Berichte des Forschungszentrums Waldökosysteme, Reihe B, Band 86, 2020

Probenvorbereitungs-, Untersuchungs- und Elementbestimmungs- und Qualitätskontrollmethoden des Umweltanalytik-Labors der Nordwestdeutschen Forstlichen Versuchsanstalt

4. Ergänzung: 2012 - 2019

Teil 3: Elementbestimmungsmethoden von M bis Z und Sammelanhänge

von

Nils König und Heike Fortmann

Göttingen 2020

Inhaltsübersicht Band 84-86:

Ra	nd	84:
Da	пu	04.

Probenvorbereitungsmethoden, Untersuchungsmethoden und Gerätekurzanleitungen

Band 85:

Elementbestimmungsmethoden A-L

Band 86:

Elementbestimmungsmethoden M-Z und Sammelanhänge

Inhalt Band 86:

Inhaltsübersicht Band 84-86	3
Inhalt Band 86	3
Vorwort	5
Danksagung	6
Allgemeiner Aufbau der Probenvorbereitungsmethoden	7
Allgemeiner Aufbau der Untersuchungsmethoden	
Allgemeiner Aufbau der Elementbestimmungsmethoden	
Allgemeiner Aufbau der Qualitätskontrollmethoden	
Liste der Probenvorbereitungsmethoden	15
Liste der Untersuchungsmethoden	17
Liste der Qualitätskontrollmethoden	20
Liste der Elementbestimmungsmethoden	21
Elementbestimmungsmethoden von M bis Z	35
Sammelanhänge	301

Vorwort

des Labors der Niedersächsischen Bei Inbetriebnahme Forstlichen Versuchsanstalt im Jahre 1989 wurde von der Laborleitung entschieden, alle verwendeten Methoden gut zu dokumentieren und auch eventuell nötige Änderungen oder Verbesserungen stets festzuhalten. Dass dieser gute Vorsatz in der Praxis eines Routinelabors nicht immer leicht zu erfüllen ist, Kollegen die Kolleginnen und anderer Labors nachvollziehen. Fragt man nämlich bei anderen Labors einmal nach Details verwendeten Methode, liegen oft veraltete so Methodenbeschreibungen und Handaufzeichnungen beim Laborpersonal vor. Detaillierte Methoden-Veröffentlichungen sind relativ selten.

Laborproben-Informationssystems Mit des **LAPIS** wurde iedem Einzelanalysen-Wert entschieden. ein Methoden-Code zu abzuspeichern, um auch nach vielen Jahren noch nachvollziehen zu können, Methode. welchem Analysegerät und Probenvorbereitung und -Behandlung der Analysenwert ermittelt wurde. Mit Hilfe des Methoden-Codes konnten auch kleinere Änderungen an einer Methode dokumentiert werden, was sich sehr bald als sinnvoll und nötig erwies. So sind zum Beispiel innerhalb von 6 Jahren allein 9 verschiedene oder geänderte Nitrat-Bestimmungsmethoden verwendet worden, mit denen zum Teil nicht voll vergleichbare Daten gemessen wurden, wie sich später herausstellte.

1994 haben wir begonnen, zu jedem Methoden-Code eine vollständige Probenbehandlungs-, Untersuchungs-, der Analysenmethode, der Geräteparameter, der Gerätebedienung und der Datendokumentation anzufertigen Datenauswertung sowie vorhandenen Beschreibungen in eine einheitliche Form zu übertragen. Der Umfang von ca. 1.400 Seiten hat uns selbst überrascht und zu der späten Veröffentlichung 1996 (Band 46-48) bzw. 1999 (Band 49) geführt. 1999 Ergänzungsbände die ersten (Band 58-60) Methodenbeschreibungen aus den Jahren 1996 bis 1998. Leider ist es uns nicht wie geplant gelungen, alle 2 Jahre weitere Ergänzungsbände zu erstellen. Erst im Jahr 2009 erschien daher die 2. Ergänzung (Bände 75-78) mit den Methodenbeschreibungen aus den Jahren 1999 bis 2008 und im Jahr 2012 die 3. Ergänzung (Bände 79-81) mit den Methodenbeschreibungen bis zum Jahr 2011.

In den vergangenen 8 Jahren sind über 120 neue Elementbestimmungsmethoden und einige Probenvorbereitungs-, und Untersuchungsmethoden sowie Gerätekurzanleitungen hinzugekommen. Wir hoffen, dass in Zukunft alle neuen Methoden von unseren Nachfolgern in der Laborleitung zeitnah veröffentlicht werden können.

Wir sind uns bewusst, dass wir mit dieser sehr detaillierten Dokumentation einen sehr weitgehenden Einblick in unsere Laborarbeit geben, die sicherlich nicht fehlerfrei ist. Wir möchten damit auch zur Diskussion über Methoden-Auswahl und -Durchführung, über Qualitätskontrolle und Datendokumentation

und nicht zuletzt über Methoden- und damit Datenvergleichbarkeit anregen. Verbesserungs- und Korrektur-Vorschläge nehmen wir dankbar entgegen.

Nils König

Heike Fortmann

Abteilung Umweltkontrolle, Sachgebiet Umweltanalytik Nordwestdeutsche Forstliche Versuchsanstalt

Danksagung

Diese Veröffentlichung wäre nicht möglich gewesen ohne die vielfältige Arbeit aller Mitarbeiterinnen und Mitarbeiter des Labors, die bei der Einarbeitung, Durchführung und Verbesserung sowie bei der Fort- und Neuentwicklung der Methoden mitgewirkt haben.

Folgende Mitarbeiterinnen und Mitarbeiter haben sich um die Weiterentwicklung, Verbesserung und Dokumentation von Methoden sowie deren Tests und Einführung in die Routine verdient gemacht: Frau Clarissa Cassar, Frau Claudia Günther, Frau Sandra Gries, Frau Heike Koopmann, Herr Michael Krinninger, Herr Karl-Ludwig Lüter, Frau Loan Mai, Frau Barbara Seewald, Frau Susanne Weinrich und Frau Ellen Wolff.

Für die Entwicklung und den Bau von verschiedenen Labor-Anlagen, Labor-Geräten und Arbeitshilfen gebührt unser Dank Herrn **Rolf Würriehausen** und Herrn **Frank Heun**.

In allen Fragen der Daten-Kontrolle, -Verarbeitung, -Sicherung und - Dokumentationen wurden wir von Herrn **Eberhart Bockhorst** und Herrn **Andreas Schulze** stets beraten und durch Programmierungsarbeiten unterstützt, wofür wir herzlich danken.

Allgemeiner Aufbau der Probenvorbereitungsmethoden

Der Text aller Lagerungs- und Probenvorbereitungsmethoden ist gleich aufgebaut.

Jede Seite hat eine **Kopfzeile**, in der die Matrix (Probenart), die Methodenbezeichnung, das Methodenkürzel und die Seitenzahl eingetragen sind.

Auf der Titelseite ist direkt unter der Kopfzeile das **Einführungsdatum der Methode** angegeben. Es folgt die genaue **Bezeichnung** der Methode.

Es folgt eine Tabelle, in der **Methodenverweise** gegeben werden. Wenn die Probenvorbereitungsmethode normgerecht ist oder in Anlehnung an eine **Norm** (DIN, EN, ISO) entwickelt wurde, so ist die entsprechende Norm in der 1. Zeile der Tabelle angegeben. In der 2. Zeile ist angegeben, welcher Methode des **Handbuchs Forstliche Analytik (HFA)** die Elementbestimmungsmethode entspricht. In Zeile 3 ist der aus dem HFA, Teil E ableitbare **Methoden-Code** angegeben.

Danach sind unter der Überschrift **Geräte und Zubehör** alle benötigten Geräte und Materialien aufgelistet. Die gegebenenfalls zu verwendenden **Chemikalien** bzw. **Lösungen** sind unter gleich lautenden Überschriften im Anschluss zusammengestellt. Es folgen bei manchen Methoden in einem Kasten **wichtige Hinweise** zur Methodendurchführung.

In einem Kasten am unteren Ende der Seite sind die zur Methode gehörigen Anhänge und Literaturangaben angegeben. Die durchnummerierten Anhänge findet man direkt im Anschluss an die Methodenbeschreibung. Eventuell genannte Gerätekurzanleitungen finden sich im Band 84, Reihe B. Auf der 2. und den folgenden Seiten der Methodenbeschreibung ist die Durchführung der Methode ausführlich beschrieben. Bei einigen Methoden wird hier auf die jeweilige Gerätekurzanleitung verwiesen. Gibt es keine eigene Gerätekurzanleitung für das zu benutzende Gerät, so findet man die Angaben zur Gerätebedienung im Abschnitt Durchführung. Besonders wichtige Durchführungshinweise sind mit "Achtung" hervorgehoben. Zum Schluss finden sich manchmal Hinweise zur Gerätewartung.

In den Anhängen am Ende der Methode sind unterschiedliche Detailinformationen zur Methode angegeben. Auf die Anhänge ist im Methodentext an der jeweiligen Stelle verwiesen.

Allgemeiner Aufbau der Untersuchungsmethoden

Der Text aller Untersuchungsmethoden ist gleich aufgebaut.

Jede Seite hat eine **Kopfzeile**, in der die Matrix, die Methodenbezeichnung, der Methoden-Code, der Chemie-Archiv-Code (Lapis alt) und die Seitenzahl eingetragen sind.

Auf der **Titelseite** ist direkt unter der Kopfzeile das **Einführungsdatum der Methode** angegeben. Es folgt die genaue Bezeichnung der Methode.

Da für jede Untersuchungsmethode die Proben auf eine ganz bestimmte Weise vorbereitet und gelagert werden müssen, werden in einer **Tabelle** diejenigen **Lagerungs- und Probenvorbereitungsmethoden** aufgelistet, mit denen die Proben vorbehandelt sein dürfen, um die beschriebene Untersuchungsmethode anwenden zu können. (So müssen z.B. Pflanzenproben, an denen Schwermetall-Gehalte bestimmt werden sollen, mit metallabriebfreien Mühlen gemahlen worden sein.)

Es folgt eine Tabelle, in der **Methodenverweise** gegeben werden. Wenn die Probenvorbereitungsmethode normgerecht ist oder in Anlehnung an eine **Norm** (DIN, EN, ISO) entwickelt wurde, so ist die entsprechende Norm in der 1. Zeile der Tabelle angegeben. In der 2. Zeile ist angegeben, welcher Methode des **Handbuchs Forstliche Analytik (HFA)** die Elementbestimmungsmethode entspricht. In Zeile 3 ist der aus dem HFA, Teil E, ableitbare **Methoden-Code** angegeben.

Weiterhin sind auf der Titelseite eine kurze **Beschreibung des Prinzips bzw.** der chemischen Reaktionen der Methode und eine Zusammenstellung möglicher **Störungen** bei der Methode dargestellt.

In einem Kasten am unteren Ende der Seite sind die zur Methode gehörigen **Anhänge** und **Literaturangaben** zur Methode angegeben. Die durchnummerierten **Anhänge** findet man direkt im Anschluss an die Methodenbeschreibung. Eventuell genannte **Gerätekurzanleitungen** finden sich im Band 84, Reihe B.

Auf den folgenden Seiten der Methodenbeschreibung sind in stets gleicher Reihenfolge die nachfolgenden Unterabschnitte zu finden:

- Analysengeräte und Zubehör
- Chemikalien
- Lösungen
- Durchführung
- Qualitätskontrolle
- Auswertung/Datendokumentation

Im Abschnitt **Analysengeräte und Zubehör** sind alle für die Durchführung der Methode benötigten Geräte und das Zubehör aufgleistet.

Im Abschnitt **Chemikalien** sind alle für die Durchführung der Methode wie auch für Spül- oder Reinigungsarbeiten benötigte Chemikalien in der handelsüblichen Form aufgelistet.

Die daraus anzusetzenden Lösungen und Gemische sind im Abschnitt **Lösungen** mit genauen Herstellungsvorschriften aufgeführt.

Die genaue Durchführung der Untersuchungsmethode ist im Abschnitt **Durchführung** beschrieben. Bei einigen Methoden wird hier auf die jeweilige Gerätekurzanleitung verwiesen. Besonders wichtige Durchführungshinweise sind mit "**Achtung**" hervorgehoben.

In dem Abschnitt **Qualitätskontrolle** sind in einer Tabelle alle durchzuführenden Qualitätskontrollen mit Verweis auf die Methodenvorschriften aufgelistet. Über die Methodenvorschrift hinausgehende Detailfestlegungen wie verwendete Kontrollstandards, erlaubt prozentuale Abweichungen u.s.w. sind in der Spalte "Durchführung" zusammengestellt.

Der letzte Abschnitt **Auswertung/Datendokumentation** beschreibt, welche Daten oder Messergebnisse wo und wie festzuhalten sind. Werden die Daten mit Hilfe irgendwelcher Formeln verrechnet, so ist auch der genaue Berechnungsweg beschrieben.

In den **Anhängen** am Ende der Methode sind unterschiedliche Detailinformationen zur Methode angegeben. Auf die Anhänge ist im Methodentext an der jeweiligen Stelle verwiesen.

Allgemeiner Aufbau der Qualitätskontrollmethoden

Um die Qualität der Analytik sicherzustellen, gibt es zahlreiche Kontrollmöglichkeiten, die Fehlerquellen aufdecken oder methodische Fehler erkennen lassen.

Die Qualitätskontrollenmethoden haben einen einheitlichen Aufbau. In der Kopfzeile sind die Probenart, der Methodenname, das Methoden-Kürzel und die Seitenzahl eingetragen. Auf der Titelseite ist direkt unter der Kopfzeile das Einführungsdatum der Methode angegeben. Es folgt die genaue Bezeichnung der Methode. Danach ist jeweils das Prinzip der Qualitätskontrolle beschrieben gefolgt von der Durchführung.

In einem Kasten am unteren Ende der Seite sind die zur Methode gehörigen **Anhänge** und **Literaturangaben** zur Methode angegeben. Die durchnummerierten **Anhänge** findet man direkt im Anschluss an die Methodenbeschreibung.

Allgemeiner Aufbau der Elementbestimmungsmethoden

Der Text aller Elementbestimmungsmethoden ist gleich aufgebaut.

Jede Seite hat eine **Kopfzeile**, in der das zu bestimmende Element, die chemische Form des Elementes, die bestimmt wird, das Gerät, der Methoden-Code und die Seitenzahl eingetragen sind.

Auf der **Titelseite** ist direkt unter der Kopfzeile das **Einführungsdatum der Methode** angegeben. Es folgen die zu bestimmende Elementform und der **Messbereich** der Methode. Dieser wird dargestellt durch die **Nachweisgrenze**, die **Bestimmungsgrenze** und die **obere Messgrenze**.

Da für verschiedene Probenmatrices (z.B. Wasser, Aufschlusslösung, Salzextrakt) oft unterschiedliche Elementbestimmungsmethoden nötig sind, werden in einer nach **Boden, Humus, Pflanze und Wasser** unterteilten Tabelle diejenigen **Untersuchungsmethoden** aufgelistet, für die die beschriebene Elementbestimmungsmethode geeignet ist. (So müssen z.B. Pflanzenproben, an denen Schwermetall-Gehalte bestimmt werden sollen, mit metallabriebfreien Mühlen gemahlen und mit einem für Schwermetalle geeigneten Aufschlussverfahren in Lösung gebracht worden sein.)

Es folgt eine Tabelle, in der **Methodenverweise** gegeben werden. Wenn die Elementbestimmungsmethode normgerecht ist oder in Anlehnung an eine **Norm** (DIN, EN, ISO) entwickelt wurde, so ist die entsprechende Norm in der 1. Zeile der Tabelle angegeben. In der 2. Zeile ist angegeben, welcher Methode des **Handbuchs Forstliche Analytik** (**HFA**) die Elementbestimmungsmethode entspricht. In Zeile 3 ist der aus dem HFA, Teil E, ableitbare **Methoden-Code** angegeben.

Weiterhin ist auf der Titelseite eine kurze Beschreibung des physikalischen Prinzips bzw. der chemischen Reaktionen der Methode und eine Darstellung möglicher Störungen bei der Methode dargestellt.

In einem Kasten am unteren Ende der Seite sind die zur Methode gehörigen Anhänge und Literaturangaben zur Methode angegeben. durchnummerierten Anhänge findet man direkt im Anschluss an die Methodenbeschreibung und die Sammelanhänge im Band 86 hinter den Methodenbeschreibungen. Die Kurzanleitungen sind im Band veröffentlicht.

Auf den folgenden Seiten der Methodenbeschreibung sind in stets gleicher Reihenfolge die nachfolgenden Unterabschnitte zu finden:

- Analysengeräte und Zubehör
- Chemikalien
- Lösungen
- Eichung/Standards
- Durchführung
- Qualitätskontrolle
- Auswertung/Datendokumentation

Im Abschnitt **Analysengeräte und Zubehör** ist jeweils der genaue Gerätetyp mit allen Zusatzgeräten wie Probenehmer oder Dilutoren sowie die zugehörige Geräte-Software

beschrieben. Des Weiteren sind hier wichtige, methodenspezifische Detail-Angaben wie Art des Brenners, Graphitrohrtyp, Zerstäubertyp usw. zu finden. Im Abschnitt **Chemikalien** sind alle für die Durchführung der Methode wie auch für Spül- oder Reinigungsarbeiten benötigte Chemikalien in der handelsüblichen Form aufgelistet.

Die daraus anzusetzenden Lösungen und Gemische sind im Abschnitt **Lösungen** mit genauen Herstellungsvorschriften aufgeführt.

Im Abschnitt Eichung/Standards sind im Unterabschnitt Stammlösungen die Herstellungsvorschriften für die Lösungen angegeben, aus denen die Standards hergestellt werden. Bei manchen Methoden (z.B. ICP-Methoden) gibt es den Abschnitt Standardlösungen, in dem die genaue Herstellung der Standards beschrieben ist. Es folgen Tabellen für die zu verwendende Standardreihe und die Kontrollstandards, mit denen die Eichung und die Messungen im Laufe des Arbeitstages überprüft werden. Werden an einem Gerät mehrere Elemente gleichzeitig oder direkt nacheinander bestimmt, so ist die Verwendung von Mehrelement-Standards sinnvoll. In diesem Fall sind in einer eigenen Tabelle die Standardzusammensetzungen für die Mehrelementbestimmung aufgelistet. Nach den Tabellen folgen Angaben zum Extinktions-Sollwert eines ausgewählten Standards. Hiermit Geräteeinstellung überprüft werden. Schließlich sind noch Hinweise zur Matrix-Anpassung von Standards und Proben sowie Lagerungshinweise aufgeführt.

Die genaue Durchführung der Analysen ist im Abschnitt Durchführung jeweilige beschrieben. Bei vielen Methoden wird hier auf die Gerätekurzanleitung verwiesen. Da diese jedoch meist für mehrere Methoden methodenspezifischen Angaben ailt. die als Ergänzung

Gerätekurzanleitung in diesem Abschnitt dargestellt. Gibt es keine eigene Gerätekurzanleitung für das zu benutzende Gerät, so findet man die Angaben zur Gerätebedienung im Abschnitt Durchführung. Besonders wichtige Durchführungshinweise sind mit "**Achtung**" hervorgehoben.

Im Abschnitt **Qualitätskontrolle** sind in einer Tabelle alle durchzuführenden Qualitätskontrollen mit Verweis auf die Methodenvorschriften aufgelistet. Über die Methodenvorschrift hinausgehende Detailfestlegungen wie verwendete Kontrollstandards, erlaubt prozentuale Abweichungen u.s.w. sind in der Spalte "Durchführung" zusammengestellt.

Der letzte Abschnitt **Auswertung/Datendokumentation** beschreibt, welche Messergebnisse wo und wie festzuhalten sind bzw. welches Datenverarbeitungsprogramm für die Datenkontrolle, -Übertragung und - Sicherung verwendet werden muss. Bei Verwendung solcher Programme wird auf die jeweilige Gerätekurzanleitung Datenverarbeitung verwiesen. Diese Anleitungen werden im gleichen Band wie die Gerätekurzanleitungen veröffentlicht.

In den Anhängen am Ende der Methode sind unterschiedliche Detailinformationen zur Methode angegeben. Dies können Chromatogramme, Geräteparameter, Spektren, Fließschemata bei Cont.-Flow-Methoden u. ä. sein. Auf die Anhänge ist im Methodentext an der jeweiligen Stelle verwiesen.

In den folgenden Tabellen sind die **verwendeten Abkürzungen** für Analysengeräte (Tabelle 1), für die Untersuchungsverfahren (Tabelle 2), für die Probenvorbereitungs- und Lagerungsverfahren (Tabelle 3) und die Qualitätskontrollen (Tabelle 4) aufgelistet.

