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Abstract

In recent years, direct seeding as a means of stand establishment has experienced a revival.
Among other things it allows for an undisturbed root development and is assumed to be
cost-efficient. While success factors have been worked out through numerous experiments,
sound overviews of success and failure in practice are scarce. With the goals of (i) quanti-
fying the success proportion and (ii) extracting the associated influencing factors, we con-
ducted an inventory of direct seedings of Douglas fir in Northern Germany and fitted a
hurdle negative binomial regression model to the data. The results reveal a high variability
of plant density within, as well as between stands. We could attribute these differences, and
thus the success, to stocking degree of the shelter, seed amount and age. The model shows
both, a high precision and accuracy, and respects previous physical and biological knowl-
edge of the data-generating mechanisms.

Keywords Direct seeding - Douglas fir - Bayesian inference - Count data regression -
Hurdle model - Negative binomial regression - Informative prior

Introduction

According to current climate projections (IPCC 2015), the growth conditions for forests
will change markedly in the future, while Pretzsch et al. (2014) showed that stand growth
dynamics of forests in Central Europe already have changed since 1960 in comparison to
the period 1870-1960. The years 2018 and 2019 might be seen as heralds of a changed
climate. In order to cope with this, Bolte et al. (2009) distinguish between (i) conservation
of forest structures, (ii) active adaptation and (iii) passive adaptation as management strat-
egies. Among other things, the extended use of non-native tree species is discussed as a
measure of active adapation (Brang et al. 2008; Bolte et al. 2009; von Liipke 2009).
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A species, on which practitioners pin great hope, is Douglas fir (Pseudotsuga men-
ziesii (Mirb.) Franco), since it is more tolerant to extreme drought than e.g. Norway
spruce (Picea abies [L.] Karst) (Vitali et al. 2017). Introduced by Booth in 1831 (Lav-
ender and Hermann 2014; van Loo and Dobrowolska 2019b) and cultivated in forestry
since 1850 (Spellmann et al. 2015), it currently covers 2 % of the forested area in Ger-
many (217,604 ha). This corresponds to a standing volume of 72,731,000 m> and 26.4 %
of the Douglas fir area in Europe (Thiinen-Institut 2014; van Loo and Dobrowolska
2019a). The proportion of Douglas fir in parts of Germany is planned to increase in the
future (Moges et al. 2008; Bockmann et al. 2019). However, there is an ongoing debate
about the risk of cultivating this species, since negative ecological impacts are feared
(Bindewald et al. 2019).

Even though Douglas fir is valued for its high productivity, favourable wood proper-
ties and mild impact on soil (Spellmann et al. 2015), it is known to be very vulnerable
in young stands. Heavy losses of planted Douglas firs are common, which has long been
known (e.g. Hesmer 1952; Larsen 1976; Rohrig 1976; Kohnle et al. 2019). This vul-
nerability is mainly attributed to low resistance to late as well as to early frost events
(Rohrig 1976), incorrect plant handling and planting, large differences between prov-
enances (Dong 1973; Larsen 1976; Braun and Wolf 2001), and the influence of game
(e.g. browsing).

In order to reduce the risk in stand establishment, direct seeding and the use of contain-
erised seedlings have gained more attention in recent years (Ruppert and Rothkegel 2018).
Regarding direct seeding, Grossnickle and Iveti¢ (2017) distinguish between (i) ecologi-
cal, (ii) biological, (iii) economic and (iv) operational benefits of this stand establishment
method for reforestation and Huth et al. (2017) list, for example, an undisturbed root devel-
opment, high numbers of plants, an avoidance of the transplant shock, and comparably low
costs as advantages of direct seeding of shade tolerant tree species under shelter. These
benefits also apply to Douglas fir, even though it is considered moderately shade-tolerant in
Europe (Nicolescu 2019).

Although there are successful direct seedings of Douglas fir (Petersen 2019), this
method is seldom used for Douglas fir in comparison to other species. Successful stand
establishment cannot be guaranteed, and for this reason plantin2020g has superseded direct
seeding as the most common regeneration technique in Germany (Burschel and Huss 1997;
Bartsch et al. ). According to Huth et al. (2017), the disadvantages of direct seeding are,
among others, the strong dependence on climatic conditions and canopy cover, lower ger-
mination rates in comparison to nursery plants and a limited time window for success-
ful establishment. The latter clearly distinguishes direct seeding from natural regenera-
tion, which ensures its success through a constant seed production (Ruppert and Rothkegel
2018).

