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1  |  INTRODUC TION

Forest models are widely used to assess the impacts of changing 
environmental conditions such as climate, atmospheric CO2 concen-
tration and nitrogen deposition on forest functioning, dynamics and 
structure (e.g., Reyer et al., 2013). Yet, because of our incomplete 
understanding of forest ecosystems and computational constraints, 
these models differ in the way specific processes are represented, 
leading to differences in their predictions (Bugmann et al.,  2019; 

Collalti et al., 2019; Huber et al., 2021). Hence, models need to be 
comprehensively evaluated using different data types at different 
spatio-temporal scales before we can judge their structural uncer-
tainties and suitability for answering specific questions (Marechaux 
et al., 2021; Oberpriller et al., 2021).

Model simulations need to be in adequate agreement with in-
dependent observations. Moreover, models have to be sensitive to 
environmental drivers to ensure that system responses are realis-
tically predicted under a wide range of environmental and climatic 
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Abstract
Forest models are instrumental for understanding and projecting the impact of climate 
change on forests. A considerable number of forest models have been developed in the 
last decades. However, few systematic and comprehensive model comparisons have 
been performed in Europe that combine an evaluation of modelled carbon and water 
fluxes and forest structure. We evaluate 13 widely used, state-of-the-art, stand-scale 
forest models against field measurements of forest structure and eddy-covariance data 
of carbon and water fluxes over multiple decades across an environmental gradient at 
nine typical European forest stands. We test the models' performance in three dimen-
sions: accuracy of local predictions (agreement of modelled and observed annual data), 
realism of environmental responses (agreement of modelled and observed responses of 
daily gross primary productivity to temperature, radiation and vapour pressure deficit) 
and general applicability (proportion of European tree species covered). We find that 
multiple models are available that excel according to our three dimensions of model 
performance. For the accuracy of local predictions, variables related to forest structure 
have lower random and systematic errors than annual carbon and water flux variables. 
Moreover, the multi-model ensemble mean provided overall more realistic daily pro-
ductivity responses to environmental drivers across all sites than any single individual 
model. The general applicability of the models is high, as almost all models are currently 
able to cover Europe's common tree species. We show that forest models complement 
each other in their response to environmental drivers and that there are several cases 
in which individual models outperform the model ensemble. Our framework provides 
a first step to capturing essential differences between forest models that go beyond 
the most commonly used accuracy of predictions. Overall, this study provides a point 
of reference for future model work aimed at predicting climate impacts and supporting 
climate mitigation and adaptation measures in forests.

K E Y W O R D S
eddy-covariance, gap model, model ensemble, model evaluation, process-based modeling, 
terrestrial carbon dynamics
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conditions (Collalti et al., 2016). Additionally, for spatially compre-
hensive assessments of climate impacts, it is also required that the 
models have a large range of applicability covering different ecologi-
cal conditions. Ideally, models meet all these requirements.

Levins  (1966) categorized these requirements as trade-offs be-
tween three dimensions: model accuracy, realism and generality. 
Accuracy indicates the goodness-of-fit between prediction and ob-
servation, realism refers to causally correct internal model processes, 
and generality represents robust applicability across space and time 
(Kramer et al., 2002). While it is difficult to maximize accuracy, realism 
and generality simultaneously, model developers have to identify an 
optimal point on the trade-off according to the overall aim of the model.

Many climate sensitive forest models have been developed in 
Europe for different applications, regions and species (e.g., Fontes 
et al., 2010; Pretzsch et al., 2015). Yet, it is unknown how they perform 
relative to the same benchmark conditions, and how their structure 
leads to trade-offs between accuracy, realism and generality since 
model inter-comparisons across large numbers of complex models are 
missing. While there is a large body of knowledge from extensive multi-
model-data comparisons in North America, especially on carbon and 
water fluxes (e.g., Medlyn et al., 2015; Schaefer et al., 2012), we lack 
similar studies for European climate and forest conditions (Table S4). In 
addition, only few of these evaluation studies include forest structure 
variables (e.g., LAI: Richardson et al., 2012; biomass: Klesse et al., 2018). 
Earlier model evaluations have either focused on selected processes 
(e.g., NPP: Morales et al., 2005; mortality: Bugmann et al., 2019), re-
lied on short time series of observed data (Kramer et al.,  2002), or 
investigated only few models and sites (Horemans et al., 2017). Yet, 
the increasing amount of harmonized data recently becoming available 
across Europe (e.g., Reyer et al., 2020a, 2020b) allows for a rigorous 
evaluation of the state-of-the-art in forest modeling across different 
biogeographical regions, forest types and types of data. Such an eval-
uation may provide a deeper understanding of model differences and 
structural uncertainties, and provide crucial guidance for designing en-
semble studies of climate impacts on forests.

The objective of this paper is to evaluate and compare 13 
widely applied forest models in managed forests across an en-
vironmental gradient in Europe. The models range in complexity 
from empirically based to highly mechanistic approaches, while 
the evaluation data types range from ground-based inventories 
to tower-based eddy-covariance measurements. To achieve this 
objective, we: (i) compare model outputs to observations to quan-
tify the accuracy of local predictions by deriving the statistical fit 
between observations and model output of important forest vari-
ables; (ii) determine the realism of environmental responses by 
assessing the agreement of observed and modeled relationships 
between stand productivity and climatic drivers; (iii) describe the 
general applicability by deriving the proportion of European for-
est stands that a model is able to cover; and (iv) integrate these 
three dimensions in a model performance framework. We hy-
pothesize that trade-offs in our ensemble of forest models can be 
traced back to differences in accuracy, realism and generality as 
described by Levins (1966).

2  |  MATERIAL S AND METHODS

2.1  |  Vegetation models and simulation protocol

We used simulation outputs from 13 state-of-the-art, structurally 
different, forest models (3D-CMCC-FEM LUE, 3D-CMCC-FEM 
BGC, 3PG, 3PGN-BW, 4C, BASFOR, ForClim v.3.3, FORMIND, 
GOTILWA+, LandscapeDNDC, PREBAS, SALEM, SIBYLA) that 
participated in the Inter-Sectoral Impact Model Intercomparison 
Project (ISIMIP, Frieler et al., 2017; Mahnken et al., 2022). The key 
assumptions and formulations for simulating processes or vari-
ables between models as well as their differences are described in 
Table 1 (see Table S5 for a comprehensive description). All models 
are designed to predict long-term (multiple decades) forest growth 
and forest dynamics. Empirical models are geared towards one full 
stand rotation while gap models focus on describing successional 
dynamics in multi-species stands. Mechanistic models describe for-
est dynamics based on the dynamics of plant carbon and water ex-
change at a high temporal resolution. Ten of the models describe 
the ecosystem-atmosphere exchange of carbon, and nine of them 
describe the exchange of water in forest stands at a daily to annual 
time step. All 13 models have been applied as research tools to study 
climate impacts on managed forests.

The simulations followed the ISIMIP phase 2a simulation proto-
col (https://www.isimip.org/proto​col/), which provides a consistent 
simulation setup based on common, harmonized data for initializ-
ing, driving and evaluating models from the PROFOUND database 
(Reyer et al., 2020a, 2020b). The models were initialized with ob-
served stand characteristics (e.g., stem diameter at breast height, 
tree height, stand density, stand age) and then driven with locally 
observed weather data (e.g., surface air temperature, precipitation, 
vapour pressure deficit), atmospheric CO2 concentration and nitro-
gen deposition data, as well as historically observed forest manage-
ment interventions. Simulated management was based on observed 
stem numbers and thinning regimes, that is, thinning from above 
(higher diameter classes preferentially removed) or from below 
(lower diameter classes preferentially removed). Forest management 
was the only explicitly simulated disturbance. Drought effects were 
implicitly included by the driving weather data. The models were run 
for 13–63 years on nine forest stands across Europe that are con-
trasting in climate, species composition, phenology, management 
type and age (Table 2). Not all sites were simulated by all models due 
to incomplete parameterization for species. Site-specific parameter 
calibration on the observed data was not permitted.

