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A B S T R A C T   

Forest diebacks pose a major threat to global ecosystems. Identifying and mapping both living and dead trees is 
crucial for understanding the causes and implementing effective management strategies. This study explores the 
efficacy of Mask R–CNN for automated forest dieback monitoring. The method detects individual trees, de
lineates their crowns, and classifies them as alive or dead. We evaluated the approach using aerial imagery and 
canopy height models in the Harz Mountains, Germany, a region severely affected by forest dieback. To assess 
the model’s ability to track changes over time, we applied it to images from three separate flight campaigns 
(2009, 2016, and 2022). This evaluation considered variations in acquisition dates, cameras, post-processing 
techniques, and image tilting. Forest changes were analyzed based on the detected trees’ number, spatial dis
tribution, and height. A comprehensive accuracy assessment demonstrated the Mask R–CNN’s robust perfor
mance, with precision scores ranging from 0.80 to 0.88 and F1-scores from 0.88 to 0.91. These results confirm 
the model’s ability to generalize across diverse image acquisition conditions. While minor changes were observed 
between 2009 and 2016, the period between 2016 and 2022 witnessed substantial dieback, with a 64.57% loss of 
living trees. Notably, taller trees appeared to be particularly affected. This study highlights Mask R–CNN’s po
tential as a valuable tool for automated forest dieback monitoring. It enables efficient detection, delineation, and 
classification of both living and dead trees, providing crucial data for informed forest management practices.   

1. Introduction 

The Harz Mountains, as the northernmost mountain range in Ger
many, contain the Harz National Park, where historical forestry prac
tices have resulted in the predominance of one or very few tree species 
(Knapp et al., 2013). In recent years, this ecosystem has been threatened 
due to the forest structure, a severe drought, and subsequent bark beetle 
attacks, resulting in widespread forest dieback (Thonfeld et al., 2022; 
Holzwarth et al., 2023). To gain a sophisticated understanding of these 
developments and support decision-making, the implementation of an 
earth-observation based forest monitoring system becomes crucial 
(Holzwarth et al., 2020, 2023). Currently, the primary tools for forest 
monitoring in the national park include in situ measurements and 
manual interpretation of aerial imagery (Harz National Park, 2023a). 
Besides, analyzing satellite, aerial, or drone imagery as well as laser 
scanning enables cost-effective and regular forest monitoring (Bagheri 
and Kafashan, 2023; Zhen et al., 2016; Nduji et al., 2023). Individual 

Tree Detection and Crown Delineation (ITDCD) is a popular approach 
for forest monitoring, as it provides a precise representation of the for
est, enabling tree counting and provision of, for example, tree height or 
above-ground biomass (Chadwick et al., 2020; Sun et al., 2022, 2023; 
Jaskierniak et al., 2021). Several traditional algorithms, such as 
valley-following, region-growing and watershed segmentation, are used 
for ITDCD (Zhao et al., 2023a; Mohan et al., 2017; Minařík et al., 2020). 

Recently, Convolutional Neural Networks (CNN) have been 
increasingly used to perform ITDCD (Zhao et al., 2023b). Mask 
Region-based Convolutional Neural Networks (Mask R–CNN) are 
particularly interesting in this context, as they are able to detect, 
delineate and classify objects. Furthermore, trees are recognized not 
only by spectral reflectance and geometrical information but also by 
spatial patterns and neighborhood relationships (He et al., 2020). In 
comparison to traditional methods, Mask R–CNN has shown better re
sults performing ITDCD (Yu et al., 2022; Zhao et al., 2023b). It has been 
widely used to detect individual trees in plantations (Safonova et al., 
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2021), urban forests (Sun et al., 2022), natural deciduous (Braga et al., 
2020) and coniferous forests (Chadwick et al., 2020). The results in 
Gibril et al. (2022) and Dersch et al. (2023) showed that Mask R–CNN 
outperformed other CNN- or Transformer-based instance segmentation 
models. However, trees in very dense forests characterized by a variety 
of tree species and overlapping crowns are much more difficult to detect 
and delineate than trees in plantations (Zhao et al., 2023a). While most 
of these studies focus on a relatively small area with the use of drone 
images (Zhao et al., 2023b), as this offers the highest spatial resolution, 
other studies used very high-resolution satellite imagery (Wagner et al., 
2018; Lassalle et al., 2022) or aerial imagery (Yang et al., 2022). 
Although the mapping accuracy can be reduced due the lower spatial 
resolution of the data (Zhao et al., 2023a), these data can provide 
temporally frequent information on the environmental state over wide 
and remote areas (Ke and Quackenbush, 2011). As input for the Mask 
R–CNN in the ITDCD task Red, Green, Blue (RGB) channeled images are 
the most common, as these are the cheapest to capture and the CNN 
structure is designed to process three channeled images (Zhao et al., 
2023a). Nevertheless, adding digital aerial photogrammetry (Lucena 
et al., 2022) or LiDAR-generated Canopy Height Models (CHM) (Li et al., 
2022) and Near-Infrared (NIR) channels can increase accuracy (Hao 

et al., 2021). In most cases, ITDCD classifies all living trees in a single 
class (Sun et al., 2022). For more specific applications, dead trees 
(Chiang et al., 2020) or specific tree species (Mielczarek et al., 2023) can 
be detected within the forest. Other studies have used multiple classes 
and distinguished between tree species (Zhang et al., 2022; Sandric 
et al., 2022) or health conditions (Safonova et al., 2019; Nguyen et al., 
2021; Minařík et al., 2020). 

