Existing studies conclude that ALS data
provide more precise height information, but also that
acquisition of ALS data is more expensive than of ASI
data, which are often already available from other moni-
toring projects. Currently the cost of ASI data is about a
half to a third of ALS data. To make spatial predictions
we compared two frequently used methods for imputa-
tion: random forest and k-most similar neighbors. For
both methods, the prediction precisions (RMSE) were
similar. Most promising was the fact that the two differ-
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ent sources of auxiliary variables resulted in predictions
of almost the same precision. The similarity between
ASI and ALS predictions suggest that ASI may serve as
a lower-cost alternative to ALS data for estimating many
forest stand-level variables. 

8. ZUSAMMENFASSUNG

Titel des Beitrages: Vergleich der Vorhersage des
Bestandsvorrats mittels luftgestützter Laserscanning -
daten und Stereo-Luftbildern.

In der Forstpraxis werden dendrometische Informatio-
nen in einer hohen räumlichen Auflösung benötigt. Von
besonderem Interesse ist der Holzvorrat. In diese Studie
werden Nächste-Nachbarn-Methoden und der Random
Forest Ansatz verwendet, um den Vorrat je Hektar
(Gesamtvorrat, Vorrat dicker Buchen, BHD ≥ 60 cm) auf
Bestandesebene zu schätzen. Die Vorhersagen erfolgen
auf Grundlage von Stichprobenflächen einer regionalen
Forstinventur und verschiedenen Gruppen von Hilfs -
variablen. Die Hilfsvariablen stammen aus zwei ver-
schiedenen Fernerkundungsdatensätzen: luftgestütztes
Laserscanning und Stereo-Luftbilder. Ein Ziel der Stu-
die ist die Vorhersagegenauigkeit in Abhängigkeit von
der Fernerkundungsdatenquelle zu quantifizieren. Bis-
herige Studien kommen zum Schluss, dass luftgestütz-
tes Laserscanning zu genaueren Vorhersagen führt, aber
auch, dass Laserscanning Daten teurer sind als Stereo-
Luftbilder. Derzeit kosten Stereo-Luftbilder etwa die
Hälfte bis ein Drittel von luftgestützten Laserscanning
Daten. Die räumlichen Vorhersagen wurden mit zwei
häufig genutzten Methoden, der k-Nächste Nachbarn-
Methode und dem Random Forest Ansatz, durchgeführt.
Die Vorhersagegenauigkeit der Methoden war vergleich-
bar. Besonders vielversprechend ist, dass die Vorher -
sagen mit unterschiedlichen Fernerkundungsdaten fast
die gleiche Präzision aufwiesen. Die Ähnlichkeit der Vor-
hersagen lässt den Schluss zu, dass Stereo-Luftbilder
eine günstigere Alternative zu luftgestütztem Lasers-
canning für die Vorhersagen von Bestandesparametern
sind. 

9. RÉSUMÉ

Titre de l’article: Comparaison des prévisions de
volumes de peuplements au moyen de données par levé
scanner laser aéroporté et au moyen de photos aériennes
en stéréoscopie.

Dans la pratique, la gestion forestière nécessite l’utili-
sation d’informations dendrométriques avec une défini-
tion spatiale élevée. Il est particulièrement intéressant
de connaître le volume de bois. Dans la présente étude,
la méthode des plus proches voisins et la méthode des
forêts aléatoires sont utilisées pour estimer le volume
par hectare à l’échelle du peuplement (volume total,
volume des gros bois de diamètre ≥ 60 cm). Les prévi-
sions s’appuient sur la base de surfaces d’échantillonna-
ge d’un inventaire forestier régional et de différents
groupes de variables. Les variables émanent de deux
choix différents de données par photos satellites: levé
scanner laser aéroporté et des photos aériennes en sté-
réoscopie. Un but de cette étude est de quantifier l’exac-

titude des prévisions en lien avec les sources de données
de photos satellites. Les études réalisées jusqu’ici arri-
vent à cette conclusion que le levé laser aéroporté appor-
te les prévisions les plus exactes mais aussi que les don-
nées de laser aéroporté sont plus onéreuses que les
photos aériennes en stéréoscopie. Actuellement le coût
des photos aériennes en stéréoscopie s’élève à la moitié
voire le tiers du coût des levés par laser aéroporté. Les
prédictions spatiales ont été réalisées au moyen de deux
des méthodes les plus fréquemment utilisées, la méthode
des k plus proches voisins et la méthode des forêts aléa-
toires. L’exactitude de la précision des méthodes est com-
parable. De façon particulièrement prometteuse, on
remarque que les prédictions avec différentes données
satellites présentent presque la même précision. Les
similitudes de prédictions conduisent à la conclusion que
les photos aériennes en stéréoscopie sont une meilleure
alternative au levé scanner aéroporté pour les prédic-
tions des paramètres de peuplements.
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