Tabelle 1: verwendete Abkürzungen für Analysengeräte

Abkürzung	Gerät	
AAS	Atomabsorptionsspektrophotometer	
	AAS(G): mit Graphitrohrofen-Atomisierung	
	AAS(FI): mit Flammen-Atomisierung	
AFS	Atomfluoreszenzspektrometer	
С	Elementaranalysator für C, Corg und Carbonat	
CFC	Continuous-Flow-Colorimeter	
CFE	Continuous-Flow-Elektrochemie	
CNS	Elementaranalysator für C, N und S	
GC	Gaschromatograph	
IC	Ionenchromatograph	
ICP	Induktiv-gekoppeltes Plasma-Spektrophotometer	
ICP-MS	Induktiv-gekoppeltes Plasma-Massenspektrometer	
LFM	Leitfähigkeitsmessgerät	
PHM	pH-Meter	
SCH	Scheibler-Apparatur zur CO ₂ -Bestimmung	
TIT	Titrator für pH- und Leitfähigkeitstitrationen	

TOC	Total-Organic-Carbon-Analysator	
TN	Total-Nitrogen-Analysator	
WG	Waage	

Tabelle 2: Abkürzungen für Untersuchungsmethoden

Abkürzung	Untersuchungsverfahren
ANULL	ohne Anwendung eines Untersuchungsverfahrens (Flüssige Proben)
ATNULL	ohne Anwendung eines Untersuchungsverfahrens (Festproben)
ATNULLCO3	ohne Anwendung eines Untersuchungsverfahrens (Festproben) mit CO3
AKNULL	Korngrößenbestimmung
APNULL	pF-Kurven
AKE	effektive Austauschkapazitäts-Bestimmung
AKEG	Europäische Methode zur Austauschkapazitätsbestimmung
AKH	Austauschkapazitätsbestimmung an Humusproben
AKKA H/S	Austauschkapazität nach Kappen-Adrian
AKT	totale (potentielle) Austauschkapazitäts-Bestimmung
BGW	Blattgewicht
BNK	Basen-Neutralisierungs-Kapazitäts-Bestimmung
Clges	Gesamt-Chlor-Bestimmung
CNMIK(F)	C- und N-Bestimmung der mikrobiellen Biomasse
CO2ATM	CO ₂ -Atmung
CO3ges	Carbonat-Bestimmung
DAN	Druckaufschluss mit Salpetersäure
DANF	Druckaufschluss mit Salpeter- und Flussssäure
EXT1:2H2O	wässriger 1:2-Extrakt
EXT1:2ALKP	Bestimmung der komplexierten Al-Fraktion im wässrigen 1:2- Extrakt
EXTCIT	Zitronensäure-Extrakt
EXTEDTA	EDTA-Extrakt
EXTOX	Oxalat-Extrakt
FBA	Feinbodenanteil-Bestimmung
GBL	Gleichgewichts-Bodenlösung
GBLALKP	Bestimmung der komplexierten Al-Fraktion in der GBL
Nmin	Bestimmung der mineralischen Stickstoff-Fraktion
NGW	Nadelgewicht
KOMPAL	Bestimmung der komplexierten Al-Fraktion
OAKW	offener Aufschluss mit Königswasser
OAKWEG	Europäische Variante des offenen Aufschlusses mit Königswasser

PHH2O	pH-Bestimmung in wässriger Suspension
PHKCI	pH-Bestimmung in KCI-Suspension
PHCACI2	pH-Bestimmung in CaCl ₂ -Suspension
PMIK(F)	P-Bestimmung der mikrobiellen Biomasse
TRD	Trockenraumdichte-Bestimmung
TRDF	Trockenrohdichte des Feinbodens
TRDFBA	Trockenrohdichte und Feinbodenanteil (BDF-Flächen)
WGH	Wassergehalts-Bestimmung

Tabelle 3: Abkürzungen für Probenvorbereitungs- und Lagerungsverfahren

Abkürzung	Probenvorbereitungs- oder Lagerungsverfahren		
F	Filtration		
L	Lagerung		
M	Mahlen mit verschiedenen Mühlen		
S	Sieben		
SM	Probenvorbehandlung von Wasserproben, in denen Schwer- metalle (SM) gemessen werden		
Т	Trocknung/Homogenisieren/Sortieren		
M/S B	Mühle/Sieb für Bodenproben geeignet		
M/S P	Mühle/Sieb für Pflanzen(Humus)proben geeignet		
M/S BP	Mühle/Sieb für Boden-und Pflanzenproben geeignet		

Tabelle 4: Abkürzungen für Qualitätskontrollen

Abkürzungen	Qualitätskontrolle
BL	Basislinienkontrolle
BW	Blindwerte
CB	Kohlenstoff-Bilanz
DK	Driftkontrolle
EK	Eichkurvenkontrolle
EK	Eichkurvenkontrolle
IB	Ionenbilanz/Leitfähigkeitsbilanz
IBEU	Ionenbilanz/Leitfähigkeitsbilanz, Europäische Variante
KSt	Kontroll-Standard
KstNit	Kontroll-Standard Nitrit
LFEU	Leitfähigkeitsbilanz, Europäische Variante
MA	Mehrfachaufschluss
MM	Mehrfachmessung
NaCIV	NaCl-Verhältnis-Prüfung
NB	Stickstoff-Bilanz
NPK	Nullpunktkontrolle
PH	pH-Prüfung
StM	Standard-Material
VK	Verschleppungskontrolle

WG	Wassergehalt-Prüfung
WM	Wiederholungsmessungen
WP	Wiederholungsproben

Hinweis:

Die Methoden-Bände sind so gedruckt, dass jede neue Methode mit einer ungeraden Seitenzahl beginnt. Bei Entfernung der Verleimung kann die Methodensammlung auch als Loseblatt-Sammlung verwendet werden. Daher sind bei neuen Methoden-Versionen nicht nur die Änderungen, sondern der vollständige Methodentext abgedruckt. Die neuen Methoden bzw. – Methodenversionen der Ergänzungsbände können in die Loseblatt-Sammlung eingeordnet werden.

<u>Liste der alten und der zwischen dem 1.1.2012 und dem 31.12.19 neu</u> <u>hinzugekommenen Probenvorbereitungsmethoden</u> (neue Methoden im Fettdruck; mit Angaben zum Verwendungszeitraum der jeweiligen Methoden)

	für SM		
Kürzel	geeignet	Von	Bis
F1.1		01.01.1989	
F2.1		01.01.1989	31.06.2016
F2.2		01.07.2016	
F3.1		01.01.1989	
F4.1		01.01.1990	
F5.1		01.10.2005	
F6.1		01.05.2006	
F7.1		01.01.2020	
L0	X	01.01.1989	
L1.1	X	01.01.1989	
L1.1L2.1	X	01.01.1989	
L2.1	X	01.01.1989	
L3.1	X	01.01.1989	
MB1.1		01.01.1989	
MBP1.1	X	01.01.1989	
MBP2.1	Х	01.01.1995	
MBP3.1	Χ	01.10.1994	30.09.2004
MBP4.1	X	01.06.2004	
MBP5.1	X	01.10.2004	
MBP6.1	X	01.11.2010	
MBPT1.1	X	01.07.2016	
MBPT2.1	X	01.07.2016	
MBPT6.1	X	01.07.2016	
MP1.1		01.01.1994	31.12.2004
MP1.2	X	01.01.2005	
MP2.1		01.01.1989	31.12.2010
MP2.2		01.07.1997	
MP2.3		15.01.2011	
MP3.1	X	01.07.1991	31.12.2010
MP3.2	X	01.07.1997	
MP3.3	X	15.01.2011	
MP4.1	X	01.01.1992	31.12.2010
MP4.2	X	01.07.1997	
MP5.1		01.11.2010	
SB1.1		01.04.1991	
SBP1.1		01.01.1989	
SBP2.1	X	01.01.1989	
SBP2.2	X	01.04.2004	
SBP3.1	Χ	01.01.1989	31.12.2011
SHBZE1.1	Χ	01.08.2006	
SM1.1	X	01.01.1989	01.02.1994
SM1.2	X	01.02.1994	01.11.1994

SM1.3	X	01.11.1991	30.06.2016
SM1.4	X	01.06.2016	
SM2.1	X	01.01.1989	01.11.1994
SM2.2	X	01.11.1994	01.08.2016
SM2.3	X	01.07.2016	
T1.1	X	01.01.1989	
T2.1	X	01.01.1989	
T3.1	X	01.01.1989	
T3.1T1.1	X	01.01.1989	
T4.1	X	01.01.1989	
T4.1T1.1	X	01.01.1989	
T5.1	X	01.01.1989	
T6.1	X	01.12.1992	30.11.2000
T6.2	X	01.12.2000	30.11.2002
T6.3	X	01.12.2002	28.02.2004
T6.4	X	01.03.2004	28.02.2006
T6.5	X	01.03.2006	28.02.2007
T6.6	X	01.03.2007	28.02.2009
T7.1	X	01.12.1992	30.11.2000
T7.2	X	01.12.2000	30.11.2002
T7.3	X	01.12.2002	28.02.2004
T7.4	X	01.03.2004	28.02.2006
T7.5	X	01.03.2006	28.02.2007
T7.6	X	01.03.2007	28.02.2008
T7.7	X	01.03.2008	28.02.2009
T7.8	X	01.03.2009	28.02.2010
T7.9	X	01.03.2010	28.02.2012
T7.10	X	01.03.2012	31.03.2018
T7.11	X	01.04.2018	
T8.1	X	01.01.1992	

Liste der alten und der zwischen dem 1.1.2012 und dem 31.12.19 neu hinzugekommenen Untersuchungsmethoden (neue Methoden im Fettdruck, mit Angaben zum Verwendungszeitraum

der jeweiligen Methoden)

Boden:

Kürzel	Probenart	Gültig von	Gültig bis
AKE1.1	Boden	01.03.1990	o and grade
AKEG1.1	Boden	01.01.1996	
AKEG2.1	Boden	01.06.2002	
AKT1.1	Boden	01.01.1989	31.12.1999
AKT2.1	Boden	01.01.1991	0111211000
ATNULL	Boden	01.01.1989	
CNMIK1.1	Boden	01.01.1996	
CNMIKF1.1	Boden	01.01.1996	
CO2ATM1.1	Boden	01.06.1996	31.12.2017
CO2ATM2.1	Boden	01.01.2018	
CO3ges1.1	Boden	01.01.1997	
CO3ges2.1	Boden	01.01.2004	
DAN1.1	Boden	01.01.1989	
DANF1.1	Boden	01.11.1998	
EXT12ALKP1.1	Boden	01.01.1989	
EXT12H2O1.1	Boden	01.01.1989	
EXTCIT1.1	Boden	01.12.2019	
EXTEDTA1.1	Boden	01.01.1993	
EXTOX1.1	Boden	01.07.2002	
FBA1.1	Boden	01.01.1989	
GBL1.1	Boden	01.01.1989	
GBLALKP1.1	Boden	01.01.1992	
Nmin1.1	Boden	01.01.1992	
OAKW1.1	Boden	01.06.1995	31.06.2015
OAKW1.2	Boden	01.07.2015	
OAKW2.1	Boden	15.03.2014	
OAKWEG1.1	Boden	01.12.1996	31.12.1999
OAKWEG2.1	Boden	01.01.2007	31.06.2015
OAKWEG2.2	Boden	01.07.2015	
OAKWEG3.1	Boden	01.04.2016	
pHCaCl2/1.1	Boden	01.01.1989	31.03.1991
pHCaCl2/1.2	Boden	01.04.1991	31.01.1995
pHCaCl2/1.3	Boden	01.02.1995	09.12.2000
pHCaCl2/3.1	Boden	01.01.2000	09.12.2000
pHCaCl2_5.1	Boden	10.12.2000	
pHCaCl2_6.1	Boden	01.12.2004	
pHH2O1.1	Boden	01.01.1989	31.03.1991
pHH2O1.2	Boden	01.04.1991	31.01.1995
pHH2O1.3	Boden	01.02.1995	09.12.2000
pHH2O3.1	Boden	01.01.2000	09.12.2000
pHH2O5.1	Boden	10.12.2000	
pHH2O6.1	Boden	01.12.2004	

pHKCl1.1	Boden	01.01.1989	31.03.1991
pHKCl1.2	Boden	01.04.1991	31.01.1995
pHKCl1.3	Boden	01.02.1995	09.12.2000
pHKCl3.1	Boden	01.01.2000	09.12.2000
pHKCl4.1	Boden	01.01.2000	09.12.2000
pHKCl5.1	Boden	10.12.2000	
pHKCl6.1	Boden	01.12.2004	
PMIK1.1	Boden	01.01.2018	
PMIKF1.1	Boden	01.01.2018	
PMIKS1.1	Boden	01.01.2018	
TRD1.1	Boden	01.01.1989	
TRDF2.1	Boden	01.06.2009	
TRDFBA1.1	Boden	01.06.2006	
WGH1.1	Boden	01.01.1989	
WGH2.1	Boden	01.01.1989	

Humus:

Humus:			
Kürzel	Probenart	Gültig von	Gültig bis
AKEG1.1	Humus	01.01.2006	
AKEG2.1	Humus	01.01.2006	
AKH1.1	Humus	01.03.1990	31.05.1997
AKH1.2	Humus	01.06.1997	30.11.1997
AKH1.3	Humus	01.12.1997	28.02.1998
AKH1.4	Humus	01.03.1998	
AKH2.1	Humus	01.03.1990	31.05.1997
AKH2.2	Humus	01.06.1997	30.11.1997
AKH2.3	Humus	01.12.1997	28.02.1998
AKH2.4	Humus	01.03.1998	
AKH3.1	Humus	01.01.2006	
ATNULL	Humus	01.01.1989	
CNMIK1.1	Humus	01.01.1996	
CNMIKF1.1	Humus	01.01.1996	
CO2ATM1.1	Humus	01.06.1996	31.12.2017
CO2ATM2.1	Humus	01.01.2018	
CO3ges1.1	Humus	01.01.1989	
CO3ges2.1	Humus	01.01.2004	
DAN1.1	Humus	01.01.1989	
DAN2.1	Humus	01.01.1989	30.06.1996
DAN2.2	Humus	01.07.1996	
DANF1.1	Humus	01.11.1998	
EXTCIT1.1	Humus	01.12.2019	
HV1.1	Humus	01.01.1989	
HV2.1	Humus	01.01.2003	
HV3.1	Humus	29.11.2005	
HV4.1	Humus	01.06.2006	
HV5.1	Humus	15.09.2019	
Nmin1.1	Humus	01.01.1992	
OAKW1.1	Humus	01.06.1995	31.06.2015
OAKW1.2	Humus	01.07.2015	

OAKW2.1	Humus	01.08.2014	
OAKWEG1.1	Humus	01.12.1996	31.12.1999
pHCaCl2/2.1	Humus	01.01.1989	31.01.1995
pHCaCl2/2.2	Humus	01.02.1995	09.12.2000
pHCaCl2/3.1	Humus	01.01.2000	09.12.2000
pHCaCl2_5.1	Humus	10.12.2000	
pHCaCl2_6.1	Humus	01.12.2004	
pHH2O2.1	Humus	01.01.1989	31.01.1995
pHH2O2.2	Humus	01.02.1995	09.12.2000
pHH2O3.1	Humus	01.01.2000	09.12.2000
pHH2O5.1	Humus	10.12.2000	
pHH2O6.1	Humus	01.12.2004	
pHKCl2.1	Humus	01.01.1989	31.01.1995
pHKCl2.2	Humus	01.02.1995	09.12.2000
pHKCl3.1	Humus	01.01.2000	09.12.2000
pHKCl4.1	Humus	01.01.2000	09.12.2000
pHKCl5.1	Humus	10.12.2000	
pHKCl6.1	Humus	01.12.2004	
PMIK1.1	Humus	15.12.2017	
PMIKF1.1	Humus	01.02.2018	
WGH1.1	Humus	01.01.1989	
WGH2.1	Humus	01.01.1989	

Pflanze:

Kürzel	Probenart	Gültig von	Gültig bis
ATNULL	Pflanze	01.01.1989	
BGW1.1	Pflanze	01.01.1989	
Clges1.1	Pflanze	15.07.1991	
Clges1.2	Pflanze	01.01.1997	
DAN1.1	Pflanze	01.01.1989	
DAN2.1	Pflanze	01.01.1989	30.06.1996
DAN2.2	Pflanze	01.07.1996	
NGW1.1	Pflanze	01.01.1989	31.03.2000
NGW1.2	Pflanze	01.04.2000	
WGH1.1	Pflanze	01.01.1989	
WGH2.1	Pflanze	01.01.1989	

Wasser:

Kürzel	Probenart	Gültig von	Gültig bis
ALK1.1	Wasser	02.02.2000	
ANULL	Wasser	01.01.1989	
KOMPAI1.1	Wasser	01.01.1989	

<u>Liste der alten und der zwischen dem 1.1.2012 und dem 31.12.19 neu hinzugekommenen Qualitätskontrollmethoden</u>

(neue Methoden im Fettdruck; mit Angaben zum Verwendungszeitraum der jeweiligen Methoden)

Matrix Festproben:

Qualitäts-	Probenart	Eingeführt	Beendet
kontrolle		Datum	Datum
QBC1.1	Festproben	01.02.2000	
QBW1.1	Festproben	01.01.1989	01.01.2001
QBW1.2	Festproben	01.01.2001	
QMA1.1	Festproben	01.01.1989	
QEK1.1	Festproben	01.01.1989	01.01.2005
QEK1.2	Festproben	01.01.2005	
QPH1.1	Festproben	01.01.2000	
QStM1.1	Festproben	01.01.1989	01.01.2001
QStM1.2	Festproben	01.01.2001	
QWG1.1	Festproben	01.10.1990	
QWP1.1	Festproben	01.01.1989	01.02.1996
QWP1.2	Festproben	01.02.1996	

Matrix Lösungen:

Qualitäts-	Probenart	Eingeführt	Beendet
kontrolle		Datum	Datum
QALK1.1	Lösungen	01.01.2000	
QBL1.1	Lösungen	01.01.1989	
QBL2.1	Lösungen	01.01.2000	
QCB1.1	Lösungen	01.02.2000	
QDK1.1	Lösungen	01.01.1989	
QDK2.1	Lösungen	01.01.2000	
QMM1.1	Lösungen	01.01.1989	
QEK1.1	Lösungen	01.01.1989	01.01.1999
QEK1.2	Lösungen	01.01.1999	
QIB1.1	Lösungen	01.10.1990	01.06.2004
QIB1.2	Lösungen	01.06.2004	
QIB2.1	Lösungen	01.01.2005	
QIB3.1	Lösungen	01.07.2007	
QIBEU1.1	Lösungen	01.01.2004	
QKSt1.1	Lösungen	01.01.1989	
QKStNit1.1	Lösungen	01.01.1989	
QLFEU1.1	Lösungen	01.01.2004	
QNaClV1.1	Lösungen	01.01.2005	
QNB1.1	Lösungen	01.03.1995	01.02.2000
QNB1.2	Lösungen	01.02.2000	
QNPK1.1	Lösungen	01.01.1989	
QStM1.1	Lösungen	01.01.2001	
QVK1.1	Lösungen	01.01.1989	
QWM1.1	Lösungen	01.01.1989	01.02.1996
QWM1.2	Lösungen	01.06.1996	

<u>Liste der alten und der zwischen dem 1.1.2012 und dem 31.12.19 neu</u> <u>hinzugekommenen Elementbestimmungsmethoden</u> (neue Methoden im Fettdruck; mit Angaben zum Verwendungszeitraum der jeweiligen Methoden)

Element	Prüfmethodenname	gültig von	gültig bis
Al	AlAlgesAAS1.1	01.01.1989	31.12.2002
Al	AlAlgesAAS2.1	01.01.1989	01.04.1998
Al	AlAlgesAAS6.1	01.11.2001	01.02.2005
Al	AlAlgesAAS7.1	15.11.2001	01.03.2005
Al	AlAlgesICP1.1	01.10.1990	01.07.1993
Al	AlAlgesICP1.2	01.05.1994	01.11.1998
Al	AlAlgesICP1.3	01.08.1998	31.12.2002
Al	AlAlgesICP2.1	01.01.1997	01.11.1998
Al	AlAlgesICP2.2	01.11.1998	01.03.2000
Al	AlAlgesICP3.1	01.08.1997	01.07.1998
Al	AlAlgesICP3.2P	01.11.1998	31.12.2003
Al	AlAlgesICP4.1	01.04.1998	01.07.1998
Al	AlAlgesICP4.2	01.11.1998	01.12.2003
Al	AlAlgesICP5.1	01.11.1998	01.12.1999
Al	AlAlgesICP7.1	15.02.2003	01.02.2004
Al	AlAlgesICP7.2	01.03.2006	01.02.2012
Al	AlAlgesICP7.3	01.03.2008	31.12.2013
Al	AlAlgesICP8.1	10.03.2003	01.07.2005
Al	AlAlgesICP8.2	01.05.2005	31.12.2006
Al	AlAlgesICP10.1	01.01.2004	30.04.2014
Al	AlAlgesICP15.1	01.10.2006	
Al	AlAlgesICP16.1	01.02.2007	01.05.2019
Al	AlAlgesICP18.1	01.10.2006	01.10.2015
Al	AlAlgesICP19.1	01.10.2009	01.08.2019
Al	AlAlgesICP19.2	01.01.2019	
Al	AlAlgesICP20.1	01.05.2014	
Al	AlAlgesICP21.1	01.05.2014	
Al	AlAlgesICP22.1	01.08.2014	
Al	AlAlgesICP23.1	01.03.2015	
Alk	ALK37TIT1.1	01.01.2000	01.02.2010
Alk	ALK37TIT2.1	29.10.2009	31.12.2013
Alk	ALK37TIT3.1	01.03.2013	
Alk	ALK40TIT1.1	01.01.2000	01.02.2010
Alk	ALK40TIT2.1	29.10.2009	31.12.2013
Alk	ALK40TIT3.1	01.03.2013	
Alk	ALK43TIT1.1	01.01.2000	01.02.2010
Alk	ALK43TIT2.1	29.10.2009	31.12.2013
Alk	ALK43TIT3.1	01.03.2013	
Alk	ALK45TIT1.1	01.01.2000	01.02.2010
Alk	ALK45TIT2.1	29.10.2009	31.12.2013
Alk	ALK45TIT3.1	01.03.2013	
As	AsAsgesICP2.1	01.01.1997	01.06.1997

