
 

DVFFA: Sektion Ertragskunde 24 Jahrestagung 2024 

Pitfalls and Hurdles in Site Index Modeling 

Jan Schick1, Matthias Albert2, Matthias Schmidt3 

Abstract 
Site index models play an important part, when deciding on future stand species composition. Most modeling ap-
proaches use either Space-for-Time data or research plot data. In a novel approach, we combine both categories. Due 
to this combination, we are able to identify a number of issues. We found, that basing a model on Space-for-Time data 
will lead to a distorted growth curve. Moreover, the estimated effects for the dynamic variables, which change over 
stand life, were flawed, as well. However, the broad coverage of the data is still needed, e.g. when quantifying the influ-
ence of the manifold soil categories. We propose a hierarchical chain of models, where each model utilizes a different 
subset of data. Thus combining the strengths of each subset, while avoiding possible pitfalls. As our research is still 
ongoing and results are still preliminary, we focus more on the issues we encountered and how to circumvent them. 

Keywords: site index model; research plots; inventories; space for time; correlations; 

1 Introduction 
Site index models play a key role, when as-
sessing the suitability of different tree species 
for future forest stands. Apart from providing 
growth and yield estimates, the stand height is 
also crucial when estimating carbon storage or 
storm risk, for example. 

The data used for those models can be put into 
two rough categories: Space-for-Time data, 
which usually refers to inventories, and time se-
ries data, which usually refers to long-term re-
search plots. To our knowledge, researchers so 
far included data from only one category (Antón-
Fernández et al., 2016; Nord-Larsen et al., 2007; 
Schmidt, 2020). For our research, however, we 
combined data from both categories and from 
multiple sources. This allowed a thorough as-
sessment of the model results, which would not 
have been possible otherwise. Since our initial 
model (Schick et al., 2023), we encountered fur-
ther issues and gathered additional insight, 

mostly relating to the characteristics of Space-
for-Time data and correlations within the whole 
data. 

Since the modeling process is still ongoing, our 
results are still preliminary. Thus, we rather want 
to elaborate on some of the pitfalls we found and 
the mistakes we made so far. 

2 Aim of the research 
The aim of this research is, to develop models, 
which can adequately depict future site index de-
velopment of different tree species. To be con-
sidered adequate, the models have to fulfill a 
number of criteria. They have to be able to esti-
mate stand height 

(1) at any age,
(2) under changing environmental conditions,
(3) for all of Germany,
(4) without the need for existing dendromentric data,
(5) with plausible longitudinal properties,
(6) plausible effects,
(7) without a relevant bias.

In the end, we aim to obtain such models for 
seven tree species: Oak (Quercus petraea / 
robur), Beech (Fagus sylvatica), Spruce (Picea 
abies), Fir (Abies alba), Douglas fir (Pseudotsuga 
menziesii), Pine (Pinus sylvestris) and European 
Larch (Larix decidua). The site index is 
represented by the height of the mean quadratic 
diameter tree (Hq). 

3 Material 
Our modeling approach is based on using an 
existing growth curve, i.e. the modified Korf 
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function with the four parameters a, b, c and λ 
(Schmidt, 2020). 

𝐸𝐸[𝑙𝑙𝑙𝑙𝑙𝑙(𝐻𝐻𝐻𝐻𝑘𝑘𝑘𝑘)] = 𝑎𝑎 − 𝑏𝑏

∗
(𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘𝑘𝑘 + 𝜆𝜆)−𝑐𝑐 − (100 + 𝜆𝜆)−𝑐𝑐

(50 + 𝜆𝜆)−𝑐𝑐 − (100 + 𝜆𝜆)−𝑐𝑐

c and λ define the basic shape of the curve, a is 
the logarithmic Hq at age 100 and b is the 
logarithmic difference in Hq between age 50 and 
age 100. 

3.1 Dendrometry 

The data used for this work combines measure-
ments from inventories and long-term research 
plots. Three inventories were considered: The na-
tional forest inventories of Germany (NFI), 1987 
to 2012. The enterprise forest inventories (EFI) of 
Hessia, Lower Saxony, and Schleswig-Holstein. 
The carbon stock inventory (CFI) from 2017 from 
the three aforementioned states including Sax-
ony-Anhalt. Generally, the inventories are charac-
terized by a high number of measured stands 
with comparably few repeated measurements 
per stand. Please note, that the word measure-
ment henceforth refers to measuring the den-
drometry of a whole stand, not the individual tree. 

