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Abstract

Background: In this paper, a regression model for predicting the spatial distribution of forest cockchafer larvae in
the Hessian Ried region (Germany) is presented. The forest cockchafer, a native biotic pest, is a major cause of
damage in forests in this region particularly during the regeneration phase. The model developed in this study is
based on a systematic sample inventory of forest cockchafer larvae by excavation across the Hessian Ried. These
forest cockchafer larvae data were characterized by excess zeros and overdispersion.

Methods: Using specific generalized additive regression models, different discrete distributions, including the
Poisson, negative binomial and zero-inflated Poisson distributions, were compared. The methodology employed
allowed the simultaneous estimation of non-linear model effects of causal covariates and, to account for spatial
autocorrelation, of a 2-dimensional spatial trend function. In the validation of the models, both the Akaike information
criterion (AIC) and more detailed graphical procedures based on randomized quantile residuals were used.

Results: The negative binomial distribution was superior to the Poisson and the zero-inflated Poisson distributions,
providing a near perfect fit to the data, which was proven in an extensive validation process. The causal predictors
found to affect the density of larvae significantly were distance to water table and percentage of pure clay layer in
the soil to a depth of 1 m. Model predictions showed that larva density increased with an increase in distance to
the water table up to almost 4 m, after which it remained constant, and with a reduction in the percentage of pure
clay layer. However this latter correlation was weak and requires further investigation. The 2-dimensional trend
function indicated a strong spatial effect, and thus explained by far the highest proportion of variation in larva
density.

Conclusions: As such the model can be used to support forest practitioners in their decision making for
regeneration and forest protection planning in the Hessian Ried. However, the application of the model for
predicting future spatial patterns of the larva density is still somewhat limited because the causal effects are
comparatively weak.
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Background
The forests in southern Hessen in the vicinity of the
Rhine-Main urban agglomeration are among the most
problematic forest areas for forest management in Central
Europe. Here extraordinary demands are made on forests
and forest enterprises in view of the high population
density, highly concentrated industrialization and dense
road and traffic infrastructure. Urban agglomeration has
led to the acquisition of considerable land area for
development, which, in turn, has led to an unusually high
fragmentation of the forest area. Furthermore environ-
mental impacts, including an increase in emissions of air
pollutants and the serious lowering of the groundwater
table arising from high water usage, are evident. Forestry
management options are severely restricted in this region
due to the exceptional importance of forests, particularly
old oak forests, for recreation and nature conservation
(NW-FVA, Nordwestdeutsche Forstliche Versuchsanstalt
Hrsg. 2013): p. 32 ff.). The abiotic pressures and especially
the wide-spread drop in groundwater levels have already
degraded many forests. Additionally, the massive outbreaks
of biotic pests like the forest cockchafer (Melolontha hip-
pocastani), the European oak leafroller (Tortrix viridana)
and the gypsy moth (Lymantria dispar) have in part led to
a total destruction of forests in some areas. It is antici-
pated that site conditions will degrade further in the
future if the groundwater depletion intensifies and if
climate change leads to higher temperatures and lower
precipitation as projected (NW-FVA, Nordwestdeutsche
Forstliche Versuchsanstalt Hrsg. 2013): p. 40 ff.). Already
the Rhine-Main region is one of driest and warmest
regions in Hessen.
The Hessian Ried is located in the southern part of the

Rhine-Main region, and encompasses an area of about
100 000 hectares, which includes about 30 000 hectares
of forest area (Figure 1A). Although the Hessian Ried is
a less densely populated part of the Rhine-Main region,
impacts from the surrounding economic and industrial
centers are evident. Within the framework of a larger
research project, changes in the forests in the Hessian
Ried have been projected assuming different groundwater
management (NW-FVA, Nordwestdeutsche Forstliche
Versuchsanstalt Hrsg. 2013): p. 37 ff. and climate
change scenarios (NW-FVA, Nordwestdeutsche Forstliche
Versuchsanstalt Hrsg. 2013): p. 40 ff.). In this context
standard methods for growth and yield simulation were
used. Additionally, models for quantifying the effects of
biotic and abiotic risks were developed to generate more
realistic prognoses.
One of the most serious regional biotic risks, especially

in the forest regeneration phase, is the forest cockchafer
(Melolontha hippocastani). The northern Upper Rhine
region is populated by different tribes of the forest
cockchafer each of which has a specific quadrennial life
cycle and swarming year. The forest cockchafer popula-
tion in the Hessian Ried belongs to the South Hessian
tribe. Since the early 1980s a massive outbreak of this tribe
has been observed in some parts of the Hessian Ried. The
area of forest populated by the forest cockchafer has in-
creased constantly and this trend is expected to continue.
An area covering 13 000 hectares of the total forest area
of 30 000 hectares is assumed to be populated by this
species. Of this area, 4 000 hectares are assumed to be
infested by extremely high larva densities.
Generally the damage caused by the adult beetle

browsing the leaves, which occurs at the end of each
quadrennial live cycle, is not critical to forest health
(Schwerdtfeger 1981). In contrast, damage caused by
the larvae eating the roots is most serious. Natural re-
generation and the planting of seedlings fail repeatedly:
middle-aged and old stands are increasingly at risk. In
some parts of the Hessian Ried, the current high larva
densities prohibit the implementation of any regeneration
measures in the absence of prior implementation of forest
protection measures such as the application of chemical
or biological pesticides (Ott et al. 2006). Therefore, given
the outstanding recreation and natural conservation
functions of the Hessian Ried, in particular, a detailed
risk analysis is essential. Consequently, the density and
dispersal behavior of the larva population over time
need to be assessed. For this purpose a systematic sam-
ple plot inventory of larva density was initiated in
2009, in which the population of larvae in excavated
pits was recorded for each plot. Based on this excava-
tion inventory a specific regression model for count
data was developed that permitted an area-wide predic-
tion of the larva densities taking into account significant
causal covariate effects and the spatial autocorrelation
of the data. Thus two major aims of the model devel-
opment were to:

1) predict larva density by area across the Hessian Ried
for decision support;

2) identify significant causal variables and quantify their
effects to enhance the generality of the model and to
gain greater insight into the suitability of a site to
serve as a habitat for larvae.