Since successes are often reported, but not failures, we aimed at gaining a sound over-
view of the success share of direct seeding in Northern Germany. For the assessment of
success, it is important to consider not only the number of plants, but also their distribu-
tion within the stand. Even though the distribution does not necessarily have to be com-
pletely even to achieve silvicultural goals, it is important to pay attention to this feature. If
the distribution is too patchy, interspecific competition might play a decisive role and lead
to unsatisfactory results. Thus, we aimed at finding a method, which allows us to quan-
tify both key figures. To do so, we conducted an inventory of stands cultivated between
2015 and 2019 and used a hurdle negative binomial model to analyse the data. This model
allows us to simultaneously draw conclusions about the probability for cultivation success
as well as how the number of plants per ha is distributed in the case of success.
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Field study
Preliminary considerations and work

Because we aimed at drawing inferences about both plant number and density, it was
essential to design the study in an appropriate manner. In order to draw conclusions about
the distribution of plants, it is important to gather data from the whole stand and hence we
decided on a systematic sampling design with relatively small sampling units. All seed-
ings were executed row-wise and preliminary studies of cultures of seedling origin showed
that sampling along the seed-rows is feasible (Rumpf 2007; Petersen 2019). We therefore
established the number of seedlings per seed-row segment (‘counting strip’) as our primary
outcome. In order to set up an efficient sampling scheme, we conducted a simulation study
with count-data from three previous investigations of seeded Douglas fir cultures in North-
ern Germany. Different lengths of counting-strips as well as different sample sizes were
compared, assuming a Poisson distribution of the seedling counts. Based on the results of
this simulation study and practical considerations, we decided to count the seedlings on 50
systematically placed strips of 4 m length per ha. Assuming a distance of 2 m between the
seed-rows, each strip represents an area of 8 m?. By this, our sampling effort covers 400 m?
per ha, which is 4 % area share.

In addition to the data on the Douglas firs, we intended to gather data on factors that
might affect the development of the cultures. Since the timespan between seeding and
inventory was variable and up to seven years long, time-varying factors of influence like
e.g. soil moisture content, were not integrated in the non-recurring inventory. Moreover, we
orientated the inventory towards variables that could be (i) controlled by silvicultural meas-
ures and (ii) collected in an adequate time. Hence, we focussed on stand-wise variables.

Study sites and data collection

In summer 2019 and in cooperation with the main producer of forest seeds in Northern
Germany, the fsb Oerrel, we contacted all of their customers who had purchased seeds
of Douglas fir within the last five years. The provenances were chosen based on valid
local recommendations and might differ from stand to stand. A total of 74 stands from
12 enterprises was reported and we decided to sample 50 % of the reported stands with
a minimum size of 0.5 ha (in total 28), mostly located in the Federal State of Lower
Saxony (Fig. 1). Data acquisition was carried out between October 2019 and March
2020. Counting-strips of 4 m length were placed systematically along the seed-rows
and all plants on the respective segments were counted. Due to deviations between
reported and assessed size, the smallest stand had an area of 0.36 ha (Table 1). The
number of counting-strips per stand ranged from 18 to 136 (in total 1,807). In addition,
several variables were collected at the stand-level (Table 1). Nutrient and water supply
were assessed and classified through forest site mapping according to the instructions
for Lower Saxony (NFP and LLUR 2009a, b). The shelter was characterised through
species, stocking degree and age class. Whereas the latter was gathered from the forest
management plans, the stocking degree was assessed as a relative value in relation to
the yield table for pine of Wiedemann (1943). Information on the implementation of
the seedings were provided by the respective forest practitioners. Different soil prepa-
ration methods were applied before seeding started, in most of the cases a TTS-device
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Table 1 Overview of the study sites

n Mean SD Range

Site
Nutrient supply class Eutrophic 1

Mesotrophic 17

Oligotrophic 10
Water supply class Stagnic 2

Bottom moist/fresh 12

Neither stagnic nor bot- 14

tom moist

Regeneration
Area (ha) 1.19 0.7 0.36-2.74
Age (yrs) 4.53 1.21 1-7
Mean height (m) 0.54 0.29 0.2-1.6
Fenced Yes 2

No 26
Browsing Yes 9

No 19
Shelter
Existing shelter Yes 27

No 1
Stocking degree 0.39 0.17 0.0-0.7
Age class 40-140
Species Pine 27
Seeding
Amount (kg ha™) 0.83 0.22 0.47-1.34
Stratification of seeds Yes 16

No 12
Season Spring 17

Winter 9
Soil preparation method TTS 17

Plow 5

Misc.
Seeding method Bottle 21

Misc. 7

n denotes the number per class, Mean the arithmetic mean value, SD the standard deviation and Range the
range

(two-trench scarification). For more than half of the direct seedings, the seeds were
stratified beforehand and the seed amounts used varied considerably. Seeding was car-
ried out during both, spring and winter, mainly manually. In these cases, the seeds
were brought out by persons using plastic bottles as seeding devices. During the inven-
tory, additional data on the regeneration were collected. Even though most of the cul-
tures were not fenced, browsing was an apparent problem only in one third of them.
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Fig. 1 Location of the sampled cultures

Statistical analysis

At the heart of a statistical model for our unknown data-generating process, we need to
formulate a likelihood function that satisfies our (domain) expertise about the system under
examination. The likelihood is a probabilistic statement about the data at given parameter
values. Appropriateness of the likelihood is one of the most important decisions in statisti-
cal modelling and, therefore, several important features of collected data enter our likeli-
hood formulation.

