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Abstract
In recent years, direct seeding as a means of stand establishment has experienced a revival. 
Among other things it allows for an undisturbed root development and is assumed to be 
cost-efficient. While success factors have been worked out through numerous experiments, 
sound overviews of success and failure in practice are scarce. With the goals of (i) quanti-
fying the success proportion and (ii) extracting the associated influencing factors, we con-
ducted an inventory of direct seedings of Douglas fir in Northern Germany and fitted a 
hurdle negative binomial regression model to the data. The results reveal a high variability 
of plant density within, as well as between stands. We could attribute these differences, and 
thus the success, to stocking degree of the shelter, seed amount and age. The model shows 
both, a high precision and accuracy, and respects previous physical and biological knowl-
edge of the data-generating mechanisms.

Keywords  Direct seeding · Douglas fir · Bayesian inference · Count data regression · 
Hurdle model · Negative binomial regression · Informative prior

Introduction

According to current climate projections (IPCC 2015), the growth conditions for forests 
will change markedly in the future, while Pretzsch et al. (2014) showed that stand growth 
dynamics of forests in Central Europe already have changed since 1960 in comparison to 
the period 1870–1960. The years 2018 and 2019 might be seen as heralds of a changed 
climate. In order to cope with this, Bolte et al. (2009) distinguish between (i) conservation 
of forest structures, (ii) active adaptation and (iii) passive adaptation as management strat-
egies. Among other things, the extended use of non-native tree species is discussed as a 
measure of active adapation (Brang et al. 2008; Bolte et al. 2009; von Lüpke 2009).
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A species, on which practitioners pin great hope, is Douglas fir (Pseudotsuga men-
ziesii (Mirb.) Franco), since it is more tolerant to extreme drought than e.g. Norway 
spruce (Picea abies [L.] Karst) (Vitali et al. 2017). Introduced by Booth in 1831 (Lav-
ender and Hermann 2014; van Loo and Dobrowolska 2019b) and cultivated in forestry 
since 1850 (Spellmann et al. 2015), it currently covers 2 % of the forested area in Ger-
many (217,604 ha). This corresponds to a standing volume of 72, 731, 000 m3 and 26.4 % 
of the Douglas fir area in Europe (Thünen-Institut 2014; van Loo and Dobrowolska 
2019a). The proportion of Douglas fir in parts of Germany is planned to increase in the 
future (Möges et al. 2008; Böckmann et al. 2019). However, there is an ongoing debate 
about the risk of cultivating this species, since negative ecological impacts are feared 
(Bindewald et al. 2019).

Even though Douglas fir is valued for its high productivity, favourable wood proper-
ties and mild impact on soil (Spellmann et al. 2015), it is known to be very vulnerable 
in young stands. Heavy losses of planted Douglas firs are common, which has long been 
known (e.g. Hesmer 1952; Larsen 1976; Röhrig 1976; Kohnle et  al. 2019). This vul-
nerability is mainly attributed to low resistance to late as well as to early frost events 
(Röhrig 1976), incorrect plant handling and planting, large differences between prov-
enances (Dong 1973; Larsen 1976; Braun and Wolf 2001), and the influence of game 
(e.g. browsing).

In order to reduce the risk in stand establishment, direct seeding and the use of contain-
erised seedlings have gained more attention in recent years (Ruppert and Rothkegel 2018). 
Regarding direct seeding, Grossnickle and Ivetić (2017) distinguish between (i) ecologi-
cal, (ii) biological, (iii) economic and (iv) operational benefits of this stand establishment 
method for reforestation and Huth et al. (2017) list, for example, an undisturbed root devel-
opment, high numbers of plants, an avoidance of the transplant shock, and comparably low 
costs as advantages of direct seeding of shade tolerant tree species under shelter. These 
benefits also apply to Douglas fir, even though it is considered moderately shade-tolerant in 
Europe (Nicolescu 2019).

Although there are successful direct seedings of Douglas fir (Petersen 2019), this 
method is seldom used for Douglas fir in comparison to other species. Successful stand 
establishment cannot be guaranteed, and for this reason plantin2020g has superseded direct 
seeding as the most common regeneration technique in Germany (Burschel and Huss 1997; 
Bartsch et al. ). According to Huth et al. (2017), the disadvantages of direct seeding are, 
among others, the strong dependence on climatic conditions and canopy cover, lower ger-
mination rates in comparison to nursery plants and a limited time window for success-
ful establishment. The latter clearly distinguishes direct seeding from natural regenera-
tion, which ensures its success through a constant seed production (Ruppert and Rothkegel 
2018).