Moreover, the development of a generalized model
approach that could be extended for the investigation
of spatial population densities of the forest cockchafer
larvae in the future as time series data become available
was envisaged. The approach would ensure the future
relevance of the model to forest managers in the planning
and implementation of optimal spatial forest regeneration
and pest control measures and would allow for the investi-
gation of the change in the spatial pattern of larvae density
over time.



Figure 1 Geographical location (Gauß-Krüger projection) of the Hessian Ried and layer of the forest cover (A), inventory grid of sample
excavation plots for recording larva population data in the Hessian Ried (B).
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Methods
Data
In the summer of 2009 counts of larvae and additional
potential covariate data were sampled over a regular
quadratic grid with the sample plots arranged 500 m
apart. In a small area of 994 hectares, a denser sample
grid of 250 m × 250 m was employed to obtain add-
itional data needed for further investigations in forest
protection measures (Figure 1B). Each sample plot on
the larger and smaller scale grid system consisted of 4
subplots each 50 cm × 50 cm (0.25 m2) in size, which
were excavated to count the number of larvae present.
These subplots were located 10 m away from the plot
center in the 4 cardinal directions.
The excavation of a subplot was only conducted if it

was located in a forested area. In few cases one or more
of the subplots in a sample plot were ignored because
they were located in a bog, in settlement areas etc. In
total, data from 1 276 sample plots could be used for
constructing the model. The excavated soil was carefully
searched for forest cockchafer individuals at all relevant
life stages that were expected to swarm in 2010. Hence,
not only the number of 3-year-old larvae, but also the
number of pupae and imagines were recorded.
For modeling the sum of larvae in the 4 × 0.25 m2

subplots at each sample point, that is the larva density
per square meter, was used. The subplots were treated
as one sample plot for larva excavation 1 m2 in area
since the distances between the 4 subplots were small
compared to the distances between the sample points
on the sample grid. The maximum depth of excavations
was 1 m. However, at several subplots, the mechanical
resistance of the soil prevented excavations reaching this
depth. In this case, it was assumed that, if the mechanical
resistance was too high for excavating, it was also too high
to serve as a habitat for larvae.
Geographic location (Gauß-Krüger projection), clay

thickness to 1 m soil depth (CTH), distance to water
table (DWT) (Table 1), available from other data sources,
were used as predictor variables. Data for forest stand
structure were not recorded or available. CTH was defined
as the percentage of pure clay layer up to 1 m soil depth.
CTH was calculated using a regional area-wide soil sub-
strate mapping (NW-FVA, Nordwestdeutsche Forstliche
Versuchsanstalt Hrsg. 2013): p. 25 ff., and DWT was
derived from a regional simulation of the groundwater
level in the Hessian Ried (NW-FVA, Nordwestdeutsche
Forstliche Versuchsanstalt Hrsg. 2013): p. 37 ff.). However,
based on the soil substrate map, a clay layer was present
in 54 sample plots only (Table 1). DWT varied consider-
ably (Table 1). DWT was predicted to be less than 4 m at
460 (37%) sample plots, less than 3 m at 267 (21%) sample
plots and less than 2 m at 140 (11%) sample plots. The
distribution in larva densities was extremely skewed to the
right, with 52% of sample plot excavations comprising
no larvae. Densities higher than 5 larvae · m−2, and
higher than 10 larvae · m−2 were recorded at 20.7%, and
11.0% of the sample plots. A maximum larva density of
56 larvae · m−2 was recorded.

Methodology
Regression models for count data
For the estimation of larva density per square meter,
different generalized additive regression models (gam)



Table 1 Distribution of larva density at 1 276 sample plots recorded in the larva density inventory and assigned
covariates distance to water table (DWT) and clay thickness (CTH)

Larvae per m2 0 1 2 3 4 5 6 7 8 9 10 >10

Number of sample points = 1276 664 100 82 62 56 53 33 28 23 27 13 148

Percentage (%) 52.0 7.8 6.4 4.9 4.4 4.2 2.6 2.2 1.8 2.1 1.0 11.0

Min. 1st Quartil Median Mean 3rd Quartil Max.

Distance to water table October 2007 (m) 0.29 3.24 5.20 7.56 11.45 35.16

Clay thickness (%) 0.0 0.0 0.0 2.9 0.0 100.0

Number of sample points with an occurrence of clay layer = 54.
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were parameterized and compared during model selec-
tion. The larval densities per square meter are count data
that can have only non-negative integer values. Hence,
discrete distribution functions that take into account the
specific characteristics of count data were selected for
modeling. In exceptional cases categorical regression
models (Yee and Wild 1996, Yee 2010) offer an alternative
if only few different low counts are observed (Fahrmeir
et al. 2007). Hence, in this investigation different methods
had to be applied because of the rather wide distribution
of larval counts (Table 1). The Poisson distribution is
often used for modeling count data (McCullagh and
Nelder 1989): 194 ff. The natural logarithm is used as a
link function, giving a general model defined by:

g λið Þ ¼ ηi ¼ x0i β ¼ β0 þ β1xi1 þ…þ βkxik ð1Þ
or

λi ¼ exp ηi
� � ¼ exp xi βð Þ

¼ exp β0
� �

⋅ exp β1xi1ð Þ⋅…⋅ exp βkxik
� �

with g(.): link-function: natural logarithm

and yijxi e Poisson λið Þ with E yijxið Þ ¼ λi and Var yijxið Þ ¼
λi; yi ¼ 0; 1; 2;…:

the probability density function of the Poisson distribu-
tion is given by:

f y; λð Þ ¼ λye−λ

y!
y ¼ 0; 1; 2;…:

In the Poisson distribution, the conditional mean
equals the conditional variance and is determined by the
multiplication of the exponentials of the predictor
variables. By applying the inverse link-function, positive
predictions result from the model. However in many ap-
plications, the empirical variance is found to be higher
than the value assumed by the Poisson distribution. In this
case, an overdispersion parameter is introduced, and the
conditional variance is defined as follows: Var (yi|xi) = ϕλi
with the unknown constant overdispersion parameter ϕ.
Alternatively overdispersion in count data can be dealt

with by using different probability functions such as the
negative binomial distribution (McCullagh and Nelder
1989: 199; Venables and Ripley 2002: 206 ff; Rigby and
Stasinopoulos 2009: 269). In this case the overdispersion
is modeled explicitly. However, the procedures for the
estimation are more extensive, particularly if the disper-
sion parameter ϕ is unknown and must be estimated. The
negative binomial distribution can be derived from a
two-stage model for the distribution of a discrete variable
Y (Venables and Ripley 2002). The variable Y follows a
Poisson distribution, where the mean is regarded as a ran-
dom variable itself that has a gamma distribution, with
shape parameter ϕ , and scale parameter 1/ϕ, or alterna-
tively with mean = 1 and variance 1/ϕ. ϕ equals the disper-
sion parameter of the negative binomial distribution:

g1 μið Þ ¼ η1i ¼ x0i β1 ¼ β01 þ β11xi1 þ…þ βk1xik ð2aÞ
with g1(.): link-function: natural logarithm
and yijxi e Poisson μið Þ with μi eGamma shape ¼ð ϕ;

scale ¼ 1=ϕÞ ¼ Gamma mean ¼ 1; variance ¼ 1=ϕð Þ and
yijxi eNegBin μi;ϕð Þ with E yi xiÞ ¼jð μi and Var yi xiÞ ¼jð
μi þ μi

2=ϕ; yi ¼ 0; 1; 2;…: the probability density func-
tion of the negative binomial distribution is given by:

f y; θ; μð Þ ¼ Γ ϕþyð Þ
Γ ϕð Þy!

μyϕϕ

μþϕð Þϕþy , with Γ denoting the gamma

function. y = 0, 1, 2,….
An additional flexibility can be achieved if not only the

mean μi but also the dispersion parameter ϕi is estimated
as a function of the predictor variables by employing a
second linear predictor (Eq. 2b). Instead of estimating the
dispersion parameter ϕi directly, usually the scale param-
eter or the variance 1/ϕi of the gamma distribution is esti-
mated (Rigby and Stasinopoulos 2009: 269):

g2 1=ϕið Þ ¼ η2i ¼ x0i β2 ¼ β02 þ β12xi1 þ…þ βk2xik

ð2bÞ
with g2(.): link-function: natural logarithm
Since the larva density database revealed a high percent-

age (52%) of sample plots with no larvae present (Table 1),
as a third alternative, a regression model assuming a
zero-inflated Poisson distribution was fitted and validated
(Rigby and Stasinopoulos 2009: 270). If Y = 0 with prob-
ability ω, and Y ~ Poisson(λ) with probability (1 −ω), then
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Y has a zero-inflated Poisson distribution. Both parame-
ters λi and ωi are estimated via specific linear predictors
(Eqs. 3a and 3b):

g1 λið Þ ¼ η1i ¼ x0i β1 ¼ β01 þ β11xi1 þ…þ βk1xik

ð3aÞ
with g1(.): link-function: natural logarithm

g2 ωið Þ ¼ η2i ¼ x0i β2 ¼ β02 þ β12xi1 þ…þ βk2xik

ð3bÞ
and g2(.): link-function: logistic link function
and

yijxi e ZIP λi;ωið Þ with E yijxið Þ ¼ 1−ωið Þλi and Var yijxið Þ
¼ λi 1−ωið Þ 1þ λiωið Þ yi ¼ 0; 1; 2;…:

The probability density function of the zero-inflated
Poisson distribution is given by:

f y;ω; λð Þ ¼ ωþ 1−ωð Þ e−l; y ¼ 0 1−ωð Þ λ
y

y!
e−y; y ¼ 1; 2;…:

Generalized additive models
Generalized additive regression models gam (Hastie
and Tibshirani 1990; Wood and Augustin 2002) were
employed to test the effects of predictor variables for
potential non-linearity. By way of example, the general
definition of a gam that contains a spatial trend function
is given below for the Poisson regression model (Eq. 4):

g λið Þ ¼ ηi ¼ β0 þ f 1 xi1ð Þ þ…þ f k xikð Þ þ f n easti; northið Þ
ð4Þ

with g(.): link-function: natural logarithm

and yijxi e Poisson λið Þ and E yijxið Þ ¼ λi and Var yijxið Þ
¼ λi; yi ¼ 0; 1; 2;…:

f1, f2, f3,…, fk: 1-dimensional smooth functions
fn: 2-dimensional smooth function for modeling a

spatial trend.
Assuming negative binomial and zero-inflated Poisson

distributions, both linear predictors (Eqs. 2a/2b and 3a/3b)
were checked for non-linear model effects. Subsequently
it was proofed if significant non-linear effects could be
adequately approximated by segmented linear effects.
All additive regression models were fitted with a 2-
dimensional smoothing function of the geographic loca-
tion to test the data for spatial autocorrelation, which
could not be described by observed causal predictors.
To parameterize the model, the statistical language
and environment R (R Development Core Team 2010)
was adopted using the two libraries gamlss (Rigby and
Stasinopoulos 2005) and mgcv (Wood 2006). If possible
the models were fitted using the library mgcv only. If the
distribution assumptions or specific linear predictors
could not be specified with the functions of the library
mgcv, functions of both libraries were combined: func-
tions of gamlss were used to specify the distribution
functions for the response variable, and functions of
mgcv were used to apply specific smoothing techniques,
including the 2-dimensional smooth function. The library
gamlss was adopted because it enables a variety of continu-
ous and some discrete distributions to be modeled and
extends the classical generalized linear (McCullagh and
Nelder 1989) and additive (Hastie and Tibshirani 1990)
models, which are otherwise limited to the distributions
of the exponential family (Fahrmeir et al. 2007): 218.

Validation
In the validation procedure randomized quantile residuals
were calculated (Dunn and Smyth 1996) to determine
which distribution assumption and model specification
described the pattern of larval counts best. Randomized
quantile residuals have been found to be superior in the
validation of regression models for continuous and discrete
response variables to Pearson and deviance residuals
(Dunn and Smyth 1996).
Let y1,…, yn be the responses that are independently

distributed following a probability density distribution
f(yi, μi, ϕ) where μi = E(yi) and ϕ is a parameter vector
common to all yi. F(yi, μi, ϕ) denotes the corresponding
probability distribution function, Φ denotes the distribu-
tion function of the standard normal distribution, and Φ−1

its inverse denotes the corresponding quantile function.
For continuous response variables, the quantile residual is
then easily defined by:

ri ¼ Φ−1 F yi; μ̂i; ϕ̂
� �� � ð5Þ

Given the hypothesis that f(yi, μi, ϕ) is the correct
model for the observations y1,…,yn, all ri follow approxi-
mately a standard normal distribution. Deviations only
result from sampling variability in μ̂i and φ̂ . Hence
standard methods such as the ‘normal quantile-quantile
plot’ qqplot or the Kolmogorov-Smirnov test can be used
to validate the regression models. An application of this
approach in forestry is given by Zucchini et al. (2001).
If F is not continuous, however, a more general definition

of quantile residuals is required leading to the definition of
randomized quantile residuals:

ri ¼ Φ−1 uið Þ ð6Þ

where ui is a uniform random variable in the interval (ai,

bi] with ai ¼ limy↑yiF yi; μ̂i; ϕ̂
� �

and bi ¼ F yi; μ̂i; ϕ̂
� �

.