First, we gathered count data and therefore need to build the likelihood upon a distribu-
tion for non-negative and integer scaled random variables.

Second, there is higher variability than allowed for by the familiar Poisson distribution.
This increased variability is usually an inherent property of count data generating pro-
cesses and is referred to as over-dispersion: “The negative binomial regression model can
account for over-dispersion and can nest the Poisson, it is commonly used for truncated and
censored count data and hurdle or two-part models.” (Shonkwiler 2016).

Third, for given estimated distributional parameters, count data distributions have a
fixed (conditional) probability mass for Y = 0: in application, this probability mass is often
too small in comparison to the empirical (conditional) mass on 0. For regeneration data,
such a zero-inflated data generating process is frequently reported and in Forest Science
several approaches to cope with it have been applied.

Zhang et al. (2012) compared different methodological approaches for modelling tree
recruitment and recommend the use of negative binomial mixture models, in particu-
lar zero-inflated (ZINB) or hurdle negative binomial models (HNB), for this purpose. To

@ Springer



404 New Forests (2023) 54:399-419

account for the high proportion of zero counts, Fortin and DeBlois (2007) presented zero-
inflated models. Crotteau et al. (2014) showed that the negative binomial distribution is
well-suited for modelling natural postfire regeneration, especially when the overdispersion
is heterogeneous. Li et al. (2011) tested different modelling approaches and recommend
ZINB for modelling ingrowth, while Rathbun and Fei (2006) used a Bayesian approach to
model oak regeneration by means of a spatial zero-inflated Poisson Regression (ZIP). In
order to model seedling abundance of non-native tree species, Terwei et al. (2013) applied
a HNB.

Beyond these experiences with regeneration modelling, one further theoretical consid-
eration makes the case for applying HNB: Zeileis et al. (2008) point out that it facilitates
interpretation, since two components are modelled that can be separated for interpretation;
one that controls the binary process of a complete loss of the seeding investment, and a
second one that determines the quantity if still existing. Therefore, we decided to apply a
HNB.

Hurdle negative binomial regression model

The hurdle negative binomial (HNB) distribution has a probability mass function (Bhaktha
2018, p. 22):

7, y=0

(1= 7) - Drong ' | 1, 0), ¥ > 0 M

Pun O | 7, 1, 0) = {
where 7 is the probability mass for y = 0, and prxg (v | ¢, 6) is the probability mass func-
tion of a zero-truncated negative binomial (ZTNB) distribution. u denotes the mean and 6
the shape parameter. The HNB has the expectation (Bhaktha 2018, p. 23):

Egng(Y) = (1 = 7) - Ernp(Y), 2)

where E,ng(Y) is the expectation of the ZTNB.
For a random variable Y distributed according to the HNB, we write:

Y; ~ Hurdle-NegBin(x;, ;. 6;). 3)

For more mathematical details regarding the HNB, we refer to Bhaktha (2018).
The hurdle component is based on a Bernoulli distribution for Y; = 0 vs. ¥; > 1, with the
single parameter z; € (0, 1) modelled using the Logit link-function:

exp (1)
A 4
1 +exp (1,,)

where 7, ; is the linear predictor incorporating the respective covariate-values for an indi-
vidual i with attached parameters quantifying their influences.

The positive count component is based on a ZTNB distribution for a zero-truncated ran-
dom variable, denoted Z; :=Y; | ¥; > 0, with non-negative integers z; € Z*. We write:

Z; ~ ZeroTrunc-NegBin ;. 6;). 5)

Non-negative distributional parameters y; and 6; are modelled using the logarithmic
link-function:
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Hi =¢eXp (’7;4,1')’ (6)

0, =exp (1) (7)

where 7, ; and 1, ; are parameter-specific linear predictors, again incorporating the respec-
tive covariates with attached parameters modelling their influences.