Research plot data was gathered from the North-
west German Forest Research Institute (NW-
FVA), the Forest Research Institute Baden-Würt-
temberg (FVA), as well as from the state forest 
enterprises of Brandenburg (BB) and Saxony 
(SN). Contrary to the inventories, the research 
plots consist of few plots with a high number of 
repeated measurements. 

The total number of measurements and plots, 
combined for all seven species, can be found in 
table 1.

Table 1: Number of plots, measurement occa-
sions and trees per data source. 

Source n plots n meas. n trees 
Inventories 

NFI 63,531 132,367 1,024,383 
EFI 110,506 172,435 2,041,360 
CFI 6,169 6,169 41,529 

Research Plots 
NW-FVA 1,868 13,188 1,663,106 
FVA 1,926 13,436 2,178,749 
BB 113 737 173,962 
SN 27 127 32,031 
Total 184,140 338,459 7,155,120 

3.2 Environmental data 

The environmental data can be grouped into two 
main categories: Atmosphere and soil. 

3.2.1 Atmospheric data 

The atmospheric variables considered here were 
temperature (Temp), precipitation (Prec) and ni-
trogen deposition (NDep). Temp and Prec were 
summed over the stands life span for the dynam-
ically determinded vegetation period (Menzel, 
1997; Nuske, 2017), NDep for the whole year. Af-
terwards, they were interpolated to a 50m x 50m 
grid for all of Germany. Data is available from 
1800 (NDep) or 1900 (Temp, Prec) to 2100. Mod-
eling of Temp and Prec was based on data from 
the German Meteorological Service (DWD), NDep 
was based on data from the Umweltbundesamt 
(Schaap et al., 2018). 

3.2.2 Soil data 

Soil characteristics were depicted by the rather 
simple variables water budget category (German: 
Wasserhaushaltsziffer, WHZ) and nutrient 
budget category (German: Nährstoffziffer, NZ), 
since these variables were available for large 
parts of Germany. 

A detailed description of the data, i.e. dendrome-
try and environmental data, as well as its pro-
cessing can be found in Schick et al. (2023). 
Please note, that the modeling approach de-
scribed there is no longer in use. Additionally, SN 
and BB data were added and the weighted mean 
described in equation (3) of said paper was dis-
carded. 
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4 Pitfalls and Hurdles 
When fitting the models and trying to satisfy the 
criteria defined in ch. 2, several issues became 
apparent. Almost all of them can be subsumed in 
simple words: We are missing data. 

Although the numbers in table 1 may look com-
parably large, they become small once they are 
stratified by species and the environmental vari-
ables. 

4.1 Space-for-Time 

The Space-for-Time Substitution (SFTS) de-
scribes the idea, to obtain a so called false time 
series by measuring stands of different age at 
one point in time. Such data can be obtained 
from inventories, for example. The use of SFTS 
data for site index modeling has been recently 
criticized (Damgaard, 2019; Klesse et al., 2020; 
Yue et al., 2023). E.g., Yue et al. (2023) authors 
showed, among others, that a model based on 
time series data outperformed an SFTS model, 
as the latter could not accurately capture the ef-
fects of the environmental variables. Thus the 
use of SFTS data for growth and yield modeling 
is questioned by the authors. 

Though our data does not solely contain SFTS 
data, it still resembles a critical part of the data 
(cp. table 1). For the whole data, we found an av-
erage of 1.8 measurements per plot. Additionally, 
41.7% of the plots had only one measurement in 
total, although these single measurements have 
not all been taken at the same point in time. How-
ever, the inventories were taken in a comparably 
short time span, i.e. 1987 to 2017, which leads to 
a high correlation between stand age and germi-
nation year. In pure SFTS data, the correlation 
would be minus one. In our data, it was -0.948 
(Pearsons correlation coefficient). Thus we ar-
gue, that our full data should still be viewed as 
SFTS data. 

The relevance of this correlation becomes appar-
ent, when one considers the change in environ-
mental conditions over the last two centuries. 
Due to industrialization, the overall nitrogen dep-
osition has increased (cp. Schaap et al., 2018) 
and, on average, benefited tree growth. Within 
our data, we observed, that the average site index 
of the earlier established stands is lower, than the 
one of more recent ones (see figure 1). For exam-
ple, one can compare the site index of beech 
stands established between 1876 and 1900 with 
beech stands established after 1976: The median 

site index of the older stands equals the 0.6% 
quantile of the younger ones. To paraphrase: 
99.4% of the younger beech stands grew better 
than a median old one. 