Since successes are often reported, but not failures, we aimed at gaining a sound over-
view of the success share of direct seeding in Northern Germany. For the assessment of 
success, it is important to consider not only the number of plants, but also their distribu-
tion within the stand. Even though the distribution does not necessarily have to be com-
pletely even to achieve silvicultural goals, it is important to pay attention to this feature. If 
the distribution is too patchy, interspecific competition might play a decisive role and lead 
to unsatisfactory results. Thus, we aimed at finding a method, which allows us to quan-
tify both key figures. To do so, we conducted an inventory of stands cultivated between 
2015 and 2019 and used a hurdle negative binomial model to analyse the data. This model 
allows us to simultaneously draw conclusions about the probability for cultivation success 
as well as how the number of plants per ha is distributed in the case of success.
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Field study

Preliminary considerations and work

Because we aimed at drawing inferences about both plant number and density, it was 
essential to design the study in an appropriate manner. In order to draw conclusions about 
the distribution of plants, it is important to gather data from the whole stand and hence we 
decided on a systematic sampling design with relatively small sampling units. All seed-
ings were executed row-wise and preliminary studies of cultures of seedling origin showed 
that sampling along the seed-rows is feasible (Rumpf 2007; Petersen 2019). We therefore 
established the number of seedlings per seed-row segment (‘counting strip’) as our primary 
outcome. In order to set up an efficient sampling scheme, we conducted a simulation study 
with count-data from three previous investigations of seeded Douglas fir cultures in North-
ern Germany. Different lengths of counting-strips as well as different sample sizes were 
compared, assuming a Poisson distribution of the seedling counts. Based on the results of 
this simulation study and practical considerations, we decided to count the seedlings on 50 
systematically placed strips of 4 m length per ha. Assuming a distance of 2 m between the 
seed-rows, each strip represents an area of 8 m2 . By this, our sampling effort covers 400 m2 
per ha, which is 4 % area share.

In addition to the data on the Douglas firs, we intended to gather data on factors that 
might affect the development of the cultures. Since the timespan between seeding and 
inventory was variable and up to seven years long, time-varying factors of influence like 
e.g. soil moisture content, were not integrated in the non-recurring inventory. Moreover, we 
orientated the inventory towards variables that could be (i) controlled by silvicultural meas-
ures and (ii) collected in an adequate time. Hence, we focussed on stand-wise variables.

Study sites and data collection

In summer 2019 and in cooperation with the main producer of forest seeds in Northern 
Germany, the fsb Oerrel, we contacted all of their customers who had purchased seeds 
of Douglas fir within the last five years. The provenances were chosen based on valid 
local recommendations and might differ from stand to stand. A total of 74 stands from 
12 enterprises was reported and we decided to sample 50 % of the reported stands with 
a minimum size of 0.5 ha (in total 28), mostly located in the Federal State of Lower 
Saxony (Fig.  1). Data acquisition was carried out between October 2019 and March 
2020. Counting-strips of 4  m length were placed systematically along the seed-rows 
and all plants on the respective segments were counted. Due to deviations between 
reported and assessed size, the smallest stand had an area of 0.36  ha (Table 1). The 
number of counting-strips per stand ranged from 18 to 136 (in total 1,807). In addition, 
several variables were collected at the stand-level (Table 1). Nutrient and water supply 
were assessed and classified through forest site mapping according to the instructions 
for Lower Saxony (NFP and LLUR 2009a, b). The shelter was characterised through 
species, stocking degree and age class. Whereas the latter was gathered from the forest 
management plans, the stocking degree was assessed as a relative value in relation to 
the yield table for pine of Wiedemann (1943). Information on the implementation of 
the seedings were provided by the respective forest practitioners. Different soil prepa-
ration methods were applied before seeding started, in most of the cases a TTS-device 
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(two-trench scarification). For more than half of the direct seedings, the seeds were 
stratified beforehand and the seed amounts used varied considerably. Seeding was car-
ried out during both, spring and winter, mainly manually. In these cases, the seeds 
were brought out by persons using plastic bottles as seeding devices. During the inven-
tory, additional data on the regeneration were collected. Even though most of the cul-
tures were not fenced, browsing was an apparent problem only in one third of them.

Table 1   Overview of the study sites

 n denotes the number per class, Mean the arithmetic mean value, SD the standard deviation and Range the 
range

n Mean SD Range

Site
Nutrient supply class Eutrophic 1

Mesotrophic 17
Oligotrophic 10

Water supply class Stagnic 2
Bottom moist/fresh 12
Neither stagnic nor bot-

tom moist
14

Regeneration
Area (ha) 1.19 0.7 0.36-2.74
Age (yrs) 4.53 1.21 1-7
Mean height (m) 0.54 0.29 0.2-1.6
Fenced Yes 2

No 26
Browsing Yes 9

No 19
Shelter
Existing shelter Yes 27

No 1
Stocking degree 0.39 0.17 0.0-0.7
Age class 40-140
Species Pine 27
Seeding
Amount (kg ha−1) 0.83 0.22 0.47-1.34
Stratification of seeds Yes 16

No 12
Season Spring 17

Winter 9
Soil preparation method TTS 17

Plow 5
Misc. 6

Seeding method Bottle 21
Misc. 7
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Statistical analysis

At the heart of a statistical model for our unknown data-generating process, we need to 
formulate a likelihood function that satisfies our (domain) expertise about the system under 
examination. The likelihood is a probabilistic statement about the data at given parameter 
values. Appropriateness of the likelihood is one of the most important decisions in statisti-
cal modelling and, therefore, several important features of collected data enter our likeli-
hood formulation.

First, we gathered count data and therefore need to build the likelihood upon a distribu-
tion for non-negative and integer scaled random variables.