Bayesian inference

For the analysis, we applied the Bayesian method of statistical inference, which is based
on updating current, prior, evidence about a model’s parameters, &, in light of the infor-
mation contained in newly generated data/measurements, denoted by y, of the response
random variable, denoted by Y. This updating is a direct application of Bayes’ theorem:

p(é|y>=’%«p(y|é)m(é)

The prior, p(&), is formulated as a probability distribution for each parameter involved in
the likelihood component, p(y | €), of the statistical model. Using priors, we can introduce
any information — present before seeing any newly collected data — about the param-
eters of a statistical model. In this study, some of this prior knowledge is very strong, as
some parts of the data-generating mechanism are clearly of a monotonic nature, such as the
influence of time on seedling survival. Exploitation of this improves the consistency of a
statistical model with inductive logic (Jaynes 1976, p. 190). By formulation of probabilistic
statements of our prior knowledge about the data-generating mechanism, we further rule
out implausible areas of the parameter space and consequently increase the precision of
causal statements derived from our statistical model (see e.g. Morris et al. (2015)).

Jaynes (2003) and Gelman et al. (2014) are highly recommended for a thorough
introduction to Bayesian thinking and statistical inference. See also Mohamedou et al.
(2022) for a very recent review about usage of and reasons for Bayesian methods in for-
estry research.

Modelling covariate influences

Our aim is to quantify how the distributional model parameters, (ﬂ'i,/,ti, 6,-), change
when the influencing variables x;;,x,;,... take on different values. Preferably, this is
simultaneously and equivalently done for each of these distributional model parameters
(fully distributional regression approach). In our case, this approach would have led to
strictly progressing or regressing dispersion (Supplementary Material, Section ‘Roles
of Parameters on Expectation of the ZTNB’), which seems a rather strict approach that
is not backed up by adequate prior knowledge. We have therefore stepped back from the
fully distributional regression approach and introduced covariate effects only on y, and
z. To account for varying dispersion in different stands, we introduced respective group-
ing terms, called random effect/random intercept in the frequentist statistical regression
modelling (see Fig. 2).
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Likelihood structure Prior Hyperprior

Fig.2 Model scheme, i: counting strip, j: stand

Covariate terms part

We include three covariates into our analysis: (i) seeding age (at the year of inventory,
in years), (ii) amount of seeds (in kg ha™"), and (iii) stocking degree (at the year of
inventory). These variables were constant per stand, centred according to their empiri-
cal mean, and scaled by their respective standard deviation (Fig. 2) — values given
in Table 1. The inclusion of further covariates was prevented by the unbalanced data
structure.

Figure 2 portrays the structure of our model.

Here, f} and ﬁ(’)‘ are intercept parameters specifying distributional parameters 7 and
u on the link scale, for all scaled covariates equal to 0, i. e. on their empirical mean.
We define this first part of the linear predictor for 6 as intercept only; the reasoning
behind this is given in Section ‘Modelling covariate influences’.

ﬁg and [i[’;, p =1,2,3, is the linear influence of covariate X, on linear predictors 7,
and x,; is the scaled square of stocking degree — with respective effects ff; and ﬁf .

Even though a negative interaction of seeding age and seed amount has to be
expected from theoretical considerations, we found, however, no possibility to intro-
duce such an interaction effect while maintaining sign restrictions for g, g, p7, and
B . Further, our experimental design with 1,807 counting-strips in 28 stands was not
designed for incorporation of (complex) interactions, as “Estimating interactions is
similar to comparing coefficients estimated from subsets of the data [...]” (Gelman and
Hill 2006). Further, interactions “[...] typically are smaller and have relatively larger
standard errors than main effects [...]” (Gelman and Hill 2006). Both reasons similarly
apply for flexible non-linear effects as estimated in additive models. Mild to strong
regularisation priors should still be able to make such complex models run, but as we
have no clear theoretical framework for presence of interactions, we introduce no inter-
action terms or further covariate effects.
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Grouping terms part

As a last building-block, we need to incorporate the fact that several count segments belong
to the same stand, leading to intra-class correlations (Faraway 2016, Chapter 10.1), making
measurements from one stand plausibly more similar to each other than to measurements
from another stand. Such a dependence structure is taken care of by the use of grouping
terms — in non-Bayesian regression modelling referred to as random intercept (Faraway
2016, Chapter 10). For counting-strip i belonging to stand j, we therefore add the respec-
tive coefficient, yj", to the distributional parameter, k € {u, 0, =}, specific linear predictor:

4
k k k k
’1,‘ = ﬂo + yj + le»iﬂl El (8)
=1

Going back to Stein’s paradox (Efron and Morris 1977), we assume — independently for
each k — the y* coefficients to be independent and identically distributed (i.i.d.) normal
random variables (Fahrmeir et al. 2013, Ch. 7):

y;‘ ~ Normal (0, afk ),

with distributional parameter specific variance ayzk. For each parameter specific linear pre-
dictor, these coefficients model the stand-specific distributional parameters beyorhd what

was considered already by the remaining part, i.e. linear predictors #f — v = f + X x,4.
=

Choice of priors

We are able to gather prior information on a plausible range of response measurements
(Supplementary Material, Section ‘Plausible Range of Response Measurements’), guiding
us in specifying weakly informative priors for the intercept parameters (S, 8¢, p7 ) by prior
predictive checking (Wesner and Pomeranz 2020). These are set up strong enough such
that the model predicts implausible values with only low frequency, but at the same time
weak enough — i.e. with a low-enough precision — such that these priors can be over-
whelmed by the evidence of the likelihood (Lemoine 2019).