Figure 1: The development of site index over germina-
tion year for beech. The red line corresponds to the me-
dian site index from 1876 to 1900. 

The implications for SFTS data are quite substan-
tial. Consider a theoretical example: Say, we have 
measured one stand of age 25, 50, 75 and so on 
to 150, respectively, in the year 2000. Based on 
our findings above, we can assume, that the site 
index decreases, the older the measured stands 
are. For simplicity, we will assume, that each 
stand grew with a constant site index over stand 
life. We obtain the corresponding growth curves 
from yield tables (Nuske et al., 2022) with the 
Hq100 decreasing, e.g., from 34.7m for the young-
est stand to 22.1m for the oldest. 

If one would estimate a stand growth model on 
this data, the resulting curve would be distorted 
and not reflect the real stand growth. This is due 
to the fact, that only one isolated measurement 
per stand is present, while the real, individual 
stand growth remains unobserved. The result 
can be seen in figure 2. 
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Figure 2: The issue with Space-for-Time Substitution 
data illustrated. Stands growing under shifting condi-
tions result in a distorted growth curve in the model. 

Although the nature of figure 2 is mostly 
explanatory, it should be stressed, that this is not 
a purely theoretical example. The red line is 
obtained from an earlier model version, which is 
a GAM fitted exclusively on inventory data, but 
considering all mentioned environmental 
variables (Schmidt, 2020). For figure 2, all 
environmental variables have been set to 
constant values to obtain a constant site index in 
the model.  

It is apparent, that the modeled growth curve has 
a strong deviation from the yield tables. 
Moreover, we found, that the modeled curve did 
not correspond to the time series data of the 
research plots. Thus there is strong indication, 
that the resulting curve shape is not plausible 
and will not be able to properly depict the growth 
of a stand over time. 

It should be pointed out, that said GAM did not 
show any obvious flaws in the concept or the 
diagnostics. The environmental variables should 
have accounted for a changing environment, they 
showed biologically sound effects, the residuals 
were normally distributed and without bias. Only 
with the inclusion of time series data, i.e. the 
research plots, the issue became apparent. 

Thus we argue, that using pure SFTS data for 
climate sensitive growth and yield models is not 
advisable. Moreover, one should account for the 
spatial and temporal structures of the data, e.g. 

by using a mixed model. This coincides with Yue 
et al. (2023). However, including the SFTS data at 
least partially may be necessary to cover a 
broader environmental spectrum. This will be 
discussed later on. 

4.2 Correlations 

During the modeling process, we found different 
correlation structures within the data, which 
needed to be accounted for. The most important 
ones are related to the nitrogen deposition. The 
temporal correlation, and the connection to the 
germination year, has been discussed earlier. 
However, nitrogen is also spatially correlated, 
with the highest depositions in the northwest of 
Germany (see figure 3).  

In an earlier version of a site index model for 
beech (Schick et al., 2023), we included a spatial 
smoother to capture large scale spatial effects, 
which were not explained by the other environ-
mental variables. The result can be seen in fig-
ure 3. An example for such a large scale effect 
would be wind speed, which would explain the re-
duced growth in the northwest (cp. figure 3). 
However, we also found a strong effect for nitro-
gen in the aforementioned model, with an almost 
linear increase. During further analysis, it became 
apparent, that the spatial smoother acted as a 
counterpart to the spline effect of nitrogen. In a 
later model formulation without the spatial 
smoother, we an overall less pronounced effect 
for nitrogen with an asymptotic shape. 

The obvious solution would be a mixed modeling 
approach. However, we tried fitting different ver-
sions of GAMMs in different R-packages. None 
of them converged, due to the high number of 
plots with only one measurement.  

Thus we would advise caution, when including 
spatial smoothers and spatially correlated data 
in one model. 
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4.3 Defining the curve shape 

As mentioned earlier, our modeling approach is 
based on the modified Korf function. 

Once c and λ are fixed, the function becomes 
linear, which is desirable for our purposes. During 
the modeling process it became apparent, that 
no environmental variable had an effect on b, 
thus it can also be a fixed value. Hence the basic 
shape of the curve, i.e. b, c and λ, is defined 
beforehand and all estimated effects act on the 
remaining parameter a, i.e. the logarithmic site 
index.  