Second, there is higher variability than allowed for by the familiar Poisson distribution. 
This increased variability is usually an inherent property of count data generating pro-
cesses and is referred to as over-dispersion: “The negative binomial regression model can 
account for over-dispersion and can nest the Poisson, it is commonly used for truncated and 
censored count data and hurdle or two-part models.” (Shonkwiler 2016).

Third, for given estimated distributional parameters, count data distributions have a 
fixed (conditional) probability mass for Y = 0 : in application, this probability mass is often 
too small in comparison to the empirical (conditional) mass on 0. For regeneration data, 
such a zero-inflated data generating process is frequently reported and in Forest Science 
several approaches to cope with it have been applied.

Zhang et al. (2012) compared different methodological approaches for modelling tree 
recruitment and recommend the use of negative binomial mixture models, in particu-
lar zero-inflated (ZINB) or hurdle negative binomial models (HNB), for this purpose. To 

Lower Saxony

Saxony−Anhalt

N

Fig. 1   Location of the sampled cultures
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account for the high proportion of zero counts, Fortin and DeBlois (2007) presented zero-
inflated models. Crotteau et  al. (2014) showed that the negative binomial distribution is 
well-suited for modelling natural postfire regeneration, especially when the overdispersion 
is heterogeneous. Li et  al. (2011) tested different modelling approaches and recommend 
ZINB for modelling ingrowth, while Rathbun and Fei (2006) used a Bayesian approach to 
model oak regeneration by means of a spatial zero-inflated Poisson Regression (ZIP). In 
order to model seedling abundance of non-native tree species, Terwei et al. (2013) applied 
a HNB.

Beyond these experiences with regeneration modelling, one further theoretical consid-
eration makes the case for applying HNB: Zeileis et al. (2008) point out that it facilitates 
interpretation, since two components are modelled that can be separated for interpretation; 
one that controls the binary process of a complete loss of the seeding investment, and a 
second one that determines the quantity if still existing. Therefore, we decided to apply a 
HNB.

Hurdle negative binomial regression model

The hurdle negative binomial (HNB) distribution has a probability mass function (Bhaktha 
2018, p. 22):

where � is the probability mass for y = 0 , and pZTNB(y |�, �) is the probability mass func-
tion of a zero-truncated negative binomial (ZTNB) distribution. � denotes the mean and � 
the shape parameter. The HNB has the expectation (Bhaktha 2018, p. 23):

where �ZTNB(Y) is the expectation of the ZTNB.
For a random variable Y distributed according to the HNB, we write:

For more mathematical details regarding the HNB, we refer to Bhaktha (2018).
The hurdle component is based on a Bernoulli distribution for Yi = 0 vs. Yi ≥ 1 , with the 

single parameter �i ∈ (0, 1) modelled using the Logit link-function:

where ��,i is the linear predictor incorporating the respective covariate-values for an indi-
vidual i with attached parameters quantifying their influences.

The positive count component is based on a ZTNB distribution for a zero-truncated ran-
dom variable, denoted Zi ∶= Yi ∣ Yi > 0 , with non-negative integers zi ∈ ℤ

+ . We write:

Non-negative distributional parameters �i and �i are modelled using the logarithmic 
link-function:

(1)pHNB(y |𝜋,𝜇, 𝜃) =
{

𝜋, y = 0

(1 − 𝜋) ⋅ pZTNB(y |𝜇, 𝜃), y > 0

(2)�HNB(Y) = (1 − �) ⋅ �ZTNB(Y),

(3)Yi ∼ Hurdle-NegBin
(
�i,�i, �i

)
.

(4)�i =
exp

(
��,i

)

1 + exp
(
��,i

) ,

(5)Zi ∼ ZeroTrunc-NegBin
(
�i, �i

)
.
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where ��,i and ��,i are parameter-specific linear predictors, again incorporating the respec-
tive covariates with attached parameters modelling their influences.

Bayesian inference

For the analysis, we applied the Bayesian method of statistical inference, which is based 
on updating current, prior, evidence about a model’s parameters, � , in light of the infor-
mation contained in newly generated data/measurements, denoted by � , of the response 
random variable, denoted by Y. This updating is a direct application of Bayes’ theorem:

The prior, p(�) , is formulated as a probability distribution for each parameter involved in 
the likelihood component, p(� ∣ �) , of the statistical model. Using priors, we can introduce 
any information  —  present before seeing any newly collected data  —  about the param-
eters of a statistical model. In this study, some of this prior knowledge is very strong, as 
some parts of the data-generating mechanism are clearly of a monotonic nature, such as the 
influence of time on seedling survival. Exploitation of this improves the consistency of a 
statistical model with inductive logic (Jaynes 1976, p. 190). By formulation of probabilistic 
statements of our prior knowledge about the data-generating mechanism, we further rule 
out implausible areas of the parameter space and consequently increase the precision of 
causal statements derived from our statistical model (see e.g. Morris et al. (2015)).

Jaynes (2003) and Gelman et  al. (2014) are highly recommended for a thorough 
introduction to Bayesian thinking and statistical inference. See also Mohamedou et al. 
(2022) for a very recent review about usage of and reasons for Bayesian methods in for-
estry research.