For covariate influences * and ", we lack prior information on the scale of effects,
but (i) we aim to follow the general statistical principle of regularisation, and (ii) introduce
sign-restrictions on these marginal effects. We therefore apply regularised regression by
using shrinkage priors (van Erp et al. 2019), a Bayesian strategy for trying to get an insur-
ance against unstable parameter estimation and over-fitted models.

Sign-restrictions were established by half-normal priors — instead of normal pri-
ors — for parameters with prior sign knowledge (Gelman et al. 2014, Subsection ‘Prior
information in the form of inequality constraints on parameters’). These sign-restrictions
lead to truncated posteriors, which are in line with our understanding of the underlying
process.

To sum up, our prior considerations result in four different classes of prior distri-
butions (see also Fig. 2): (i) distribution-parameter specific intercept parameters are a
priori Student-t distributed, (ii) covariate-effect parameters without a priori sign knowl-
edge are a priori Normal distributed, (iii) covariate-effect parameters with a priori sign
knowledge are a priori half-Normal distributed, and (iv) standard-deviations for group-
ing coefficients and standard-deviations for covariate-effect parameters are a priori
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half-Cauchy distributed. The latter hyperprior for standard-deviations for covariate-
effect parameters then leads to Ridge-type shrinkage (van Erp et al. 2019). See also
Supplementary Material, Section ‘Further Considerations for Specifications of Priors’
for further explanations.

Software and posterior sampling details

We used the R (R Core Team 2019) statistical software environment, and especially the
R add-on package brms (Biirkner 2017, 2018) for modelling. brms provides a low-
threshold access to the probabilistic programming language Stan, which is the actual
software in which the models are implemented in. Within Stan, we used the Hamil-
tonian Monte Carlo (HMC) sampler, described in detail in Stan Development Team
(2019). HMC is a Markov Chain Monte Carlo (MCMC) method. In general, MCMC
algorithms are sampling methods that are used for quantification of not directly analyti-
cally quantifiable, high-dimensional probability distributions. As a result of a practical
application of HMC/MCMC, one yields samples for the full vector of a high-dimen-
sional probability distribution. By means of — algebraically very simple — post-esti-
mation calculations — that also very flexibly allow for consideration of combinations of
parameters — on this sample, one gets to point estimates for parameters or correlations
among parameters, one- or multi-dimensional uncertainty estimates, up to illustrations
of full one- or multi-dimensional parameter distributions.

For all models — main model, and alternative models for sensitivity checking — we
were using 1,000 warmup samples, followed by 1,000 samples from the posterior used for
making inference statements. This was done for eight chains, where starting values for all
parameters were set to 0. Stan control parameter adapt delta was set to 0.99, max
treedepth was set to 20, all other control parameters were kept on their defaults.

Model predictions

In order to translate the modelling results into useful recommendations for forest practi-
tioners, we used the samples from the posterior distribution to calculate conditional prob-
abilities for exceeding a lower performance threshold. For this, we first established sev-
eral applied covariate scenarios from the observed range of values, where grouping term
coefficients were set to the value of 0, corresponding to their assumed population mean.
For each of these scenarios, and for every sample of the posterior distribution (in our case
8,000), a pair of values was generated, with the probability for a loss of the culture (hurdle
component) as first element, and the expectation for the number of surviving plants if at
least one has survived (expectation of the zero-truncated negative binomial distribution)
as second element. The resulting bivariate posterior distribution allows to draw simultane-
ous inferences about the parameter effects on the two components of the HNB distribu-
tion. We further scaled these results up to stand-level values to facilitate the interpretation.
Thereby, the stand density was estimated as mean of the calculated expectation values per
ha and the proportion of counting strips without any plant was used as proxy for the distri-
bution of plants. In a following step, we calculated the proportion of posterior samples that
achieved at least the lower performance conditions, defined by a combined threshold for
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plant density and hurdle probability. These proportions can be interpreted as conditional
probabilities for achieving performance objectives, i.e. silvicultural goals.

Reproducibility

The R code for full reproduction of the analysis is given in the Supplementary Material
(Section ‘Reproduction’) and the data is available under von Liipke et al. (2021).