The proposed study is focusing on detecting alive and dead trees to 
specifically assess the development during a forest dieback. As forest 
development in the Harz National Park has not yet been analyzed by 
remote sensing studies and a forest dieback has currently occurred, it 
shows a valuable case study. Many forestry administrations have been 
carrying out aerial surveys for decades, these are widely available and 
could therefore used for long-term forest monitoring. These surveys are 
carried out by different contractors, so the acquisition dates, cameras, 
post-processing and tilting effects differ. Therefore, aerial imagery from 
the years 2009, 2016 and 2022 was provided by the Harz National Park 
to investigate forest changes. The following research questions arise 
from these conclusions: 

Fig. 1. The study area and the Harz National Park and its surroundings on (a) imagery from Bing Satellite (c) the SRTM DTM from NASA. (b) The map frame of (a) 
and (c) in Germany. 

Fig. 2. False colour composites of the 2009, 2016 and 2022 aerial imagery within the boundaries of the study area. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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● What accuracy can be achieved for individual tree detection and 
crown delineation and classification as alive or dead using Mask 
R–CNN?  

● Is a Mask R–CNN suitable for detecting individual trees in aerial 
imagery with differing cameras, dates, post-processing and tilting 
effects?  

● Which forest changes can be detected in the Harz Mountains between 
2009 and 2022 using aerial imagery? 

The paper is structured as follows: first, the study area in the Harz 
Mountains, the datasets consisting of aerial images and reference data 
for training and validating the model are described. Afterwards, 
methods underlying the individual tree detection and crown delineation 
are presented. Then the results including the accuracy assessment of the 
tree detection and the forest changes are described. Finally, the results 
placed within the current research context, the limitations of the 
methodology are described and reasons for the forest development are 
discussed. 

2. Study area and datasets 

2.1. Study area: The Harz Mountains 

The study area is located within the Harz Mountains and is part of the 
Harz National Park, which was established in 2006 (Harz National Park, 
2023b). The study area covers an area of 2181ha, stretching from north 
to south for about 6km and from west to east for about 8km (Fig. 1). The 
area is situated on the eastern slopes of the Brocken, the highest peak in 
the mountain range at 1141m. It is located at an altitude of 500–1000m, 
which, under natural circumstances, would be dominated by beech with 
a transition to spruce at an altitude of 700–800m. Towards 1100m, the 
spruce forest opens up to the timberline (Schmidt et al., 2022; Kison 
et al., 2020). However, due to previous forestry use, spruces were 
planted because of their ability to grow fast in the adverse climate, 
making this species dominant. This dominance has declined in recent 
years in favor of beech (Harz National Park, 2022). In addition, the area 
is crisscrossed by bogs, scree slopes and forest trails. The climate in the 
study area is particularly wet, with an average annual precipitation of 
1245mm and cold, with an average annual temperature of 5.9◦C, 
compared to the surrounding lowlands (Deutscher Wetterdienst, 2023a, 
b). In the study period (2009–2022), the climate has been substantially 
warmer (6.9◦C) and drier (1133mm) than the long-term average 

(Deutscher Wetterdienst, 2023a,b) (see Fig. 2). 

2.2. Aerial imagery 

The aerial imagery used in this study is based on three surveys 
conducted in the years 2009, 2016 and 2022 (Table 1 and Fig. 2). All 
images were captured during the summer months between June and 
August, with a spatial resolution of 20 cm and included RGB and NIR 
bands. However, overlap ratios and cameras varied during the flight 
campaigns. Additionally, varying acquisition times and sun zenith an
gles resulted in different illumination conditions. 

To create orthophotos, aerotriangulation and digital orthomosaic 
creation in 2009 and 2016 were carried out with IMAGINE Photogram
metry from Hexagon AB (Stockholm, Sweden), while MATCH-AT from 
Trimble Inc. (Sunnyvale CA, USA) was used in 2022. To ensure data 
comparability, all orthomosaics were resampled to a resolution of 0.2m 
using nearest neighbor and all band values were scaled from 0 to 255. To 
create the CHM, a digital surface model (DSM) was calculated from raw 
aerial images with their orientation parameters and a digital terrain 
model (DTM) using Match-T DSM from Trimble Inc. (Sunnyvale CA, 
USA). Which uses cost-based matching, which combines semi-global 
matching algorithms with feature-based matching algorithms and is 
recommended for non-man-made objects (Trimble, 2019). The resulting 
point clouds yielded good internal height accuracies: 2009: 0.2m, 2016: 
0.24m, and 2022: 0.16m. Filtering and rasterizing these point clouds 
was derived from the ”Flächendeckende Fernerkundungsbasierte For
stliche Strukturdaten (F3)” project, which is optimized for deriving CHM 
from aerial imagery for forestry applications (Kirchhöfer et al., 2020b). 