Randomized quantile residuals are also approximately
standard normal distributed if the model assumed is
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correct. Further insight into the adequacy of the models
can be gained by wormplots that are detrended ‘normal
quantile-quantile plots’ (qqplots) (Buuren and Fredriks
2001). Here ‘detrended’ means that the empirical quantiles
are subtracted from their corresponding standard normal
quantiles. In a wormplot, these detrended quantiles are
plotted against their corresponding (theoretical) standard
normal quantiles. Wormplots highlight deviations from an
assumed theoretical distribution more clearly than qqplots.
Additionally, conditional wormplots were calculated for
different intervals of DWT. Conditional wormplots are
employed to detect potential intervals of predictor vari-
ables where the models do not fit adequately.
Furthermore the assumption of spatially independent

model residuals and the methodology of 2-dimensional
surface fitting for modeling spatially correlated data were
validated. Therefore simple empirical semi-variograms of
the randomized quantile residuals were calculated for
various models with spatial trend functions of different
complexity. To construct 95% confidence intervals for
the null hypothesis of spatial independency, 1 000 random
permutations of the coordinates were conducted. Subse-
quently the semi-variograms of the randomized quantile
residuals were estimated and the pointwise 2.5% and
97.5% quantiles calculated.
Finally model computations were conducted for specific

settings of predictor variables to illustrate the sensitivity of
model predictions to varying conditions.

Results
Model selection
The specific Poisson regression model selected for pre-
dicting larva density per m2 using all available predictor
variables was defined as follows:

g λið Þ ¼ β0 þ f 1 DWTið Þ þ f 2 CTHið Þ þ f 3 easti; northið Þ
ð7Þ

with g(.) : link-function: natural logarithm, and GDi ~
Poisson (λi) with E(GDi) = λi and Var (GDi) = λi; GDi = 0,
1, 2,….
GDi : larva density at plot i (n · m−2)
DWTi : simulated distance to water table in October

2007 at plot i (m)
CTHi : modeled clay thickness at plot i (%)
easti, northi : Gauß-Krüger east and north coordinates

of plot i defined in relation to the 3rd meridian
f1, f2 : 1-dimensional smooth functions (penalized thin

plate regression splines)
f3 : 2-dimensional smooth function (penalized thin

plate regression spline)
Based on a model that employed only the average

larva density (Eq. 7.1), model selection was conducted
by the stepwise inclusion of predictors to determine the
extent to which they improved the model (Table 2). In
the first simple validation, the Akaike information criterion
(Burnham and Anderson 2004) was used. In the process of
model selection, it became evident that the geographic loca-
tion of observations affected larva density to a much higher
extent than the causal predictors CTH and DWT (Table 2).
By increasing the dimension of the 2-dimensional spatial
trend function, the model was improved significantly.
However, the empirical variance was significantly larger
than the mean. The dispersion parameter decreased with
increasing model complexity, but, for all models, the
overdispersion was highly significant (Eqs. 7.1–7.7).
Therefore, the assumption that larva density distribution
could be described by a Poisson distribution was not valid.
In modeling the overdispersion, analogous regression

models were fitted assuming that the larva density
followed a negative binomial distribution (Eqs. 8a/8b),
and a zero-inflated Poisson distribution (Eqs. 9a/9b).
Again model improvement was validated by a stepwise
integration of predictors, and by increasing the basis
dimension of the 2-dimensional spatial trend function
(Tables 3 and 4). The specific negative binomial regres-
sion model for predicting larva density per m2 using all
available predictor variables was defined as follows
(The abbreviations correspond to those given for model 7):

g1 μið Þ ¼ β01 þ f 11 DWTið Þ þ f 21 CTHið Þ þ f 31 easti; northið Þ
ð8aÞ

g2 1=ϕið Þ ¼ η2i ¼ x0i β2 ¼ β02 þ f 12 DWTið Þ ð8bÞ

with g1(.) and g2(.): link-functions: natural logarithm

and GDi e NegBin μi;ϕið Þ with E GDið Þ ¼ μi and Var GDið Þ
¼ μi þ μi

2=ϕi; GDi ¼ 0; 1; 2;…

The AIC values of the negative binomial models were
much lower than those of Poisson models with approxi-
mately the same complexity of the linear predictor. An
optimum value was reached at approximately 120 de-
grees of freedom (edf ) for the spatial trend function
(Eq. 8.5). Hence the optimum model was much more
parameter parsimonious than the best Poisson model
(Eq. 7.7). The model was improved slightly when the dis-
persion parameter was modeled as a function of the
DWT as well (Eq. 8.6). In the best Poisson model, the di-
mension of the spatial trend was found to be ~ 320 edf,
but AIC was much higher (Table 2) than the one of the
best negative binomial model. Even with this high level
of complexity, an optimum degree of smoothing was not
reached (Eq. 7.7). Model selection using the Poisson re-
gression approach was discontinued at this stage because
more complex models no longer converged. Using all
available predictor variables, a specific negative zero-



Table 2 Various Poisson regression models validated during model selection

Model AIC Dispersion parameter

g(λi) = β0 7.1 12263.0 11.71***

g(λi) = β0 + f1(DWTi) 7.2 10881.7 9.64***

g(λi) = β0 + f1(DWTi) + f2(CTHi) 7.3 10692.3 9.31***

g(λi) = β0 + f1(DWTi) + f2(CTHi) + f3(easti, northi), edf for f3(easti, northi) = 28.753 7.4 6193.4 4.34***

g(λi) = β0 + f1(DWTi) + f2(CTHi) + f3(easti, northi), edf for f3(easti, northi) = 121.619 7.5 5394.4 2.75***

g(λi) = β0 + f1(DWTi) + f2(CTHi) + f3(easti, northi), edf for f3(easti, northi) = 198.121 7.6 5128.1 2.31***

g(λi) = β0 + f1(DWTi) + f2(CTHi) + f3(easti, northi), edf for f3(easti, northi) = 321.446 7.7 4745.3 1.90***