Results
Empirical results

The counts per 4-m strip varied between 0 and 30 (Fig. 3) and the counts per ha between
approx. 200 and 9,200 (Fig. 4). As expected, the distribution of counts contains a consider-
able number of 0 measurements and is right-skewed (Fig. 5). Within, as well as between
the cultures, the differences were remarkable. According to Bartsch et al. (2020) the Ger-
man Forest Administrations aim at 1,000-3,000 plants ha™! for the establishment of stands
of adequate quality (shaded area in Fig. 4), while Kliddtke et al. (2012) state that 1,000
plants ha™! are sufficient. Only three stands fell below this minimum number. The pro-
portion of occupied counting-strips varied between 0.16 and 0.97, whereby in 7 cultures
(25 %) less than half of the strips were occupied.

304
254

201

No. Dgl / 4m
g

D'E

Fig.3 Number of plants per 4-m counting-strip in the different stands. The black line denotes the median
and the hinges denote versions of the first and third quartile. For further details regarding the underlying
statistics, we refer to the documentation in R Core Team (2019)

23

Stand ID
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Fig.4 Estimated mean no. of plants ha™' in dependence on the share of counting-strips occupied with
Douglas fir. The shaded area denotes the plant numbers, recommended by the German forest administra-
tions for plantations (Bartsch et al. 2020)
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Fig.5 Hanging rootogram: Black lines illustrate square-root transformed absolute frequencies ﬁ of
observed count classes y € {1,2,...,9,> 10}, and coloured boxes illustrate differences of these observed
frequencies to the predicted frequencies by the model, per posterior sample. Colour coding is from light
green to dark blue: posterior range, inner 80%, 60%, 40%, 20% posterior intervals

Modelling results

The probability densities of the posterior parameter estimates are narrower than the priori
distributions (Fig. 6), indicating clear signals in the data. Apart from the hurdle-component
of f;, they are furthermore clear regarding their sign. Even though the latter is no surprise,
since bounds were set, the distributions support our approach, as the densities towards the
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Fig. 6 Density distributions of the posterior parameter estimates

bounds are small (see the Supplementary Material for a sensitivity check of the bounding
assumption). Moreover, the distributions highlight the fact that parameters are estimated
flexibly with different distributional forms.

For count data regression, it is easier to visually check for the predictive performance
of a model based on rootograms than on more traditional visualisations (Kleiber and
Zeileis 2016). Here, we use a slightly adjusted version of a hanging rootogram (Fig. 5),
where instead of defining the vertical gap from \/E to \/Er - \/U, — where E is
expected, O is observed, and index r is for response value (class) r € {1,2,...,9,> 10}
—, we define it as from \/O_, to \/O_r - \/Fr . This has the benefit that, in our inference
statements, which are based on samples from the posterior, we can draw variability of
the "gap’ along the horizontal line instead of along a curve. We therefore speak of pos-
terior predicted counts P, instead of expected counts E,.

Doing so, we see that the model performs highly satisfactorily (Fig. 5); the propor-
tion of y = 0 is modelled with particularly high accuracy — coloured boxes are central,
with a compact distribution around the x-axis \/5, - \/fT, = 0. Hence, one of the main
requirements for the model is met.

Sensitivity checks for all of our prior and model structure choices are given in Sup-
plementary Material (Section *Prior/model-structure sensitivity checks’).
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The model predictions for the two parts of the HNB (Fig. 7) show contrasting trends
for the covariates seeding age and seed amount. While the probability of detecting no
seedlings on a counting strip increases with increasing age, it decreases with increasing
seed amount. The estimated plant densities per counting-strip decrease with increasing
age and increase with increasing seed amount. The modelled detection-probability is
lowest at stocking degrees of approximately 0.4-0.5 and the highest density is calcu-
lated for a stocking degree of about 0.7.

To combine these two predictions, we calculated the overall expectation values of our
model in dependence on the three covariates (Fig. 8). This way of presentation has the
benefit that the results can be interpreted flexibly, conditional on the readers choice. To
illustrate this, we exemplarily defined cultures with more than (i) 50 % of the area occu-
pied and (ii) 1,000 plants ha™" as successful. The expectation value met these conditions
in almost all cases at an age of three years. At an age of six, success can be expected with
probabilities between 63.5 % and 89.1 % (Fig. 8, second row). Obviously, the best results
are achieved with high seed amounts.