2.3. Reference data 

Two independent tree crown datasets were required to train and test 
the Mask R–CNN and to validate the results. To prepare the training 
dataset, different plots were defined for each year in the investigation 
period. These plots were chosen to ensure as much variability as possible 
in the data. This variability encompassed coniferous and deciduous 
trees, as well as standing deadwood at varying tree heights and 

Table 1 
Metadata of the aerial imagery from 2009, 2016 and 2022. Date and time of 
recording, the camera used, overlap long and cross flight direction, ground 
sampling distance (GSD) and zenith angle of the sun during flight.   

Date of 
recording 

Camera Overlap 
long/cross 

GSD Sun 
angle 

2009 20.08.2009 
11:38–14:26 

Intergraph DMC 
01 Nr.113 

70%/40% 20 
cm 

45◦–51◦

2016 23.06.2016 
09:40–11:15 

DMCII_250 60%/30% 20 
cm 

40◦–60◦

2022 24.08.2022 
08:34–11:15 

UltraCam Eagle 
M3 

80%/30% 20 
cm 

38◦–49◦

Table 2 
Number of manual delineated tree crowns for training and validation.   

Training Validation 

Alive Dead Total Alive Dead Total 

2009 1720 157 1877 173 186 359 
2016 3557 1222 4779 473 106 579 
2022 1327 1220 2547 173 186 359 
Total 6604 2599 9203 1235 350 1585  

Fig. 3. Distribution of training (blue, green and yellow) and validation (pink) 
plots on aerial imagery from 2022 within the study area. Details of the plots can 
be seen for training in Fig. A.10 and for validation in Fig. A.11. (For interpre
tation of the references to colour in this figure legend, the reader is referred to 
the Web version of this article.) 
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background elements such as paths, bare ground, fallen trees and un
derstory. The resulting plots are visualized in Fig. 3, with detailed rep
resentations provided in the Fig. A.10. For the validation dataset seven 
circular validation polygons with a 50m diameter were placed to include 
both alive and dead trees across each year. The manual delineation and 
labeling of each individual tree crown within the training polygons for 
the corresponding year, and across all years for the validation polygons, 
were executed through visual interpretation of orthophotos. Here the 
assumption was made that each tree is either dead or alive; in borderline 
cases, the tree was assigned to the closest category. 

The ensuing validation plots can be seen in Fig. 3 and a detail of the 
RGB composite from each year in Fig. A.11. The total number of 
delineated tree crowns in the training and validation datasets is shown 
in Table 2. 

3. Methods 

3.1. Mask R–CNN 

Mask R–CNN is a deep learning model that is commonly used for 
object detection tasks in remote sensing (Li et al., 2020), particularly for 
ITDCD tasks (Braga et al., 2020; Hao et al., 2021; Zhang et al., 2022; 
Safonova et al., 2021). The structure of the Mask R–CNN (Fig. 4) builds 
upon the Faster R–CNN by adding a branch that predicts a binary mask 
for each detected object (He et al., 2020; Ren et al., 2017). As a first step, 
equal-sized input images are inserted into the Residual neural Network 
(ResNet) and Feature Pyramid Network (FPN) backbone structures, 
which perform multiple convolutional and pooling tasks to extract vi
sual feature maps at different scales. These features are used as input to 
the Region Proposal Network (RPN), which creates proposed Regions of 
Interests (RoI). RoIAlign operation extract these proposed RoIs in a 
fixed-size using bilinear interpolation. In the box head, Fully Connected 
Networks (FCN) perform the RoI classification to determine the class 
label and a refined bounding box. In the mask head pixel-level masking 
is carried out by convolutional layers in the respective RoI (He et al., 
2020). The network is trained using backpropagation and mini-batch 
stochastic gradient descent (He et al., 2020). The Mask R–CNN model 
was performed with the ArcGIS (Version 3.0.0) API for Python, using an 
implementation from He et al. (2020) with Fast.ai and PyTorch. 

3.2. Training data and model training 

To train the Mask R–CNN, fixed-sized image chips of the aerial im
agery merged with the CHM and binary masks for each class were 
required. The size of the image chips was set to 256 × 256 pixels 
(2,621m2) with a overlap of 75%, thereby RGB, NIR, and CHM bands 
were used. Attaching the CHM and NIR bands has already been proven 
to increase performance for ITDCD (Lucena et al., 2022; Hao et al., 2021; 

Li et al., 2022; Schiefer et al., 2020). The image chips were created only 
within the training plots described in section 2.3, to ensure that the 
training data included only labeled trees. The tree crown polygons were 
used to create R–CNN masks for the classes alive and dead tree crowns. 
Due to the high overlap, a total of 956 image chips were created over the 
investigation period (Table 3). From this sample, 765 (80%) were used 
for the Mask R–CNN training and 191 (20%) were used for testing during 
training. 