2.2  |  Evaluation data

The PROFOUND database (Reyer et al., 2020a, 2020b) hosts ob-
served data from nine boreal and temperate forest stands located 
across Europe (Table 2). The database provides measurements of for-
est structure including basal area (BA), arithmetic mean diameter at 
breast height (DBH) and arithmetic mean tree height (H). On a subset 
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of five sites, carbon and water fluxes measured at eddy-covariance 
towers are available (Table 2) including gross primary productivity 
(GPP), ecosystem respiration (Reco), net ecosystem exchange (NEE) 
and actual evapotranspiration (AET).

For the carbon flux data, there are multiple products available for 
the same variable due to varying underlying estimation techniques 
(Pastorello et al.,  2020). We used the data derived with constant 
friction velocity (USTAR) threshold where the reference is selected 
based on model efficiency for processing NEE (NEE_CUT_REF; https://
fluxn​et.org/data/fluxn​et201​5-datas​et/data-proce​ssing/, Pastorello 
et al., 2020) and the daytime (DT) method (Lasslop et al., 2010) for 
partitioning NEE into GPP and Reco. The first year of carbon flux 
measurements at each site was discarded since the majority of data 
points had a quality flag of “poor”. Daily AET was derived from mea-
sured latent heat flux (LE) to the atmosphere by AET = LE∕�, with 
� =

(

2.501 − 0.00237 × Tair
)

× 106, where Tair is the mean daily tem-
perature (Foken, 2008). Annual AET was aggregated as the sum of 
daily AET derived from the measured daily latent heat flux.

2.3  |  Evaluation framework

We evaluated the models in three dimensions based on the 
framework by Levins  (1966) and further specified by Kramer 
et al.  (2002): the accuracy of local predictions, realism of envi-
ronmental responses and general applicability. We defined the 
accuracy of local predictions as the agreement between observed 
and predicted data of relevant forest variables at the annual time 
scale; the realism of environmental responses as the agreement of 
simulated to observed relationships between daily climatic driv-
ers and gross primary productivity; and the general applicability as 
the proportion of European forests a model can represent based 
on parameterized tree species. In addition to the individual mod-
els, we evaluated the model ensemble as the arithmetic mean time 
series of all individual model predictions available for a given site 
and variable. We used the statistical computing language R (R Core 
Team, 2020) for all analyses.

Uncertainty in model predictions arises from model structural 
uncertainty, parameter uncertainty and input data uncertainty 
(Collalti et al., 2019; Lindner et al., 2014). Here, we focused on eval-
uating compound model uncertainty originating from all uncertainty 
sources except for input data uncertainty, which is shared across all 
models. The coverage of sites and variables is model-specific and 
the temporal resolution of model predictions varies from daily to 
monthly to annual. The models used their individual default species-
specific parameter settings for the simulations.

2.3.1  |  Accuracy of local predictions

The accuracy of local predictions was quantified for the primary 
variables of interest on an annual resolution: BA, DBH increment 
(DBHinc), H increment (Hinc), GPP, Reco, NEE, AET. DBHinc and TA
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Hinc were evaluated instead of DBH and H to eliminate the tempo-
ral autocorrelation that is associated with these variables, resulting 
from the incremental nature of diameter and height growth. In this 
way, we covered increments as well as the structure through BA 
(which is strongly dominated by temporal autocorrelation). DBHinc 
and Hinc were computed as the average annual change of stand 
scale mean DBH and H, respectively, for the period between two 
consecutive observations, since there were no measurements avail-
able for every year at all sites and the uncertainty in single year 
increment measurements is high. The same approach was applied 
to derive increments from the simulated data. DBHinc and Hinc 
integrate individual tree increments related to growth as well as 
changes of the stand scale mean DBH and H resulting from the 
removal of certain trees during management interventions and/or 
natural tree mortality.

Following Gauch et al.  (2003), we computed multiple metrics 
describing different aspects of the disagreement between predic-
tions and observations. The mean squared deviation (MSD) and its 
components, squared bias (SB), lack of correlation (LC) and non-unity 
slope (NU), were computed for each model-site-variable combina-
tion. These metrics describe three sources of error: a systematic 
error (SB), random errors (LC) and linear patterns in the residuals 
(NU):

where X = simulated data, Y = observed data and n = {1,2, … N}, with 
N = number of data pairs.

with b =
∑N

n=1
xnyn ∕

∑N

n=1
x2
n
, which is the slope of the least-square-

regression between Y and X. The deviations from the mean are de-
scribed by yn = Yn − Y (analogous: xn = Xn − X).

with r2 =
�

∑N

n=1
xnyn

�2

∕
∑N

n=1
x2
n

∑N

n=1
y2
n
 which is the square of the 

correlation between Y and X.
The quantification of these three completely independent com-

ponents of the MSD allowed us to derive which components drive 
the inaccuracies most strongly.

For cross-variable and cross-site comparability, we normalized 
the MSD (norm. MSD; and analogous SB, LC, and NU) with the ob-
served variance of a given variable at a specific site:

Then, we aggregated the norm. MSD over all sites by comput-
ing the arithmetic mean of norm. MSD for a given model-variable 
combination. To derive a unique accuracy of local predictions score 
(A) for each model, we first computed the coefficient of determina-
tion as R2 =1 − norm. MSD for each variable (cf. Moffat et al., 2010). 
Then, we calculated the arithmetic mean of the R2 values across all 
structure variables and all carbon and water variables (R2

structure
 and 

R2
carbon andwater

) and re-projected the resulting values to the range 
from 0.1 to 1 to derive Astructure and Acarbon andwater. Overall A was 
then derived analogous to Astructure and Acarbon andwater but with all 
variables available for a model. The predictive skill of a forest model 
was higher than the predictive skill of the observed mean in terms of 
the overall absolute error if norm. MSD <1.

2.3.2  |  Realism of environmental responses

The realism of environmental responses was derived by quantify-
ing the agreement of simulated to observed relationships between 
climatic drivers and productivity, that is, GPP, since GPP is sensitive 
to several interacting climatic drivers (Zhang et al., 2017, 2019; Zhou 
et al., 2021). Only those models that output daily GPP could be eval-
uated for their realism of environmental responses. We considered 
mean daily temperature (temp), daily global incoming radiation (rad) 
and daily mean vapour pressure deficit (vpd) as forcing variables on 
the daily GPP. For each of the five FLUXNET sites, we assessed the 
realism of the environmental responses for the relation of GPP to 
temp, rad and vpd of every model. The observations were filtered 
for FLUXNET quality flags 0 (measured) and 1 (good quality gap-
filled). Additionally, the data was filtered for days with temp >5°C 
(cf. Franklin et al.,  2013; Rehfeldt et al.,  2006) to ensure that the 
bulk of the data lie within the growing season, because this is the 
most important period in which the model needs to exhibit realistic 
responses of productivity to environmental drivers.