Pr(Y=0)
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Pr(Y=0)
°

06 08 10 1.2 06 0.8 1.0

ey
\

v
Pr(Y=0)
1
\

\
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Stocking degree Stocking degree

Fig.7 Conditional predictions for a counting-strip in dependence on the covariates seeding age, seed
amount and stocking degree. For each of the subplots, the variable given on the respective x-axis varies in
the given range, while all other covariates are held fixed on their respective arithmetic means. The uncer-
tainty of the intercept parameter estimation is included in the uncertainty measures, the grouping term coef-
ficient ('random intercept’) for variation between stands is held fixed on 0, corresponding to the assumed
population mean. Shaded blue regions give point-wise (symmetric, quantile based) credible intervals,
dashed lines are lower and upper limits of point-wise 90 % (symmetric, quantile based) credible intervals.
Left column (a, ¢, e): conditional expectation of plant density (ZTNB model part); right column (b, d, f):
conditional probability of detecting no plant (Hurdle model part)
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Fig.8 Proportions of expectation values in dependence on the covariates seeding age, seed amount and
stocking degree. The proportions are based on 8,000 simulation runs

Discussion

In this study, we used an integrative approach, which allows us to draw inferences about
both; cultivation success probability and plant density in the case of success of directly
seeded Douglas fir plants from one analysis. By this means, the results are consistent and
methodological breaks are omitted. HNB has been frequently used in regeneration model-
ling and has proven its suitability for this task (see Sect. Statistical analysis). Furthermore,
we were able to improve our analysis through the inclusion of existing knowledge. As a
result, the presented model is stable and sound and leads to reasonable results.

We are aware of the fact, that the success of direct seeding of Douglas fir is affected on the
single-plant scale by many more covariates than the ones included in the model. However, the
main goal of our inventory was to give a sound overview of the success of direct seedings on a
relatively large scale. The relationships between different covariates and the success of direct
seeding have been investigated in other experiments (e.g. Caccia and Ballaré 1998; Huth et al.
2011); the corresponding results might help to understand and interpret our results.

Even though our study could not capture all success-factors of direct seeding, its results
are valuable for forest practitioners. They clearly reveal the impact of stocking degree, seed
amount and seeding age on both the density and distribution of plants. The results are based
on a comparatively broad range of conditions and allow us to draw conclusions with more
generality than case studies from single trials. Furthermore, we focussed on stand-wise vari-
ables, knowing that these in particular could be controlled in practical forestry. With the help
of our model, it can be easily estimated how likely direct seedings are to be successful in
dependence on the mentioned factors. By this, the chance of making elementary mistakes and
consequent misinvestments can be reduced. Seeds are a precious good and should be used
carefully, especially in times with enormous demands, e.g. after large-scale disturbances.

The main success-factors have been known for a long time. Already in 1916, Toumey
named (i) the quality of the seed, (ii) the species, (iii) the vegetative cover, (iv) the con-
dition of the surface soil, (v) the freedom of the site from seed-eating birds and rodents,
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(vi) the quantity of seed sown per unit of area, (vii) the time of sowing and (viii) the
depth of covering as the factors with the greatest influence. From these factors, our
study only gives indication of the importance of seed amount. Bearing in mind that, sev-
eral years after sowing, most of these factors cannot be validated, this is neither surpris-
ing nor a disadvantage of our inventory. Further, it is important to note, that not all of
them (i) are controllable with the help of silvicultural measures and (ii) become impor-
tant at the same time. At the main development stages of direct seeding — storage, ger-
mination, development of seedlings and saplings, and growth (Huth et al. 2017) — dif-
ferent factors decide on failure or success of the investment.

The phase of storage is known to be the one with the heaviest losses (Lawrence and
Rediske 1962) and during this phase the survival probability mainly depends on preda-
tion. Caccia and Ballaré (1998) observed risks of postdispersal seed predation between
70 and 96 % and concluded that successful natural regeneration of Douglas fir mainly
depends on the presence of seed-eating animals. Also Sullivan and Sullivan (1984) and
Grossnickle and Iveti¢ (2017) point to the central role of predation for the success of
direct seeding. Silvicultural measures to reduce this risk, covering of the seeds, provi-
sion of alternative foods and the use of chemicals (e.g. repellents or rodenticides), are
discussed (Grossnickle and Iveti¢ 2017). Unfortunately, we were not able to examine the
impact of predation on the sites of our study.

Once a seed has overcome the hurdle of predation, germination still cannot be guar-
anteed. Seeds only germinate under favourable conditions, whereby favourable is mainly
associated with soil humidity and not with light availability. In a greenhouse experiment
with seeds of Douglas fir, Huth et al. (2011) showed that the surface humidity of the
substrate controls the germination. More generally, Grossnickle and Iveti¢ (2017) state
that the success of direct seeding is mainly related to site conditions and the dependent
availability of soil water. Relying on this knowledge, forest management may exclude
inappropriate sites and use soil scarification to prepare seedbeds. Moreover, the germi-
nation can be enhanced through covering of the seeds (Caccia and Ballaré 1998; Huth
et al. 2011). Even though information on both, soil type and soil preparation were avail-
able, this information could not contribute to improving our analysis due to the unbal-
anced data structure. Consequently, we did not include them in our model. Reasons for
the reduced explanatory power of these variables might be seen in the resolution of
the information. Both variables were only available on a categorical scale per stand,
whereas the real conditions might vary on a much smaller scale. The high variability of
seedling counts within stands (Fig. 3) hints at such a small-scale variation of key-fac-
tors. Furthermore, these factors have to be considered in interaction with other explana-
tory variables such as weather conditions, for example, which were not collected.