As	AsAsgesICP2.2	01.11.1998	31.12.2006
As	AsAsgesICP3.1	01.11.1998	01.08.2008
As	AsAsgesICP8.1	10.03.2003	31.12.2005
As	AsAsgesICP15.1	01.10.2006	01.12.2000
Ba	BaBagesICP1.1	01.04.1992	01.11.1998
Ba	BaBagesICP1.2	01.11.1998	01.03.2004
Ba	BaBagesICP2.1	01.11.1998	31.12.2004
Ba	BaBagesICP8.1	01.01.2004	31.12.2004
Ba	BaBagesICP8.2	01.05.2005	31.12.2004
Ba	BaBagesICP10.1	01.01.2004	30.09.2014
Ba	BaBagesICP16.1	01.02.2007	01.05.2019
Ba	BaBagesICP19.1	01.10.2009	31.12.2019
Ва	BaBagesICP19.2	01.01.2019	01.12.2010
Ba	BaBagesICP21.1	01.06.2014	
Ва	BaBagesICP22.1	01.08.2014	
C	CCanorgTOC1.1	01.01.1989	01.10.1997
Č	CCanorgTOC2.1	01.10.1991	01.04.1994
C	CCanorgTOC2.2	01.04.1994	15.11.1997
C	CCanorgTOC2.3	01.06.1997	30.09.1999
С	CCanorgTOC3.1	01.01.1999	01.03.2008
С	CCanorgTOC3.2	15.12.2007	
С	CCanorgTOC5.1	01.10.2017	
С	CCO2GC1.1	01.06.1996	31.07.2001
С	CCO2GC2.1	01.06.2015	
С	CCO3C1.1	01.12.2006	01.05.2016
С	CCO3C2.1	01.01.2016	
С	CCO3C3.1	01.01.2016	
С	CCO3C4.1	01.12.2016	
С	CCO3CNS1.1	20.08.2004	01.07.2014
С	CCO3DRU1.1	01.01.2004	31.12.2004
C	CCO3SCH1.1	01.01.1993	01.08.2007
С	CCO3SCH1.2	01.01.1997	01.06.2003
C	CCgesCNS1.1	01.01.1989	01.10.1995
C C C	CCgesCNS1.2	01.10.1995	01.03.1996
	CCgesCNS2.1	01.02.1996	01.09.1996
	CCgesCNS2.2	01.10.1997	30.06.2005
	CCgesCNS3.1	01.10.1997	31.12.2004
C	CCgesCNS4.1 CCgesCNS5.1	01.11.2001	01.04.2005
\mathcal{C}	CCgesCNS5.1 CCgesCNS5.2	20.08.2004 25.10.2010	01.03.2008
C	CCgesTOC1.1	01.01.1989	30.12.2011
C	CCgesTOC1.1	01.10.1991	01.07.1993
C	CCgesTOC2.1	01.04.1994	01.02.1997
C	CCgesTOC2.3	01.06.1997	01.10.1999
0000000000000 0	CCgesTOC3.1	01.01.1999	03.05.2000
C	CCgesTOC3.2	01.11.1999	28.02.2008
Č	CCgesTOC3.3	15.12.2007	
Ċ	CCgesTOC4.1	28.08.2008	
C	CCgesTOC5.1	01.10.2017	
C	CCgesTOC7.1	15.04.2017	
С	CCorgC1.1	01.12.2006	01.03.2015
	-		,

10	0000044	04 04 0000	04.00.0000
C	CCorgCNS1.1	01.01.2000	01.06.2003
C	CCorgCNS2.1	20.08.2004 01.01.1999	31.12.2004
C	CCorgTOC2.1 CCorgTOC2.2	15.12.2007	20.11.2000
Ca	CaCagesAAS1.1	01.01.1989	01.07.1993
Ca	CaCagesAAS1.1	01.01.1989	01.10.1994
Ca	CaCagesAAS6.1	01.11.2001	01.03.2006
Ou	CaCagesAAS7.1	15.11.2001	28.02.2005
Са	CaCagesIC2.1	15.12.2007	01.08.2012
Ca	CaCagesIC2.2	15.07.2012	01.03.2014
Ca	CaCagesIC3.1	20.12.2015	
Ca	CaCagesICP1.1	01.10.1990	29.06.1993
Ca	CaCagesICP1.2	01.05.1994	14.10.1998
Ca	CaCagesICP1.3	01.08.1998	31.12.2002
Ca	CaCagesICP2.1	01.01.1997	01.11.1998
Ca	CaCagesICP2.2	01.11.1998	17.02.2000
Ca	CaCagesICP3.1	01.08.1997	28.05.1999
Ca	CaCagesICP3.2P	01.11.1998	31.12.2003
Ca	CaCagesICP4.1	01.04.1998	29.06.1998
Ca	CaCagesICP4.2	15.06.1998	01.03.2004
Са	CaCagesICP5.1	01.11.1998	01.09.2000
Ca	CaCagesICP6.1	01.07.2000	31.12.2004
Ca	CaCagesICP7.1	15.02.2003	31.12.2005
Ca	CaCagesICP7.2	01.03.2006	15.01.2012
Ca	CaCagesICP7.3	01.03.2008	31.12.2014
Ca	CaCagesICP8.1	10.03.2003	01.07.2005
Ca	CaCagesICP8.2	01.05.2005	31.12.2006
Ca	CaCagesICP10.1	01.01.2004	30.04.2014
Ca	CaCagesICP13.1	01.03.2004	01.07.2014
Ca	CaCagesICP15.1	01.10.2006	04.05.0040
Ca	CaCagesICP16.1	01.02.2007 01.10.2009	01.05.2019
Ca Ca	CaCagesICP19.1 CaCagesICP19.2	01.10.2009 01.01.2019	01.08.2019
Ca	CaCagesICP19.2	01.05.2014	
Ca	CaCagesICP21.1	01.05.2014	
Ca	CaCagesICP22.1	01.08.2014	
Cd	CdCdgesAAS1.1	01.01.1989	01.05.1994
Cd	CdCdgesAAS1.2	01.11.1996	01.12.1996
Cd	CdCdgesAAS2.1	01.01.1993	01.11.1998
Cd	CdCdgesAAS2.2	01.11.1996	01.09.1999
Cd	CdCdgesAAS3.1	01.01.1989	20.02.1995
Cd	CdCdgesAAS3.2	01.01.1993	20.02.1995
Cd	CdCdgesAAS4.1	01.07.1994	21.01.1998
Cd	CdCdgesAAS4.2	01.11.1996	01.11.1998
Cd	CdCdgesAAS5.1	01.01.1997	01.11.1998
Cd	CdCdgesAAS8.1	01.02.2005	01.05.2019
Cd	CdCdgesICP1.1	01.05.1994	15.10.1998
Cd	CdCdgesICP2.1	01.01.1997	01.11.1998
Cd	CdCdgesICP2.2	01.11.1998	20.11.2000
Cd	CdCdgesICP2.3	01.07.2000	01.04.2006
Cd	CdCdgesICP3.1	01.11.1998	20.11.2000

Cd	CdCdgesICP3.2	01.07.2000	31.12.2004
Cd	CdCdgeslCP4.1	01.01.2001	31.12.2005
Cd	CdCdgeslCP8.1	10.03.2003	31.12.2006
Cd	CdCdgeslCP14.1	01.09.2006	
Cd	CdCdgeslCP15.1	01.10.2006	
Cd	CdCdgeslCP16.1	01.02.2007	31.12.2018
Cd	CdCdgeslCP17.1	01.10.2006	01.04.2008
Cd	CdCdgesICP19.1	01.10.2009	01.09.2018
Cd	CdCdgesICP22.1	01.08.2014	
Cd	CdCdgesICP24.1	01.07.2016	
Cd	CdCdgesICPMS1.1	01.11.2018	
Cd	CdCdgesICPMS2.1	01.11.2018	
Cd	CdCdgesICPMS4.1	01.06.2019	
CI	CICICFC1.1	01.01.1989	01.07.1991
CI	CICICFC1.2	01.03.1991	01.07.1993
CI	CICICFC1.3	01.03.1994	01.08.1994
CI	CICICFC1.4	01.02.1995	01.04.1996
CI	CICICFC1.5	15.05.1996	01.09.1996
CI	CICICFE1.1	15.05.1996	01.08.1998
CI	CICICFE2.1	01.07.1997	30.09.1999
CI	CICICFE2.2	01.12.1999	31.12.1999
CI	CICICFE3.1	01.06.1999	01.10.1999
CI	CICICFE3.2	01.12.1999	15.01.2012
CI	CICIIC1.1	01.08.1992	01.08.1995
CI	CICIIC2.1	15.12.2007	01.02.2010
CI	CICIIC2.2	01.08.2009	31.12.2014
CI	CICIIC2.3	01.06.2014	
CI	CICIIC3.1	20.12.2015	
Со	CoCogesAAS1.1	01.11.1996	31.12.1996
Со	CoCogesAAS2.1	01.01.1993	01.11.1998
Со	CoCogesAAS2.2	01.01.1996	01.09.1999
Со	CoCogesAAS3.1	01.01.1989	01.09.1993
Со	CoCogesAAS4.1	01.07.1994	01.11.1997
Со	CoCogesAAS4.2	01.11.1996	15.10.1998
Со	CoCogesICP2.1	01.01.1997	01.11.1998
Со	CoCogesICP2.2	01.11.1998	01.12.2000
Со	CoCogesICP2.3	01.07.2000	01.10.2006
Со	CoCogesICP3.1	01.11.1998	01.12.2000
Со	CoCogesICP3.2	01.07.2000	31.12.2004
Со	CoCogesICP4.1	01.01.2001	01.01.2006
Со	CoCogesICP8.1	10.03.2003	31.12.2006
Со	CoCogesICP14.1	01.09.2006	
Со	CoCogesICP15.1	01.10.2006	
Со	CoCogesICP16.1	01.02.2007	01.05.2019
Со	CoCogesICP17.1	01.10.2006	01.06.2011
Со	CoCogesICP19.1	01.10.2009	01.09.2018
Со	CoCogesICP22.1	01.08.2014	
Со	CoCogesICP24.1	01.07.2016	
Со	CoCogesICPMS1.1	01.11.2018	

Со	CoCogesICPMS2.1	01.11.2018	
Со	CoCogesICPMS4.1	01.06.2019	
Cr	CrCrgesAAS1.1	01.11.1996	31.12.1996
Cr	CrCrgesAAS2.1	01.01.1993	01.11.1998
Cr	CrCrgesAAS2.2	01.01.1996	01.09.1999
Cr	CrCrgesAAS3.1	01.01.1989	01.09.1993
Cr	CrCrgesAAS4.1	01.07.1994	15.10.1998
Cr	CrCrgesICP2.1	01.01.1997	01.11.1998
Cr	CrCrgesICP2.2	01.11.1998	31.12.2006
Cr	CrCrgesICP3.1	01.11.1998	31.12.2004
Cr	CrCrgesICP4.1	01.01.2001	31.12.2005
Cr	CrCrgesICP8.1	10.03.2003	31.12.2006
Cr	CrCrgesICP14.1	01.09.2006	
Cr	CrCrgesICP15.1	01.10.2006	
Cr	CrCrgesICP16.1	01.02.2007	01.05.2019
Cr	CrCrgesICP17.1	01.10.2006	01.06.2011
Cr	CrCrgesICP19.1	01.10.2009	01.09.2018
Cr	CrCrgesICP22.1	01.08.2014	
Cr	CrCrgesICP24.1	01.07.2016	
Cr	CrCrgesICPMS1.1	01.10.2018	
Cr	CrCrgesICPMS2.1	01.11.2018	
Cr	CrCrgesICPMS4.1	01.06.2019	
Cu	CuCugesAAS1.1	01.01.1989	01.07.1993
Cu	CuCugesAAS1.2	01.11.1996	31.12.1996
Cu	CuCugesAAS2.1	01.01.1993	31.10.1998
Cu	CuCugesAAS2.2	01.11.1996	15.09.1999
Cu	CuCugesAAS3.1	01.01.1989	01.09.1991
Cu	CuCugesAAS4.1	01.11.1992	31.05.1996
Cu	CuCugesAAS5.1	01.07.1994	01.02.1998
Cu	CuCugesAAS5.2	01.11.1996	01.02.1998
Cu	CuCugesAAS8.1	01.02.2005	15.09.2005
Cu	CuCugesICP1.1	01.10.1990	01.05.1994
Cu	CuCugesICP1.2	01.05.1994	15.10.1998
Cu	CuCugesICP2.1	01.01.1997	01.11.1998
Cu	CuCugesICP2.2	01.11.1998	31.03.2006
Cu	CuCugesICP3.1	01.11.1998	30.11.2000
Cu	CuCugesICP3.2	01.07.2000	31.12.2004
Cu	CuCugesICP4.1	01.01.2001	31.12.2005
Cu	CuCugesICP8.1	10.03.2003	31.12.2006
Cu	CuCugesICP14.1	01.09.2006	
Cu	CuCugesICP15.1	01.10.2006	
Cu	CuCugesICP16.1	01.02.2007	01.05.2019
Cu	CuCugesICP17.1	01.10.2006	01.06.2011
Cu	CuCugesICP19.1	01.10.2009	01.09.2018
Cu	CuCugesICP22.1	01.08.2014	
Cu	CuCugesICP24.1	01.07.2016	
Cu	CuCugesICPMS1.1	01.11.2018	
Cu	CuCugesICPMS2.1	01.11.2018	
Cu	CuCugesICPMS4.1	01.06.2019	

F	FFIC2.1	15.12.2007	01.05.2009
F	FFIC2.2	01.08.2009	31.12.2014
F	FFIC2.3	01.06.2014	01.12.2014
F	FFIC3.1	20.12.2015	
Fe	FeFegesAAS1.1	01.01.1989	31.01.1999
Fe	FeFegesAAS2.1	01.01.1989	01.04.1998
Fe	FeFegesAAS6.1	01.11.2001	31.12.2006
Fe	FeFegesAAS7.1	15.11.2001	01.03.2005
Fe	FeFegesICP1.1	01.10.1990	01.07.1993
Fe	FeFegesICP1.2	01.05.1994	15.10.1998
Fe	FeFegesICP1.3	01.08.1998	31.12.2002
Fe	FeFegesICP2.1	01.01.1997	01.11.1998
Fe	FeFegesICP2.2	01.11.1998	01.03.2000
Fe	FeFegesICP3.1	01.08.1997	01.07.1998
Fe	FeFegesICP3.2P	01.11.1998	31.12.2003
Fe	FeFegesICP4.1	01.04.1998	01.07.1998
Fe	FeFegesICP4.2	01.11.1998	15.09.2005
Fe	FeFegesICP5.1	01.11.1998	01.09.2000
Fe	FeFegesICP7.1	15.02.2003	31.12.2005
Fe	FeFegesICP7.2	01.03.2006	15.01.2012
Fe	FeFegesICP7.3	01.03.2008	31.12.2013
Fe	FeFegesICP8.1	10.03.2003	01.07.2005
Fe	FeFegesICP8.2	01.05.2005	31.12.2006
Fe	FeFegesICP10.1	01.01.2004	30.04.2014
Fe	FeFegesICP15.1	01.10.2006	
Fe	FeFegesICP16.1	01.02.2007	01.05.2019
Fe	FeFegesICP18.1	01.10.2006	01.10.2015
Fe	FeFegesICP19.1	01.10.2009	01.08.2019
Fe	FeFegesICP19.2	01.01.2019	
Fe	FeFegesICP20.1	01.05.2014	
Fe	FeFegesICP21.1	01.05.2014	
Fe	FeFegesICP22.1	01.08.2014	
Fe	FeFegesICP23.1	01.03.2015	
Η	HH+1PHM1.1	01.01.1989	
Н	HH+1PHM4.1	01.01.2001	01.03.2008
Н	HH+1PHM6.1	01.03.2009	
Н	HH+2PHM1.1	01.01.1989	
Н	HH+2PHM4.1	01.01.2001	01.03.2008
Н	HH+2PHM6.1	01.03.2009	
Н	HH+PHM1.1	01.01.1989	01.06.1995
Н	HH+PHM1.2	01.03.1996	01.09.1996
Н	HH+PHM1.3	01.03.1997	01.12.1998
Н	HH+PHM1.4	01.02.2000	
Н	HH+PHM1.5	01.03.2015	
Н	HH+PHM2.1	01.11.1995	01.01.1996
Н	HH+PHM3.1	01.03.1996	01.01.2000
Н	HH+PHM4.1	01.01.2000	01.09.2011
Н	HH+PHM5.1	01.01.2000	01.04.2010
Н	HH+PHM6.1	01.06.2006	31.12.2013

Н	HH+PHM7.1	01.06.2006	31.01.2019
Н	HH+PHM8.1	01.03.2013	
H	HH+PHM10.1	01.03.2019	
H	HH+TIT1.1	01.05.1989	31.08.1993
HA	HAHKTIT2.1	01.04.2011	
Hg	HgHggesAFS1.1	01.08.2018	
Hg	HgHggesICPMS1.1	01.11.2018	
Hg	HgHggesICPMS3.1	01.11.2018	
Hg	HgHggesICPMS4.1	01.01.2019	
K	KKgesAAS1.1	01.01.1989	31.03.2002
K	KKgesAAS2.1	01.01.1989	01.08.2001
K	KKgesAAS6.1	01.11.2001	31.03.2003
K	KKgesAAS7.1	15.11.2001	01.03.2005
K	KKgesAAS7.2	01.03.2003	01.03.2004
K	KKgeslC2.1	15.12.2007	
K	KKgeslC2.2	15.07.2012	31.12.2013
K	KKgeslC3.1	20.12.2015	
K	KKgeslCP1.1	01.10.1990	01.07.1993
K	KKgeslCP1.2	01.05.1994	01.08.1998
K	KKgesICP1.3	01.08.1998	31.12.2002
K	KKgeslCP2.1	01.01.1997	01.07.1998
K	KKgeslCP3.1	01.08.1997	01.06.1999
K	KKgeslCP3.2P	01.11.1998	31.12.2003
K	KKgeslCP4.1	01.04.1998	01.11.1998
K	KKgeslCP4.2	01.11.1998	01.06.2001
K	KKgeslCP5.1	01.07.2000	31.12.2004
K	KKgesICP7.1	15.02.2003	31.12.2005
K	KKgesICP7.2	01.03.2006	01.02.2012
K	KKgesICP7.3	01.03.2008	31.12.2013
K	KKgesICP8.1	10.03.2003	01.07.2005
K	KKgesICP8.2	01.05.2005	31.12.2006
K	KKgesICP10.1	01.01.2004	30.04.2014
K	KKgesICP13.1	01.03.2004	01.07.2014
K	KKgesICP15.1	01.10.2006	
K	KKgesICP16.1	01.02.2007	01.05.2019
K	KKgesICP19.1	01.10.2009	01.08.2019
K	KKgesICP19.2		
K	KKgesICP20.1	01.05.2014	
K	KKgesICP21.1	01.05.2014	
K	KKgesICP22.1	01.08.2014	
LF	LFLFCFC1.1	01.03.2000	31.12.2003
LF	LFLFLFM1.1	01.01.1989	31.05.1997
LF	LFLFLFM1.2	01.06.1997	01.03.2018
LF	LFLFLFM1.3	01.01.2018	
LF	LFLFLFM2.1	01.06.2006	31.12.2017
LF	LFLFLFM3.1	01.03.2013	
Mg	MgMggesAAS1.1	01.01.1989	01.07.1993
Mg	MgMggesAAS2.1	01.01.1989	01.10.1994
Mg	MgMggesAAS2.2	01.08.1993	01.11.1998

Mg	MgMggesAAS6.1	01.11.2001	01.08.2002
Mg	MgMggesAAS7.1	15.11.2001	01.03.2005
Mg	MgMggesIC2.1	15.12.2007	
Mg	MgMggesIC2.2	15.07.2012	01.03.2014
Mg	MgMggesIC3.1	20.12.2015	
Mg	MgMggesICP1.1	01.10.1990	01.07.1993
Mg	MgMggesICP1.2	01.05.1994	01.11.1998
Mg	MgMggesICP1.3	01.08.1998	31.12.2002
Mg	MgMggesICP2.1	01.01.1997	01.11.1998
Mg	MgMggesICP2.2	01.11.1998	01.03.2000
Mg	MgMggesICP3.1	01.08.1997	01.06.1999
Mg	MgMggesICP3.2P	01.11.1998	31.12.2003
Mg	MgMggesICP4.1	01.04.1998	01.07.1998
Mg	MgMggesICP4.2	01.11.1998	01.03.2004
Mg	MgMggesICP5.1	01.11.1998	01.12.1999
Mg	MgMggesICP6.1	01.07.2000	31.12.2004
Mg	MgMggesICP7.1	15.02.2003	31.12.2005
Mg	MgMggesICP7.2	01.03.2006	15.01.2012
Mg	MgMggesICP7.3	01.03.2008	31.12.2014
Mg	MgMggesICP8.1	10.03.2003	01.07.2005
Mg	MgMggesICP8.2	01.05.2005	31.12.2006
Mg	MgMggesICP10.1	01.01.2004	30.04.2014
Mg	MgMggesICP13.1	01.03.2004	01.07.2014
Mg	MgMggesICP15.1	01.10.2006	
Mg	MgMggesICP16.1	01.02.2007	01.05.2019
Mg	MgMggesICP19.1	01.10.2009	01.08.2019
Mg	MgMggesICP19.2	01.01.2019	
Mg	MgMggesICP20.1	01.05.2014	
Mg	MgMggesICP21.1	01.05.2014	
Mg	MgMggesICP22.1	01.08.2014	
Mn	MnMngesAAS1.1	01.01.1989	01.07.1993
Mn	MnMngesAAS2.1	01.01.1989	01.10.1994
Mn	MnMngesAAS6.1	01.11.2001	01.08.2002
Mn	MnMngesAAS7.1	15.11.2001	01.03.2005
Mn	MnMngesICP1.1	01.10.1990	01.07.1993
Mn	MnMngesICP1.2	01.05.1994	31.10.1998
Mn	MnMngesICP1.3	01.08.1998	31.12.2002
Mn	MnMngesICP2.1	01.01.1997	01.11.1998
Mn	MnMngesICP2.2	01.11.1998	01.11.1999
Mn	MnMngesICP2.3	01.07.2000	01.08.2000
Mn	MnMngesICP3.1	01.08.1997	01.07.1998
Mn	MnMngesICP3.2P	01.11.1998	31.12.2003
Mn	MnMngesICP4.1	01.04.1998	01.11.1998
Mn	MnMngesICP4.2	01.11.1998	01.03.2004
Mn	MnMngesICP5.1	01.11.1998	01.12.1999
Mn	MnMngesICP5.2	01.07.2000	01.08.2000
Mn	MnMngesICP7.1	15.02.2003	31.12.2005
Mn	MnMngesICP7.2	01.03.2006	15.01.2012
Mn	MnMngesICP7.3	01.03.2008	31.12.2013