First, we visually compared the form of the observed and sim-
ulated relationships between GPP and the three forcing variables 
including their interactions by deriving general additive models 
(GAMs) for the 0.5 quantile. We selected the 0.5 quantile (the me-
dian) to represent the average response, analogous to regular GAMs. 
The advantage of using quantile regression is its higher robustness 
against outliers, which are present in the type of ecological data used 
here. The computation was done using the R library qgam (Fasiolo 
et al., 2017). The quantile GAMs have the form

(1)MSD =

∑N

n=1

�

Xn−Yn
�2

N
= SB + NU + LC,

(2)SB =
(

X−Y
)2
,

(3)NU = (1−b)2 ×

�

∑N

n=1
x2
n

N

�

,

(4)LC =
�

1 − r2
�

×

�

∑N

n=1
y2
n

N

�

,

(5)norm.MSD =
MSD

1

N

∑N

n=1

�

Yn−Y
�2

,

(6)norm. SB =
SB

1

N

∑N

n=1

�

Yn−Y
�2

,

(7)norm. LC =
LC

1

N

∑N

n=1

�

Yn−Y
�2

,

(8)norm.NU =
NU

1

N

∑N

n=1

�

Yn−Y
�2

.
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6928  |    MAHNKEN et al.

using tensor product (te) smooth functions fi. We selected the default 
smoothing parameters, which have been set to generate a reasonable 
performance on average data (see Wood, 2017), as to not introduce 
any element of subjectivity into the analysis regarding expected forms 
of the relationships.

Second, to formally compute model scores for the realism of en-
vironmental responses, the residuals between daily simulated and 
observed GPP were derived from the GAMs. We computed simple 
linear regression models relating the residual daily GPP from the 
GAMs to each of the three forcing variables. The GAM predictions 
were obtained by fixing two of the three independent variables to 
their arithmetic mean value. The linear regressions take the form

Similar GPP–environment relationships in observed and simulated data 
were characterized by small residuals, or at least by a lack of patterns 
in the residuals across the environmental drivers. Hence, small absolute 
slopes in the linear regression of the residuals indicated an agreement of 
observed to simulated relationships. For each environmental variable we 
re-projected the mean absolute slope across all models and sites ∣�i ∣ to 
the range between 0 and 1 ( ∣�i ∣

�) to account for differences in the mag-
nitude of the variable units (temp: °C; rad: J/cm2; vpd: kPa). Then, we de-
rived the realism of environmental responses for each model as the mean 
of the re-projected slope 

(

∣�1 ∣
�
+ ∣�2 ∣

�
+ ∣�3 ∣

�

3

)

 of these linear regressions.

2.3.3  |  General applicability

We interpreted the general applicability of the models as the appli-
cation range across tree species. As opposed to the accuracy of local 
predictions and the realism of environmental responses, this quanti-
fication was independent of the actual simulations and solely based 
upon the tree species represented in the models. We computed the 
share of European forests covered by dominant tree species each 
model is currently parameterized for. Data on tree species group 
coverage across Europe were derived from Brus et al. (2011). In case 

a model covered only subsets of a tree species group (e.g., only Larix 
decidua and not L. kaempferi for genus Larix), we assumed the for-
est area of that species group to be covered fully by the model. We 
only expect a minor overestimation of the area covered by a model 
because the tree species groups with many species are the ones that 
are less dominant in Europe. In this way, we derived a rough approxi-
mation of the share of European forests where a given model could 
be applied without considering the actual predictive skill that the 
model would have in these forests.

2.3.4  |  Standardization and aggregation

The results for the accuracy of local predictions, the realism of en-
vironmental responses and the general applicability were projected 
back to a range from 0.1 to 1, which can be interpreted as relative 
differences across models. We would like to stress that the desig-
nation of 0.1 to a model does not indicate a failure or lack of per-
formance but rather that the model had the lowest metric value 
(relative performance) across the models that were investigated 
here. We selected 0.1 as the lower boundary simply to avoid misin-
terpretation that may be intuitively associated with the number zero.

3  |  RESULTS

3.1  |  Accuracy of local predictions

There was no model that was able to predict all variables at all sites with 
high accuracy and only few models showed a high accuracy of local pre-
dictions for all variables at one site (SALEM at Bily-Kriz, 3PG at Solling-
spruce and 3D-CMCC-FEM BGC at Solling-beech). At the same time, 
every model predicted at least one variable at one site with an adequate 
accuracy of local predictions except for 3PGN-BW which showed consist-
ently lower predictive skill than the average of observations. (Figure 1).

Partitioning the accuracy differences between models into the 
three MSD components showed that the offset between model pre-
diction and observed data had varying origins (Figure  1). Random 
errors (LC) made up the largest share of the overall error except for 
BA and AET. Systematic errors (SB) of the structure variables may 
have been a result of offsets in model initialization from the refer-
ence data (Figures S4–S9). Flux variables were also prone to SB due 
to systematic over- or under-estimation. Persistent underestimation 
of GPP was evident in GOTILWA+ and FORMIND as well as for a 
range of models at Hyytiälä, while 3PG persistently overestimated 

(9)
GPP= f1(temp)+ f2(rad)+ f3(vpd)+ f4(temp, rad)

+ f5(temp, vpd)+ f6(rad, vpd)+ f7(temp, rad, vpd),

(10)GPPsim,radfixed, vpdfixed
− GPPobs,radfixed, vpdfixed

= �1 + �1 × temp,

(11)GPPsim, tempfixed,vpdfixed
− GPPobs, tempfixed,vpdfixed

= �2 + �2 × rad,

(12)GPPsim,tempfixed,radfixed
− GPPobs,tempfixed,radfixed

= �3 + �3 × vpd.

F I G U R E  1  Metrics for the accuracy of local predictions for all site-model-variable combinations. On the y-axis are the sites, the x-axis 
shows variables, vertical panels are different models and horizontal panels show the different metrics. Colors visualize the normalized metric 
values, where yellow indicates high agreement and blue indicates low agreement of observed and predicted data. Cells in the column for 
mean squared deviation (right) in dark blue (norm. MSD ≥1) indicate cases where the observed average has a higher predictive skill than the 
model predictions. White cells indicate cases with no evaluation data available whereas grey cells indicate cases that are not provided by the 
model. The model coverage of sites and variables depends on the model application range. norm. LC, normalized lack of correlation; norm. 
MSD, normalized mean squared deviation; norm. NU, normalized non-unity slope; norm. SB, normalized squared bias.
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    |  6929MAHNKEN et al.