Complexity increases from model 7.1 to 7.7. ***denotes significant deviance (level of significance 0.001) from equidispersion (ϕ = 1) by applying a regression
based test with the alternative hypothesis of a quasi-Poisson model (Cameron and Trivedi 1990) implemented in the R library AER (Kleiber and Zeileis 2008). The
flexibility of the spatial model component increases with increasing estimated degrees of freedom (edf) of the 2-dimensional smoothing function f3.
with DWTi: simulated distance to water table in October 2007 at plot i (m); CTHi: modeled clay thickness at plot i (%); (easti, northi): Gauß-Krüger east and north
coordinates of plot i defined in relation to the 3rd meridian.
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inflated Poisson regression model for predicting larva
density per m2 was defined as follows:

g1 λið Þ ¼ β01 þ f 11 DWTið Þ þ f 21 CTHið Þ þ f 31 easti; northið Þ
ð9aÞ

with g1(.): link-function: natural logarithm

g2 ωið Þ ¼ β02 þ f 12 DWTið Þ ð9bÞ
with g2(.): link-function: logistic link function

and GDi e ZIP λi;ωið Þ
with E GDið Þ ¼ 1−ωið Þλi and Var GDið Þ

¼ λi 1−ωið Þ 1þ λiωið Þ GDi ¼ 0; 1; 2;…:

(For a description of abbreviations see legend for
model 7)
The AIC values in the zero-inflated Poisson models were

also considerably lower than in the Poisson regression
Table 3 Various negative binomial regression models validate

Model

g1(μi) = β01 8.1

g1(μi) = β01 + f11(DWTi) 8.2

g1(μi) = β01 + f11(DWTi) + f21(CTHi) 8.3

g1(μi) = β01 + f11(DWTi) + f21(CTHi) + f31(easti, northi), edf
for f31(easti, northi) = 25.96

8.4

g1(μi) = β01 + f11(DWTi) + f21(CTHi) + f31(easti, northi), edf
for f31(easti, northi) = 117.35

8.5

g1(μi) = β01 + f11(DWTi) + f21(CTHi) + f31(easti, northi), edf
for f31(easti, northi) = 117.35

8.6

Complexity increases from model 8.1 to 8.6. The flexibility of the spatial model com
2-dimensional smoothing function f3.
with DWTi: simulated distance to water table in October 2007 at plot i (m); CTHi: mo
coordinates of plot i defined in relation to the 3rd meridian.
models, but higher than in the associated negative binomial
models (Table 4).
The model effects and their linear approximations

were only illustrated for the best- suited model (Eq. 8.5).
Model 8.5 was chosen as the best model because further
improvement by employing model 8.6 was negligible.
The integration of the covariates DWT and CTH in the
model both resulted in significant model improvements
(Table 3). The effect of DWT showed a significantly non-
linear pattern (Figure 2A). The effect of CTH indicated a
non-linear pattern also (Figure 2B). However, in the latter
case the deviation from a simple linear model was not
significant. Additional stratification when using different
substrate groups like sand, loam and loess as predictors
did not improve the model. Between ~ 0 m and 4 m DWT,
the model effect increased (Figure 2A). Hence the pre-
dicted larva density increased as the groundwater level
dropped. From a DWT of ~ 4 m, an approximately asymp-
totic pattern resulted, indicating that DWT had no further
d during model selection

AIC Explained deviance (%) Dispersion parameter

5335.4 0 g2(1/ϕ) = β02;

ϕ = 0.255

5207.1 12 g2(1/ϕ) = β02;

ϕ = 0.308

5171.9 15.7 g2(1/ϕ) = β02;

ϕ = 0.323

4343.8 63.4 g2(1/ϕ) = β02;

ϕ = 1.051

4161.3 75.1 g2(1/ϕ) = β02;

ϕ = 1.664

4154.5 75.4 g2(1/ϕι) =

β02 + f12(DWTi)

ponent increases with increasing estimated degrees of freedom (edf) of the

deled clay thickness at plot i (%); (easti, northi): Gauß-Krüger east and north



Table 4 Various zero-inflated Poisson regression models validated during model selection

Model AIC Mixture parameter

g1(λi) = β01 9.1 7584.1 g2(ωi) = β02; ωi = 0.52

g1(λi) = β01 + f11(DWTi) 9.2 7262.3 g2(ωi) = β02; ωi = 0.51

g1(λi) = β01 + f11(DWTi) + f21(CTHi) 9.3 7217.5 g2(ωi) = β02; ωi = 0.50

g1(λi) = β01 + f11(DWTi) + f21(CTHi) + f31(easti, northi), edf for f31(easti, northi) = 28.81 9.4 5708.3 g2(ωi) = β02; ωi = 0.20

g1(λi) = β01 + f11(DWTi) + f21(CTHi) + f31(easti, northi),edf for f31(easti, northi) = 117.35 9.5 5092.2 g2(ωi) = β02; ωi = 0.12

g1(λi) = β01 + f11(DWTi) + f21(CTHi) + f31(easti, northi), edf for f31(easti, northi) = 117.35 9.6 5051.3 g2(ωi) = β02 + f12(DWTi)