ResNet-50 was used as pretrained backbone to train the Mask 
R–CNN, as this has been shown to lead to more robust results in ITDCD 
(Hao et al., 2022). A learning rate finder was used to determine the 
learning rate (Smith, 2017), which finds the learning rate value that 
generated the lowest loss after a series of small runs. The training was 
started with a learning rate of 1.5849e− 04 and a batch size of 4. While 
training, augmentation was randomly applied to the training and vali
dation images before feeding them into the neural network. Three types 
of data augmentation were implemented: vertical flip with a probability 
of 50%, rotation from 180◦ to − 180◦ with a probability of 50% and 
brightness change from a range from 40% to 140%. 

The training lasted for 500 epochs, but the validation loss reached its 
lowest value after 463 epochs (1.42) (Fig. 5). Therefore, the model saved 
in this state was used for the following ITDCD. 

Fig. 4. The Mask R–CNN architecture.  

Table 3 
Number of image chips per year and class used for Mask R–CNN training. Note 
that one image chip can have multiple labels.  

Year Alive Dead Total 

2009 160 80 162 
2016 470 402 470 
2022 264 313 324 
Total 894 795 956  

Fig. 5. Development of training and validation losses during training of the 
Mask R–CNN. 
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3.3. Tree crown detection and delineation 

The trained model was applied to the aerial imagery from 2009, 
2016 and 2022, in order to detect individual tree crowns and classify 
them as either alive or dead. The model’s output consists of vector files, 
each containing with corresponding class annotations and confidence 
scores. Any tree crowns with a confidence score below 0.2 are discarded 
(Hao et al., 2022). The non-maximum suppression algorithm was 
applied to remove features overlapping more then 30% to another (Wu 
and Li, 2021). In order to quantify forest changes, the number and height 
of dead as well as alive trees is shown for 2009, 2016 and 2022. For the 
tree heights the maximum CHM values in each tree crown is utilized. 

3.4. Accuracy assessment 

For an independent validation of the results, a detailed accuracy 
assessment was performed. Intersection over Union (IoU), a widely used 
metric, was employed for the comparative analysis of tree crown 
detection results against the reference data obtained from the validation 
plots. IoU is calculated by dividing the intersecting area of the detected 
tree crown and the reference tree crown by the union area (Padilla et al., 
2020). An IoU threshold of 0.5 is used to distinguish a detected tree 

crown as true positive (TP), as this is a commonly used threshold 
(Maxwell et al., 2021). Based on the IoU, additional accuracy metrics 
were derived, including Precision, Recall and the F1-Score. Additionally, 
the Average Precision (AP) is calculated for an IoU of 0.5. AP is a single 
scalar value that summarizes the precision-recall curve and provides a 
measure of the overall performance of the object detection model. To 
test the reliability of the detection the F1-Score is tested at IoU thresh
olds ranging from 0.5 to 0.95. 

AP =

∫ 1

0
Precision(Recall) dRecall (1)  

These accuracy metrics were calculated for all years and both classes, 
and for the classes combined. To account for the algorithm’s perfor
mance in different environments, the performance and forest parame
ters were calculated for each individual validation polygon in each year. 
This analysis enables investigating the impact of different forest com
positions and backgrounds on accuracy. Forest composition was 
described using several forest parameters derived within the validation 
plots, based on the ground truth tree crowns. These parameters and their 
calculation methods are described in Table 4. Finally, the dominant 
background types were interpreted and annotated from respective aerial 
imagery. 

4. Results 

4.1. Accuracy of tree crown detection and delineation 

Fig. 6 shows a close-up of the same area, displaying the detected alive 
and dead tree crowns in 2009, 2016 and 2022. Table 5 summarizes F1- 
Score and AP for all three years. We can see that both metrics achieved 
their highest values in 2016 (0.93 F1-Score, 0.88 AP), followed by 2009 

Table 4 
Description of the forest parameters and their calculation methods applied for 
validation.  

Forest Parameter Description 

Total Total number of tree crowns with centroids in the plot 
% Dead Percentage of dead trees of the total number above 
Height Mean of maximum height of CHM within tree crown 
% Gap Percentage of the plot that is not covered by tree crowns  

Fig. 6. Detail of the same area, displaying the detected alive and dead tree crowns in 2009, 2016 and 2022 with the respective aerial imagery.  

Table 5 
Accuracy metrics: Recall, Precision, F1-Score and Average Precision (AP) for each year, for each class and for both classes combined with an Intersection over Union 
value of 0.5.   