GPP and Landscape-DNDC overestimated GPP at Bily Kriz. Most 
models underestimated AET in Le Bray, while overestimation was 
evident at Bily Kriz (Figures S10–S17). Predicted-observed offsets 

from linear patterns in the residuals (NU) were generally low except 
for BA and DBHinc simulated by FORMIND, DBHinc simulated by 
ForClim v.3.3 as well as Reco and AET for 3PGN-BW.

squared bias

BA
DBHinc HincGPP

NEE
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Le Bray
Hyytiälä

Collelongo
Bily Kriz

Solling spruce
Solling beech

Peitz

Le Bray
Hyytiälä

Collelongo
Bily Kriz

Solling spruce
Solling beech

Peitz

Collelongo
Bily Kriz

Solling spruce
Solling beech

Peitz

Sorø
Collelongo

Solling beech
Peitz

Sorø
Hyytiälä

Collelongo
Bily Kriz

Solling spruce
Solling beech

Peitz
Kroof

Hyytiälä
Solling spruce
Solling beech

Peitz

Hyytiälä
Bily Kriz

Solling spruce
Solling beech

Peitz
Kroof

Sorø
Hyytiälä

Collelongo
Bily Kriz

Solling spruce
Solling beech

Peitz
Kroof

Le Bray
Hyytiälä

Collelongo
Solling beech

Peitz

Sorø
Le Bray
Hyytiälä

Collelongo
Bily Kriz

Solling spruce
Solling beech

Peitz

Le Bray
Hyytiälä

Collelongo
Bily Kriz

Solling spruce
Solling beech

Peitz
Kroof

Sorø
Le Bray
Hyytiälä

Collelongo
Bily Kriz

Solling spruce
Solling beech

Peitz
Kroof

Collelongo
Solling spruce
Solling beech

Sorø
Le Bray
Hyytiälä

Collelongo
Bily Kriz

Solling spruce
Solling beech

Peitz
Kroof

0.00 0.25 0.50 0.75 1.00
norm. SB

lack of correlation

BA
DBHinc Hinc GPP

NEE
Reco AET

0.00 0.25 0.50 0.75 1.00
norm. LC

non-unity slope

BA
DBHinc Hinc GPP

NEE
Reco AET

0.00 0.25 0.50 0.75 1.00
norm. NU

mean squared deviation

3D-CMCC-FEM
BGC

3D-CMCC-FEM
LUE

3PG

3PGN-BW

4C

BASFOR

ForClim

FORMIND

GOTILWA+

Landscape-DNDC

PREBAS

SALEM

SIBYLA

ensemble
mean

BA
DBHinc Hinc GPP

NEE
Reco AET

0.00 0.25 0.50 0.75 1.00
norm. MSD

 13652486, 2022, 23, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/gcb.16384 by C

ochrane G
erm

any, W
iley O

nline L
ibrary on [23/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6930  |    MAHNKEN et al.

Forest structure variables displayed a higher overall accuracy 
of local predictions than the carbon and water variables. On av-
erage, simulated BA showed the highest accuracy of local predic-
tions. This is partly related to the temporal autocorrelation of the 
variable. Annual carbon variables had the lowest accuracy of local 
predictions, while NEE had the lowest accuracy of the annual car-
bon variables. No model had a better predictive skill at any site than 
the observed mean NEE. None of the sites' observed data could be 
predicted with a high accuracy of local predictions for all carbon and 
water variables simultaneously by any given model.

The models varied regarding the overall accuracy of local predic-
tion score (A, Figure 2). Only few models had a consistently better 
predictive skill for single variables than the observed mean (norm. 
MSD <1): SALEM for DBHinc, 3D-CMCC-FEM BGC, 3D-CMCC-
FEM LUE and SIBYLA for BA, 3PG for BA and DBHinc and BASFOR 
for Reco and AET. Although 3PG had a high predictive skill for struc-
ture variables, the predictions for GPP had the lowest predictive skill 
of any model. While some models performed consistently well for 
one or two variables over multiple sites, other models performed 
worse than the observed mean for all variable-site combinations. 
The ensemble mean ranked sixth for accuracy of local predictions 
of forest structure variables and fourth for carbon and water fluxes. 
Overall, the ensemble mean had a higher accuracy of local predic-
tions than eight of the individual models.

3.2  |  Realism of environmental responses

Observed relationships of daily GPP to temp, rad and vpd followed 
plausible patterns for all models, while the distinct patterns differed 
from site to site (Figure 3). Increasing temp and increasing rad were 

related to increasing daily GPP, except for temp relationship at higher 
temp values in Bily Kriz, while an increase in vpd was related to de-
creasing daily GPP. Most models were able to reproduce these ob-
served patterns. Distinct site-specific patterns however were not 
predicted well at all sites by all models. Strong non-linear patterns 
were observed for the temp relationship in GOTILWA+ at Collelongo 
and for the vpd relationship of 4C at Sorø. These patterns may result 
from outliers in poorly sampled regions in the environmental variable 
space at the tails of the distribution in combination with model re-
sponsiveness to other drivers such as water availability, which was not 
analyzed here due to the lack of observed data at the sites. Models 
tended to overestimate daily GPP at high vpd. High daily GPP at high 
levels of vpd for 4C at Bily-Kriz and Sorø and many models at Le Bray 
and Hyytiälä indicated unrealistic productivity responses.

The slopes of the linear regressions of the daily GPP residuals 
(sim. GPP − obs. GPP) to environmental variables indicated varying 
agreement of observed and simulated environmental responses 
across models and sites (Table 3; Figure S2). The temp and rad re-
sponse had the lowest average absolute slope at Le Bray and Sorø 
had the lowest average absolute slope for vpd (Table S2).

On average, the ensemble mean showed the most realistic 
environmental responses while Landscape-DNDC and 3D-CMCC-
FEM BGC also show more realistic responses of daily GPP to dif-
ferent environmental drivers than other models in our ensemble. 
Yet, there is no individual model that shows the most realistic re-
sponses of GPP to all three environmental variables at all sites. 
Some models feature intermediate realism of environmental re-
sponses to all environmental variables, for example, 3D-CMCC-
FEM LUE. The most realistic response to rad was obtained by the 
ensemble mean. In the ensemble, Landscape-DNDC had the most 
realistic GPP response to vpd, while GOTILWA+ had the most 

F I G U R E  2  Aggregated metrics for accuracy of local predictions for all model-variable combinations assessed (aggregated across sites). 
Numbers indicate the metric value and colors visualize the normalized metric values, where yellow indicates high agreement and blue 
indicates low agreement of observed and predicted data.
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F I G U R E  3  Relationship between climate variables and gross primary productivity (GPP) in model simulations and observed flux tower data. 
Quantile general additive models are displayed (as lines) by fixing two of the three independent variables to their arithmetic mean value.
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TA B L E  3  Realism of environmental responses per model and environmental variable derived from multiple linear regression slopes of 
residuals from simulated to observed daily GPP

Model

Mean absolute slope ( ∣�i ∣) (re-projected mean absolute slope, ∣�i ∣
�
) Realism of 

environmental 
responsestemp rad vpd

ensemble mean 1.887 × 10−9 (0.601) 0.913 × 10−9 (0.000) 4.488 × 10−8 (0.511) 1.00

Landscape-DNDC 2.121 × 10−9 (0.716) 1.587 × 10−11 (0.677) 1.686 × 10−8 (0.000) 0.70

3D-CMCC-FEM BGC 1.376 × 10−9 (0.352) 1.396 × 10−11 (0.485) 3.847 × 10−8 (0.612) 0.63

GOTILWA+ 0.654 × 10−9 (0.000) 1.909 × 10−11 (1.000) 3.856 × 10−8 (0.615) 0.45

PREBAS 1.602 × 10−9 (0.462) 1.908 × 10−11 (0.998) 2.631 × 10−8 (0.268) 0.33

BASFOR 1.351 × 10−9 (0.340) 1.319 × 10−11 (0.408) 5.215 × 10−8 (1.000) 0.31

3D-CMCC-FEM LUE 1.865 × 10−9 (0.590) 1.412 × 10−11 (0.501) 4.412 × 10−8 (0.772) 0.18

4C 2.705 × 10−9 (1.000) 1.198 × 10−11 (0.286) 3.995 × 10−8 (0.654) 0.10

Note: The mean absolute slope and re-projected mean absolute slope in brackets (see Equations 10–12 and ∣�i ∣ as well as ∣�i ∣
� in Section 2) describe 

the models disagreement between observed and modelled productivity responses to changes in the environmental variable (lower values indicate 
lower disagreement). The realism of the environmental responses score is the average of ∣�i ∣

� across environmental variables re-projected to the 
range 0.1–1 (higher values indicate higher realism of environmental responses). Note that for the models not listed here, the realism of environmental 
responses was not derived because of missing representation of daily GPP (see Section 2.3.4).
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realistic GPP response to temp. At the same time GOTILWA+ had 
the least realistic GPP response to rad, 4C had the least realistic 
GPP response to temp and BASFOR had the least realistic GPP 
response to vpd.