Mn	MnMngesICP8.1	10.03.2003	01.07.2005
Mn	MnMngesICP8.2	01.05.2005	31.12.2006
Mn	MnMngesICP10.1	01.01.2004	30.04.2014
Mn	MnMngesICP15.1	01.10.2006	00.01.2011
Mn	MnMngesICP16.1	01.02.2007	01.05.2019
Mn	MnMngesICP19.1	01.10.2009	01.08.2019
Mn	MnMngesICP19.2	01.01.2019	01.00.2013
Mn	MnMngesICP20.1	01.05.2014	
Mn	MnMngesICP21.1	01.05.2014	
Mn	MnMngesICP22.1	01.08.2014	
N	NNH4CFC1.1	01.01.1989	01.07.1991
N	NNH4CFC1.2	01.03.1991	01.07.1993
N	NNH4CFC1.3	01.12.1993	01.12.1994
N	NNH4CFC1.4	01.11.1994	31.12.2004
N	NNH4CFC2.1	01.02.1995	31.08.1995
N	NNH4CFC3.1	01.07.1997	01.12.1999
N	NNH4CFC3.2	01.12.1999	01.01.2000
N	NNH4CFC4.1	01.06.1999	01.10.1999
N	NNH4CFC4.2	01.12.1999	01.03.2007
N	NNH4CFC4.3	15.01.2006	15.03.2007
N	NNH4CFC5.1	01.11.2004	31.10.2006
N	NNH4CFC6.1	01.03.2007	01.02.2012
N	NNH4CFC7.1	01.03.2007	01.04.2007
N	NNH4IC1.1	01.08.1992	01.12.1993
N	NNH4IC2.1	15.12.2007	01.12.1990
N	NNH4IC2.2	15.07.2012	31.12.2013
N	NNH4IC3.1	20.12.2015	0111212010
N		01.01.1989	01.05.1994
	NINC)/+3C.EC.	11111119091	
	NNO2+3CFC1.1		
N	NNO2+3CFC2.1	01.10.1989	01.07.1991
N N	NNO2+3CFC2.1 NNO2+3CFC2.2	01.10.1989 01.03.1991	01.07.1991 01.07.1993
N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3	01.10.1989 01.03.1991 01.11.1994	01.07.1991 01.07.1993 01.07.1995
N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4	01.10.1989 01.03.1991 01.11.1994 01.09.1995	01.07.1991 01.07.1993 01.07.1995 30.11.2004
N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4 NNO2+3CFC3.1	01.10.1989 01.03.1991 01.11.1994 01.09.1995 01.02.1995	01.07.1991 01.07.1993 01.07.1995 30.11.2004 01.08.1995
N N N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4 NNO2+3CFC3.1 NNO2+3CFC3.2	01.10.1989 01.03.1991 01.11.1994 01.09.1995 01.02.1995 01.09.1995	01.07.1991 01.07.1993 01.07.1995 30.11.2004 01.08.1995 01.09.1995
N N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4 NNO2+3CFC3.1 NNO2+3CFC3.2 NNO2+3CFC4.1	01.10.1989 01.03.1991 01.11.1994 01.09.1995 01.02.1995 01.09.1995 01.07.1997	01.07.1991 01.07.1993 01.07.1995 30.11.2004 01.08.1995 01.09.1995 30.09.1999
N N N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4 NNO2+3CFC3.1 NNO2+3CFC3.2 NNO2+3CFC4.1 NNO2+3CFC4.2	01.10.1989 01.03.1991 01.11.1994 01.09.1995 01.02.1995 01.09.1995 01.07.1997 01.12.1999	01.07.1991 01.07.1993 01.07.1995 30.11.2004 01.08.1995 01.09.1995 30.09.1999 01,01.2000
N N N N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4 NNO2+3CFC3.1 NNO2+3CFC3.2 NNO2+3CFC4.1 NNO2+3CFC4.1 NNO2+3CFC4.2 NNO2+3CFC5.1	01.10.1989 01.03.1991 01.11.1994 01.09.1995 01.02.1995 01.09.1995 01.07.1997 01.12.1999 01.06.1999	01.07.1991 01.07.1993 01.07.1995 30.11.2004 01.08.1995 01.09.1995 30.09.1999 01,01.2000 30.10.1999
N N N N N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4 NNO2+3CFC3.1 NNO2+3CFC3.2 NNO2+3CFC4.1 NNO2+3CFC4.1 NNO2+3CFC4.2 NNO2+3CFC5.1 NNO2+3CFC5.2	01.10.1989 01.03.1991 01.11.1994 01.09.1995 01.02.1995 01.09.1995 01.07.1997 01.12.1999 01.06.1999 01.12.1999	01.07.1991 01.07.1993 01.07.1995 30.11.2004 01.08.1995 01.09.1995 30.09.1999 01,01.2000 30.10.1999 01.03.2007
N N N N N N N N N N N N N N N N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4 NNO2+3CFC3.1 NNO2+3CFC3.2 NNO2+3CFC4.1 NNO2+3CFC4.2 NNO2+3CFC4.2 NNO2+3CFC5.1 NNO2+3CFC5.3	01.10.1989 01.03.1991 01.11.1994 01.09.1995 01.02.1995 01.09.1995 01.07.1997 01.12.1999 01.06.1999 01.12.1999 15.01.2006	01.07.1991 01.07.1993 01.07.1995 30.11.2004 01.08.1995 01.09.1995 30.09.1999 01,01.2000 30.10.1999 01.03.2007 31.12.2007
N N N N N N N N N N N N N N N N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4 NNO2+3CFC3.1 NNO2+3CFC3.2 NNO2+3CFC4.1 NNO2+3CFC4.1 NNO2+3CFC5.1 NNO2+3CFC5.1 NNO2+3CFC5.2 NNO2+3CFC5.3 NNO2+3CFC5.4	01.10.1989 01.03.1991 01.11.1994 01.09.1995 01.02.1995 01.09.1995 01.07.1997 01.12.1999 01.06.1999 01.12.1999 15.01.2006 01.03.2007	01.07.1991 01.07.1993 01.07.1995 30.11.2004 01.08.1995 01.09.1995 30.09.1999 01,01.2000 30.10.1999 01.03.2007 31.12.2007 01.02.2011
N N N N N N N N N N N N N N N N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4 NNO2+3CFC3.1 NNO2+3CFC3.2 NNO2+3CFC4.1 NNO2+3CFC4.2 NNO2+3CFC5.1 NNO2+3CFC5.1 NNO2+3CFC5.2 NNO2+3CFC5.3 NNO2+3CFC5.4 NNO2+3CFC5.4	01.10.1989 01.03.1991 01.11.1994 01.09.1995 01.02.1995 01.09.1995 01.07.1997 01.12.1999 01.06.1999 01.12.1999 15.01.2006 01.03.2007 01.11.2004	01.07.1991 01.07.1993 01.07.1995 30.11.2004 01.08.1995 01.09.1995 30.09.1999 01,01.2000 30.10.1999 01.03.2007 31.12.2007 01.02.2011 31.10.2006
N N N N N N N N N N N N N N N N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4 NNO2+3CFC3.1 NNO2+3CFC3.2 NNO2+3CFC4.1 NNO2+3CFC4.2 NNO2+3CFC5.1 NNO2+3CFC5.2 NNO2+3CFC5.2 NNO2+3CFC5.3 NNO2+3CFC5.4 NNO2+3CFC5.4 NNO2+3CFC6.1 NNO2+3CFC6.2	01.10.1989 01.03.1991 01.11.1994 01.09.1995 01.02.1995 01.09.1995 01.07.1997 01.12.1999 01.06.1999 01.12.1999 15.01.2006 01.03.2007 01.11.2004 01.03.2007	01.07.1991 01.07.1993 01.07.1995 30.11.2004 01.08.1995 01.09.1995 30.09.1999 01,01.2000 30.10.1999 01.03.2007 31.12.2007 01.02.2011 31.10.2006 01.04.2007
N N N N N N N N N N N N N N N N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4 NNO2+3CFC3.1 NNO2+3CFC3.2 NNO2+3CFC4.1 NNO2+3CFC4.1 NNO2+3CFC5.1 NNO2+3CFC5.2 NNO2+3CFC5.2 NNO2+3CFC5.3 NNO2+3CFC5.4 NNO2+3CFC6.1 NNO2+3CFC6.1 NNO2+3CFC6.2 NNO2+3CFC6.2	01.10.1989 01.03.1991 01.11.1994 01.09.1995 01.02.1995 01.09.1995 01.07.1997 01.12.1999 01.06.1999 01.12.1999 15.01.2006 01.03.2007 01.03.2007 01.03.2010	01.07.1991 01.07.1993 01.07.1995 30.11.2004 01.08.1995 01.09.1995 30.09.1999 01,01.2000 30.10.1999 01.03.2007 31.12.2007 01.02.2011 31.10.2006 01.04.2007 01.02.2012
N N N N N N N N N N N N N N N N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4 NNO2+3CFC3.1 NNO2+3CFC3.2 NNO2+3CFC4.1 NNO2+3CFC4.2 NNO2+3CFC5.1 NNO2+3CFC5.1 NNO2+3CFC5.3 NNO2+3CFC5.3 NNO2+3CFC5.4 NNO2+3CFC6.1 NNO2+3CFC6.1 NNO2+3CFC6.2 NNO2+3CFC6.2 NNO2+3CFC7.1 NNO2IC2.1	01.10.1989 01.03.1991 01.11.1994 01.09.1995 01.02.1995 01.09.1995 01.07.1997 01.12.1999 01.06.1999 01.12.1999 15.01.2006 01.03.2007 01.11.2004 01.03.2010 01.01.2008	01.07.1991 01.07.1993 01.07.1995 30.11.2004 01.08.1995 01.09.1995 30.09.1999 01,01.2000 30.10.1999 01.03.2007 31.12.2007 01.02.2011 31.10.2006 01.04.2007 01.02.2012 01.05.2009
N N N N N N N N N N N N N N N N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4 NNO2+3CFC3.1 NNO2+3CFC3.2 NNO2+3CFC4.1 NNO2+3CFC4.1 NNO2+3CFC5.1 NNO2+3CFC5.2 NNO2+3CFC5.2 NNO2+3CFC5.3 NNO2+3CFC5.4 NNO2+3CFC6.1 NNO2+3CFC6.1 NNO2+3CFC6.1 NNO2+3CFC6.2 NNO2+3CFC7.1 NNO2IC2.2	01.10.1989 01.03.1991 01.11.1994 01.09.1995 01.02.1995 01.09.1995 01.07.1997 01.12.1999 01.06.1999 01.12.1999 15.01.2006 01.03.2007 01.11.2004 01.03.2007 01.03.2010 01.01.2008 01.08.2009	01.07.1991 01.07.1993 01.07.1995 30.11.2004 01.08.1995 01.09.1995 30.09.1999 01,01.2000 30.10.1999 01.03.2007 31.12.2007 01.02.2011 31.10.2006 01.04.2007 01.02.2012
N N N N N N N N N N N N N N N N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4 NNO2+3CFC3.1 NNO2+3CFC3.2 NNO2+3CFC4.1 NNO2+3CFC4.1 NNO2+3CFC5.1 NNO2+3CFC5.2 NNO2+3CFC5.2 NNO2+3CFC5.3 NNO2+3CFC5.4 NNO2+3CFC6.1 NNO2+3CFC6.1 NNO2+3CFC6.1 NNO2+3CFC7.1 NNO2IC2.1 NNO2IC2.3	01.10.1989 01.03.1991 01.11.1994 01.09.1995 01.02.1995 01.09.1995 01.07.1997 01.12.1999 01.06.1999 01.12.1999 15.01.2006 01.03.2007 01.11.2004 01.03.2010 01.03.2010 01.01.2008 01.08.2009 01.06.2014	01.07.1991 01.07.1993 01.07.1995 30.11.2004 01.08.1995 01.09.1995 30.09.1999 01,01.2000 30.10.1999 01.03.2007 31.12.2007 01.02.2011 31.10.2006 01.04.2007 01.02.2012 01.05.2009
N N N N N N N N N N N N N N N N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4 NNO2+3CFC3.1 NNO2+3CFC3.2 NNO2+3CFC4.1 NNO2+3CFC4.2 NNO2+3CFC5.1 NNO2+3CFC5.2 NNO2+3CFC5.2 NNO2+3CFC5.3 NNO2+3CFC5.4 NNO2+3CFC6.1 NNO2+3CFC6.1 NNO2+3CFC6.1 NNO2+3CFC7.1 NNO2IC2.1 NNO2IC2.3 NNO2IC3.1	01.10.1989 01.03.1991 01.11.1994 01.09.1995 01.02.1995 01.09.1995 01.07.1997 01.12.1999 01.06.1999 01.12.1999 15.01.2006 01.03.2007 01.11.2004 01.03.2007 01.03.2010 01.01.2008 01.08.2009 01.06.2014 20.12.2015	01.07.1991 01.07.1993 01.07.1995 30.11.2004 01.08.1995 01.09.1995 30.09.1999 01,01.2000 30.10.1999 01.03.2007 31.12.2007 01.02.2011 31.10.2006 01.04.2007 01.02.2012 01.05.2009 31.12.2014
N N N N N N N N N N N N N N N N N N N	NNO2+3CFC2.1 NNO2+3CFC2.2 NNO2+3CFC2.3 NNO2+3CFC2.4 NNO2+3CFC3.1 NNO2+3CFC3.2 NNO2+3CFC4.1 NNO2+3CFC4.1 NNO2+3CFC5.1 NNO2+3CFC5.2 NNO2+3CFC5.2 NNO2+3CFC5.3 NNO2+3CFC5.4 NNO2+3CFC6.1 NNO2+3CFC6.1 NNO2+3CFC6.1 NNO2+3CFC7.1 NNO2IC2.1 NNO2IC2.3	01.10.1989 01.03.1991 01.11.1994 01.09.1995 01.02.1995 01.09.1995 01.07.1997 01.12.1999 01.06.1999 01.12.1999 15.01.2006 01.03.2007 01.11.2004 01.03.2010 01.03.2010 01.01.2008 01.08.2009 01.06.2014	01.07.1991 01.07.1993 01.07.1995 30.11.2004 01.08.1995 01.09.1995 30.09.1999 01,01.2000 30.10.1999 01.03.2007 31.12.2007 01.02.2011 31.10.2006 01.04.2007 01.02.2012 01.05.2009

N	NNO3IC2.2	01.08.2009	31.12.2014
N	NNO3IC2.3	01.06.2014	
N	NNO3IC3.1	20.12.2015	
N	NNgesCFC1.1	01.01.1989	01.02.1994
N	NNgesCFC1.2	01.12.1994	31.03.1995
N	NNgesCFC2.1	01.02.1995	01.09.1995
N	NNgesCFC3.1	01.04.1996	01.11.1997
N	NNgesCFC4.1	01.07.1997	01.09.1999
N	NNgesCFC4.2	01.12.1999	31.12.2003
N	NNgesCFC5.1	01.06.1999	01.11.1999
N	NNgesCNS1.1	01.01.1989	01.10.1995
N	NNgesCNS1.2	01.10.1995	01.03.1996
N	NNgesCNS2.1	01.02.1996	31.01.1998
N	NNgesCNS2.2	01.10.1997	30.06.2005
N	NNgesCNS3.1	01.09.1997	31.12.2004
N	NNgesCNS4.1	01.11.2001	01.04.2005
N	NNgesCNS5.1	20.08.2004	25.10.2010
N	NNgesCNS5.2	25.10.2010	
N	NNgesTOC1.1	01.11.1999	01.11.1999
N	NNgesTOC2.1	01.12.1999	31.12.2011
N	NNgesTOC2.2	15.12.2007	
N	NNgesTOC3.1	28.08.2008	
N	NNgesTOC5.1	01.10.2017	
N	NNgesTOC7.1	15.04.2017	
Na	NaNagesAAS1.1	01.01.1989	31.03.2002
Na	NaNagesAAS2.1	01.01.1989	01.08.2001
Na	NaNagesAAS6.1	01.11.2001	31.03.2003
Na	NaNagesAAS7.1	15.11.2001	01.10.2005
Na	NaNagesAAS7.2	01.03.2003	01.10.2005
Na	NaNagesIC2.1	15.12.2007	
Na	NaNagesIC2.2	15.07.2012	01.09.2013
Na	NaNagesIC3.1	20.12.2015	
Na	NaNagesICP1.1	01.10.1990	01.07.1993
Na	NaNagesICP1.2	01.05.1994	01.11.1998
Na	NaNagesICP1.3	01.08.1998	31.12.2002
Na	NaNagesICP2.1	01.01.1997	01.071998
Na	NaNagesICP3.1	01.08.1997	01.06.1999
Na	NaNagesICP3.2P	01.11.1998	31.12.2003
Na	NaNagesICP4.2	01.11.1998	01.06.2001
Na	NaNagesICP5.1	01.07.2000	01.01.2005
Na	NaNagesICP7.1	15.02.2003	01.01.2006
Na	NaNagesICP7.2	01.03.2006	01.02.2012
Na	NaNagesICP7.3	01.03.2008	01.01.2014
Na	NaNagesICP8.1	10.03.2003	01.07.2005
Na	NaNagesICP8.2	01.05.2005	31.12.2006
Na	NaNagesICP10.1	01.01.2004	30.04.2014
	100404	04 02 2004	01 07 2014
Na	NaNagesICP13.1	01.03.2004	01.07.2014
Na Na	NaNagesICP13.1 NaNagesICP15.1	01.10.2006	01.07.2014