Modelling covariate influences

Our aim is to quantify how the distributional model parameters, 
(
�i,�i, �i

)
 , change 

when the influencing variables x1,i, x2,i,… take on different values. Preferably, this is 
simultaneously and equivalently done for each of these distributional model parameters 
(fully distributional regression approach). In our case, this approach would have led to 
strictly progressing or regressing dispersion (Supplementary Material, Section ‘Roles 
of Parameters on Expectation of the ZTNB’), which seems a rather strict approach that 
is not backed up by adequate prior knowledge. We have therefore stepped back from the 
fully distributional regression approach and introduced covariate effects only on � , and 
� . To account for varying dispersion in different stands, we introduced respective group-
ing terms, called random effect/random intercept in the frequentist statistical regression 
modelling (see Fig. 2).

(6)�i = exp
(
��,i

)
,

(7)�i = exp
(
��,i

)
,

p(� ∣ �) =
p(� ∣ �) ⋅ p(�)

p(�)
∝ p(� ∣ �) ⋅ p(�)
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Covariate terms part

We include three covariates into our analysis: (i) seeding age (at the year of inventory, 
in years), (ii) amount of seeds (in kg ha−1 ), and (iii) stocking degree (at the year of 
inventory). These variables were constant per stand, centred according to their empiri-
cal mean, and scaled by their respective standard deviation (Fig.  2)  —  values given 
in Table 1. The inclusion of further covariates was prevented by the unbalanced data 
structure.

Figure 2 portrays the structure of our model.
Here, ��

0
 and ��

0
 are intercept parameters specifying distributional parameters � and 

� on the link scale, for all scaled covariates equal to 0, i. e. on their empirical mean. 
We define this first part of the linear predictor for � as intercept only; the reasoning 
behind this is given in Section ‘Modelling covariate influences’.

��
p
 and ��

p
 , p = 1, 2, 3 , is the linear influence of covariate xp on linear predictors �� , 

and x4,i is the scaled square of stocking degree — with respective effects ��
4
 and ��

4
 .

Even though a negative interaction of seeding age and seed amount has to be 
expected from theoretical considerations, we found, however, no possibility to intro-
duce such an interaction effect while maintaining sign restrictions for ��

1
 , ��

2
 , ��

1
 , and 

��
2
 . Further, our experimental design with 1,807 counting-strips in 28 stands was not 

designed for incorporation of (complex) interactions, as “Estimating interactions is 
similar to comparing coefficients estimated from subsets of the data [...]” (Gelman and 
Hill 2006). Further, interactions “[...] typically are smaller and have relatively larger 
standard errors than main effects [...]” (Gelman and Hill 2006). Both reasons similarly 
apply for flexible non-linear effects as estimated in additive models. Mild to strong 
regularisation priors should still be able to make such complex models run, but as we 
have no clear theoretical framework for presence of interactions, we introduce no inter-
action terms or further covariate effects.

Yi,j ∼ Hurdle-NegBin (πi,j , µi,j , θi,j)

µi,j = exp βµ
0 + x1,iβ

µ
1 + x2,iβ

µ
2 + x3,iβ

µ
3 + x4,iβ

µ
4 + γµ

j

)

θi,j = exp βθ
0 + γθ

j

)

πi,j = inverse logit βπ
0 + x1,iβ

π
1 + x2,iβ

π
2 + x3,iβ

π
3 + x4,iβ

π
4 + γπ

j

)

Yi,j | Yi,j ≥ 1 ∼ ZeroTrunc-NegBin (µi,j , θi,j)

I{Yi,j=0} ∼ Bernoulli (πi,j)

βµ
0 ∼ t (ν = 10, µ = 2, σ = 2)

βµ
1 ∼ N−

(
0, σ2

βµ

)

βµ
2 ∼ N+

(
0, σ2

βµ

)

βµ
3 ∼ N

(
0, σ2

βµ

)

βµ
4 ∼ N−

(
0, σ2

βµ

)

γµ
j ∼ N(0, σγµ)

σβµ ∼ Cauchy+ (0, 2.5)

σγµ ∼ Cauchy+ (0, 2.5)

βθ
0 ∼ t (ν = 10, µ = 0, σ = 2)

γθ
j ∼ N 0, σγθ

)
σγθ ∼ Cauchy+ (0, 2.5)

βπ
0 ∼ t (ν = 10, µ = 0, σ = 2)

βπ
1 ∼ N+

(
0, σ2

βπ

)

βπ
2 ∼ N−

(
0, σ2

βπ

)

βπ
3 ∼ N

(
0, σ2

βπ

)

βπ
4 ∼ N+

(
0, σ2

βπ

)

γπ
j ∼ N(0, σγπ )

σβπ ∼ Cauchy+ (0, 2.5)

σγπ ∼ Cauchy+ (0, 2.5)

x1,i =
Agei − mean(Age)

sd(Age)
x2,i =

Amounti − mean(Amount)

sd(Amount)
x3,i =

Stocki − mean(Stock)

sd(Stock)
x4,i =

StockSqi − mean(StockSq)

sd(StockSq)

HyperpriorPriorLikelihood structure

Fig. 2   Model scheme, i: counting strip, j: stand
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Grouping terms part