To be able to correctly estimate the effects, we 
would argue, that the curve shape should 
resemble stand growth under constant 
environmental conditions. However, the 
respective data from before industrialization is 
hard to come by. Even most yieldtables, which 
represent some of the oldest growth and yield 
data, do not contain values from said era (cp. 
Schober, 1995). Since there is no data, the 
effects of the changing environment have to be 
excluded when determining the basic shape of 
the curve. 

We decided, to use the time series data of the 
research plots. We then fitted a GAMM with a 

random intercept on the plot level to the research 
plot data. The environmental variables are 
included as spline effects, such that their 
influence on stand growth is being accounted 
for. The resulting base curve is shown in figure 4. 

Here it can also be seen, that the curve lies 
between two other modeling approaches without 
the environmental variables, a GAM and a GAMM, 
both fit on the same research plot data. The GAM 
lead to a curve with stronger growth in the youth, 
the GAMM to a more even growth over stand life. 

Since there is no reliable data for stand growth in 
a constant environment, one cannot assess, 
which curve is correct. However, during model 
development, we found, that using the base curve 
from the GAMM with the environmental variables 
lead to the best fitting longitudinal patterns in the 
predictions. 

Figure 3: Smoothed deviation of the nitrogen deposition from its mean for Germany (A) and the spatial effect used 
in Schick et al. (2023) (B). The values in (A) have been aggregated over stand life and do not represent a single 
point in time. 
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Figure 4: Different base curves for beech obtained from 
different modeling approaches on research plot data. 

5 Combining data strengths 
It became apparent, that finding a single model, 
which satisfies all our criteria, was impossible. 
The main effects for this being the shifting envi-
ronmental conditions in combination with a rele-
vant part of our data being SFTS data. Thus, the 
only feasible solution we could identify, is a hier-
archical model chain, where each chain link fo-
cuses on a specific task and uses a suitable sub-
set of the data.  

First, we use the research plot data to obtain the 
parameters of the base curve, i.e. b, c and λ, as 
described earlier. 

Second, we generate a subset of the full data, 
where each plot has at least two measurements 
(henceforth called n2 data). This includes the re-
search plots. Then, a GAMM is used to estimate 
the effects of the atmospheric variables, i.e. the 
dynamic variables which change over stand life. 
With b, c and λ fixed, all effects act on the remain-
ing parameter a of the Korf curve, i.e. the logarith-
mic site index.  

Finally, we use this GAMM to obtain a Hq predic-
tion for the full data. The deviation from the pre-
diction and the actual Hq is then used, to esti-
mate effects for the static environmental varia-
bles, i.e. soil parameters and the spatial 
smoother. 

This approach allows us to overcome the obsta-
cles mentioned earlier. The n2 data allowed us to 
fit a mixed model and thus account for the longi-
tudinal structures within the data. Additionally, 

the coverage of the dynamic variables in the n2 
data is comparable to the full dataset. The loss 
of information between the two is negligible. 

When it comes to the highly varying, categorical 
soil variables, however, the n2 data would not 
provide sufficient coverage. Since we assume 
the effect of the soil to be static over stand life, 
there is no necessity for a mixed model, such that 
a GAM with the full data could be used. Moreover, 
as the effect for nitrogen is already estimated 
and thus accounted for, the spatial smoother can 
be included to catch large scale effects. The 
smoother also serves as a control: When the 
magnitude of the effect gets too large, the effect 
for another environmental variable is usually 
flawed. 

6 Conclusions 
We combine the time series data from research 
plots, which reveals longitudinal trends, with 
SFTS data, which offers a wide spatial coverage. 
Thus far, both SFTS and time series data have in-
herent drawbacks. Yet, both are needed to 
achieve the aims defined earlier and therefore 
have to be combined (cp. Damgaard, 2019).  

By subsetting the data and finding suitable mod-
els for different tasks, we are able to circumvent 
the pitfalls while still utilizing the broad ampli-
tude of our data. Thus, we argue, that operating 
on subsets of the data rather than the full data is 
paramount to enable a sound prediction with re-
liable effects. 

It should be stressed, that most of the aforemen-
tioned issues and their solutions only became ap-
parent, when verifying the model output against 
the different data, i.e. SFTS and time series data. 
The combination of different data from different 
sources was paramount to identifying and tack-
ling the various issues. 
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