Model complexity increases from model 9.1 to 9.6. The flexibility of the spatial model component increases with increasing estimated degrees of freedom (edf) of
the 2-dimensional smoothing function f3.
with DWTi: simulated distance to water table in October 2007 at plot i (m); CTHi: modeled clay thickness at plot i (%); (easti, northi): Gauß-Krüger east and north
coordinates of plot i defined in relation to the 3rd meridian.
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effect on larva density once it exceeded 4 m. The mean
larva density decreased with increasing clay thickness.
However, the confidence intervals for the effect of CTH
were large, especially for sites with high CTH (Figure 2B).
For simplification the model (Eq. 8.5) was reparame-

terized by using segmented linear functions to approxi-
mate the effects of DWT and CTH on mean larva
density (Eq. 8.51, Table 5). In doing so the original ef-
fect of DWT was approximated by a segmented func-
tion that resulted in an increasing effect of DWT down
to a depth of 4 m, and a constant effect at depths
below 4 m (Figure 3A). The effect of CTH was approxi-
mately constant for values below 30%, and decreased
for values higher than 30% (Figure 3B). The values of
exponents of the non-constant segments were selected
iteratively, and the models compared using the AIC
(Eq. 8.51). The assumption of partially constant effects is
statistically justified since the confidence intervals would
include straight lines (Figure 2). The simplification re-
sulted in an AIC of 4150.15, which means that the model
was improved further by the linear approximations. Hence
the gam (Eq. 8.5) was simplified to a generalized linear
model (glm) (Eq. 8.51):
Figure 2 Model effects (Eq. 8.5) of distance to water table (DWT) (A) a
negative binomial distribution for describing larva density per m2. Da
g1 μið Þ ¼ β01 þ f 11 DWTið Þ þ f 21 CTHið Þ
þ f 31 easti; northið Þ; g2 1=ϕð Þ ¼ β02

ð8:51Þ
with g1(.) and g2(.) : link-functions: natural logarithm

with f 11 DWTið Þ : β11 DWTi–4ð Þ1:5; for DWTi < 4 m;

0 otherwise

and f 21 CTHið Þ : b21 CTHi–30ð Þ1:8; for CTHi > 30%;

0 otherwise
and GDi e NegBin μi;ϕð Þ with E GDið Þ ¼ μi and Var GDið Þ

¼ μi þ μi
2=ϕ; GDi ¼ 0; 1; 2;…:

(For a description of abbreviations see legend for model 7)

Validation of the distribution assumption
The models with a spatial trend function of approximately
125 edf for each of the different distribution assumptions
(Eqs. 7.5, 8.5, 9.6) were validated in more detail by qqplots
(Figure 4) of the randomized quantile residuals. Add-
itionally the negative binomial model which included
nd clay thickness (CTH) (B) on the mean of the conditional
shed lines mark the 95% confidence intervals of the model effects.



Table 5 Statistical characteristics of the generalized linear model (Eq. 8.51) for estimating larva density/m2

Parameter Standard error z-Value Pr (> |z|)

β01 −3.135839 1.414588 −2.217 0.02664

β11 −0.610538 0.088263 −6.917 4.6e−12

β21 −0.003227 0.001210 −2.667 0.00765

β02 −0.5006 0.07631 −6.56 7.795e−11

ϕ = 1.649

f31(easti, northi), edf = 117.5 p-value < 2e−16

R-sq.(adj) = 0.411, deviance explained = 74.9%, AIC = 4150.15
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linearly approximated model effects (Eq. 8.51) was validated
(Figure 4D).
The qqplots indicated that the negative binomial re-

gression (Eqs. 8.5/8.51) models were best for quantifying
larva density, and they confirmed the ranking resulting
from the AIC-values (Tables 2, 3, 4 and 5). For both
negative binomial regression models, the randomized
quantile residuals lay on the bisecting line, indicating
that they follow approximately a standard normal distri-
bution, and hence they represent an almost optimal fit
to the data. The distribution of quantile residuals of
model 8.5 was caused only marginally by the linear
approximations adopted (Eq. 8.51). The qqplots for the
Poisson and zero-inflated regression models displayed
major deviations from the bisecting line. Hence, nei-
ther the assumption that larva density follows a Poisson
distribution nor the assumption that larva density fol-
lows a zero-inflated distribution could be validated in
this case.
The wormplots for models 8.5 and 8.51 showed that

the distributions of randomized quantile residuals de-
viated marginally from a standard normal distribution
(Figure 5). An optimal model fit would be characterized
by a horizontal line through the origin. However in the
Figure 3 Linear approximations of model effects (Eq 8.51) of distance
mean of the conditional negative binomial distribution for describing
intervals of the model effects.
case of model 8.5 none of the deviations were significant
to the 95% level since all points lay within the dashed
boundary lines of the confidence interval of the standard
normal quantiles (Figure 5A). For model 8.51 the overall
pattern of deviations was even better, since the line flat-
tens out, but some deviations were significant to the 95%
level (Figure 5B).
Conditional wormplots for model 8.51 showed that the

model fit was good, even with respect to different intervals
of the predictor variable DWT (Figure 6). Marginal devia-
tions from standard normal quantiles occurred mainly for
DWT values less than 2 m (lower left panel) and between
2 m and 3 m (lower right panel). Conditional wormplots
for groups of CTH were omitted since the number of plots
with a clay occurrence was low.
Even when the negative binomial regressions (Eqs.

8.5/8.51) were found to fit the data almost perfectly, in
the extensive validation procedure some artefacts in
the spatial trend function became evident in graphical
representations of the model predictions (Figure 7A).
These artefacts with very high values occurred in areas
comprising only very few or no sample plots, and
therefore can be characterized as edge effects. To resolve
this problem a different type of thin plate spline was
to water table (DWT) (A) and clay thickness (CTH) (B) on the
larva density per m2. Dashed lines mark the 95% confidence



Figure 4 qqplots of randomized quantile residuals for different models for quantifying larva density per m2 (Eqs. 7.5, A; 8.5, B; 9.6,
C; 8.51, D).
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employed that uses 1st order derivatives in the penalty
(Duchon 1977) for the 2-dimensional spatial trend
function (Wood 2006). Additionally the dimension of
the spatial trend function was decreased slightly (edf =
93.38). The resulting trend surface was smoother and
Figure 5 Overall wormplots of negative binomial regression models (
lines indicate the boundaries of the 95% confidence interval of the standar
trend curve that highlights a potential pattern in the randomized quantile
the artefacts of extreme high-trend values disappeared
(Figure 7).
However, these constraints led to a slight increase in

the AIC (4174.69 versus 4150.15), but the qqplot of the
randomized quantile residuals still characterized this
Eq. 8.5, A; Eq. 8.51, B) for quantifying larva density. Curved dashed
d normal quantiles. The curved solid gray line describes a polynomial
residuals.



Figure 6 Conditional wormplots of the negative binomial regression model (Eq. 8.51) for different groups of the predictor variable
DWT. Deviations from standard normal quantiles are displayed for DWT values less than 2 m, 2–3 m, 3–4 m and more than 4 m in depth (from
lower left panel to upper right panel). Curved dashed lines indicate the boundaries of the 95% confidence intervals of the standard normal
quantiles. The curved solid gray lines are polynomial trend curves that highlight potential pattern in deviation from standard normal quantiles.
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more parsimonious model variant (Eq. 8.51 Duchon) as
an almost perfect fit to the data (Figure 8).