As a last building-block, we need to incorporate the fact that several count segments belong 
to the same stand, leading to intra-class correlations (Faraway 2016, Chapter 10.1), making 
measurements from one stand plausibly more similar to each other than to measurements 
from another stand. Such a dependence structure is taken care of by the use of grouping 
terms — in non-Bayesian regression modelling referred to as random intercept (Faraway 
2016, Chapter 10). For counting-strip i belonging to stand j, we therefore add the respec-
tive coefficient, �k

j
 , to the distributional parameter, k ∈ {�, �,�} , specific linear predictor:

Going back to Stein’s paradox (Efron and Morris 1977), we assume — independently for 
each k —  the �k

j
 coefficients to be independent and identically distributed (i.i.d.) normal 

random variables (Fahrmeir et al. 2013, Ch. 7):

with distributional parameter specific variance �2
�k

 . For each parameter specific linear pre-
dictor, these coefficients model the stand-specific distributional parameters beyond what 

was considered already by the remaining part, i.e. linear predictors �k
i
− �k

j
= �k

0
+

4∑
l=1

xl,i�
k
l
.

Choice of priors

We are able to gather prior information on a plausible range of response measurements 
(Supplementary Material, Section ‘Plausible Range of Response Measurements’), guiding 
us in specifying weakly informative priors for the intercept parameters 

(
�
�

0
, ��

0
, ��

0

)
 by prior 

predictive checking (Wesner and Pomeranz 2020). These are set up strong enough such 
that the model predicts implausible values with only low frequency, but at the same time 
weak enough — i.e. with a low-enough precision — such that these priors can be over-
whelmed by the evidence of the likelihood (Lemoine 2019).

For covariate influences �� and �� , we lack prior information on the scale of effects, 
but (i) we aim to follow the general statistical principle of regularisation, and (ii) introduce 
sign-restrictions on these marginal effects. We therefore apply regularised regression by 
using shrinkage priors (van Erp et al. 2019), a Bayesian strategy for trying to get an insur-
ance against unstable parameter estimation and over-fitted models.

Sign-restrictions were established by half-normal priors  —  instead of normal pri-
ors — for parameters with prior sign knowledge (Gelman et  al. 2014, Subsection ‘Prior 
information in the form of inequality constraints on parameters’). These sign-restrictions 
lead to truncated posteriors, which are in line with our understanding of the underlying 
process.

To sum up, our prior considerations result in four different classes of prior distri-
butions (see also Fig. 2): (i) distribution-parameter specific intercept parameters are a 
priori Student-t distributed, (ii) covariate-effect parameters without a priori sign knowl-
edge are a priori Normal distributed, (iii) covariate-effect parameters with a priori sign 
knowledge are a priori half-Normal distributed, and (iv) standard-deviations for group-
ing coefficients and standard-deviations for covariate-effect parameters are a priori 

(8)�k
i
= �k

0
+ �k

j
+

4∑

l=1

xl,i�
k
l
,

�k
j
∼ Normal

(
0, �2

�k

)
,
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half-Cauchy distributed. The latter hyperprior for standard-deviations for covariate-
effect parameters then leads to Ridge-type shrinkage (van Erp et  al. 2019). See also 
Supplementary Material, Section ‘Further Considerations for Specifications of Priors’ 
for further explanations.

Software and posterior sampling details

We used the R (R Core Team 2019) statistical software environment, and especially the 
R add-on package brms (Bürkner 2017, 2018) for modelling. brms provides a low-
threshold access to the probabilistic programming language Stan, which is the actual 
software in which the models are implemented in. Within Stan, we used the Hamil-
tonian Monte Carlo (HMC) sampler, described in detail in  Stan Development Team 
(2019). HMC is a Markov Chain Monte Carlo (MCMC) method. In general, MCMC 
algorithms are sampling methods that are used for quantification of not directly analyti-
cally quantifiable, high-dimensional probability distributions. As a result of a practical 
application of HMC/MCMC, one yields samples for the full vector of a high-dimen-
sional probability distribution. By means of — algebraically very simple — post-esti-
mation calculations — that also very flexibly allow for consideration of combinations of 
parameters — on this sample, one gets to point estimates for parameters or correlations 
among parameters, one- or multi-dimensional uncertainty estimates, up to illustrations 
of full one- or multi-dimensional parameter distributions.

For all models — main model, and alternative models for sensitivity checking — we 
were using 1,000 warmup samples, followed by 1,000 samples from the posterior used for 
making inference statements. This was done for eight chains, where starting values for all 
parameters were set to 0. Stan control parameter adapt_delta was set to 0.99, max_
treedepth was set to 20, all other control parameters were kept on their defaults.