3.3  |  General applicability

The most common tree species and species groups in Europe are 
Pinus sylvestris, Picea spp., Fagus sylvatica, and Q. robur and Q. petraea, 
which dominate around 75% of Europe's forests (Brus et al., 2011). 
Almost all models covered these species with species-specific pa-
rameterizations. Only PREBAS and BASFOR were missing Q. robur 
and Q. petraea, whereas GOTILWA+ was missing Picea spp. and Q. 

robur and Q. petraea. Additionally, most models covered other spe-
cies that are less common in Europe; hence, most models had spe-
cies parameterized that represented the dominant tree species on 
73%–98% of Europe's forest cover. The two models covering the 
least of Europe's forest cover are BASFOR and GOTILWA+ with 66% 
and 54%. The ensemble mean had the highest general applicability 
because it combined the species covered by all models. (Table 4).

3.4  |  Model performance along the three 
dimensions of the model performance framework

Besides the analysis of model performance, the accuracy of local 
predictions, realism of environmental responses and general 

TA B L E  4  Tree species groups parameterized in complex forest models as an indicator for the general applicability across European 

tree species groups

Abies 
spp.

Alnus 
spp.

Betula 
spp.

Carpinus 
spp.

Castanea 
spp.

Eucalyptus 
spp.

Fagus 
spp.

Fraxinus 
spp.

Larix 
spp.

Other 
broadleaves

Other 
conifers Pinus spp.

Other 
Quercus 
spp.

Picea 
spp.

Pinus 
pinaster

Pinus 
sylvestris

Populus 
spp.

Pseudotsuga 
menziesii

Quercus robur, 
Q. petrarea

Robinia 
spp.

Cover 
Europe (%)

General 
applicability

ensemble mean X X X X X X X X X X X X X X X X X X X X 100.0 1.00

3D-CMCC-FEM BGC X X X X X X X X X X X X X 97.34 0.95

3D-CMCC-FEM LUE X X X X X X X X X X X X X 97.34 0.95

Landscape-DNDC X X X X X X X X X X X X X X X 97.29 0.95

ForClim v.3.3 X X X X X X X X X X X X X X X X X 96.93 0.94

3PG X X X X X X X X X X X 90.02 0.80

3PGN-BW X X X X X X X X X X X 90.02 0.80

SALEM X X X X X X X X X 88.88 0.78

4C X X X X X X X X X X X 86.97 0.74

FORMIND X X X X X X X X 80.16 0.61

SIBYLA X X X X X 78.87 0.59

PREBAS X X X X X X X X 73.38 0.48

BASFOR X X X 66.04 0.33

GOTILWA+ X X X X X X X X 54.11 0.10

cover Europe (%) 3.59 1.05 4.12 0.35 0.97 0.44 10.55 0.45 0.20 3.05 0.28 3.17 4.11 22.73 2.57 32.75 0.15 0.16 9.24 0.06

Note: X indicates cases in which the model has a parameterization for at least one species in the species group. Tree species group cover 
(“cover Europe”) indicates the relative share of forest area covered by that species group/model according to Brus et al. (2011). The general 
applicability per model is the coverage of European forests re-projected to a range of 0.1 to 1 (see Section 2.3.4).

F I G U R E  4  Model performance along 
accuracy of local predictions, realism of 
environmental responses and general 
applicability. The highest theoretical total 
score along three dimensions is 1–1-1 
(“1–1-1 model”). “*” note that for SALEM, 
SYBILA, 3PGN-BW, ForClim v.3.3, 3PG 
and FORMIND realism of environmental 
responses could not be calculated. 
For further information regarding the 
interpretation of individual metrics, 
compare Section 2.

*

*

*
*

*

*

1-1-1 model

ensemble mean

3D-CMCC-FEM BGC

Landscape-DNDC

3D-CMCC-FEM LUE

SALEM

PREBAS

SIBYLA

4C

BASFOR

3PGN-BW

ForClim

3PG

GOTILWA+

FORMIND

0 1 2 3
sum of variable scores

variable
realism of environmental responses

accuracy of local predictions

general applicability
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applicability in isolation, we also analyzed the relations between the 
three dimensions. Figure 4 shows that the ensemble mean had the 
highest overall score across the three dimensions. 3D-CMCC-FEM 
BGC, Landscape-DNDC and 3D-CMCC-FEM LUE performed best 
across the three dimensions, followed by PREBAS, 4C, BASFOR and 
GOTILWA+. The models covering only two dimensions of model per-
formance ranked as follows: SALEM, SIBYLA, 3PGN-BW, ForClim 
v.3.3, 3PG and FORMIND.

4  |  DISCUSSION

This study evaluates a large number of complex forest models in an 
unprecedented model comparison study against a large number of 
observations: 72 (carbon and water variables) to 128 (forest struc-
ture variables) site-years with multiple data sources covering for-
est structure, carbon and water variables. We developed a model 
performance framework based on Levins (1966) concept to evaluate 
accuracy, realism and general applicability of the participating mod-
els against this data. Overall, we find that no individual model out-
performs the others across all three dimensions and that the model 
ensemble performs mostly well.

We provide a deeper understanding for model-data mismatches 
and model applicability in managed European forests that goes be-
yond currently available knowledge from model intercomparison 
projects (MIPs). In contrast to manipulatory experiments, such as 
free-air carbon dioxide enrichment (FACE) MIPs (e.g., De Kauwe 
et al.,  2013, 2014; Medlyn et al.,  2015; Walker et al.,  2015) and 

rainfall exclusion/irrigation MIPs (e.g., Paschalis et al.,  2020), we 
evaluate model behaviour against field observations in common 
managed forests as they are predominant in Europe. Moreover, we 
not only evaluate carbon and water fluxes such as in eddy covariance 
MIPs (e.g., Dietze et al., 2011; Huntzinger et al., 2013; Richardson 
et al., 2012; Schaefer et al., 2012; Stoy et al., 2013; Wei et al., 2014) 
but also evaluate the forest structure, which is the key target of for-
est management operations. Likewise, we go beyond comparison 
of models to tree-ring reconstruction data to evaluate growth (e.g., 
Klesse et al.,  2018; Rollinson et al.,  2017, 2021) by assessing BA, 
DBHinc and Hinc, although on shorter time scales.

4.1  |  Model performance

4.1.1  |  Accuracy of local predictions

3PG and 3D-CMCC-FEM BGC simulate the structure variables 
most accurately, while BASFOR and 3D-CMCC-FEM LUE do so for 
the carbon and water variables. The main difference between 3D-
CMCC-FEM BGC and 3D-CMCC-FEM LUE is the representation 
of photosynthesis (Table 1), with the BGC version featuring a more 
process-based approach. The BGC version performs better for the 
structure variables than the LUE version, while the LUE version is 
more accurate than the BGC version regarding carbon flux variables 
at the annual scale. This unexpected trade-off cannot be explained 
in a straight-forward manner by the differences in the model ver-
sions, but indicates that more empirical photosynthesis models (LUE 

TA B L E  4  Tree species groups parameterized in complex forest models as an indicator for the general applicability across European 

tree species groups

Abies 
spp.