Na	NaNagesICP19.1	01.10.2009	01.08.2019
Na	NaNagesICP19.2	01.01.2019	
Na	NaNagesICP20.1	01.05.2014	
Na	NaNagesICP21.1	01.05.2014	
Na	NaNagesICP22.1	01.08.2014	
Ni	NiNigesAAS1.1	01.11.1996	31.12.1996
Ni	NiNigesAAS2.1	01.01.1993	01.10.1995
Ni	NiNigesAAS2.2	01.11.1996	01.09.1999
Ni	NiNigesAAS3.1	01.01.1989	01.09.1993
Ni	NiNigesAAS4.1	01.07.1994	31.10.1997
Ni	NiNigesAAS4.2	01.11.1996	01.11.1998
Ni	NiNigesICP2.1	01.01.1997	01.11.1998
Ni	NiNigesICP2.2	01.11.1998	31.12.2006
Ni	NiNigesICP3.1	01.11.1998	30.11.2000
Ni	NiNigesICP3.2	01.07.2000	31.12.2004
Ni	NiNigesICP4.1	01.01.2001	31.12.2005
Ni	NiNigesICP8.1	10.03.2003	31.12.2006
Ni	NiNigesICP14.1	01.09.2006	
Ni	NiNigesICP15.1	01.10.2006	
Ni	NiNigesICP16.1	01.02.2007	01.05.2019
Ni	NiNigesICP17.1	01.10.2006	01.06.2011
Ni	NiNigesICP19.1	01.10.2009	01.09.2019
Ni	NiNigesICP22.1	01.08.2014	
Ni	NiNigesICP24.1	01.07.2016	
Ni	NiNigoolCDMC4.4	01.11.2018	
141	NiNigesICPMS1.1	01.11.2010	
Ni	NiNigesICPMS2.1	01.11.2018	
Ni	NiNigesICPMS2.1	01.11.2018	31.121992
Ni Ni	NiNigesICPMS2.1 NiNigesICPMS4.1	01.11.2018 01.06.2019	31.121992 01.11.1998
Ni Ni P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1	01.11.2018 01.06.2019 01.10.1990	
Ni Ni P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2	01.11.2018 01.06.2019 01.10.1990 01.05.1994	01.11.1998
Ni Ni P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998	01.11.1998 31.12.2002
Ni Ni P P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3 PPgesICP2.1	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998 01.01.1997	01.11.1998 31.12.2002 01.11.1998
Ni Ni P P P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3 PPgesICP2.1 PPgesICP2.2	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998 01.01.1997 01.11.1998	01.11.1998 31.12.2002 01.11.1998 01.02.1999
Ni Ni P P P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3 PPgesICP2.1 PPgesICP2.1 PPgesICP2.2 PPgesICP3.1	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998 01.01.1997 01.11.1998 01.11.1998	01.11.1998 31.12.2002 01.11.1998 01.02.1999 01.12.1999
Ni P P P P P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3 PPgesICP2.1 PPgesICP2.2 PPgesICP2.2 PPgesICP3.1 PPgesICP7.1	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998 01.01.1997 01.11.1998 01.11.1998 15.02.2003	01.11.1998 31.12.2002 01.11.1998 01.02.1999 01.12.1999 01.01.2006
Ni P P P P P P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3 PPgesICP2.1 PPgesICP2.2 PPgesICP3.1 PPgesICP7.1 PPgesICP7.1	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998 01.01.1997 01.11.1998 01.11.1998 15.02.2003 01.03.2006	01.11.1998 31.12.2002 01.11.1998 01.02.1999 01.12.1999 01.01.2006 01.02.2012
Ni P P P P P P P P P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3 PPgesICP2.1 PPgesICP2.2 PPgesICP3.1 PPgesICP7.1 PPgesICP7.1 PPgesICP7.2 PPgesICP7.3	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998 01.01.1997 01.11.1998 01.11.1998 15.02.2003 01.03.2006 01.03.2008	01.11.1998 31.12.2002 01.11.1998 01.02.1999 01.12.1999 01.01.2006 01.02.2012 01.04.2014
Ni P P P P P P P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3 PPgesICP2.1 PPgesICP2.2 PPgesICP3.1 PPgesICP7.1 PPgesICP7.2 PPgesICP7.3 PPgesICP7.3 PPgesICP7.3	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998 01.01.1997 01.11.1998 01.11.1998 15.02.2003 01.03.2006 01.03.2008 10.03.2003	01.11.1998 31.12.2002 01.11.1998 01.02.1999 01.12.1999 01.01.2006 01.02.2012 01.04.2014 01.07.2005
Ni P P P P P P P P P P P P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3 PPgesICP2.1 PPgesICP2.2 PPgesICP3.1 PPgesICP7.1 PPgesICP7.2 PPgesICP7.3 PPgesICP7.3 PPgesICP8.1 PPgesICP8.2	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998 01.01.1997 01.11.1998 01.11.1998 15.02.2003 01.03.2006 01.03.2008 10.03.2008 10.03.2005	01.11.1998 31.12.2002 01.11.1998 01.02.1999 01.12.1999 01.01.2006 01.02.2012 01.04.2014 01.07.2005 31.12.2006
Ni P P P P P P P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3 PPgesICP2.1 PPgesICP2.2 PPgesICP3.1 PPgesICP7.1 PPgesICP7.2 PPgesICP7.3 PPgesICP7.3 PPgesICP8.1 PPgesICP8.1 PPgesICP8.1 PPgesICP9.1 PPgesICP9.1 PPgesICP9.1	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998 01.01.1997 01.11.1998 01.11.1998 15.02.2003 01.03.2006 01.03.2008 10.03.2008 10.03.2003 01.05.2005 01.09.2003	01.11.1998 31.12.2002 01.11.1998 01.02.1999 01.12.1999 01.01.2006 01.02.2012 01.04.2014 01.07.2005 31.12.2006
Ni Ni P P P P P P P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3 PPgesICP2.1 PPgesICP2.2 PPgesICP3.1 PPgesICP7.1 PPgesICP7.2 PPgesICP7.3 PPgesICP7.3 PPgesICP8.1 PPgesICP8.1 PPgesICP8.1 PPgesICP9.1 PPgesICP9.1	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998 01.01.1997 01.11.1998 01.11.1998 15.02.2003 01.03.2006 01.03.2008 10.03.2008 10.03.2005 01.09.2003 01.10.2006	01.11.1998 31.12.2002 01.11.1998 01.02.1999 01.12.1999 01.01.2006 01.02.2012 01.04.2014 01.07.2005 31.12.2006 31.12.2012
Ni Ni P P P P P P P P P P P P P P P P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3 PPgesICP2.1 PPgesICP2.2 PPgesICP3.1 PPgesICP7.1 PPgesICP7.2 PPgesICP7.2 PPgesICP7.3 PPgesICP8.1 PPgesICP8.1 PPgesICP8.1 PPgesICP9.1 PPgesICP9.1 PPgesICP15.1 PPgesICP19.1 PPgesICP19.2	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998 01.01.1997 01.11.1998 01.11.1998 15.02.2003 01.03.2006 01.03.2008 10.03.2008 10.03.2005 01.09.2003 01.10.2006 01.02.2007 01.10.2009 01.01.2019	01.11.1998 31.12.2002 01.11.1998 01.02.1999 01.12.1999 01.01.2006 01.02.2012 01.04.2014 01.07.2005 31.12.2006 31.12.2012
Ni P P P P P P P P P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3 PPgesICP2.1 PPgesICP2.2 PPgesICP3.1 PPgesICP7.1 PPgesICP7.2 PPgesICP7.3 PPgesICP7.3 PPgesICP8.1 PPgesICP8.1 PPgesICP9.1 PPgesICP9.1 PPgesICP15.1 PPgesICP15.1 PPgesICP19.1 PPgesICP19.2 PPgesICP2.1	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998 01.01.1997 01.11.1998 01.11.1998 15.02.2003 01.03.2006 01.03.2008 10.03.2008 10.03.2003 01.05.2005 01.09.2003 01.10.2006 01.02.2007 01.10.2009	01.11.1998 31.12.2002 01.11.1998 01.02.1999 01.12.1999 01.01.2006 01.02.2012 01.04.2014 01.07.2005 31.12.2006 31.12.2012
Ni P P P P P P P P P P P P P P P P P P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3 PPgesICP2.1 PPgesICP2.2 PPgesICP3.1 PPgesICP7.1 PPgesICP7.2 PPgesICP7.3 PPgesICP7.3 PPgesICP8.1 PPgesICP8.1 PPgesICP9.1 PPgesICP9.1 PPgesICP15.1 PPgesICP15.1 PPgesICP19.1 PPgesICP19.2 PPgesICP2.1	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998 01.01.1997 01.11.1998 01.11.1998 15.02.2003 01.03.2006 01.03.2008 10.03.2008 10.03.2005 01.09.2003 01.10.2006 01.02.2007 01.10.2009 01.01.2019 01.05.2014 01.08.2014	01.11.1998 31.12.2002 01.11.1998 01.02.1999 01.01.2006 01.02.2012 01.04.2014 01.07.2005 31.12.2006 31.12.2012 01.05.2019 01.08.2019
Ni P P P P P P P P P P P P P P P P P P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3 PPgesICP2.1 PPgesICP2.2 PPgesICP3.1 PPgesICP7.1 PPgesICP7.2 PPgesICP7.3 PPgesICP7.3 PPgesICP8.1 PPgesICP8.1 PPgesICP9.1 PPgesICP9.1 PPgesICP15.1 PPgesICP15.1 PPgesICP19.1 PPgesICP19.2 PPgesICP2.1	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998 01.01.1997 01.11.1998 01.11.1998 15.02.2003 01.03.2006 01.03.2008 10.03.2008 10.03.2005 01.05.2005 01.09.2003 01.10.2006 01.10.2009 01.01.2019 01.05.2014	01.11.1998 31.12.2002 01.11.1998 01.02.1999 01.01.2006 01.02.2012 01.04.2014 01.07.2005 31.12.2006 31.12.2012 01.05.2019 01.08.2019
Ni P P P P P P P P P P P P P P P P P P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3 PPgesICP2.1 PPgesICP2.2 PPgesICP3.1 PPgesICP7.1 PPgesICP7.2 PPgesICP7.3 PPgesICP7.3 PPgesICP8.1 PPgesICP8.1 PPgesICP9.1 PPgesICP9.1 PPgesICP15.1 PPgesICP15.1 PPgesICP19.1 PPgesICP19.2 PPgesICP2.1	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998 01.01.1997 01.11.1998 01.11.1998 15.02.2003 01.03.2006 01.03.2008 10.03.2008 10.03.2005 01.09.2003 01.10.2006 01.02.2007 01.10.2009 01.01.2019 01.05.2014 01.08.2014	01.11.1998 31.12.2002 01.11.1998 01.02.1999 01.01.2006 01.02.2012 01.04.2014 01.07.2005 31.12.2006 31.12.2012 01.05.2019 01.08.2019
Ni P P P P P P P P P P P P P P P P P P P	NiNigesICPMS2.1 NiNigesICPMS4.1 PPgesICP1.1 PPgesICP1.2 PPgesICP1.3 PPgesICP2.1 PPgesICP2.2 PPgesICP3.1 PPgesICP7.1 PPgesICP7.2 PPgesICP7.2 PPgesICP7.3 PPgesICP8.1 PPgesICP8.1 PPgesICP8.1 PPgesICP9.1 PPgesICP9.1 PPgesICP15.1 PPgesICP15.1 PPgesICP19.1 PPgesICP19.1 PPgesICP19.1 PPgesICP2.1 PPgesICP2.1	01.11.2018 01.06.2019 01.10.1990 01.05.1994 01.08.1998 01.01.1997 01.11.1998 01.11.1998 15.02.2003 01.03.2006 01.03.2008 10.03.2008 10.03.2005 01.09.2003 01.10.2006 01.02.2007 01.10.2009 01.01.2019 01.05.2014 01.08.2014 01.01.1989	01.11.1998 31.12.2002 01.11.1998 01.02.1999 01.01.2006 01.02.2012 01.04.2014 01.07.2005 31.12.2006 31.12.2012 01.05.2019 01.08.2019

P PPO4IC2.1 15.12.2007 01.02.2010 P PPO4IC2.2 01.08.2009 31.12.2014 P PPO4IC3.3 01.06.2014 P PPO4IC3.1 20.12.2015 Pb PbPbgesAAS1.1 01.01.1989 01.10.1996 Pb PbPbgesAAS2.2 01.01.1993 01.11.1996 Pb PbPbgesAAS2.2 01.01.1993 01.01.1999 Pb PbPbgesAAS3.1 01.01.1989 01.03.1995 Pb PbPbgesAAS3.2 01.11.1996 01.03.1995 Pb PbPbgesAAS3.2 01.11.1993 01.03.1995 Pb PbPbgesAAS3.2 01.11.1993 01.03.1995 Pb PbPbgesAAS3.2 01.11.1993 01.03.1995 Pb PbPbgesAAS4.2 01.11.1993 01.02.1998 Pb PbPbgesAAS4.1 01.07.1994 01.02.1998 Pb PbPbgesICP1.2 01.05.1994 01.12.1994 Pb PbPgesICP1.3 15.03.1995 01.11.1998 Pb PbPgesICP2.1 01.01.1997 01.09.
P PPO4IC2.3 01.06.2014 P PPO4IC3.1 20.12.2015 Pb PbPbgesAAS1.1 01.01.1989 01.10.1996 Pb PbPbgesAAS1.2 01.12.1996 01.11.1996 Pb PbPbgesAAS2.1 01.01.1993 01.11.1998 Pb PbPbgesAAS2.2 01.11.1996 01.09.1999 Pb PbPbgesAAS3.1 01.01.1989 01.03.1995 Pb PbPbgesAAS3.2 01.11.1993 01.03.1995 Pb PbPbgesAAS4.1 01.07.1994 01.02.1998 Pb PbPbgesAAS4.2 01.11.1996 01.02.1998 Pb PbPbgesICP1.2 01.05.1994 01.02.1998 Pb PbPbgesICP1.2 01.05.1994 01.12.1994 Pb PbPbgesICP1.3 15.03.1995 01.11.1998 Pb PbPbgesICP2.1 01.01.1997 01.09.1998 Pb PbPbgesICP2.2 01.11.1998 01.12.2000 Pb PbPbgesICP3.1 01.07.2000 31.12.2006 Pb PbPbgesICP3.1 01.07.2000
P PPO4IC3.1 20.12.2015 Pb PbPbgesAAS1.1 01.01.1989 01.10.1996 Pb PbPbgesAAS1.2 01.12.1996 01.11.1996 Pb PbPbgesAAS2.1 01.01.1993 01.11.1998 Pb PbPbgesAAS2.2 01.11.1996 01.09.1999 Pb PbPbgesAAS3.1 01.01.1989 01.03.1995 Pb PbPbgesAAS3.2 01.11.1993 01.03.1995 Pb PbPbgesAAS4.1 01.07.1994 01.02.1998 Pb PbPbgesAAS4.2 01.11.1996 01.02.1998 Pb PbPbgesICP1.2 01.05.1994 01.02.1998 Pb PbPbgesICP1.2 01.05.1994 01.12.1994 Pb PbPbgesICP1.3 15.03.1995 01.11.1998 Pb PbPbgesICP2.1 01.01.1997 01.09.1998 Pb PbPbgesICP2.1 01.01.1997 01.09.1998 Pb PbPbgesICP3.1 01.07.2000 31.12.2006 Pb PbPbgesICP3.1 01.07.2000 31.12.2004 Pb PbPbgesICP4.1
Pb PbPbgesAAS1.1 01.01.1989 01.10.1996 Pb PbPbgesAAS1.2 01.12.1996 01.11.1996 Pb PbPbgesAAS2.1 01.01.1993 01.11.1998 Pb PbPbgesAAS2.2 01.11.1996 01.09.1999 Pb PbPbgesAAS3.1 01.01.1989 01.03.1995 Pb PbPbgesAAS3.2 01.11.1993 01.03.1995 Pb PbPbgesAAS4.1 01.07.1994 01.02.1998 Pb PbPbgesAAS4.2 01.11.1996 01.02.1998 Pb PbPbgesAAS4.1 01.07.1994 01.02.1998 Pb PbPbgesAAS4.2 01.11.1996 01.02.1998 Pb PbPbgesICP1.2 01.05.1994 01.12.1994 Pb PbPbgesICP1.3 15.03.1995 01.11.1998 Pb PbPbgesICP1.3 15.03.1995 01.11.1998 Pb PbPbgesICP2.2 01.01.1997 01.09.1998 Pb PbPbgesICP2.3 01.07.2000 31.12.2006 Pb PbPbgesICP3.1 01.01.1998 01.12.2000 Pb
Pb PbPbgesAAS1.2 01.12.1996 01.11.1996 Pb PbPbgesAAS2.1 01.01.1993 01.11.1998 Pb PbPbgesAAS2.2 01.11.1996 01.09.1999 Pb PbPbgesAAS3.1 01.01.1989 01.03.1995 Pb PbPbgesAAS3.2 01.11.1993 01.03.1995 Pb PbPbgesAAS4.1 01.07.1994 01.02.1998 Pb PbPbgesAAS4.2 01.11.1996 01.02.1998 Pb PbPbgesAAS4.2 01.11.1996 01.02.1998 Pb PbPbgesICP1.2 01.05.1994 01.02.1998 Pb PbPbgesICP1.2 01.05.1994 01.12.1994 Pb PbPbgesICP1.3 15.03.1995 01.11.1998 Pb PbPbgesICP2.1 01.01.1997 01.09.1998 Pb PbPbgesICP2.2 01.11.1998 01.12.2000 Pb PbPbgesICP2.3 01.07.2000 31.12.2006 Pb PbPbgesICP3.1 01.01.2000 31.12.2004 Pb PbPbgesICP4.1 01.01.2001 31.12.2005 Pb
Pb PbPbgesAAS2.1 01.01.1993 01.11.1998 Pb PbPbgesAAS2.2 01.11.1996 01.09.1999 Pb PbPbgesAAS3.1 01.01.1989 01.03.1995 Pb PbPbgesAAS3.2 01.11.1993 01.03.1995 Pb PbPbgesAAS4.1 01.07.1994 01.02.1998 Pb PbPbgesAAS4.2 01.11.1996 01.02.1998 Pb PbPbgesICP1.2 01.05.1994 01.12.2006 Pb PbPbgesICP1.2 01.05.1994 01.12.1994 Pb PbPbgesICP1.3 15.03.1995 01.11.1998 Pb PbPbgesICP2.1 01.01.1997 01.09.1998 Pb PbPbgesICP2.2 01.11.1998 01.12.2000 Pb PbPbgesICP2.3 01.07.2000 31.12.2006 Pb PbPbgesICP3.1 01.11.1998 01.12.2000 Pb PbPbgesICP3.1 01.07.2000 31.12.2004 Pb PbPbgesICP4.1 01.01.2001 31.12.2005 Pb PbPbgesICP4.1 01.03.2004 01.07.2012 Pb
Pb PbPbgesAAS2.1 01.01.1993 01.11.1998 Pb PbPbgesAAS2.2 01.11.1996 01.09.1999 Pb PbPbgesAAS3.1 01.01.1989 01.03.1995 Pb PbPbgesAAS3.2 01.11.1993 01.03.1995 Pb PbPbgesAAS4.1 01.07.1994 01.02.1998 Pb PbPbgesAAS4.2 01.11.1996 01.02.1998 Pb PbPbgesICP1.2 01.05.1994 01.12.2006 Pb PbPbgesICP1.2 01.05.1994 01.12.1994 Pb PbPbgesICP1.3 15.03.1995 01.11.1998 Pb PbPbgesICP2.1 01.01.1997 01.09.1998 Pb PbPbgesICP2.2 01.11.1998 01.12.2000 Pb PbPbgesICP2.3 01.07.2000 31.12.2006 Pb PbPbgesICP3.1 01.11.1998 01.12.2000 Pb PbPbgesICP3.1 01.07.2000 31.12.2004 Pb PbPbgesICP4.1 01.01.2001 31.12.2005 Pb PbPbgesICP4.1 01.03.2004 01.07.2012 Pb
Pb PbPbgesAAS3.1 01.01.1989 01.03.1995 Pb PbPbgesAAS3.2 01.11.1993 01.03.1995 Pb PbPbgesAAS4.1 01.07.1994 01.02.1998 Pb PbPbgesAAS4.2 01.11.1996 01.02.1998 Pb PbPbgesAAS8.1 01.02.2005 31.12.2006 Pb PbPbgesICP1.2 01.05.1994 01.12.1994 Pb PbPbgesICP1.3 15.03.1995 01.11.1998 Pb PbPbgesICP2.1 01.01.1997 01.09.1998 Pb PbPbgesICP2.2 01.11.1998 01.12.2000 Pb PbPbgesICP2.3 01.07.2000 31.12.2006 Pb PbPbgesICP3.1 01.07.2000 31.12.2006 Pb PbPbgesICP3.2 01.07.2000 31.12.2004 Pb PbPbgesICP3.1 01.01.2001 31.12.2005 Pb PbPbgesICP8.1 10.03.2004 01.07.2012 Pb PbPbgesICP15.1 01.00.2006 Pb PbPbgesICP15.1 01.10.2006 Pb PbPbgesICP15.1 01.10.200
Pb PbPbgesAAS3.2 01.11.1993 01.03.1995 Pb PbPbgesAAS4.1 01.07.1994 01.02.1998 Pb PbPbgesAAS4.2 01.11.1996 01.02.1998 Pb PbPbgesAAS8.1 01.02.2005 31.12.2006 Pb PbPbgesICP1.2 01.05.1994 01.12.1994 Pb PbPbgesICP1.3 15.03.1995 01.11.1998 Pb PbPbgesICP2.1 01.01.1997 01.09.1998 Pb PbPbgesICP2.2 01.11.1998 01.12.2000 Pb PbPbgesICP2.3 01.07.2000 31.12.2006 Pb PbPbgesICP3.1 01.01.2000 31.12.2006 Pb PbPbgesICP3.2 01.07.2000 31.12.2004 Pb PbPbgesICP4.1 01.01.2001 31.12.2004 Pb PbPbgesICP4.1 01.01.2001 31.12.2005 Pb PbPbgesICP14.1 01.09.2006 Pb PbPbgesICP15.1 01.10.2006 Pb PbPbgesICP15.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.20
Pb PbPbgesAAS4.1 01.07.1994 01.02.1998 Pb PbPbgesAAS4.2 01.11.1996 01.02.1998 Pb PbPbgesAAS8.1 01.02.2005 31.12.2006 Pb PbPbgesICP1.2 01.05.1994 01.12.1994 Pb PbPbgesICP1.3 15.03.1995 01.11.1998 Pb PbPbgesICP2.1 01.01.1997 01.09.1998 Pb PbPbgesICP2.2 01.11.1998 01.12.2000 Pb PbPbgesICP2.3 01.07.2000 31.12.2006 Pb PbPbgesICP3.1 01.07.2000 31.12.2000 Pb PbPbgesICP3.2 01.07.2000 31.12.2004 Pb PbPbgesICP4.1 01.01.2001 31.12.2004 Pb PbPbgesICP8.1 10.03.2004 01.07.2012 Pb PbPbgesICP15.1 01.09.2006 Pb PbPbgesICP15.1 01.10.2006 Pb PbPbgesICP16.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.2006 01.06.2011 Pb PbPbgesICP19.1 01.10.2
Pb PbPbgesAAS4.2 01.11.1996 01.02.1998 Pb PbPbgesAAS8.1 01.02.2005 31.12.2006 Pb PbPbgesICP1.2 01.05.1994 01.12.1994 Pb PbPbgesICP1.3 15.03.1995 01.11.1998 Pb PbPbgesICP2.1 01.01.1997 01.09.1998 Pb PbPbgesICP2.2 01.11.1998 01.12.2000 Pb PbPbgesICP2.3 01.07.2000 31.12.2006 Pb PbPbgesICP3.1 01.07.2000 31.12.2004 Pb PbPbgesICP3.2 01.07.2000 31.12.2004 Pb PbPbgesICP4.1 01.01.2001 31.12.2004 Pb PbPbgesICP4.1 01.01.2001 31.12.2005 Pb PbPbgesICP14.1 01.09.2006 Pb PbPbgesICP15.1 01.10.2006 Pb PbPbgesICP15.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.2006 01.06.2011 Pb PbPbgesICP19.1 01.10.2009 01.09.2019
Pb PbPbgesAAS8.1 01.02.2005 31.12.2006 Pb PbPbgesICP1.2 01.05.1994 01.12.1994 Pb PbPbgesICP1.3 15.03.1995 01.11.1998 Pb PbPbgesICP2.1 01.01.1997 01.09.1998 Pb PbPbgesICP2.2 01.11.1998 01.12.2000 Pb PbPbgesICP2.3 01.07.2000 31.12.2006 Pb PbPbgesICP3.1 01.07.2000 31.12.2000 Pb PbPbgesICP3.2 01.07.2000 31.12.2004 Pb PbPbgesICP4.1 01.01.2001 31.12.2005 Pb PbPbgesICP4.1 01.03.2004 01.07.2012 Pb PbPbgesICP14.1 01.09.2006 Pb PbPbgesICP15.1 01.10.2006 Pb PbPbgesICP16.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.2006 01.06.2011 Pb PbPbgesICP19.1 01.10.2009 01.09.2019
Pb PbPbgesICP1.2 01.05.1994 01.12.1994 Pb PbPbgesICP1.3 15.03.1995 01.11.1998 Pb PbPbgesICP2.1 01.01.1997 01.09.1998 Pb PbPbgesICP2.2 01.11.1998 01.12.2000 Pb PbPbgesICP2.3 01.07.2000 31.12.2006 Pb PbPbgesICP3.1 01.07.2000 31.12.2000 Pb PbPbgesICP3.2 01.07.2000 31.12.2004 Pb PbPbgesICP4.1 01.01.2001 31.12.2005 Pb PbPbgesICP8.1 10.03.2004 01.07.2012 Pb PbPbgesICP14.1 01.09.2006 Pb PbPbgesICP15.1 01.10.2006 Pb PbPbgesICP16.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.2006 01.06.2011 Pb PbPbgesICP19.1 01.10.2009 01.09.2019
Pb PbPbgesICP1.3 15.03.1995 01.11.1998 Pb PbPbgesICP2.1 01.01.1997 01.09.1998 Pb PbPbgesICP2.2 01.11.1998 01.12.2000 Pb PbPbgesICP2.3 01.07.2000 31.12.2006 Pb PbPbgesICP3.1 01.11.1998 01.12.2000 Pb PbPbgesICP3.2 01.07.2000 31.12.2004 Pb PbPbgesICP4.1 01.01.2001 31.12.2005 Pb PbPbgesICP8.1 10.03.2004 01.07.2012 Pb PbPbgesICP14.1 01.09.2006 Pb PbPbgesICP15.1 01.10.2006 Pb PbPbgesICP16.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.2006 01.06.2011 Pb PbPbgesICP19.1 01.10.2009 01.09.2019
Pb PbPbgesICP1.3 15.03.1995 01.11.1998 Pb PbPbgesICP2.1 01.01.1997 01.09.1998 Pb PbPbgesICP2.2 01.11.1998 01.12.2000 Pb PbPbgesICP2.3 01.07.2000 31.12.2006 Pb PbPbgesICP3.1 01.11.1998 01.12.2000 Pb PbPbgesICP3.2 01.07.2000 31.12.2004 Pb PbPbgesICP4.1 01.01.2001 31.12.2005 Pb PbPbgesICP8.1 10.03.2004 01.07.2012 Pb PbPbgesICP14.1 01.09.2006 Pb PbPbgesICP15.1 01.10.2006 Pb PbPbgesICP16.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.2006 01.06.2011 Pb PbPbgesICP19.1 01.10.2009 01.09.2019
Pb PbPbgesICP2.2 01.11.1998 01.12.2000 Pb PbPbgesICP2.3 01.07.2000 31.12.2006 Pb PbPbgesICP3.1 01.11.1998 01.12.2000 Pb PbPbgesICP3.2 01.07.2000 31.12.2004 Pb PbPbgesICP4.1 01.01.2001 31.12.2005 Pb PbPbgesICP8.1 10.03.2004 01.07.2012 Pb PbPbgesICP14.1 01.09.2006 Pb PbPbgesICP15.1 01.10.2006 Pb PbPbgesICP16.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.2006 01.06.2011 Pb PbPbgesICP19.1 01.10.2009 01.09.2019
Pb PbPbgesICP2.3 01.07.2000 31.12.2006 Pb PbPbgesICP3.1 01.11.1998 01.12.2000 Pb PbPbgesICP3.2 01.07.2000 31.12.2004 Pb PbPbgesICP4.1 01.01.2001 31.12.2005 Pb PbPbgesICP8.1 10.03.2004 01.07.2012 Pb PbPbgesICP14.1 01.09.2006 Pb PbPbgesICP15.1 01.10.2006 Pb PbPbgesICP16.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.2006 01.06.2011 Pb PbPbgesICP19.1 01.10.2009 01.09.2019
Pb PbPbgesICP3.1 01.11.1998 01.12.2000 Pb PbPbgesICP3.2 01.07.2000 31.12.2004 Pb PbPbgesICP4.1 01.01.2001 31.12.2005 Pb PbPbgesICP8.1 10.03.2004 01.07.2012 Pb PbPbgesICP14.1 01.09.2006 Pb PbPbgesICP15.1 01.10.2006 Pb PbPbgesICP16.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.2006 01.06.2011 Pb PbPbgesICP19.1 01.10.2009 01.09.2019
Pb PbPbgesICP3.2 01.07.2000 31.12.2004 Pb PbPbgesICP4.1 01.01.2001 31.12.2005 Pb PbPbgesICP8.1 10.03.2004 01.07.2012 Pb PbPbgesICP14.1 01.09.2006 Pb PbPbgesICP15.1 01.10.2006 Pb PbPbgesICP16.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.2006 01.06.2011 Pb PbPbgesICP19.1 01.10.2009 01.09.2019
Pb PbPbgesICP4.1 01.01.2001 31.12.2005 Pb PbPbgesICP8.1 10.03.2004 01.07.2012 Pb PbPbgesICP14.1 01.09.2006 Pb PbPbgesICP15.1 01.10.2006 Pb PbPbgesICP16.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.2006 01.06.2011 Pb PbPbgesICP19.1 01.10.2009 01.09.2019
Pb PbPbgesICP8.1 10.03.2004 01.07.2012 Pb PbPbgesICP14.1 01.09.2006 Pb PbPbgesICP15.1 01.10.2006 Pb PbPbgesICP16.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.2006 01.06.2011 Pb PbPbgesICP19.1 01.10.2009 01.09.2019
Pb PbPbgesICP14.1 01.09.2006 Pb PbPbgesICP15.1 01.10.2006 Pb PbPbgesICP16.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.2006 01.06.2011 Pb PbPbgesICP19.1 01.10.2009 01.09.2019
Pb PbPbgesICP15.1 01.10.2006 Pb PbPbgesICP16.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.2006 01.06.2011 Pb PbPbgesICP19.1 01.10.2009 01.09.2019
Pb PbPbgesICP16.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.2006 01.06.2011 Pb PbPbgesICP19.1 01.10.2009 01.09.2019
Pb PbPbgesICP16.1 01.02.2007 01.05.2019 Pb PbPbgesICP17.1 01.10.2006 01.06.2011 Pb PbPbgesICP19.1 01.10.2009 01.09.2019
Pb PbPbgesICP19.1 01.10.2009 01.09.2019
Pb PbPbgesICP22.1 01.08.2014
Pb PbPbgesICP24.1 01.07.2016
Pb PbPbgesICPMS1.1 01.11.2018
Pb PbPbgesICPMS2.1 01.11.2018
Pb PbPbgesICPMS4.1 01.06.2019
S SSgesCNS1.1 01.01.1989 01.09.1991
S SSgesICP1.1 01.10.1990 01.07.1993
S SSgesICP1.2 01.05.1994 01.11.1998
S SSgesICP1.3 01.08.1998 31.12.2002
S SSgesICP2.1 01.01.1997 01.11.1998
S SSgesICP2.2 01.11.1998 01.03.2000
S SSgesICP3.1 01.11.1998 31.12.2003
S SSgesICP7.1 15.02.2003 31.01.2004
S SSgesICP7.2 01.09.2003 01.03.2004
S SSgesICP8.1 10.03.2003 31.12.2002
S SSgesICP8.2 01.09.2003 31.12.2003
S SSgesICP9.1 01.09.2003 31.12.2003
S SSgesICP10.1 01.01.2004 31.12.2005
S SSgesICP10.2 01.03.2006 01.02.2012
S SSgesICP10.3 01.03.2008 01.04.2014
S SSgesICP11.1 01.01.2004 01.07.2005