Validation of spatial independency
The randomized quantile residuals of the finally selected
model (Eq. 8.51 Duchon) using 1st order derivatives in the
Figure 7 Contour plots displaying the spatial pattern of predicted lar
negative binomial regression models (Eq. 8.51) with conventional thi
penalty and slightly reduced dimension of the spatial trend (B). The t
locations used in the model computations. The light gray triangle represen
black square with a high spatial effect. The outermost isolines of the three
penalty and three other negative binomial regression models
were compared and validated for spatial independency.
The validation was conducted for the model including no
spatial trend function (Eq. 8.3), the model with a spatial
trend function of low dimension (Eq. 8.4) and the model
with a trend function of optimal dimension concerning
va density assuming a CTH of 0% and a DWT of 4 m employing
n plate splines (A) and thin plate splines with 1st order derivative
ransect highlighted by a dashed line connects the three geographic
ts a location with a low, the dark gray circle with a medium, and the
distinct areas connect locations with predictions of 2 larvae · m−2.



Figure 8 The qqplot of randomized quantile residuals for a
negative binomial model for quantifying larva density (Eq. 8.51)
using 1st order derivatives in the penalty (Duchon 1977) and
reducing the dimension of the spatial trend function (edf= 93.38).
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AIC (Eq. 8.51). Hence the finally selected model was com-
pared to two models of lower complexity (Eqs. 8.3, 8.4)
and one model of higher complexity (Eq. 8.51) of the
spatial trend function. For comparison models 8.3 and 8.4
were refitted by employing approximated effects for the
causal predictors DTW and CTH also (see Eq. 8.51).
The residuals from the model without any spatial

trend function (Eq. 8.3) showed a significant deviation
from spatial independency up to a distance of approxi-
mately 7 500 m (Figure 9A). The implementation of a
spatial trend function of low dimension into the model
(Eq. 8.4) removed the spatial dependencies for larger
distances but significant deviations remained up to a
distance of approximately 1 500 m (Figure 9B). The
residuals for the models with more complex spatial
trend functions (Eq. 8.51 and Eq. 8.51 Duchon) showed
no spatial dependencies anymore (Figure 9C and 9D).
Hence the results from the empirical semi-variograms
confirmed the results from the model selection process.
Moreover the slightly more parsimonious and finally
selected model (8.51 Duchon) is sufficient to describe the
spatial pattern in larva density adequately.

Model computations
The model sensitivity resulting from the different model
effects can be illustrated by predictions on the scale of
the response variable (larva density) by varying only one
of the causal predictors DWT or CTH while keeping the
other constant. For this prediction the negative binomial
model (Eq. 8.51) employing 1st order derivatives in the
penalty was used. The geographic location was kept con-
stant also because of the high spatial variation in larva
density (Figure 7B). To provide an example, the larva
density was estimated at three different locations differ-
ing significantly in spatial effects (Figure 10). The large
differences between the curves in the figures resulted
from these different geographic locations: the weaker the
causal effects were, the higher the variation in predicted
larva density for the different locations was. Hence, if con-
ditions like a low CTH or a large DWT led to a high poten-
tial larva density, then the actual larva density depended
strongly on geographic location (Figures 10A, 10D). With
increasing CTH and declining DWT, the potential of a site
to serve as habitat for larvae decreased, and the effect of
geographic location also decreased.
The prediction accuracy of the model is illustrated ex-

emplarily by calculating standard errors for the predic-
tions along a northing gradient through the Hessian Ried
and keeping the other predictors constant (Figure 11).

Discussion
It is known that sites with a high groundwater table or
high percentage of bed rock prevent the hibernation of
forest cockchafer larvae at greater soil depths in cold
winter climates (Schwerdtfeger 1981). This is in part
reflected in the model effects. A pure clay layer can be
assumed to have similar negative effects on the suitability
of a site as a habitat for larvae and an increasing propor-
tion of clay layer leads to reduced numbers of predicted
larvae per m2 (Figure 10). In this context the effect of
CTH was found to be a weak indicator so far, since the
confidence intervals were rather wide. However, the inte-
gration of CTH into the negative binomial regression
model (Eq. 8.5) led to a reduction of the AIC, and hence
improved the model (Table 3).
The predicted larva density within 1 m soil depth is

affected by values of DWT up to 4 m (Figure 2A), which
does not seem feasible since maximum depth for hiberna-
tion is thought to be approximately 1.1 m (Schwerdtfeger
1981). However, DWT values used in this model were
based on ground water data simulated for the month of
October 2007. In spring, a lower DWT is usually observed,
and single high water occurrences might result tempor-
arily in even smaller DWT. Furthermore, depending on
the specific soil substrates, a capillary ascension may
reduce the capacity of the first meter of soil to serve as
habitat for larvae as well. These interpretations are
based on the assumption that single temporary high-
water events affect the capacity of the larval habitat
significantly. The constraint of a constant effect of DWT
of more than 4 m (Eq. 8.51/Figure 3A) was imposed
because it is biologically feasible that the effect of DWT
is constant below a certain threshold. Higher values of
DWT are at least partially the result of intensive
groundwater withdrawals in the Hessian Ried (NW-FVA,
Nordwestdeutsche Forstliche Versuchsanstalt Hrsg. 2013):
p. 30 ff.). Hence, the lowering of groundwater in areas
where groundwater was formerly available to trees may
also affect larva density indirectly. The degradation of for-
est is a direct result of a lowering of the groundwater