Model predictions

In order to translate the modelling results into useful recommendations for forest practi-
tioners, we used the samples from the posterior distribution to calculate conditional prob-
abilities for exceeding a lower performance threshold. For this, we first established sev-
eral applied covariate scenarios from the observed range of values, where grouping term 
coefficients were set to the value of 0, corresponding to their assumed population mean. 
For each of these scenarios, and for every sample of the posterior distribution (in our case 
8,000), a pair of values was generated, with the probability for a loss of the culture (hurdle 
component) as first element, and the expectation for the number of surviving plants if at 
least one has survived (expectation of the zero-truncated negative binomial distribution) 
as second element. The resulting bivariate posterior distribution allows to draw simultane-
ous inferences about the parameter effects on the two components of the HNB distribu-
tion. We further scaled these results up to stand-level values to facilitate the interpretation. 
Thereby, the stand density was estimated as mean of the calculated expectation values per 
ha and the proportion of counting strips without any plant was used as proxy for the distri-
bution of plants. In a following step, we calculated the proportion of posterior samples that 
achieved at least the lower performance conditions, defined by a combined threshold for 
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plant density and hurdle probability. These proportions can be interpreted as conditional 
probabilities for achieving performance objectives, i.e. silvicultural goals.

Reproducibility

The R code for full reproduction of the analysis is given in the Supplementary Material 
(Section ‘Reproduction’) and the data is available under von Lüpke et al. (2021).

Results

Empirical results

The counts per 4-m strip varied between 0 and 30 (Fig. 3) and the counts per ha between 
approx. 200 and 9,200 (Fig. 4). As expected, the distribution of counts contains a consider-
able number of 0 measurements and is right-skewed (Fig. 5). Within, as well as between 
the cultures, the differences were remarkable. According to Bartsch et al. (2020) the Ger-
man Forest Administrations aim at 1,000–3,000 plants ha−1 for the establishment of stands 
of adequate quality (shaded area in Fig.  4), while Klädtke et  al. (2012) state that 1,000 
plants ha−1 are sufficient. Only three stands fell below this minimum number. The pro-
portion of occupied counting-strips varied between 0.16 and 0.97, whereby in 7 cultures 
( 25 % ) less than half of the strips were occupied.
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Fig. 3   Number of plants per 4-m counting-strip in the different stands. The black line denotes the median 
and the hinges denote versions of the first and third quartile. For further details regarding the underlying 
statistics, we refer to the documentation in R Core Team (2019)
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Modelling results

The probability densities of the posterior parameter estimates are narrower than the priori 
distributions (Fig. 6), indicating clear signals in the data. Apart from the hurdle-component 
of �3 , they are furthermore clear regarding their sign. Even though the latter is no surprise, 
since bounds were set, the distributions support our approach, as the densities towards the 
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Fig. 4   Estimated mean no. of plants ha−1 in dependence on the share of counting-strips occupied with 
Douglas fir. The shaded area denotes the plant numbers, recommended by the German forest administra-
tions for plantations (Bartsch et al. 2020)
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Fig. 5   Hanging rootogram: Black lines illustrate square-root transformed absolute frequencies 
√
n of 

observed count classes y ∈ {1, 2,… , 9,≥ 10} , and coloured boxes illustrate differences of these observed 
frequencies to the predicted frequencies by the model, per posterior sample. Colour coding is from light 
green to dark blue: posterior range, inner 80% , 60% , 40% , 20% posterior intervals
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bounds are small (see the Supplementary Material for a sensitivity check of the bounding 
assumption). Moreover, the distributions highlight the fact that parameters are estimated 
flexibly with different distributional forms.

For count data regression, it is easier to visually check for the predictive performance 
of a model based on rootograms than on more traditional visualisations (Kleiber and 
Zeileis 2016). Here, we use a slightly adjusted version of a hanging rootogram (Fig. 5), 
where instead of defining the vertical gap from 

√
Er  to 

√
Er −

√
Or   —  where E is 

expected, O is observed, and index r is for response value (class) r ∈ {1, 2,… , 9,≥ 10} 
–, we define it as from 

√
Or  to 

√
Or −

√
Er  . This has the benefit that, in our inference 

statements, which are based on samples from the posterior, we can draw variability of 
the ’gap’ along the horizontal line instead of along a curve. We therefore speak of pos-
terior predicted counts Pr instead of expected counts Er.

Doing so, we see that the model performs highly satisfactorily (Fig. 5); the propor-
tion of y = 0 is modelled with particularly high accuracy — coloured boxes are central, 
with a compact distribution around the x-axis 

√
Or −

√
Pr = 0 . Hence, one of the main 

requirements for the model is met.
Sensitivity checks for all of our prior and model structure choices are given in Sup-

plementary Material (Section ’Prior/model-structure sensitivity checks’).
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The model predictions for the two parts of the HNB (Fig. 7) show contrasting trends 
for the covariates seeding age and seed amount. While the probability of detecting no 
seedlings on a counting strip increases with increasing age, it decreases with increasing 
seed amount. The estimated plant densities per counting-strip decrease with increasing 
age and increase with increasing seed amount. The modelled detection-probability is 
lowest at stocking degrees of approximately 0.4–0.5 and the highest density is calcu-
lated for a stocking degree of about 0.7.