S	SSgesICP11.2	01.05.2005	31.12.2006
S	SSgesICP12.1	01.01.2004	01.01.2012
S	SSgesICP15.1	01.10.2006	
S	SSgesICP16.1	01.02.2007	01.05.2019
S	SSgesICP19.1	01.10.2009	01.08.2019
S	SSgesICP19.2	01.01.2019	
S S	SSgesICP20.1	01.05.2014	
S	SSgesICP22.1	01.08.2014	
S	SSO4CFC1.1	01.01.1989	01.07.1993
S	SSO4CFC1.2	01.03.1991	01.09.1998
S	SSO4IC1.1	01.08.1992	01.08.1995
S	SSO4IC2.1	15.12.2007	01.02.2010
S	SSO4IC2.2	01.08.2009	31.12.2014
S	SSO4IC2.3	01.06.2014	
S	SSO4IC3.1	20.12.2015	
SA	SASKTIT2.1	01.04.2011	
Si	SiSiO2WG1.1	01.01.1989	
Si	SiSigesAAS1.1	01.01.1989	01.12.1992
Si	SiSigesICP1.1	01.01.1990	01.06.1993
Si	SiSigesICP1.2	01.05.1994	01.06.1996
Si	SiSigesICP1.3	01.08.1998	01.03.2002
Ti	TiTigesICP1.1	01.11.1998	01.11.1999
Ti	TiTigesICP2.1	01.11.1998	30.06.2000
Ti	TiTigesICP2.2	01.07.2000	30.04.2007
Ti	TiTigesICP8.1	01.05.2005	31.12.2006
Ti	TiTigesICP15.1	01.10.2006	01.11.2006
Ti	TiTigesICP16.1	01.02.2007	01.05.2019
Ti	TiTigesICP19.1	01.10.2009	31.12.2019
Ti	TiTigesICP19.2	01.01.2019	
Ti	TiTigesICP22.1	01.08.2014	
Zn	ZnZngesAAS1.1	01.01.1989	01.08.1996
Zn	ZnZngesAAS1.2	01.11.1996	01.12.1996
Zn	ZnZngesAAS2.1	01.01.1993	01.11.1998
Zn	ZnZngesAAS2.2	01.11.1996	01.09.1999
Zn	ZnZngesICP1.1	01.10.1990	01.10.2007
Zn	ZnZngesICP1.2	01.05.1994	01.11.1998
Zn	ZnZngesICP2.1	01.01.1997	01.11.1998
Zn	ZnZngesICP2.2	01.11.1998	01.12.2000
Zn	ZnZngesICP2.3	01.07.2000	31.12.2006
Zn	ZnZngesICP3.1	01.11.1998	01.08.2000
Zn	ZnZngesICP3.2	01.07.2000	31.12.2004
Zn	ZnZngesICP4.1	01.01.2001	31.12.2005
Zn	ZnZngesICP8.1	10.03.2003	31.12.2006
Zn	ZnZngesICP14.1	01.09.2006	
Zn	ZnZngesICP15.1	01.10.2006	
Zn	ZnZngesICP16.1	01.02.2007	01.05.2019
Zn	ZnZngesICP17.1	01.10.2006	01.06.2011
Zn	ZnZngesICP19.1	01.10.2009	01.09.2019
Zn	ZnZngesICP22.1	01.08.2014	

Zn	ZnZngesICP24.1	01.07.2016
Zn	ZnZngesICPMS1.1	01.11.2018
Zn	ZnZngesICPMS2.1	01.11.2018
Zn	ZnZngesICPMS4.1	01.06.2019

Elementbestimmungsmethoden von L bis Z

_	Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
	Mg	Mgges	IC	MgMggesIC2.2	-	1

Datum:

15.7.2012

Elementbestimmungsmethode:

MAGNESIUM

Untersuchun	gsmethode	NG	BG	OMG		
ANULLIC		0,005	0,015	7,5		
geeignet für:	geeignet für:					
Boden						
Humus						
Pflanze	Pflanze					
Wasser ANULLIC						
Methodenver	Methodenverweise:					
Norm In Anlehnung an DIN EN ISO 14911						
HFA D36.1.4.6						
HFA-Code	0713401					

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Kationen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Kationen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit Carboxylgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt Mg wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine verdünnte Salpetersäurelösung verwendet. Diese hat eine außerordentlich hohe Ionenäquivalentleitfähigkeit. Daher nimmt auf Grund der geringeren Ionenäquivalentleitfähigkeit der getrennten Kationen die Leitfähigkeit ab, wenn die Kationen die Trennsäule mit dem Eluenten verlassen und in die Leitfähigkeitsdetektorzelle gelangen. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Kations geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 0,25 ppm) wird das Kationen-Chromatogramm doppelt aufgenommen und mit unterschiedlichen Eichkurven für den hohen Messbereich (= linear durch Null) und den niedrigen Messbereich (= linear) ausgewertet. In dem 2-Kanal-System werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Säule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC2.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S17.3: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC2.1	

Element	Form	Gerat	Metnoden-Nr.	Lapis ait	Seite
Mg	Mgges	IC	MgMggesIC2.2	-	2

Analysengeräte und Zubehör:

- 2-Kanal-IC-Anlage Fa. Metrohm, bestehend aus:
- 2 IC-Pumpen 818
- 2 Leitfähigkeitsdetektoren 819

IC-Separation-Center 820 mit Säulenofen

IC-Liquid-Handling-Einheit 833

2 Pulsationsdämpfer

IC-Eluent-Degaser 837

IC-Probengeber 838

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5

b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen:

a. Anionen: 20 µl

b. Kationen: 50 µl

Software:

a. zur Anlagensteuerung: IC-Net

b. zur Chromatogrammauswertung: MagIC-Net

Chemikalien:

Salpetersäure, HNO₃, 1 M

Lösungen:

Eluent Kationen: In einen 2 l-Messkolben werden 12 ml 1 M Salpetersäure gegeben und mit

H₂O demin. reinst auf 2 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

1 g/l Mg: 1 g/l Magnesium als Magnesiumnitrat => 1 g/l Mg

Je 1 ml K-, NH₄-, Na-, Ca-, und Mg-Stammlösung werden in einen 100 ml-Stammlösung II:

Messkolben mit H₂O demin. reinst auf 100 ml aufgefüllt.

 \Rightarrow 0,01 g/l K, NH₄, Na, Ca, Mg.

Haltbarkeit:

Die Stammlösung II ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

	Kontrollstandard
K1IC:	2,0 mg/l Mg
K2IC:	0,1 mg/l Mg

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Mg	Mgges	IC	MgMggesIC2.2	-	3

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S17.3) mit insgesamt 19 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung II und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC2.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (2,0 mg/l Mg), K2IC (0,1 mg/l Mg), Messung
		nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE3IC mit-
		gemessen; erlaubte Abweichung 5 %.

Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Magnesiumkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

<u>Mg</u>

Anhang Nr. 1 für Mg Mgges IC MgMggesIC2.2

Chromatogramm der Kationenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Mg	Mgges	IC	MgMggesIC3.1	-	1

Datum:

20.12.2015

Elementbestimmungsmethode:

MAGNESIUM

Untersuchun	gsmethode	NG	BG	OMG		
ANULLIC		0,004	0,013	7,5		
geeignet für:						
Boden						
Humus						
Pflanze						
Wasser ANULLIC						
Methodenver	Methodenverweise:					
Norm In Anlehnung an DIN EN ISO 14911						
HFA D36.1.4.6						
HFA-Code	D;7;1;3;2;-1;1;	•	•	•		

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Kationen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Kationen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit Carboxylgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt Mg wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine verdünnte Salpetersäurelösung verwendet. Diese hat eine außerordentlich hohe Ionenäquivalentleitfähigkeit. Daher nimmt auf Grund der geringeren Ionenäquivalentleitfähigkeit der getrennten Kationen die Leitfähigkeit ab, wenn die Kationen die Trennsäule mit dem Eluenten verlassen und in die Leitfähigkeitsdetektorzelle gelangen. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Kations geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 0,25 ppm) wird das Kationen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich (Kurventyp: linear durch 0, Gewichtung 1) und den niedrigen Messbereich (Kurventyp: linear, Gewichtung 1) ausgewertet. Mit Flex 1 (Anionen) und Flex 2 (Kationen) werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Säule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC3.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S29.1: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC3.1	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Mg	Mgges	IC	MgMggesIC3.1	-	2

Analysengeräte und Zubehör:

2 Compact IC Flex- Anlagen Fa. Metrohm, bestehend aus:

Compact IC Flex 1 Anionen mit MSM Suppressor und MCS-Suppressor

Compact IC Flex 2 Kationen

IC-Probengeber 858 Professional Sample Processor

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5 b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard Probenschleifen:

a. Anionen: 20 μlb. Kationen: 50 μl

Software: MagIC-Net3.1

Chemikalien:

Salpetersäure, HNO₃, 1 M

Lösungen:

Eluent Kationen: In einen 2 l-Messkolben werden 10 ml 1 M Salpetersäure gegeben und mit

H₂O demin. reinst auf 2 l aufgefüllt.

Mg

Eichung/Standards:

Stammlösungen:

1 g/l Mg: 1 g/l Magnesium als Magnesiumnitrat \Rightarrow 1 g/l Mg

Stammlösung II: Je 1 ml K-, NH₄-, Na-, Ca-, und Mg-Stammlösung werden in einen 100 ml-

Messkolben mit H₂O demin. reinst auf 100 ml aufgefüllt.

 \Rightarrow 0,01 g/l K, NH₄, Na, Ca, Mg.

Haltbarkeit:

Die Stammlösung II ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

	Kontrollstandard
K1IC:	2,0 mg/l Mg
K2IC:	0,1 mg/l Mg

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S29.1) mit insgesamt 18 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung II und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Mg	Mgges	IC	MgMggesIC3.1	-	3

Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

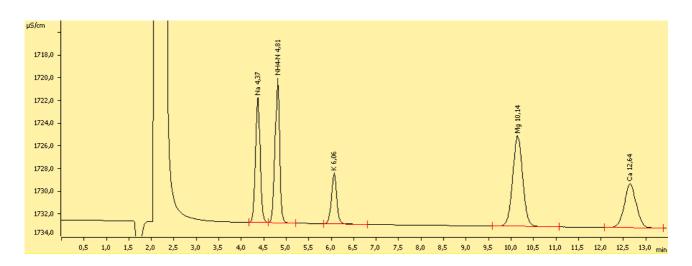
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC3.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (2,0 mg/l Mg), K2IC (0,1 mg/l Mg), Messung
		nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE3IC mit-
		gemessen; erlaubte Abweichung 5 %.


Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Magnesiumkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr. 1 für Mg Mgges IC MgMggesIC3.1

Chromatogramm der Kationenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP19.2	1

Datum:

01.01.2019

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode	NG	BG	OMG
OAKW2.1, OAKWEG3.1	0,0005	0,002	100

geeignet für:

Boden OAKW2.1, OAKWEG3.1	
Humus	OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	n Anlehnung an DIN EN ISO 11885	
HFA	D36.1.6.2	
HFA-Code	D;4;1;2;1;-1;2 (285.213 nm radial), D;4;1;2;1;-1;5 (280.270 nm radial)	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Analysengeräte und Zubehör:

Anhang:	<u>Lit.:</u>
Sammelanhang S33.1: Geräteparameter und	Nölte: ICP Emissionsspektroskopie für
Standardzusammen-	Praktiker; Weinheim, 2002
setzung	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP6.1	Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP19.2	2

iCAP 6500 der Fa. Thermo Fisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 2 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac mit Probenrack für 60 Positionen für Hauptelemente, bzw. 21 Positionen für Schwermetalle

PP-Röhrchen Natur, 12 ml, Fa. Greiner bio-one

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Laminar Flow Box FBS der Fa. Spetec, für Probengeber (zur Verhinderung von Staubeintrag in die Probengefäße)

Rechner mit Software QTEGRA

5000 ml Varipette, sowie 250 µl, 500 µl und 1000 µl Pipetten der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Mischfitting (Fa. Thermo Fisher) zur zur gleichmässigen Vermischung von Probelösung und internem Standard

Dilutor der Fa. Hamilton

Chemikalien:

Salpetersäure (HNO3), 65 %, p.a.

Y, AAS-Standard Yttrium 1 g/l Y (Fa B. Kraft)

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Interner Standard: 10 ml Yttriumlösung werden in einen 1 l Glaskolben gegeben, mit 30 ml

65 %. HNO₃ p.a. versetzt und mit H₂O demin. bis zur Eichmarke

aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mg: ICP-Konzentrat (Fa B. Kraft) \Rightarrow 10 g/l Mg

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Im folgenden wird nur die Herstellung der Mg-Standardlösungen beschrieben. Die Zugaben aller anderen Elemente, die sich auch in den beschriebenen Lösungen befinden, werden im Sammelanhang S33.1 beschrieben.