Alnus 
spp.

Betula 
spp.

Carpinus 
spp.

Castanea 
spp.

Eucalyptus 
spp.

Fagus 
spp.

Fraxinus 
spp.

Larix 
spp.

Other 
broadleaves

Other 
conifers Pinus spp.

Other 
Quercus 
spp.

Picea 
spp.

Pinus 
pinaster

Pinus 
sylvestris

Populus 
spp.

Pseudotsuga 
menziesii

Quercus robur, 
Q. petrarea

Robinia 
spp.

Cover 
Europe (%)

General 
applicability

ensemble mean X X X X X X X X X X X X X X X X X X X X 100.0 1.00

3D-CMCC-FEM BGC X X X X X X X X X X X X X 97.34 0.95

3D-CMCC-FEM LUE X X X X X X X X X X X X X 97.34 0.95

Landscape-DNDC X X X X X X X X X X X X X X X 97.29 0.95

ForClim v.3.3 X X X X X X X X X X X X X X X X X 96.93 0.94

3PG X X X X X X X X X X X 90.02 0.80

3PGN-BW X X X X X X X X X X X 90.02 0.80

SALEM X X X X X X X X X 88.88 0.78

4C X X X X X X X X X X X 86.97 0.74

FORMIND X X X X X X X X 80.16 0.61

SIBYLA X X X X X 78.87 0.59

PREBAS X X X X X X X X 73.38 0.48

BASFOR X X X 66.04 0.33

GOTILWA+ X X X X X X X X 54.11 0.10

cover Europe (%) 3.59 1.05 4.12 0.35 0.97 0.44 10.55 0.45 0.20 3.05 0.28 3.17 4.11 22.73 2.57 32.75 0.15 0.16 9.24 0.06

Note: X indicates cases in which the model has a parameterization for at least one species in the species group. Tree species group cover 
(“cover Europe”) indicates the relative share of forest area covered by that species group/model according to Brus et al. (2011). The general 
applicability per model is the coverage of European forests re-projected to a range of 0.1 to 1 (see Section 2.3.4).
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version) do not necessarily produce less accurate predictions of an-
nual flux variables than more process-based approaches (BGC ver-
sion). 3PG is rather simple compared to the other models applied 
here (Table 1), but it still produces accurate predictions of DBHinc 
for the subset of sites in this study that are truly monospecific and 
even-aged. Apparently, less detailed but more robust model formu-
lations are an advantage when simulating these types of forests. 
Likewise, the other models that focus on forest dynamics alone 
rather than also simulating biogeochemical fluxes, such as SALEM 
and SIBYLA, also show a high accuracy of local predictions for struc-
ture variables. The development of forest structure in these more 
empirical models is based on more empirically based formulations 
(i.e., allometric functions) while the other models' structure devel-
opment emerges from a combination of carbon allocation to differ-
ent biomass compartments and allometric functions (Table 1). While 
the more empirically based formulations simulate highly accurate 
developments of forest structure, the accuracy of local predictions 
for structure variables is more heterogeneous across models with 
tree structure emerging from carbon allocation. Hence, the spe-
cific model formulation of how carbon is allocated to form struc-
ture is important. Nevertheless, in the more complex models also, 
other processes interact with the carbon available for structure 
development, for example, phenology and the linked total amount 
of sequestered carbon. ForClim v.3.3 and FORMIND show a lower 
accuracy of local predictions for structure variables mainly because 
the predictions of DBHinc have a large offset to observations. These 
offsets result from the simulated thinning regime and, in the case 
of ForClim v.3.3, a bias in the allocation (which has been addressed 
in v4.01, Huber et al., 2020). Low accuracy of BA among all mod-
els may be explained by simulated mortality reducing stand density 
below the observed stem numbers (Figure  S9). BASFOR, which is 
also among the less complex models of our ensemble, produces ac-
curate predictions of carbon and water variables while it predicts 
the structure variables with low accuracy. Such systematic errors 
regarding structure variables may also result from specifics in model 
initialization (Figures S4–S9), for example, BASFOR initialized trees 
with a planting procedure while most models were initialized with 
observed data of adult stands. In models that operate at the for-
est stand-scale rather than the tree level, systematic errors may also 
arise from the underestimation of BA if it is calculated internally 
from a multimodal DBH distribution and stem number. For example, 
Landscape-DNDC and 3PGN-BW initialized mean DBH assuming a 
mean weighted by basal area and not an arithmetic mean, leading to 
systematically higher BA, DBH and H (but not growth) at sites with 
a heterogenous diameter distribution as is the case in particular in 
Sorø. Finally, the systematic over- as well as underestimation of flux 
variables shown by most models at least for some sites may be an 
effect of an insensitivity for specific environmental conditions de-
fined by either model structure or the generic parameter sets used 
in this study.

Generally, the models predicted structure variables more accu-
rately than annual carbon and water variables, except for BASFOR 
and FORMIND. Earlier findings by Kramer et al. (2002) and Morales 

et al.  (2005) suggested that forest models have an adequate ac-
curacy regarding daily carbon and water fluxes. Yet, on the multi-
annual time scale, Horemans et al. (2017) found larger uncertainties 
for NEE than on the daily time scale. Our findings using a much larger 
ensemble of models confirm these earlier findings. Carry-over ef-
fects from preceding years, which are usually not well represented 
in models, may be a reason for the inaccurate year-to-year variation 
of carbon fluxes in the models (Aubinet et al., 2018).

Moreover, besides the reasons for individual model-data mis-
matches discussed above, the quality of the observed data may 
affect all models collectively. Systematic and unsystematic observa-
tion errors affect the reference data to which the models are com-
pared to, for example, uncertainty from the method used to partition 
NEE into GPP and Reco (Oikawa et al., 2017). Checking the agree-
ment of estimates from these different methods, we found that GPP 
estimated with the DT partitioning method (Lasslop et al., 2010) is 
highly correlated with GPP estimated with the nighttime method 
(NT, Reichstein et al., 2005) in the evaluation data with no apparent 
bias (Figure S3). Consequently, using DT- or NT-based GPP estimates 
led to only minor changes in the results. Moreover, abiotic or biotic 
disturbances that affect the reference data but are not represented 
in model simulations may affect model accuracy (Finzi et al., 2020; 
Trugman et al., 2021). Furthermore, the understory contribution to 
the carbon balance was not assessed in any of the models but con-
tributes to the measured carbon balance (Dirnböck et al., 2020).

Additionally, uncertainties in model forcing data may contribute 
to model-data mismatches. For example, the climate data used to 
drive the simulations was sometimes observed at or close to the 
forest stand, but in some cases only inferred from the nearest cli-
mate station (Reyer et al., 2020b), which may introduce additional 
uncertainties, for example, due to orographic effects. Likewise, even 
though the stands are managed using standard silvicultural treat-
ments (Reyer et al., 2020b), specific, local forest management ac-
tions may not be perfectly covered by the models' approximation of 
the management.