To combine these two predictions, we calculated the overall expectation values of our 
model in dependence on the three covariates (Fig.  8). This way of presentation has the 
benefit that the results can be interpreted flexibly, conditional on the readers choice. To 
illustrate this, we exemplarily defined cultures with more than (i) 50 % of the area occu-
pied and (ii) 1,000 plants ha−1 as successful. The expectation value met these conditions 
in almost all cases at an age of three years. At an age of six, success can be expected with 
probabilities between 63.5 % and 89.1 % (Fig. 8, second row). Obviously, the best results 
are achieved with high seed amounts.
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Fig. 7   Conditional predictions for a counting-strip in dependence on the covariates seeding age, seed 
amount and stocking degree. For each of the subplots, the variable given on the respective x-axis varies in 
the given range, while all other covariates are held fixed on their respective arithmetic means. The uncer-
tainty of the intercept parameter estimation is included in the uncertainty measures, the grouping term coef-
ficient (’random intercept’) for variation between stands is held fixed on 0, corresponding to the assumed 
population mean. Shaded blue regions give point-wise (symmetric, quantile based) credible intervals, 
dashed lines are lower and upper limits of point-wise 90 % (symmetric, quantile based) credible intervals. 
Left column (a, c, e): conditional expectation of plant density (ZTNB model part); right column (b, d, f): 
conditional probability of detecting no plant (Hurdle model part)
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Fig. 8   Proportions of expectation values in dependence on the covariates seeding age, seed amount and 
stocking degree. The proportions are based on 8,000 simulation runs

Discussion

In this study, we used an integrative approach, which allows us to draw inferences about 
both; cultivation success probability and plant density in the case of success of directly 
seeded Douglas fir plants from one analysis. By this means, the results are consistent and 
methodological breaks are omitted. HNB has been frequently used in regeneration model-
ling and has proven its suitability for this task (see Sect. Statistical analysis). Furthermore, 
we were able to improve our analysis through the inclusion of existing knowledge. As a 
result, the presented model is stable and sound and leads to reasonable results.

We are aware of the fact, that the success of direct seeding of Douglas fir is affected on the 
single-plant scale by many more covariates than the ones included in the model. However, the 
main goal of our inventory was to give a sound overview of the success of direct seedings on a 
relatively large scale. The relationships between different covariates and the success of direct 
seeding have been investigated in other experiments (e.g. Caccia and Ballaré 1998; Huth et al. 
2011); the corresponding results might help to understand and interpret our results.

Even though our study could not capture all success-factors of direct seeding, its results 
are valuable for forest practitioners. They clearly reveal the impact of stocking degree, seed 
amount and seeding age on both the density and distribution of plants. The results are based 
on a comparatively broad range of conditions and allow us to draw conclusions with more 
generality than case studies from single trials. Furthermore, we focussed on stand-wise vari-
ables, knowing that these in particular could be controlled in practical forestry. With the help 
of our model, it can be easily estimated how likely direct seedings are to be successful in 
dependence on the mentioned factors. By this, the chance of making elementary mistakes and 
consequent misinvestments can be reduced. Seeds are a precious good and should be used 
carefully, especially in times with enormous demands, e.g. after large-scale disturbances.

The main success-factors have been known for a long time. Already in 1916, Toumey 
named (i) the quality of the seed, (ii) the species, (iii) the vegetative cover, (iv) the con-
dition of the surface soil, (v) the freedom of the site from seed-eating birds and rodents, 
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(vi) the quantity of seed sown per unit of area, (vii) the time of sowing and (viii) the 
depth of covering as the factors with the greatest influence. From these factors, our 
study only gives indication of the importance of seed amount. Bearing in mind that, sev-
eral years after sowing, most of these factors cannot be validated, this is neither surpris-
ing nor a disadvantage of our inventory. Further, it is important to note, that not all of 
them (i) are controllable with the help of silvicultural measures and (ii) become impor-
tant at the same time. At the main development stages of direct seeding — storage, ger-
mination, development of seedlings and saplings, and growth (Huth et al. 2017) — dif-
ferent factors decide on failure or success of the investment.

The phase of storage is known to be the one with the heaviest losses (Lawrence and 
Rediske 1962) and during this phase the survival probability mainly depends on preda-
tion. Caccia and Ballaré (1998) observed risks of postdispersal seed predation between 
70 and 96 % and concluded that successful natural regeneration of Douglas fir mainly 
depends on the presence of seed-eating animals. Also Sullivan and Sullivan (1984) and 
Grossnickle and Ivetić (2017) point to the central role of predation for the success of 
direct seeding. Silvicultural measures to reduce this risk, covering of the seeds, provi-
sion of alternative foods and the use of chemicals (e.g. repellents or rodenticides), are 
discussed (Grossnickle and Ivetić 2017). Unfortunately, we were not able to examine the 
impact of predation on the sites of our study.