Standardlösung KW 1: In einen 250 ml PFA-Kolben werden 0,125 ml des 10 g/l Mg

enthaltenden

Element	Form	Gerät	Methoden-Nr.	Seite_
Mg	Mgges	ICP(sim)	MgMggesICP19.2	3
			e entsprechenden Mengen der an mmelanhang S33.1), mit 7,5 ml d mit H_2O bidemin. aufgefüllt.	
			d Ni, 200 μg/l Pb und Zn, 2 mg/l Mn, 10 mg/l P, 20 mg/l Ca und 200 mg/l A	
Standardlös	sung KW 2:	ICP-Konzentrates, sowie di	werden 0,05 ml des 10 g/l Mg enthalte e entsprechenden Mengen der an ammelanhang S33.1), mit 7,5 ml d mit H_2O bidemin. aufgefüllt.	deren
			und Ni, 500 μg/l Pb und Zn, 1 mg 10 mg/l Fe, Mn und Na, 50 mg/l Ca ι	-
Standardlös	sung KW 3:	ICP-Konzentrates, sowie di	werden 0,25 ml des 10 g/l Mg enthalte e entsprechenden Mengen der an ammelanhang S33.1), mit 7,5 ml d mit H_2O bidemin. aufgefüllt.	deren
		. •	und Ni, 1000 μg/l Pb und Zn, 0,5 mgi, 6 mg/l P, 8 mg/l Na, 10 mg/l K und	_
Standardlös	sung KW 4:	ICP-Konzentrates, sowie di	werden 0,5 ml des 10 g/l Mg enthalte e entsprechenden Mengen der an ammelanhang S33.1), mit 7,5 ml d mit H_2O bidemin. aufgefüllt.	deren
			Ni, 2000 μg/l Pb und Zn, 4 mg/l Na un mg/l K, Mg und Mn, 50 mg/l Al, 100	-
Standardlös	sung KW 5:	ICP-Konzentrates, sowie di	werden 1,25 ml des 10 g/l Mg enthalte entsprechenden Mengen der an ammelanhang S33.1), mit 7,5 ml d mit H_2O bidemin. aufgefüllt.	deren

=> 1000 µg/l Cu und Ni, 4000 µg/l Pb und Zn, 2 mg/l K und P, 5 mg/l Mn, 6 mg/l Na, 10 mg/l Al und S, 50 mg/l Fe und Mg, 100 mg/l Ca.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP19.2	4

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mg auch andere Elemente enthalten (siehe Sammelanhang S33.1), verwendet:

<u>Standards</u>		
Blank	0,0 mg/l Mg	
KW 1	5,0 mg/l Mg	
KW 2	2,0 mg/l Mg	
KW 3	10,0 mg/l Mg	
KW 4	20,0 mg/l Mg	
KW 5	50,0 mg/l Mg	

	Kontrollstandard
K24	10,0 mg/l Mg

Methode:	OAKW2.1Boden	OAKW2.1Boden
	OAKW2.1Humus	OAKW2.1Humus
	OAKWEG3.1Boden	OAKWEG3.1Boden
Element:	Mg	Mg
Wellenlänge:	285.213	280.270
Plasma-	radial	radial
beobachtung:		
Messbereich	20 – OMG	BG-20
[mg/l]:		
Standards:	Blank	Blank
	KW 4	KW 1
	KW 5	KW 2
		KW 3
		KW 4
Bemerkungen:	Fensterweite: 20	Fensterweite: 20
	Pixelbreite: 3	Pixelbreite: 2
	Pixelhöhe: 3	Pixelhöhe: 2
	<u>Untergrund-</u>	<u>Untergrund-</u>
	Korrektur:	Korrektur:
	Pos. links: fixed	Pos. links: fixed
	Pos. rechts: fixed	Pos. rechts: fixed

Zur Herstellung der Blank-Lösung werden 7,5 ml der 65 %igen HNO_3 p.a. in einen 250 ml PFA-Kolben gegeben und mit H_2O bidemin. aufgefüllt.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP19.2	5

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP6.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S33.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 24 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %

Auswertung/Datendokumentation:

Die gemessenen Mg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP19.2	6

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP20.1	1

Datum:

01.05.2014

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode	NG	BG	OMG
ANULL, ANULLIC, EXT1:2H2O1.1, GBL1.1, DAN1.1, DAN2.2	0,0002	0,0006	60

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1
Humus	DAN1.1, DAN2.2
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL, ANULLIC

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D36.1.4.2, D36.1.5.2 und D36.1.6.2
HFA-Code	D;4;1;2;-1;-1;1 (279.553 nm), D;4;1;2;-1;-1;2 (285.213 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei Mg den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	Lit.:
Anhang 1: Gerätevergleich iCAP 7400 mit Iris	Nölte: ICP Emissionsspektroskopie für Praktiker;
Advantage	Weinheim, 2002
Sammelanhang S24.1: Geräteparameter und	Montaser, Golightly: Inductively Coupled Plasmas
Standardzusammen-	in Analytical Atomic Spectrometry;
setzung	Weinheim, 1987
Kurzanleitung ICP5.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP20.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 μl, Varipette 100-1000 μl, Varipette 500-5000 μl sowie 250 μl, 500 μl und

1000 µl Pipetten der Fa. Eppendorf 1000 ml und 2000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 150 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 5 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mg: Standard (Fa B. Kraft) \Rightarrow 5 g/l Mg

Al, Ca, Fe, K, Mn, Na, P, S:

Standard (Fa B. Kraft) => jeweils 5 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S24.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mg auch andere Elemente enthalten (siehe Sammelanhang S24.1), verwendet:

<u>Standards</u>		
Blank	0,0 mg/l Mg	
HE 1	0,5 mg/l Mg	
HE 2	10,0 mg/l Mg	
HE 3	20,0 mg/l Mg	
HE 4	2,5 mg/l Mg	
HE 5	5,0 mg/l Mg	
HE 6	50,0 mg/l Mg	

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP20.1	3

	Kontrollstandard
K1	10,0 mg/l Mg

	Τ	T
Methode:	ANULL	ANULL
	ANULLIC	ANULLIC
	EXT1:2H2O1.1	EXT1:2H2O1.1
	GBL1.1	GBL1.1
	DAN1.1Pflanze	DAN1.1Pflanze
	DAN2.2Pflanze	DAN2.2Pflanze
	DAN1.1Humus	DAN1.1Humus
	DAN2.2Humus	DAN2.2Humus
Element:	Mg	Mg
Wellenlänge:	279.553	285.213
Messbereich [mg/l]:	BG - 0.5	0,5 - OMG
Standards:	Blank	Blank
	HE 1	HE 1
		HE 2
		HE 3
		HE 4
		HE 5
		HE 6
Bemerkungen:	Fensterweite: 21	Fensterweite: 21
	Pixelbreite: 3	Pixelbreite: 3
	Pixelhöhe: 2	Pixelhöhe: 2
	Untergrund-	Untergrund-
	Korrektur:	Korrektur:
	Pos. links: 1	Pos. links: 1
	Pixelanzahl: 2	Pixelanzahl: 2
	Pos. rechts: 20	Pos. rechts: 20
	Pixelanzahl: 2	Pixelanzahl: 2

Der Blank, die Standards und der Kontrollstandard werden in 2 %-iger HNO_3 (30 ml HNO_3 65 %, p.a. in 1000 ml) in 1 Liter Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S24.1 zusammengestellt.

Wässrige Proben werden vor dem Messen mit 180 µl HNO₃ konz. pro 6 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

Werden Proben verdünnt, müssen die durch die zusätzliche Säurezugabe veränderten

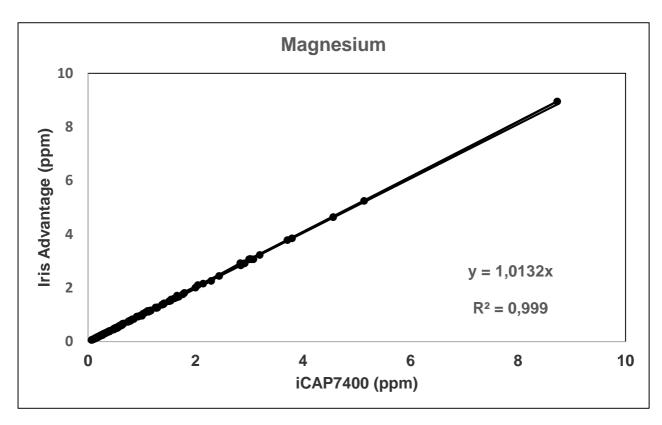
Verdünnungsfaktoren beachtet werden.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP20.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung		
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 24		
		Proben und nach jeder Eichungswiederholung;		
		erlaubte Abweichung 3 %		
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie		
Al-Bilanz	QAlB1.1	Siehe Methodenbeschreibung		
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung		
IBW				
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung		
NFV				
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung		
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung		
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1		
		mitgemessen; erlaubte Abweichung 5 %		
		Bei Pflanzenproben: Standard NHARZ, erlaubte		
		Abweichung 10 %		
		Bei Humusproben: Standard NFVH, erlaubte		
		Abweichung 10 %		


Ma

Auswertung/Datendokumentation:

Die gemessenen Mg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Methodenvergleich ICP Iris Advantage mit iCAP 7400

Darstellung einer Vergleichsmessung der Methode MgMggesICP7.3 und der hier beschriebenen Methode an der Wasserserie 2013W078 (151 Proben):

Anhang Nr.	1	für	Mg	Mgges	ICP(sim)	MgMggesICP20.1
------------	---	-----	----	-------	----------	----------------

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP21.1	1

Datum:

01.05.2014

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode	NG	BG	OMG
AKE1.1, AKEG1.1, AKH3.1, AKT2.1	0,0003	0,001	30

geeignet für:

Boden	AKE1.1, AKEG1.1, AKT2.1
Humus	AKEG1.1, AKH3.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D36.1.5.2
HFA-Code	D;4;1;2;-1;-1;1; (279.553 nm), D;4;1;2;-1;-1;2; (285.213 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich iCAP 7400 mit Iris Advantage	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002
Sammelanhang S25.1: Geräteparameter und Standardzusammensetzung	Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987
Kurzanleitung ICP5.1	, - / - / - /

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP21.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 2 mm, für stark salzhaltige Lösungen

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 μl, Varipette 100-1000 μl, Varipette 500-5000 μl sowie 250 μl, 500 μl und

 $1000~\mu l$ Pipetten der Fa. Eppendorf

250 ml-Messkolben aus Glas

Chemikalien:

keine

Lösungen:

keine

Eichung/Standards:

Stammlösungen:

Mg: Standard (Fa B. Kraft) \Rightarrow 5 g/l Mg

Al, Ca, Fe, K, Mn, Na: Standard (Fa B. Kraft) => jeweils 5 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S25.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mg auch andere Elemente enthalten (siehe Sammelanhang S25.1), verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Mg
AKE 1	20,0 mg/l Mg
AKE 2	10,0 mg/l Mg
AKE 3	2,0 mg/l Mg
AKE 4	5,0 mg/l Mg

	Kontrollstandard
K5	10,0 mg/l Mg

М	(1
IVI	9

Methode:	AKE1.1		AKE1.1	
	AKEG1.1		AKEG1.1	
	AKH3.1		AKH3.1	
	AKT2.1		AKT2.1	
Element:	Mg		Mg	
Wellenlänge:	279.553		285.213	
Messbereich[mg/l]:	BG-2		2 - OMG	
Standards:	Blank		Blank	
	AKE 3		AKE 1	
			AKE 2	
			AKE 3	
			AKE 4	
Bemerkungen:	Fensterweite:	21	Fensterweite:	21
	Pixelbreite:	2	Pixelbreite:	3
	Pixelhöhe:	2	Pixelhöhe:	2
	Untergrund-		Untergrund-	
	Korrektur:		Korrektur:	
	Pos. links:	1	Pos. links:	1
	Pixelanzahl:	2	Pixelanzahl:	2
	Pos. rechts:	20	Pos. rechts:	19
	Pixelanzahl:	2	Pixelanzahl:	2

Gerät

ICP(sim)

Methoden-Nr.

MgMggesICP21.1

Seite

3

Der Blank, die Standards und der Kontrollstandard werden mit der jeweils verwendeten Perkolationslösung in 250 ml Glaskolben angesetzt.

Durchführung:

Element

Mg

Form

Mgges

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S25.1 zusammengestellt.

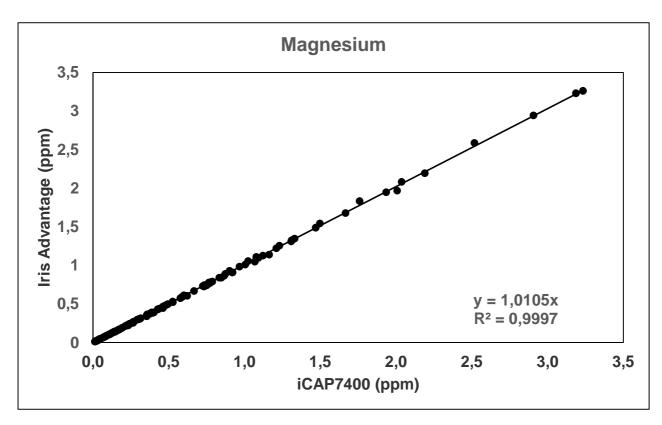
AKEG-Perkolate werden mit $180 \,\mu l$ 65 % iger HNO₃ p.a. pro 6 ml Probe versetzt und 1:5 verdünnt. Die Standards werden mit 1:5 verdünnter Perkolationslösung angesetzt und ebenfalls angesäuert (3 ml 65 % iger HNO₃ p.a. auf $100 \,\mathrm{ml}$).

AKT- und AKH-Perkolate werden vor dem Messen 1:2 verdünnt. Die Standards werden mit 1:2 verdünnter Perkolationslösung angesetzt.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP21.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):


Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K5; Messung nach der Eichung, alle 24
		Proben und nach jeder Eichungswiederholung;
		erlaubte Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards Harste 30-50, BZE-THUE, Solling 0-10,
		Solling0-10neu, BioSoil und BZE-HUM; erlaubte
		Abweichung 10 % - 15 %

Auswertung/Datendokumentation:

Die gemessenen Mg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Methodenvergleich ICP Iris Advantage mit iCAP 7400

Darstellung einer Vergleichsmessung der Methode MgMggesICP10.1 und der hier beschriebenen Methode an den Bodenserien 2013B057 und 2013B059 (140 Proben):

Anhang Nr.	1	für	Mg	Mgges	ICP(sim)	MgMggesICP21.1
------------	---	-----	----	-------	----------	----------------

01.04	.2014

Datum:

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP22.1	1

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1	0,0001	0,0004	100

geeignet für:

Boden	OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1
Humus	OAKW1.1, OAKW1.2, OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D36.1.6.2
HFA-Code	D;4;1;2;-1;-1;1; (279.553 nm), D;4;1;2;-1;-1;2; (285.213 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Mg

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	Lit.:
Sammelanhang S26.1: Geräteparameter und Standardzusammensetzung	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas
Kurzanleitung ICP5.1	in Analytical Atomic Spectrometry; Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP22.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Mg

Stammlösungen:

Mg: ICP-Konzentrat (Fa B. Kraft) => 10 g/l Mg

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mg auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP22.1	3

	<u>Standards</u>
	0.0 11.75
KW 0	0.0 mg/l Mg
KW 1	4,0 mg/l Mg
KW 2	2,0 mg/l Mg
KW 3	40,0 mg/l Mg
KW 4	20,0 mg/l Mg
KW 5	10,0 mg/l Mg
KW 6	60,0 mg/l Mg
KW 7	100,0 mg/l Mg
KW 8	80,0 mg/l Mg

	Kontrollstandard
K24	10,0 mg/l Mg

Methode:	OAKW2.1Boden	OAKW2.1Boden	
	OAKWEG2.1Boden	OAKWEG2.1Boden	
	OAKWEG2.2Boden	OAKWEG2.2Boden	
	OAKWEG3.1Boden	OAKWEG3.1Boden	
	OAKW1.1Humus	OAKW1.1Humus	
	OAKW1.2Humus	OAKW1.2Humus	
	OAKW2.1Humus	OAKW2.1Humus	
Element:	Mg	Mg	
Wellenlänge:	279.553	285.213	
Messbereich	BG - 10	10 – OMG	
[mg/l]:			
Standards:	Blank	KW 1	
	KW 1	KW 3	
	KW 2	KW 4	
	KW 5	KW 5	
		KW 6	
		KW 7	
		KW 8	
Bemerkungen:	Fensterweite: 21	Fensterweite: 21	
	Pixelbreite: 2	Pixelbreite: 2	
	Pixelhöhe: 2	Pixelhöhe: 2	
	<u>Untergrund-</u>	<u>Untergrund-</u>	
	Korrektur:	Korrektur:	
	Pos. links: 1	Pos. links: 1	
	Pixelanzahl: 1	Pixelanzahl: 1	
	Pos. rechts: 21	Pos. rechts: 20	
	Pixelanzahl: 1	Pixelanzahl: 2	

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit $\rm H_2O$ bidemin. aufgefüllt.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP22.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %.

Auswertung/Datendokumentation:

Die gemessenen Mg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Мg

Datum:	01.01.2019

Methoden-Nr.

MnMngesICP19.2

Elementbestimmungsmethode:

Form

Mnges

MANGAN

Untersuchungsmethode	NG	BG	OMG
OAKW2.1, OAKWEG3.1	0,0001	0,0004	50

Gerät

ICP(sim)

geeignet für:

Element

Mn

Boden	OAKW2.1, OAKWEG3.1
Humus	OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	
HFA	D37.1.6.4
HFA-Code	D;4;2;2;1;-1;3 (260.569 nm, axial), D;4;1;2;1;-1;1 (293.930 nm, radial)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Mn

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen eines, bzw. 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Analysengeräte und Zubehör:

Anhang:	<u>Lit.:</u>
Sammelanhang S33.1: Geräteparameter und	Nölte: ICP Emissionsspektroskopie für
Standardzusammen-	Praktiker; Weinheim, 2002
setzung	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP6.1	Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP19.2	2

iCAP 6500 der Fa. Thermo Fisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 2 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac mit Probenrack für 60 Positionen für Hauptelemente, bzw. 21 Positionen für Schwermetalle

PP-Röhrchen Natur, 12 ml, Fa. Greiner bio-one

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Laminar Flow Box FBS der Fa. Spetec, für Probengeber (zur Verhinderung von Staubeintrag in die Probengefäße)

Rechner mit Software OTEGRA

5000 ml Varipette, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Mischfitting (Fa. Thermo Fisher) zur zur gleichmässigen Vermischung von Probelösung und internem Standard

Dilutor der Fa. Hamilton

Chemikalien:

Salpetersäure (HNO3), 65 %, p.a.

Y, AAS-Standard Yttrium 1 g/l Y (Fa B. Kraft)

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

10 ml Yttriumlösung werden in einen 1 l Glaskolben gegeben, mit 30 ml **Mn** Interner Standard:

65 %. HNO₃ p.a. versetzt und mit H₂O demin. bis zur Eichmarke

aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mn: ICP-Konzentrat (Fa B. Kraft) => 10 g/l Mn

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Im folgenden wird nur die Herstellung der Mn-Standardlösungen beschrieben. Die Zugaben aller anderen Elemente, die sich auch in den beschriebenen Lösungen befinden, werden im Sammelanhang S33.1 beschrieben.

Standardlösung KW 1: In einen 250 ml PFA-Kolben werden 0,05 ml des 10 g/l Mn enthaltenden

> ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang S33.1), mit 7,5 ml der 65

%igen HNO₃ p.a. versetzt und mit H₂O bidemin. aufgefüllt.