After germination, seedling and sapling development depends on light availability
(Huth et al. 2011). Whereas an increased extension of the hypocotyl indicates demand
for light, a positive correlation between biomass production and light availability
could be detected in later developmental stages (Minore 1972; Reed et al. 1983; Huth
et al. 2011; Petersen 2019). Petritan et al. (2010) observed that 6-year-old Douglas firs
stopped height-growth at total site factors (TSF, available photosynthetically active
radiation in relation to above canopy light) of 11 % and 16 % respectively. The impact
of light is not restricted to aboveground biomass, but could also be proven for the root
system (Kiihne et al. 2011, 2015). Foresters are able to control the light availability via
stand density of both the shelter and the culture. Regulating the stand density is not only
beneficial for radiation but also diminishes the overstorey root competition, which is
known to negatively affect sapling growth (Petritan et al. 2011). The measure for stand
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density in our model — stocking degree — shows a light dependency of plant density.
However, this relationship is not continuous, but rather shows an optimum-curve with
a maximum around 0.5-0.7 (Fig. 7). This curvature seems reasonable, since on the one
hand shelter can reduce the risks of frost and desiccation, but on the other hand should
not be so dense as to outcompete the saplings in terms of light, nutrients and water.
In Northern Germany, a maximal stocking degree of 0.6 is recommended (Preuf} et al.
2017) and the results of our analysis support this advice.

It is apparent, that seedling density is positively related to seed amounts. The observed
seed amounts (0.47-1.34 kg ha™!, Table 1) have to be considered as relatively low.
Whereas practical recommendations in Germany reach from 0.5 to 2 kg ha™! (PreuB et al.
2017; Ruppert and Rothkegel 2018), only in 1/3 of the stands (n = 9) 1 kg or more was
applied per ha. From other studies, it is known that the relationship between seed amount
and resulting plant density is not linear, but rather shows a saturation, which originates
from the limited number of suitable microhabitats (Grossnickle and Iveti¢ 2017).

Further tools to enhance the chances of success of direct seeding, are stratification of
the seeds as well as an appropriate timing. Despite contrary recommendations (Preuf et al.
2017; Ruppert and Rothkegel 2018), the seeds were often (i) not stratified and (ii) seeded
in autumn (Table 1). Again due to the unbalanced structure of the inventory data, we could
not assess the effect of these measures.

The impact of ungulates must also be taken into consideration. Even though it is well
known that roe (Capreolus capreolus) and red deer (Cervus elaphus) can cause severe
damage in Douglas fir plantations (Spellmann et al. 2015), our inventory could not prove
such a relationship, which, among others, might be attributed to the unbalanced data (only
2 of 28 stands were fenced, Table 1).

The chance of successful direct seeding can be raised through the choice of an appropri-
ate provenance. Douglas fir is known for a huge variability between provenances, which
i.a. affects the resistance to frost (Dong 1973; Larsen 1976). According to Braun and Wolf
(2001) and Konnert and Bastien (2019), provenances that sprout their leaves late, generally
showed a comparably high resistance to late frost. Although, they react sensitively to early
and winter frosts, there is evidence that the risk of damage by late-spring frost decreases
once the trees have reached heights of 1 —2 m (Malmqvist et al. 2018).

The outline above makes clear how fragile direct seeding of Douglas fir is. Thus, it is
not surprising that we observed a broad range of densities and covering (Fig. 4). In their
review, Grossnickle and Iveti¢ (2017) compared direct seeding programs of different spe-
cies and observed that less than a half of them can be considered as successful. Success,
however, can be defined in different ways and strongly depends on management goals.
From a financial point of view, Mitchell et al. (1990) argue that at least 80 % of the site
has to be covered by plants, in order that direct seeding becomes more cost-efficient than
planting. If we had applied this standard to our results, only 8 cultures (29 %) would have
met this requirement. Even under a more generous standard, one has to keep in mind that
planted seedlings usually show a quicker growth than seeded ones (Grossnickle and Iveti¢
2017), which in turn shortens the critical time frame of stand establishment. Furthermore,
additional costs for complementary plantings or competition control might accumulate, if
the achieved result is not satisfactory.

Direct seeding is a powerful stand establishment technique with, among others, advan-
tages for root development. Nevertheless it does not fit for all situations. Especially since
resources (i.e. labour, finances, seed) are scarce, they should be invested with caution and
in the best possible manner.
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