Once a seed has overcome the hurdle of predation, germination still cannot be guar-
anteed. Seeds only germinate under favourable conditions, whereby favourable is mainly 
associated with soil humidity and not with light availability. In a greenhouse experiment 
with seeds of Douglas fir, Huth et  al. (2011) showed that the surface humidity of the 
substrate controls the germination. More generally, Grossnickle and Ivetić (2017) state 
that the success of direct seeding is mainly related to site conditions and the dependent 
availability of soil water. Relying on this knowledge, forest management may exclude 
inappropriate sites and use soil scarification to prepare seedbeds. Moreover, the germi-
nation can be enhanced through covering of the seeds (Caccia and Ballaré 1998; Huth 
et al. 2011). Even though information on both, soil type and soil preparation were avail-
able, this information could not contribute to improving our analysis due to the unbal-
anced data structure. Consequently, we did not include them in our model. Reasons for 
the reduced explanatory power of these variables might be seen in the resolution of 
the information. Both variables were only available on a categorical scale per stand, 
whereas the real conditions might vary on a much smaller scale. The high variability of 
seedling counts within stands (Fig. 3) hints at such a small-scale variation of key-fac-
tors. Furthermore, these factors have to be considered in interaction with other explana-
tory variables such as weather conditions, for example, which were not collected.

After germination, seedling and sapling development depends on light availability 
(Huth et al. 2011). Whereas an increased extension of the hypocotyl indicates demand 
for light, a positive correlation between biomass production and light availability 
could be detected in later developmental stages (Minore 1972; Reed et al. 1983; Huth 
et al. 2011; Petersen 2019). Petriţan et al. (2010) observed that 6-year-old Douglas firs 
stopped height-growth at total site factors (TSF, available photosynthetically active 
radiation in relation to above canopy light) of 11 % and 16 % respectively. The impact 
of light is not restricted to aboveground biomass, but could also be proven for the root 
system (Kühne et al. 2011, 2015). Foresters are able to control the light availability via 
stand density of both the shelter and the culture. Regulating the stand density is not only 
beneficial for radiation but also diminishes the overstorey root competition, which is 
known to negatively affect sapling growth (Petriţan et al. 2011). The measure for stand 
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density in our model — stocking degree — shows a light dependency of plant density. 
However, this relationship is not continuous, but rather shows an optimum-curve with 
a maximum around 0.5-0.7 (Fig. 7). This curvature seems reasonable, since on the one 
hand shelter can reduce the risks of frost and desiccation, but on the other hand should 
not be so dense as to outcompete the saplings in terms of light, nutrients and water. 
In Northern Germany, a maximal stocking degree of 0.6 is recommended (Preuß et al. 
2017) and the results of our analysis support this advice.

It is apparent, that seedling density is positively related to seed amounts. The observed 
seed amounts (0.47–1.34  kg  ha−1 , Table  1) have to be considered as relatively low. 
Whereas practical recommendations in Germany reach from 0.5 to 2 kg ha−1 (Preuß et al. 
2017; Ruppert and Rothkegel 2018), only in 1/3 of the stands ( n = 9) 1 kg or more was 
applied per ha. From other studies, it is known that the relationship between seed amount 
and resulting plant density is not linear, but rather shows a saturation, which originates 
from the limited number of suitable microhabitats (Grossnickle and Ivetić 2017).

Further tools to enhance the chances of success of direct seeding, are stratification of 
the seeds as well as an appropriate timing. Despite contrary recommendations (Preuß et al. 
2017; Ruppert and Rothkegel 2018), the seeds were often (i) not stratified and (ii) seeded 
in autumn (Table 1). Again due to the unbalanced structure of the inventory data, we could 
not assess the effect of these measures.

The impact of ungulates must also be taken into consideration. Even though it is well 
known that roe (Capreolus capreolus) and red deer (Cervus elaphus) can cause severe 
damage in Douglas fir plantations (Spellmann et al. 2015), our inventory could not prove 
such a relationship, which, among others, might be attributed to the unbalanced data (only 
2 of 28 stands were fenced, Table 1).

The chance of successful direct seeding can be raised through the choice of an appropri-
ate provenance. Douglas fir is known for a huge variability between provenances, which 
i.a. affects the resistance to frost (Dong 1973; Larsen 1976). According to Braun and Wolf 
(2001) and Konnert and Bastien (2019), provenances that sprout their leaves late, generally 
showed a comparably high resistance to late frost. Although, they react sensitively to early 
and winter frosts, there is evidence that the risk of damage by late-spring frost decreases 
once the trees have reached heights of 1 − 2 m (Malmqvist et al. 2018).

The outline above makes clear how fragile direct seeding of Douglas fir is. Thus, it is 
not surprising that we observed a broad range of densities and covering (Fig. 4). In their 
review, Grossnickle and Ivetić (2017) compared direct seeding programs of different spe-
cies and observed that less than a half of them can be considered as successful. Success, 
however, can be defined in different ways and strongly depends on management goals. 
From a financial point of view, Mitchell et al. (1990) argue that at least 80 % of the site 
has to be covered by plants, in order that direct seeding becomes more cost-efficient than 
planting. If we had applied this standard to our results, only 8 cultures ( 29 % ) would have 
met this requirement. Even under a more generous standard, one has to keep in mind that 
planted seedlings usually show a quicker growth than seeded ones (Grossnickle and Ivetić 
2017), which in turn shortens the critical time frame of stand establishment. Furthermore, 
additional costs for complementary plantings or competition control might accumulate, if 
the achieved result is not satisfactory.

Direct seeding is a powerful stand establishment technique with, among others, advan-
tages for root development. Nevertheless it does not fit for all situations. Especially since 
resources (i.e. labour, finances, seed) are scarce, they should be invested with caution and 
in the best possible manner.
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