Overall, we find that simpler models, like SALEM, SIBYLA, 3PG, 
BASFOR and PREBAS did not necessarily perform worse than more 
complex models like 3D-CMCC-FEM BGC, 3D-CMCC-FEM LUE, 
4C, Landscape-DNDC or GOTILWA+. The ensemble mean has an 
intermediate overall accuracy. Hence, in most cases there are more 
accurate individual models available for each site-variable combina-
tion. Moreover, the range of annual model predictions did not al-
ways overlap with observations. Hence, assessing the range of the 
model ensemble and assuming that the “true” value lies within that 
range is not always advisable. This was most pronounced for Hinc 
at Hyytiälä, Le-Bray, Solling-beech, Solling-spruce and Sorø, Reco at 
Collelongo and Sorø, NEE at Collelongo, Bily-Kriz and Sorø as well 
as DBHinc, GPP and AET at Le Bray. Hence, in some cases all mod-
els overestimate or underestimate the observed data, which points 
either to general issues in model structure and/or parameterization 
across all models, or it may relate to issues with the reference data 
outlined above. Identifying the specific reasons for the systematic 
mismatch at these sites for these variables is challenging. However, 
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it may be related to the management at the sites and specific site 
properties that are not reflected in the models. For example, a mis-
match in the modelled to observed size distribution of removed 
trees during management has a large effect on the accuracy of local 
predictions of DBHinc and Hinc. Other site properties, such as large 
amounts of downed woody debris (e.g., Collelongo as described by 
Morales et al., 2005) may influence the carbon balance in reality but 
are not reflected in the models.

4.1.2  |  Realism of environmental responses

Earlier findings by Kramer et al. (2002) showing realistically simulated 
relationships of daily GPP to daily mean temperature and global ra-
diation can be confirmed by our large ensemble. In addition, we find 
that models exhibit also realistic responses of GPP to vpd. Properly 
capturing GPP responses to vpd has proven to be fundamental to 
reproduce annual productivity patterns (Medlyn et al., 2011), espe-
cially in stands where the most limiting environmental driver for GPP 
shifts from water availability to vpd along the year (e.g., Nadal-Sala 
et al., 2021), and given that vpd-driven limitation of productivity is 
expected to increase under global warming (e.g., Novick et al., 2016). 
In this regard, our lumped GAM analysis is not able to fully deter-
mine the exact driver that is limiting GPP at a given moment, and 
therefore, interactive effects of constraining environmental drivers 
cannot be fully discarded. Hence, the impact of vpd on GPP for each 
individual model remains unassessed, with the realism of this key 
response potentially being masked by its positive correlation with 
temperature and radiation.

While 3D-CMCC-FEM BGC shows relatively realistic daily GPP 
response, the closely related model 3D-CMCC-FEM LUE has the 
second least realistic GPP response. The single difference between 
these two models is the description of photosynthesis that is more 
process-based for 3D-CMCC-FEM BGC, which used the Farquhar, 
von Caemmerer and Berry biochemical photosynthesis model 
(Farquhar et al., 1980) and the 3D-CMCC-FEM LUE, which uses the 
Monteith empirical approach (Monteith et al., 1977). While the BGC 
version shows more realistic daily environmental responses of GPP, 
the LUE version is more accurate at the annual scale. Since the BGC 
version was constructed to provide daily estimates of productivity 
while the LUE version was originally constructed to provide esti-
mates at the monthly time scale, and compensating for possible over 
and under estimations, this performance relation can be expected. 
Biases originating from missing site-specific calibration and, given 
the higher number of parameters in biochemical photosynthesis 
models, increased uncertainty in the daily outputs of the BGC ver-
sion could explain the worse performance at the annual scale. The 
issue related to the temporal scale in modeling GPP has already been 
discussed by Collalti et al. (2016) and Lasch-Born et al. (2020).

Overall, the individual models complemented each other with 
regard to the realism of environmental responses of productivity. 
On average, the ensemble mean produced more realistic daily GPP 
responses to environmental variables than any of the individual 

models. This is due to overestimating and underestimating individ-
ual models that cancel out when aggregated into an ensemble mean. 
Nevertheless, the ensemble mean's performance relative to individ-
ual models strongly depends on whether the underlying models are 
balanced (over- as well as underestimation) and represent different 
model structures.

4.1.3  |  General applicability

Following our rather simple definition of the general applicability of 
models, we find that most of the models are able to simulate a rela-
tively large share of European forests. However, simply being able 
to simulate tree species or plant functional types does not warrant 
that models are able to simulate all potential mixtures, site condi-
tions or management systems (Bravo et al., 2018; Grote et al., 2011; 
Pretzsch et al., 2015). Still, it is encouraging to see that the models 
generally cover the main species that are currently of commercial 
and ecological relevance in Europe, and hence from this point of 
view, most models are suitable to be applied in climate impact stud-
ies covering different European forests. The ensemble covers almost 
all European forest tree species because the individual models com-
plement each other especially for the less common tree species.

However, as forests may become more species rich and struc-
turally complex in the future as part of forest adaptation to climate 
change (de Wergifosse et al.,  2022; Huber et al.,  2020; Pardos 
et al., 2021) the general applicability of the models may be further 
challenged. Additionally, the relative importance of tree species may 
shift in the future because of altered climatic conditions (Buras & 
Menzel,  2019). Although the most important European species 
in projected future abundance are already covered by the models 
(P. sylvestris, Picea abies, Quercus spp., Fagus sylvatica), shifting dis-
turbance regimes may reinforce the species abundance shift. In that 
case, models may need to include species that are less abundant 
today, hence rarely parameterized, but may become more abundant 
in the future.

4.1.4  |  Trade-offs between the three dimensions of the 
model performance framework

Even though our framework of model performance does not theo-
retically prevent models from scoring high in all three dimensions, 
we did not expect that any model would do so, but that trade-offs 
between accuracy of local predictions, realism of environmental re-
sponses and general applicability were present. While our results 
confirm that there is no “silver bullet”, we could not find explicit 
trade-offs such as a systematic negative relation between general 
applicability and accuracy of local predictions either. Models that 
have a high general applicability score such as 3D-CMCC-FEM BGC 
also perform well in terms of accuracy of local predictions and real-
ism of environmental responses. In general, the scores of the three 
dimensions of model performance seem to be balanced for most 
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models although at different overall levels. One of the exceptions 
is the model GOTILWA+, which has a relatively low score for ac-
curacy of local predictions but a comparably high score for realism 
of environmental responses. Such results may originate from param-
eter uncertainties in the initial model setup, as physiological and al-
lometric parameters for a given species have not been calibrated, 
though they have been observed to be highly site-dependent (e.g., 
allometric and photosynthetic parameters) and varying also with 
forest developmental stages (Collalti et al., 2019). Also, the lack of 
trade-offs between accuracy of local predictions, realism of envi-
ronmental responses and general applicability may be an artifact 
of the way we derived the realism of environmental responses. The 
potential trade-off in the framework provided by Levins (1966), and 
further elaborated by Weisberg (2007), may not be apparent in the 
suggested framework here, because we did not strictly follow the 
definitions of accuracy, realism and generality since they are inher-
ently difficult to assess and not meant to be operationalized for ac-
tual simulation models. Operationalizing the framework for complex 
forest models may have distorted the relation between the three 
dimensions as defined by Levins (1966). Furthermore, although a bal-
ance between the three dimensions is advisable, it may not always 
be necessary. For example, qualitatively correct insights about for-
est growth and dynamics under global change may be sufficient to 
guide adaptation planning, for example, insights about the growth 
dominance of one species over the other, indicating that realism and 
generality may be more important for this purpose than accuracy.