2009 2016 2022 

Alive Dead Total Alive Dead Total Alive Dead Total 

Precision 0.95 0.85 0.94 0.97 0.93 0.96 0.91 0.85 0.88 
Recall 0.89 0.96 0.89 0.89 0.93 0.90 0.87 0.90 0.88 
F1-Score 0.92 0.90 0.91 0.93 0.93 0.93 0.89 0.87 0.88 
AP 0.81 0.70 0.80 0.88 0.90 0.88 0.83 0.80 0.81  

M. Lucas et al.                                                                                                                                                                                                                                   



ISPRS Open Journal of Photogrammetry and Remote Sensing 13 (2024) 100071

6

(0.91 F1-Score, 0.80 AP), and lastly 2022 (0.88 F1-Score, 0.81 AP). The 
trend is mirrored in the overall Precision and Recall values, with Pre
cision consistency slightly higher (0.88–0.96) than Recall (0.88–0.90) 
across all years. Looking at individual tree crown classes, the model 
performed slightly better at detecting alive trees compared to dead trees 
based on F1-Score and AP. However, in 2016, the F1-Score values were 
identical for both classes, and the AP was even higher for dead trees. The 
model exhibited a trend of higher Precision than Recall for alive tree 
crowns, whereas the opposite was true for dead tree crowns. Fig. 7 de
picts the relationship between IoU and F1-Score. The curves for all three 
years demonstrate a similar trend: a relatively constant F1-Score up to 
an IoU of 0.7, followed by a steeper decline until reaching an F1-Score of 
0 at an IoU of 0.95. The most stable performance was observed in 2016, 
followed by 2009. In 2022, the F1-Score dropped more significantly 

even at an IoU value of 0.6. Additionally, in 2009 and 2016, the accu
racy for dead tree crowns declined more rapidly compared to live trees. 
Interestingly, in 2022, all curves exhibited a similar trend. 

Table 6 presents the accuracy metrics and forest parameters for each 
validation plot. The details of these plots are visualized in Fig. A.11. 
Forest parameters show substantial changes between years due to forest 
development. Except for plot 5 in 2022, all plots achieved high accuracy 
with F1-Scores exceeding 0.75. Some interesting relationships emerge 
between forest parameters and validation metrics. Plots with high stand 
density, which translates to shaded backgrounds in the imagery, yielded 
the best results (Plots 1, 3, 5, and 6 in Table 6 for 2009 and 2016). These 
plots often exhibited a slight underestimation of tree crowns, indicated 
by a lower Recall than Precision. This phenomenon is evident in plots 
like 5 (2009), 3 (2016), and 1 (2022). Conversely, plots with a low 
number of trees, a high proportion of gaps, short tree heights, and un
even backgrounds led to lower accuracy. This resulted in more frequent 
overestimation, reflected in a higher Recall than Precision. Examples 
include plots 4 (2016), 2 (2022), and 7 (2022). Interestingly, the pro
portion of dead trees did not appear to affect the accuracy metrics. 

4.2. Forest changes 

Fig. 8 reveals considerably smaller changes in tree cover between 
2009 (a) and 2016 (b) compared to the period between 2016 (b) and 
2022 (c). In 2009 (a), there were barely any areas with dead trees. 
However, by 2016 (b), several smaller patches of dead trees emerged, 
particularly in the northwest region (Fig. 8b). This is reflected in the 
numerical data (Fig. 8d): the total number of trees between 2009 and 
2016 remained relatively stable, increasing slightly from 749,618 to 
755,340 (+0.76%). However, the number of alive trees decreased by 
2.97%, while the number of dead trees increased by 215.01%. 
Comparing the 2016 (b) and 2022 (c) maps in Fig. 8, it is evident that 
large areas of trees have died or fallen. Fig. 8d confirms this observation. 
The total number of trees declined from 755,340 to 409,982 (− 45.72%). 
The number of dead trees rose sharply (+268.39%), and the number of 
live trees dropped substantially (− 63.48%). Overall, from 2009 to 2022, 
the total number of trees decreased by 45.31% (from 749,618 to 
409,982). The number of alive trees declined even more (64.57%, from 
736,786 to 261,072), while the number of dead trees increased by a 
substantial 1060.46% (from 12,832 to 148,910). 

The maps in Fig. 9 of 2009 (a) and 2016 (c) showing a similar height 
structure: Areas with low height in the west and east centers of the area, 
as well as in the south. These structures were similar in both 2009 and 
2016, but the 2016 map reveals more gaps in the forest. The histogram 
for alive trees in 2009 (b) showed two local maxima, one at about 25m 
and one at about 10m tree height, while the number dead trees was 
barely noticeable. In the histogram for alive trees in 2016 (d), the double 
local maximum was only slightly visible, as the larger maximum 
remained the same, while the smaller maximum increased. The curve of 

Table 6 
Description validation plots in 2009, 2016 and 2022 using F1-Score, Precision, 
Recall, Total: Number of ground truth trees and in brackets of detected trees, % 
Dead: Fraction of ground truth dead trees, Height: Mean value of all maximum 
CHM values of the ground truth tree crowns, % Gap: Gap percentage and 
Background: Background composition: 1: Shadow, 2: Lying deadwood, 3: Bare 
ground, 4: Shrubs and grass (Ascending from most to least frequent).   