Figure 9 Empirical semi-variograms for the randomized quantile residuals of four negative binomial regression models (Eqs. 8.3, A; 8.4,
B; 8.51, C; 8.51 Duchon, D) with spatial trend functions of different complexity (solid black dots). Additionally pointwise 95% confidence
intervals for the null hypothesis of spatial independency are plotted that are based on 1 000 random permutations of the coordinates (dashed
lines with blank dots).
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table, and the partial dieback of single trees and forests
may have improved habitat conditions for the forest cock-
chafer as well.
A comparison of models showed that the negative

binomial distribution was superior to the Poisson and
zero-inflated Poisson distributions, which is in accordance
with other investigations of overdispersed animal count
data (Gray 2005; Sileshi 2008; Vaudor et al. 2011). In many
investigations the negative binomial, the Poisson and the
zero-inflated Poisson distributions have been compared.
In some cases a zero-inflated modification of the negative
binomial distribution results in minor, and somewhat
doubtful improvements in the models (Gray 2005; Vaudor
et al. 2011). Especially in cases with the occurrence and
abundance of a species resulting from distinct processes,
the zero-inflated modification of the negative binomial
distribution can result in considerable model improve-
ments (Wenger and Freeman 2008).
Overdispersion is often assumed to result from a spatial

or temporal heterogeneity of the habitat. However, even if
conditional distributions are fitted by employing regression
approaches (Sileshi 2008) or stratification (Vaudor et al.
2011), the negative binomial approach has been found to
be superior in many investigations. In this investigation the
modeling approach for determining the effect of spatial
heterogeneity on overdispersion was much more flexible
due to the complex spatial trend function (Table 2). How-
ever, even though the dimension of the spatial trend was
increased considerably, a significant overdispersion was
still evident (Table 2). Hence, at least for our investiga-
tion, it can be concluded that even a quite complex lin-
ear predictor is not sufficient to cover all sources of
overdispersion.
Extended generalized regression models facilitate the

estimation of the conditional mean, variance or mixture
parameter as functions of covariates. The simplest struc-
ture of a linear predictor is to assume the effects of the
covariates to be linear (Sileshi 2008). Yet this assumption
must be validated to guarantee unbiased predictions
across the whole range of covariates (Hastie and Tibshirani
1990). Therefore the extension of generalized additive
models to overdispersed and zero-inflated count data,



Figure 10 Predicted larva density (Eq. 8.51) using 1st order derivatives in the penalty at three geographic locations in the Hessian Ried
by varying one of the predictors DWT or CTH while keeping the other constant. The value of the constant used is given in the title of each
figure. The black, solid line represents predictions for the location coded by a black square, the dark gray, dashed line for the location coded by a
dark gray circle, and the light gray, point dashed line for the location coded by a light gray triangle (Figure 7B).
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such as were used in this investigation, indicates a major
advance in the methodology (Barry and Welsh 2002;
Rigby and Stasinopoulos 2005; Wood 2006).
Due to the heterogeneity of covariates that are spatially

correlated, but unknown, or only insufficiently available,
in many cases the response data are autocorrelated.
Haining et al. (2009) presented a simple conditional
autoregressive model to deal with autocorrelated count
data which results in the estimation of spatially correlated
random effects. Fahrmeir and Echavarrı (2006) introduce
an extensive methodology using structured additive re-
gression models STAR for overdispersed and zero-inflated
count data. These models make it possible to model
non-linear covariate effects, individual or cluster-specific



Figure 11 Predicted larva density (Eq. 8.51 Duchon) using 1st order derivatives in the penalty along a northing gradient through the
Hessian Ried for a fixed easting coordinate = 3469000 and constant values of DWT = 4.0 m and CTH = 0. The black, solid line represents
predictions for the expectation value and the dashed lines for confidence interval.
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uncorrelated random effects, spatially correlated random
effects or 2-dimensional spatial trend surfaces simultan-
eously. The methodology employed in our investigation
(Wood 2006) offers similar technical possibilities for the
Poisson and negative binomial distributions and, in com-
bination with Rigby and Stasinopoulos’s (2005) methods,
for the zero-inflated Poisson distribution. The inventory
plots are located exactly via coordinates, and hence a
2-dimensional spatial trend function is fitted instead of
spatially correlated random effects for distinct areas.
The observations at the 4 subplots were aggregated
due to their proximity, which makes the estimation of
uncorrelated random effects at the plot level redundant.
Overall, the approach adopted combines an appropriate
distribution assumption for count data with non-linear
effects of causal covariates and an advanced method for
covering spatial autocorrelation.
Finally graphical representations of randomized quan-

tile residuals are powerful validation tools that provide
more detailed information about model characteristics
than just comparing global statistics. However, so far, in
most investigations of count data, validation has been
limited to global statistics or simple comparisons of
counts (Gray 2005; Sileshi 2008; Wenger and Freeman
2008; Vaudor et al. 2011).

Conclusions
The developed negative binomial regression model can
be used to predict the current spatial pattern of larva
density in the Hessian Ried. The almost optimal fit by
the model allows for the prediction of conditional expect-
ation values but also of conditional quantiles to account
for uncertainty in the process of silvicultural decision
making. Based on the predictions local forest managers
will be able to optimize the spatial pattern of regeneration
and forest protection planning. Areas with different risks
can be identified by combining the predictions with expert
knowledge about critical larva density. Hence areas can be
separated where forest protection measures are essential,
reasonable or needless to ensure successful regeneration
measures. A classification of forest stands can be con-
ducted that will be mainly affected by their regional loca-
tion within the Hessian Ried. Deviations from the overall
spatial pattern will be affected by the spatial pattern of
pure clay layer and distance to water table.
In the future inventories of larvae in the Hessian Ried

will be conducted continually at an interval of 4 years in
the year prior to the year of swarming. In the planning
of control measures, it is of particular interest to know if
the spatial distribution of the larvae varies over time or
is more or less stationary. Hence, a major objective of
the future inventories will be to gain insight into the
spatio-temporal pattern of larva density. For this purpose
the methodology developed can be used for time series
data by estimating inventory-specific spatial trends or,
in the case of a number of inventories, by integrating a
space-time effect (Augustin et al. 2009).
The overall sampling grid should be optimized in future

inventories to enable more plots with a medium to high
CTH and low DWT to be assessed. In this context the
database could be improved considerably by recording the
CTH when excavating instead of modeling it.
Some knowledge exists about the capacity of different

stand structures to serve as habitat for forest cockchafer
larvae. For example dense young stands provide a less
suitable habitat (Schwerdtfeger 1981). Hence additional
information about stand structure and tree species com-
position should be recorded and its effects on larva
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density tested. Currently the model predictions might be
biased for certain stand structures if relevant effects on
larva density do exist. However it is likely that the strong
spatial effect will be the most important effect in future
model developments also. Finally the 2013 inventory will
be used to test the effect of forest protection measures
that have been implemented in a sub-area of the Hessian
Ried.
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