Another key aspect that might explain the differences in perfor-
mance among models is that some models were initially developed 
for other scopes. Some models have been developed to simulate for-
est growth and fluxes in the short-term (i.e., the variables of interest 
here), but others to simulate forest growth and demography over 
the medium- to long-term (decadal to centennial) and, thus, focusing 
more on processes such as reproduction and mortality (not analyzed 
here). For instance, a specific strategy for model development in 
ForClim is that each model development step should lead to bet-
ter predictions of long-term (centennial) forest dynamics and/or of 
potential natural vegetation (simulations over >1000 years) (Didion 
et al.,  2009). Testing for these model capabilities would probably 
lead to a different model ranking than presented here. Furthermore, 
some models have been developed with the primary aim to cap-
ture multi-decadal dynamics in complex multi-species stands (e.g., 
SIBYLA, FORMIND, ForClim), but eight of the nine stands used here 
were rather homogenous single-species stands (Table 2), which may 
be, in theory, easier to simulate using mechanistic biogeochemistry 
models.

4.2  |  Limitations of the model performance  
framework

Most model evaluation studies to date have assessed the accuracy of 
local predictions (e.g., Irauschek et al., 2021). Yet, in addition to the 
agreement of predicted and observed variables of primary interest, 

complementary evaluation procedures may be implemented for 
a more comprehensive assessment of the models (see Wagener 
et al., 2022). Realistic secondary patterns, such as the responses of 
productivity to environmental drivers are crucial, especially when 
assessing models that are being used for climate impact studies. 
Likewise, given the rapid expansion of model uses and users, the 
general applicability is important to help the latter to assess whether 
the model is likely to be useful for comprehensive impact studies 
across a large range of tree species. Our model performance frame-
work is a first attempt to operationalize Levins' (1966) ideas within 
the context of climate impact assessments with complex vegetation 
models.

Our approach for quantifying the accuracy of local predictions 
is a robust way for assessing the agreement of predicted-observed 
data for models with different numbers of variable outputs. Models 
that provide more output variables for assessment in the perfor-
mance framework are not necessarily less accurate. Nevertheless, 
those models that assess variables which are generally more dif-
ficult to accurately predict will have lower levels of accuracy than 
those models only assessing variables that are less difficult to pre-
dict. Future applications of the framework could explore different 
weightings of the variables depending on the difficulty in predicting 
them and the availability of data to test them. Furthermore, we ac-
knowledge that model predictions are also useful if they have less 
predictive skill than the observed mean because there are many in-
stances where no data are available to derive the mean for a given 
variable. Here, we used the observed mean as threshold to identify 
especially well performing models and not to penalize poorly per-
forming models.

Besides an accurate representation of historical data, forest mod-
els should be characterized by a realistic response of productivity to 
environmental drivers under varying climatic conditions. However, 
to assess model realism more comprehensively, all processes rep-
resented in the model need to be assessed, rather than only the 
productivity response (see also Huber et al., 2020). Therefore, even 
though we test the models with carbon and water variables, further 
refinements of the model performance framework should include 
testing other variables for their realism to environmental responses 
such as structure and mortality variables or autotrophic and soil res-
piration to test model realism across a broader range of processes. 
Likewise, model comparisons in which the models have been forced 
to mimic experimental changes in environmental variables such as 
shifting of atmospheric CO2 concentrations in FACE experiments 
(Walker et al., 2021; Zaehle et al., 2014) or rainfall manipulation ex-
periments (Paschalis et al., 2020) could help us to learn further about 
the model's realism of environmental responses. Whether the model 
includes flexible traits (Berzaghi et al., 2019) and whether it is able to 
mimic natural adaptive processes (Collalti, Ibrom, et al., 2020) could 
be a further element of testing the realism of environmental re-
sponse. Moreover, the quantification of realism could be restricted 
to periods when one environmental driver (e.g., temperature, radi-
ation or vapour pressure deficit) is driving the GPP response as to 
not confound interacting effects of different environmental drivers 
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(e.g., Nadal-Sala et al., 2021). Additionally, models that assume iden-
tical allometric relationship for a single species regardless of envi-
ronmental conditions, are expected to be less accurate than models 
accounting for site differences by different allometric coefficients 
or incorporating environmental drivers (Cysneiros et al.,  2021). 
Moreover, evaluating process rates (e.g., GPP) in contrast to model 
states (e.g., BA) requires a higher realism of environmental re-
sponses to produce accurate predictions, because model states are 
dominated more strongly by long-term model assumptions on stand 
dynamics (such as mortality definitions, carbon allocation, allometric 
relationships, management regime). Overall, to test realism properly, 
one should test the response of the models to different forcing con-
ditions, and compare the (qualitative) responses of the models to our 
general understanding of the processes and observed data describ-
ing these responses.

Generality, as the robust model applicability across space and 
time, is challenging to assess since extensive data are needed to 
apply and evaluate models across large spatial and temporal scales. 
We did not derive the general applicability across time but focused 
on the general applicability in space. In addition to the quantifica-
tion of temporal generality, information on whether the models are 
able to simulate mixed forests with a complex structure, comprising 
both managed and natural dynamics, could be used to widen the 
presented general applicability metric.

Finally, because we investigated the model performance based 
on current model parameterization without further site specific 
parameter calibration, the resulting uncertainty is originating from 
both model structure and model parameterization. The model per-
formance is reflecting the current state of the model only. However, 
model parameterization and calibration have the potential to in-
crease the performance along all three dimensions of the model per-
formance framework. In theory, if a model is general in its structure 
(i.e., more process-based models), it would need less data to be pa-
rameterized to different environments or species, if it is less general 
(i.e., more empirical models), it would need more data. Hence, the 
effort that is needed for calibrating a model to specific environ-
ments is model specific and different calibration efforts would lead 
to varying levels of improvement of the three dimensions of model 
performance. But not all three dimensions are dependent on model 
structure and parameterization to the same extent. The realism of 
environmental responses is mostly driven by model structure, ac-
curacy of local predictions is affected by both model structure and 
parameterization while the general applicability is mostly dependent 
on the model parametrization effort. In summary, the current model 
performance can be improved not only by development of the model 
structure itself but also by model parameter calibration.

4.3  |  Conclusions and implications for model 
applications

We performed a large forest model comparison with a wide range 
of multi-source evaluation data in an innovative model performance 

framework that complements existing knowledge from model-
model and model-data comparisons. We found that the accuracy of 
local predictions in the historical period is not related to the level of 
complexity of a model; that is, empirical models do not necessar-
ily provide less accurate predictions than hybrid or process-based 
models under current climate conditions. Furthermore, accurate 
predictions of carbon variables at annual scale are more difficult 
to obtain than accurate predictions of structure variables. The re-
alism of environmental responses in model simulations provides an 
approximation how well relationships that are crucial to assessing 
climate impacts are covered. We showed that the model ensemble 
mean has the most realistic daily GPP responses to environmental 
variables. General applicability, in terms of the coverage of European 
tree species is high for most models but less common species that 
may become more important under climate change are only partly 
covered by models.

We conclude that, if accuracy is the objective, individual mod-
els may provide the best results at single specific locations. Which 
model will provide optimal results depends on the environmental 
conditions, structural properties, disturbances, etc. of those loca-
tions. Moreover, most individual models cover the most relevant 
European tree species, but to cover all and particularly the less 
abundant species, multiple models need to be applied. Finally, we 
highlight the importance to evaluate several model output variables 
with a wide range of data, because models struggle to achieve high 
accuracies for several variables at the same time. Because already 
multiple models exist to study climate impacts on forests, we expect 
that our study will provide a common benchmark to test whether 
new modelling efforts outperform the models presented here to add 
value to the existing set of tools.
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