1 2 3 4 5 6 7  

2009 

F1-Score 0.95 0.88 0.84 0.92 0.94 0.92 0.93 
Precision 0.97 0.89 0.91 0.89 0.99 0.97 0.90 
Recall 0.94 0.86 0.78 0.96 0.90 0.87 0.96 
Total 121 

(118) 
73 
(71) 

93 
(80) 

70 
(75) 

98 
(89) 

119 
(106) 

73 
(78) 

% Dead 0 5 0 0 0 0 74 
Height 9.82 21.28 8.31 26.45 19.88 22.36 31.38 
% Gap 66 69 72 60 65 63 65 
Background 1, 4 1 4 1 1 1 1  

2016 

F1-Score 0.93 0.91 0.96 0.89 0.94 0.95 0.84 
Precision 0.98 0.98 0.99 0.89 0.97 0.96 0.87 
Recall 0.89 0.85 0.94 0.89 0.92 0.93 0.81 
Total 121 

(110) 
67 
(63) 

92 
(88) 

52 
(54) 

105 
(101) 

112 
(110) 

31 
(30) 

% Dead 0 73 0 77 1 0 52 
Height 13.43 21.51 11.90 27.10 20.66 23.91 19.92 
% Gap 56 64 52 55 65 68 89 
Background 1 1 1, 4 1, 4 1 1 1, 2, 4  

2022 

F1-Score 0.94 0.81 0.81 0.75 0.00 0.96 0.90 
Precision 0.96 0.75 0.86 0.77 0.00 0.98 0.81 
Recall 0.91 0.88 0.78 0.74 0.00 0.94 1.00 
Total 113 

(107) 
17 
(20) 

76 
(69) 

27 
(26) 

0 (11) 104 
(100) 

22 
(27) 

% Dead 0 35 93 19 0 99 5 
Height 16.34 6.57 12.36 5.78 0.00 23.81 7.23 
% Gap 66 94 62 93 100 66 94 
Background 1 2, 3 1, 3 2, 4 3 1 2, 3, 4  

Fig. 7. The Relationship between intersection over union (IoU) and F1-Score of alive and dead tree crowns, as well as for total classification, for the years 2009, 2016 
and 2022. 
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dead trees was more evident here. Comparing the 2022 (e) to 2016 (c) 
map, low tree heights were found in the major part instead of the pre
dominantly high tree heights. Areas without tree height were observed, 
particularly at the edges of the study area. When comparing histograms 
of 2016 (d) and 2022 (f), it is interesting to note that the structure of 
these double maximum values is also present here. The upper maximum 
value of the alive trees histograms in 2009 (b) and 2016 (d) could be 
found as the maximum in the dead trees histogram of 2022 (f) and the 
lower maximum value was visible in the alive trees. Additionally, there 
was a spike in the dead trees at very low tree heights and a spur in the 
alive trees at higher tree heights. Striking in the Figs. 8 and 9 are the strip 
effects in 2009 (a) in the horizontal and 2016 (c) in the vertical direction 
(for more details: 5.1). 

5. Discussion 

5.1. Tree detection and delineation performance 

The accuracy assessment yields good performance of the Mask 
R–CNN with a F1-Score > 0.88 and an AP > 0.8. Furthermore, the Mask 
R–CNN was applied to images from three flight campaigns, each with 
different acquisition dates, cameras, post-processing, and tilting effects. 
The stable and high accuracy scores underline the transferability and 
reliability of this method. The analysis of performance at different IoU 
values in Fig. 7 showed that the model achieved a decent detection 
quality. Alive tree crowns were slightly better detected than dead tree 
crowns (Figs. 5 and 7). Reasons for the lower accuracy for dead trees 
might be the challenging separation between bare ground and dead 
trees, their less frequent occurrence in 2009 and 2016, and lower 
number of training samples. Table 5 and Fig. 7 also demonstrate that the 
classification in 2016 is more accurate than in 2009 and 2022, which can 
be attributed to a higher number of training samples from 2016. The 
accuracy metrics in 2022 indicate worse results than in 2009, although 
more training data was available in 2022. This is probably due to the 
more inhomogeneous forest structure with a higher number of dead 
trees in 2022. When considering Precision and Recall values, it can be 

concluded that there was an underestimation in the number of alive tree 
crowns and an overestimation of dead tree crowns. The underestimation 
of alive tree crowns is probably due to a lack of generalizability of the 
model and thus an insufficient number of training data. Comparable 
studies revealed that this is probably a widespread phenomenon (Beloiu 
et al., 2023; Chadwick et al., 2020; Natesan et al., 2020). For dead tree 
crowns, this is due to a higher number of false positives. The model was 
not able to rely on the CHM for dead trees as they were occasionally 
undetected in the stereomatching procedure. 

A direct comparison to other studies is challenging, for example due 
to different input imagery, reference data, and environmental factors, 
such as the complexity of the forest environment (Zhao et al., 2023a; 
Zhang et al., 2022). Chadwick et al. (2020) demonstrates the detection 
of regenerating conifers in a single class in Canada using Mask R–CNN, 
achieving an F1-Score of 0.91 with the pretrained COCO network. 
Another study conducted in subtropical China detected and classified 
five broadleaf and three conifer tree species, achieving an F1-Score of 
0.90–0.92 for conifers by using a very large training dataset with 52,737 
manually delineated tree crowns (Zhang et al., 2022). Both studies 
demonstrate very similar accuracies for alive tree crowns (0.90–0.92) 
compared to those achieved with this method (0.89–0.93). Chiang et al. 
(2020) classified dead tree crowns in a single class surrounded by forest 
using Mask R–CNN, achieving a slightly lower AP of 0.6 than with this 
methodology (0.7–0.9), highlighting the difficulty in classifying dead 
tree crowns. 

Although most of these studies differ slightly in spatial resolution, 
pretrained networks, number of training samples and detected classes, 
the presented results are in accordance with the results of other studies 
in terms of the accuracy. 

The analysis of individual validation plots shows that a uniformly 
dense stand density and shadows as backgrounds, led to the best results. 
In contrast, inhomogeneous plots with small trees, lower stand density 
and forest gaps gave poorer results. A review paper by Zhao et al. 
(2023a) supports these findings: a heterogeneous background led to a 
more complex classification task, which required more training data. In 
some cases, bare ground was confused with dead trees, probably due to 

Fig. 8. Map of alive and dead trees for the years 2009 (a), 2016 (b) and 2022 (c). Histogram (d) shows the total number of detected alive and dead trees for the years 
2009, 2016 and 2022. 
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their similar spectral composition. 
The interpretation of the results shows some limitations of the pro

posed methodology: a strip pattern is visible in Figs. 8 and 9 in the years 
2009 and 2016 and in detail in the Fig. B.12, which is due to the digital 
orthomosaic creation procedure and a lower long image overlap. This 
results in changing tilting effects and lighting, causing the detection to 
differ between the two sites. This strip pattern does not appear in 2022, 
which is due to a more sophisticated derivation of the orthophotos. True 
Orthophotos should be used for future analyses to avoid this effect. The 
photogrammetric derivation of CHM was already validated by Chadwick 
et al. (2020); Hao et al. (2021); Kirchhöfer et al. (2020a) and showed 
good internal height accuracies (<0.24m). However, missing height 
values for dead trees caused a spike at very low heights in the histograms 
of dead trees within Fig. 9. This is only slightly visible in 2009 and 2016 
due to the low number of dead trees but is more pronounced in 2022. 
The training and validation data used here were produced solely on the 
basis of orthophotos, which in some cases makes it difficult to distin
guish the crowns from one another. In addition, the data acquisition was 

only carried out by a single person, which can lead to a certain influence 
on the results despite the strictest diligence. 

5.2. Forest changes 

Considering the Figs. 8 and 9, a pattern can be identified. There were 
minor changes between 2009 and 2016, but from 2016 to 2022, major 
changes occurred. The small increase in alive trees from 2009 to 2016 
could be attributed to a higher detection accuracy in 2016. From 2016 to 
2022 a severe forest dieback was detected, with a loss of 63.48% of alive 
tree crowns and a simultaneous gain of 268.39% of dead tree crowns. 
The results show that the old and tall spruce stands were particularly 
affected by the forest dieback. This observation was also confirmed by 
the Harz National Park and the town of Osterrode (Harz National Park, 
2022; Buff, 2021). 

The forest loss can mainly be attributed to an outbreak of bark beetle 
infestation, which was particularly severe in the years 2018–2020 (Harz 
National Park, 2020b; Rohde et al., 2021). Such insect infestations have 

Fig. 9. Map of tree height for the years 2009 (a) 2016 (c) and 2022 (e). Histograms of the height for alive and dead trees for the respective years 2009 (b), 2016 (d) 
and 2022 (f). 
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become more frequent in recent years due to climate change (Diez et al., 
2021). In the Harz Mountains, three factors facilitated the spread of bark 
beetles and thus contributed to the severity of its destruction. The 
mountain range was forested with about 80% spruce, which provided a 
rich wood supply and enabled easy spreading (Schmidt et al., 2022). 
Additionally, there was a pronounced drought period in these years 
(Deutscher Wetterdienst, 2023a,b), which weakened the of trees’ ability 
to resist the infestation (Rohde et al., 2021). This was exacerbated by the 
fact that the National Park only used mechanical insect control on 40% 
of its area in 2016, as it is restricted by strict nature conservation laws 
(Harz National Park, 2020b). The bark beetle was able to spread over a 
wide area and appeared in high quantities. To protect surrounding forest 
owners from the bark beetle swarms, a 500m wide protective strip was 
cleared along the edges of the national park (Harz National Park, 
2020a). Moreover, additional areas were cleared of dead trees due to 
visitor protection or wildfire prevention as evident in Figs. 8 and 9 (Harz 
National Park, 2022). 

6. Conclusion 

This study evaluates the effectiveness of Mask R–CNN for individual 
tree detection and crown delineation in monitoring a forest dieback in 
the Harz Mountains. Therefore, a Mask R–CNN was used to delineate 
and classify trees as dead or alive, using aerial imagery and a canopy 
height model. The classified tree crowns were then used to analyze forest 
changes from 2009 to 2022, considering number, spatial distribution, 
and height. 

The detailed accuracy assessment underlines the general good per
formance of Mask R–CNN. It effectively delineates individual tree 
crowns, and classifies them as dead or alive, even under varying con
ditions. This includes using aerial images with differing cameras, dates, 
post-processing and tilting effects. While the results indicate a slight 
underestimation of the total tree count, with a tendency to underesti
mate live trees and overestimate dead trees, accuracies remained stable 

throughout the study period. Between 2009 and 2016, no meaningful 
forest change was observed. However, substantial changes were iden
tified between 2016 and 2022. Overall, a severe forest dieback was 
detected, with a total loss of 64.57% of living trees. Notably, tall trees 
were disproportionately affected. 

This study demonstrates the potential of ITDCD using Mask R–CNN 
on aerial imagery as a valuable tool for forest dieback monitoring. 
Future research could focus on incorporating True Orthophotos and very 
high-resolution satellite imagery to establish more consistent and 
frequent monitoring. 

The integration of these results could lay the groundwork for auto
mated forest monitoring systems. Such systems could provide real-time 
or near-real-time updates on forest inventory and health, facilitating 
timely intervention and management strategies. 
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Fig. A.10. Details of the training plots used in each year, along with the corresponding aerial imagery as an RGB composite. The location of these polygons can be 
seen in Fig. 3.  
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Fig. A.11. Details of the validation plots used in each year with the corresponding aerial imagery as an RGB composite. The location can be seen in Fig. 3.  
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Appendix B. Strip Pattern Detail

Fig. B.12. Details of the strip pattern in 2016 (a) with aerial imagery and (b) with added detected trees.  
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intensiviert. https://www.nationalpark-harz.de/de/aktuelles/2020/2020_06_12_Bor 
kenkaefersicherung/. (Accessed 6 June 2024). 

Harz National Park, 2020b. Waldentwicklung im Nationalpark Harz. https://www.na 
tionalpark-harz.de/de/downloads/Waldentwicklung-im-Nationalpark-Harz?downl 
oad=barrierearm. (Accessed 6 June 2024). 

Harz National Park, 2022. Tätigkeitsbericht 2021. https://s.gwdg.de/0mlA9D. (Accessed 
6 June 2024). 

Harz National Park, 2023a. Tätigkeitsbericht 2022. https://s.gwdg.de/d6O0RT. 
(Accessed 6 June 2024). 

Harz National Park, 2023b. Wir über uns. https://www.nationalpark-harz.de/de/der-nat 
ionalpark-harz/wir-ueber-uns/. (Accessed 6 June 2024). 

He, K., Gkioxari, G., Dollár, P., Girshick, R., 2020. Mask r-cnn. IEEE Trans. Pattern Anal. 
Mach. Intell. 42, 386–397. https://doi.org/10.1109/TPAMI.2018.2844175. 

Holzwarth, S., Thonfeld, F., Abdullahi, S., Asam, S., Da Ponte Canova, E., Gessner, U., 
Huth, J., Kraus, T., Leutner, B., Kuenzer, C., 2020. Earth observation based 
monitoring of forests in Germany: a review. Rem. Sens. 12 https://doi.org/10.3390/ 
rs12213570. 

Holzwarth, S., Thonfeld, F., Kacic, P., Abdullahi, S., Asam, S., Coleman, K., Eisfelder, C., 
Gessner, U., Huth, J., Kraus, T., Shatto, C., Wessel, B., Kuenzer, C., 2023. Earth- 
observation-based monitoring of forests in Germany - recent progress and research 
frontiers: a review. Rem. Sens. 15 https://doi.org/10.3390/rs15174234. 

Jaskierniak, D., Lucieer, A., Kuczera, G., Turner, D., Lane, P., Benyon, R., Haydon, S., 
2021. Individual tree detection and crown delineation from unmanned aircraft 
system (uas) lidar in structurally complex mixed species eucalypt forests. ISPRS J. 
Photogrammetry Remote Sens. 171, 171–187. https://doi.org/10.1016/j. 
isprsjprs.2020.10.016. 

Ke, Y., Quackenbush, L.J., 2011. A review of methods for automatic individual tree- 
crown detection and delineation from passive remote sensing. Int. J. Rem. Sens. 32, 
4725–4747. https://doi.org/10.1080/01431161.2010.494184. 
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