Mn

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP19.2	3
		, 5	d Ni, 200 μg/l Pb und Zn, 2 mg/l M 10 mg/l P, 20 mg/l Ca und 200 mg/	
Standardlö	sung KW 2:	In einen 250 ml PFA-Kolben werden 0,250 ml des 10 g/l Mn enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang S33.1), mit 7,5 ml der 65 %igen HNO ₃ p.a. versetzt und mit H ₂ O bidemin. aufgefüllt.		
		, -	und Ni, 500 μg/l Pb und Zn, 1 10 mg/l Fe, Mn und Na, 50 mg/l C	_
Standardlö	sung KW 3:	enthaltenden ICP-Konzentrate anderen Elemente gegeben (s	ben werden 0,025 ml des 10 es, sowie die entsprechenden Mer iehe Sammelanhang S33.1), mit 7,3 and mit H_2O bidemin. aufgefüllt.	igen der
			und Ni, 1000 µg/l Pb und Zn, 0,5 i, 6 mg/l P, 8 mg/l Na, 10 mg/l K	_
Standardlö	sung KW 4:	ICP-Konzentrates, sowie di	werden 0,5 ml des 10 g/l Mn enthate entsprechenden Mengen der ammelanhang S33.1), mit 7,5 ml mit H_2O bidemin. aufgefüllt.	anderen
			Ni, 2000 μg/l Pb und Zn, 4 mg/l Na mg/l K, Mg und Mn, 50 mg/l Al, 1	
Standardlö	sung KW 5:		ben werden 0,125 ml des 10 es, sowie die entsprechenden Mer	-

65~%igen HNO $_3$ p.a. versetzt und mit H $_2$ O bidemin. aufgefüllt. => 1000 µg/l Cu und Ni, 4000 µg/l Pb und Zn, 2 mg/l K und P, 5 mg/l Mn, 6 mg/l Na, 10 mg/l Al und S, 50 mg/l Fe und Mg, 100 mg/l Ca.

anderen Elemente gegeben (siehe Sammelanhang S33.1), mit 7,5 ml der

Methoden-Nr.	Seite
MnMngesICP19.2	4

Einzelbestimmung/Mehrelementbestimmung:

Form

Mnges

Element

Mn

Es werden folgende Standardlösungen, die neben Mn auch andere Elemente enthalten (siehe Sammelanhang S33.1), verwendet:

Gerät

ICP(sim)

<u>Standards</u>	
Blank	0,0 mg/l Mn
KW 1	2,0 mg/l Mn
KW 2	10,0 mg/l Mn
KW 3	1,0 mg/l Mn
KW 4	20,0 mg/l Mn
KW 5	5,0 mg/l Mn

	Kontrollstandard
K24	5,0 mg/l Mn

Methode:	OAKW2.1Boden	OAKW2.1Boden
	OAKW2.1Humus	OAKW2.1Humus
	OAKWEG3.1Boden	OAKWEG3.1Boden
Element:	Mn	Mn
Wellenlänge:	260.569	293.930
Plasma-	axial	radial
beobachtung:		
Messbereich	BG-2	2 – OMG
[mg/l]:		
Standards:	Blank	Blank
	KW 1	KW 2
	KW 3	KW 4
	KW 5	
Bemerkungen:		Fensterweite: 20
	Pixelbreite: 2	Pixelbreite: 3
	Pixelhöhe: 1	Pixelhöhe: 2
	<u>Untergrund-</u>	<u>Untergrund-</u>
	Korrektur:	Korrektur:
	Pos. links: fixed	Pos. links: fixed
	Pos. rechts: fixed	Pos. rechts: fixed

Zur Herstellung der Blank-Lösung werden 7,5 ml der 65 %igen HNO_3 p.a. in einen 250 ml PFA-Kolben gegeben und mit H_2O bidemin. aufgefüllt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP6.1 beschrieben.

Mn

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP19.2	5

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S33.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 24 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %

Auswertung/Datendokumentation:

Die gemessenen Mn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Mn

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP19.2	6

Mn

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP20.1	1

01.05.2014

Elementbestimmungsmethode:

MANGAN

Untersuchungsmethode	NG	BG	OMG
ANULL, ANULLIC, EXT1:2H2O1.1, GBL1.1, DAN1.1, DAN2.2	0,000	0,0003	30

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1
Humus	DAN1.1, DAN2.2
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL, ANULLIC

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D37.1.4.3. D37.1.5.3 und D37.1.6.3
HFA-Code	D;4;1;2;-1;-1;0 (257.610 nm), D;4;1;2;-1;-1;6 (293.930 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei Mn den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich iCAP 7400 mit Iris	Nölte: ICP Emissionsspektroskopie für Praktiker;
Advantage	Weinheim, 2002
Sammelanhang S24.1: Geräteparameter und	Montaser, Golightly: Inductively Coupled Plasmas
Standardzusammen-	in Analytical Atomic Spectrometry;
setzung	Weinheim, 1987
Kurzanleitung ICP5.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP20.1	2

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 μl, Varipette 100-1000 μl, Varipette 500-5000 μl sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

1000 ml und 2000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 150 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 5 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mn: Standard (Fa B. Kraft) => 5 g/l Mn

Al, Ca, Fe, K, Mg, Na, P, S:

Standard (Fa B. Kraft) => jeweils 5 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S24.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mn auch andere Elemente enthalten (siehe Sammelanhang S24.1), verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Mn
HE 1	0,5 mg/l Mn
HE 2	2,5 mg/l Mn
HE 3	5,0 mg/l Mn
HE 4	10,0 mg/l Mn
HE 5	20,0 mg/l Mn
HE 6	1,0 mg/l Mn

Mn

Methoden-Nr.	Seite	
MnMngesICP20.1	3	

<u>Kontrollstandard</u>	
K1	10,0 mg/l Mn

Form

Mnges

Gerät

ICP(sim)

Element

Mn

Methode:	ANULL	ANULL
	ANULLIC	ANULLIC
	EXT1:2H2O1.1	EXT1:2H2O1.1
	GBL1.1	GBL1.1
	DAN1.1Pflanze	DAN1.1Pflanze
	DAN2.2Pflanze	DAN2.2Pflanze
	DAN1.1Humus	DAN1.1Humus
	DAN2.2Humus	DAN2.2Humus
Element:	Mn	Mn
Wellenlänge:	257.610	293.930
Messbereich [mg/l]:	BG - 0.5	0,5 - OMG
Standards:	Blank	Blank
	HE 1	HE 1
		HE 2
		HE 3
		HE 4
		HE 5
		HE 6
Bemerkungen:	Fensterweite: 19	Fensterweite: 21
	Pixelbreite: 3	Pixelbreite: 3
	Pixelhöhe: 2	Pixelhöhe: 2
	<u>Untergrund-</u>	Untergrund-
	Korrektur:	Korrektur:
	Pos. links: 1	Pos. links: 2
	Pixelanzahl: 2	Pixelanzahl: 2
	Pos. rechts: 18	Pos. rechts: 19
	Pixelanzahl: 2	Pixelanzahl: 2

Mn

Der Blank, die Standards und der Kontrollstandard werden in 2 %-iger HNO₃ (30 ml HNO₃ 65 %, p.a. in 1000 ml) in 1 Liter Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S24.1 zusammengestellt.

Wässrige Proben werden vor dem Messen mit 180 µl HNO₃ konz. pro 6 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

Werden Proben verdünnt, müssen die durch die zusätzliche Säurezugabe veränderten

Verdünnungsfaktoren beachtet werden.

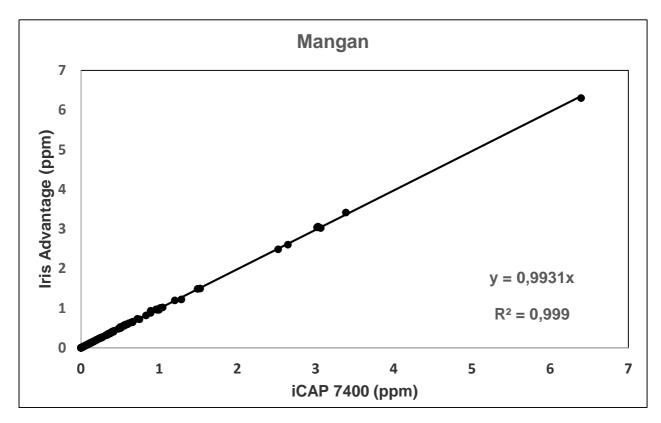
Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP20.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 24	
		Proben und nach jeder Eichungswiederholung;	
		erlaubte Abweichung 3 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Al-Bilanz	QAlB1.1	Siehe Methodenbeschreibung	
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung	
IBW			
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung	
NFV			
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung	
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung	
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1	
		mitgemessen; erlaubte Abweichung 5 %	
		Bei Pflanzenproben: Standard NHARZ, erlaubte	
		Abweichung 10 %	
		Bei Humusproben: Standard NFVH, erlaubte	
		Abweichung 10 %	

Mn


Auswertung/Datendokumentation:

Die gemessenen Mn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Mn Mnges ICP(sim) MnMngesICP2
--

Methodenvergleich ICP Iris Advantage mit iCAP 7400

Darstellung einer Vergleichsmessung der Methode MnMngesICP7.3 und der hier beschriebenen Methode an der Wasserserie 2013W078 (151 Proben):

Mn

Anhang Nr.	1	für	Mn	Mnges	ICP(sim)	MnMngesICP20.1
------------	---	-----	----	-------	----------	----------------

Mn

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP21.1	1

01.05.2014

Elementbestimmungsmethode:

MANGAN

Untersuchungsmethode	NG	BG	OMG
AKE1.1, AKEG1.1, AKH3.1	0,0004	0,001	15

geeignet für:

Boden	AKE1.1, AKEG1.1
Humus	AKEG1.1, AKH3.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D37.1.5.3
HFA-Code	D;4;1;2;-1;-1;0; (257.610 nm), D;4;1;2;-1;-1;6; (293.930 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei Mn den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S25.1: Geräteparameter und Standardzusammensetzung Kurzanleitung ICP5.1	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP21.1	2

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 2 mm, für stark salzhaltige Lösungen

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 μl, Varipette 100-1000 μl, Varipette 500-5000 μl sowie 250 μl, 500 μl und

1000 µl Pipetten der Fa. Eppendorf

250 ml-Messkolben aus Glas

Chemikalien:

keine

Lösungen:

keine

Eichung/Standards:

<u>Stammlösungen:</u>

Mn: Standard (Fa B. Kraft) \Rightarrow 5 g/l Mn

Al, Ca, Fe, K, Mg, Na: Standard (Fa B. Kraft) => jeweils 5 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S25.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mn auch andere Elemente enthalten (siehe Sammelanhang S25.1), verwendet:

<u>Standards</u>		
Blank	0,0 mg/l Mn	
AKE 1	10,0 mg/l Mn	
AKE 2	1,0 mg/l Mn	
AKE 3	3,0 mg/l Mn	
AKE 4	5,0 mg/l Mn	

Kontrollstandard		
K5	5,0 mg/l Mn	

<u>Mn</u>

_	Element	Form	Gerät	Methoden-Nr.	Seite
	Mn	Mnges	ICP(sim)	MnMngesICP21.1	3

Methode:	AKE1.1		AKE1.1	
	AKEG1.1		AKEG1.1	
	AKH3.1		AKH3.1	
Element:	Mn		Mn	
Wellenlänge:	257.610		293.930	
Messbereich[mg/l]:	BG - 5		5 – OMG	
Standards:	Blank		Blank	
	AKE 2		AKE 1	
	AKE 3		AKE 2	
	AKE 4		AKE 3	
			AKE 4	
Bemerkungen:	Fensterweite:	19	Fensterweite:	21
	Pixelbreite:	3	Pixelbreite:	3
	Pixelhöhe:	2	Pixelhöhe:	2
	<u>Untergrund-</u>		<u>Untergrund-</u>	
	Korrektur:		Korrektur:	
	Pos. links:	1	Pos. links:	1
	Pixelanzahl:	2	Pixelanzahl:	2
	Pos. rechts:	18	Pos. rechts:	19
	Pixelanzahl:	2	Pixelanzahl:	2

Der Blank, die Standards und der Kontrollstandard werden mit der jeweils verwendeten Mn Perkolationslösung in 250 ml Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S25.1 zusammengestellt.

AKEG-Perkolate werden mit 180 µl 65 %iger HNO₃ p.a. pro 6 ml Probe versetzt und 1:5 verdünnt. Die Standards werden mit 1:5 verdünnter Perkolationslösung angesetzt und ebenfalls angesäuert (3 ml 65 %iger HNO₃ p.a. auf 100 ml).

AKH-Perkolate werden vor dem Messen 1:2 verdünnt. Die Standards werden mit 1:2 verdünnter Perkolationslösung angesetzt.

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP21.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard QKSt.1.1		K5; Messung nach der Eichung, alle 24	
		Proben und nach jeder Eichungswiederholung; erlaubte Abweichung 5 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial QStM1.1 Für So.		Für Standards Harste30-50, BZE-THUE, Solling0-10, Solling0-10neu, BioSoil und BZE-HUM; erlaubte Abweichung 10 % - 15 %	

Auswertung/Datendokumentation:

Die gemessenen Mn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Mn

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP22.1	1

01.04.2014

Elementbestimmungsmethode:

MANGAN

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1	0,0002	0,0007	50

geeignet für:

Boden	OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1
Humus	OAKW1.1, OAKW1.2, OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D37.1.6.3
HFA-Code	D;4;1;2;-1;-1;0; (257.610 nm), D;4;1;2;-1;-1;6; (293.930 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Mn

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP22.1	2

Anhang:	<u>Lit.:</u>
Sammelanhang S26.1: Geräteparameter und Standardzusammen-	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002
setzung Kurzanleitung ICP5.1	Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μ l, 1000 μ l und 5000 μ l Varipetten, sowie 250 μ l, 500 μ l und 1000 μ l Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Mn

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mn: ICP-Konzentrat (Fa B. Kraft) => 10 g/l Mn

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mn auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

Methoden-Nr.	Seite	
MnMngesICP22.1	3	

	<u>Standards</u>		
KW 0	0,0 mg/l Mn		
KW 1	4,0 mg/l Mn		
KW 2	2,0 mg/l Mn		
KW 3	40,0 mg/l Mn		
KW 4	20,0 mg/l Mn		
KW 5	10,0 mg/l Mn		
KW 6	60,0 mg/l Mn		
KW 7	100,0 mg/l Mn		
KW 8	80,0 mg/l Mn		

Form

Mnges

Gerät

ICP(sim)

Element

Mn

	Kontrollstandard
K24	10,0 mg/l Mn

Methode:	OAKW2.1Boden	OAKW2.1Boden
	OAKWEG2.1Boden	OAKWEG2.1Boden
	OAKWEG2.2Boden	OAKWEG2.2Boden
	OAKWEG3.1Boden	OAKWEG3.1Boden
	OAKW1.1Humus	OAKW1.1Humus
	OAKW1.2Humus	OAKW1.2Humus
	OAKW2.1Humus	OAKW2.1Humus
Element:	Mn	Mn
Wellenlänge:	257.610	293.930
Messbereich	BG - 10	10 – OMG
[mg/l]:		
Standards:	Blank	KW 1
	KW 1	KW 2
	KW 2	KW 3
	KW 4	KW 4
	KW 5	KW 5
		KW 6
		KW 7
		KW 8
Bemerkungen:	Fensterweite: 19	Fensterweite: 20
	Pixelbreite: 2	Pixelbreite: 3
	Pixelhöhe: 2	Pixelhöhe: 2
	Untergrund-	Untergrund-
	Korrektur:	Korrektur:
	Pos. links: 1	Pos. links: 1
	Pixelanzahl: 1	Pixelanzahl: 2
	Pos. rechts: 18	Pos. rechts: 19
	Pixelanzahl: 2	Pixelanzahl: 2
Zur Herstellung	der Blindlösung de	er Standards und de

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit $_2$ O bidemin. aufgefüllt.

<u>Mn</u>

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP22.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung		
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und		
		nach jeder Eichungswiederholung; erlaubte		
		Abweichung 3 %		
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie		
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,		
		NFVH; erlaubte Abweichung 10 %.		

Auswertung/Datendokumentation:

Die gemessenen Mn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. Mn mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH ₄	IC	NNH4IC2.2	-	1

15.7.2012

Elementbestimmungsmethode:

AMMONIUM

Untersuchungsmethode			BG	OMG
ANULLIC	ANULLIC			4,0
geeignet für:				
Boden				
Humus				
Pflanze				
Wasser ANULLIC				
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 14911			
HFA D58.3.4.1				
HFA-Code	0713401			

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Kationen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Kationen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit Carboxylgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer N Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine verdünnte Salpetersäurelösung verwendet. Diese hat eine außerordentlich hohe Ionenäquivalentleitfähigkeit. Daher nimmt auf Grund der geringeren Ionenäquivalentleitfähigkeit der getrennten Kationen die Leitfähigkeit ab, wenn die Kationen die Trennsäule mit dem Eluenten verlassen und in die Leitfähigkeitsdetektorzelle gelangen. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Kations geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 0,25 ppm Ammonium) wird das Kationen-Chromatogramm doppelt aufgenommen und mit unterschiedlichen Eichkurven für den hohen Messbereich (= linear durch Null) und den niedrigen Messbereich (= linear) ausgewertet. In dem 2-Kanal-System werden Anund Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Säule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC2.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S17.3: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC2.1	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	NH ₄	IC	NNH4IC2.2	-	2	

- 2-Kanal-IC-Anlage Fa. Metrohm, bestehend aus:
- 2 IC-Pumpen 818
- 2 Leitfähigkeitsdetektoren 819

IC-Separation-Center 820 mit Säulenofen

IC-Liquid-Handling-Einheit 833

2 Pulsationsdämpfer

IC-Eluent-Degaser 837

IC-Probengeber 838

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5

b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen:

a. Anionen: 20 µl

b. Kationen: 50 μl

Software:

a. zur Anlagensteuerung: IC-Net

b. zur Chromatogrammauswertung: MagIC-Net

Chemikalien:

Salpetersäure, HNO₃, 1 M

Lösungen:

Eluent-Kationen: In einen 2 l-Messkolben werden 12 ml 1 M Salpetersäure gegeben und mit

H₂O demin. reinst auf 2 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

1 g/l NH₄: 1 g/l Ammonium als NH₄Cl \Rightarrow 1 g/l NH₄

Stammlösung II: Je 1 ml K-, NH₄-, Na-, Ca-, und Mg-Stammlösung werden in einen 100 ml-

Messkolben mit H₂O demin. reinst auf 100 ml aufgefüllt.

 \Rightarrow 0,01 g/l K, NH₄, Na, Ca, Mg.

Haltbarkeit:

Die Stammlösung II ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

Kontrollstandard			
K1IC:	1,555 mg/l NH4-N		
K2IC:	0,0777 mg/l NH ₄ -N		

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH ₄	IC	NNH4IC2.2	-	3

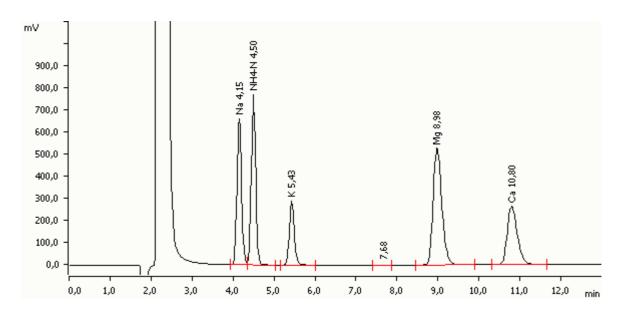
Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S17.3) mit insgesamt 19 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung II und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC2.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):


Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (1,555 mg/l N), K2IC (0,0777 mg/l N),
		Messung nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE3IC mit-
		gemessen; erlaubte Abweichung 5 %.

Auswertung/Datendokumentation:

Im Anschluß an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Ammoniumkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Chromatogramm der Kationenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH ₄	IC	NNH4IC3.1	-	1

20.12.2015

Elementbestimmungsmethode:

AMMONIUM

Untersuchungsmethode			BG	OMG
ANULLIC		0,003	0,010	5,5
geeignet für:				
Boden				
Humus				
Pflanze				
Wasser	ANULLIC			
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 14911			
HFA	D58.3.4.1			
HFA-Code	D;7;1;3;2;-1;1;			•

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Kationen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Kationen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit Carboxylgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer N Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine verdünnte Salpetersäurelösung verwendet. Diese hat eine außerordentlich hohe Ionenäquivalentleitfähigkeit. Daher nimmt auf Grund der geringeren Ionenäquivalentleitfähigkeit der getrennten Kationen die Leitfähigkeit ab, wenn die Kationen die Trennsäule mit dem Eluenten verlassen und in die Leitfähigkeitsdetektorzelle gelangen. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Kations geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 0,194 ppm) wird das Kationen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich (Kurventyp: linear, Gewichtung 1) und den niedrigen Messbereich (Kurventyp: linear Gewichtung 1) ausgewertet. Mit Flex 1 (Anionen) und Flex 2 (Kationen) werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Säule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC3.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S29.1: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC3.1	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH ₄	IC	NNH4IC3.1	-	2

2 Compact IC Flex- Anlagen Fa. Metrohm, bestehend aus:

Compact IC Flex 1 Anionen mit MSM Suppressor und MCS-Suppressor

Compact IC Flex 2 Kationen

IC-Probengeber 858 Professional Sample Processor

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5 b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard Probenschleifen:

a. Anionen: 20 μlb. Kationen: 50 μl

Software: MagIC-Net3.1

Chemikalien:

Salpetersäure, HNO₃, 1 M

Lösungen:

Eluent-Kationen: In einen 2 l-Messkolben werden 10 ml 1 M Salpetersäure gegeben und mit

H₂O demin. reinst auf 2 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

1 g/l NH₄: 1 g/l Ammonium als NH₄Cl \Rightarrow 1 g/l NH₄

Stammlösung II: Je 1 ml K-, NH₄-, Na-, Ca-, und Mg-Stammlösung werden in einen 100 ml-

Messkolben mit H₂O demin. reinst auf 100 ml aufgefüllt.

 \Rightarrow 0,01 g/l K, NH₄, Na, Ca, Mg.

Haltbarkeit:

Die Stammlösung II ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

	Kontrollstandard
K1IC:	1,555 mg/l NH ₄ -N
K2IC:	0,0777 mg/l NH ₄ -N

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S29.1) mit insgesamt 18 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung II und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

N

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH ₄	IC	NNH4IC3.1	-	3

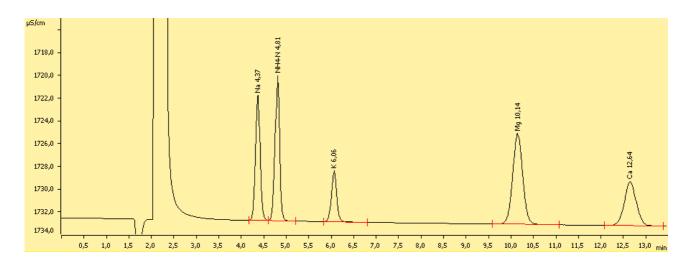
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC3.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (1,555 mg/l N), K2IC (0,0777 mg/l N),
		Messung nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE3IC mit-
		gemessen; erlaubte Abweichung 5 %.


Auswertung/Datendokumentation:

Im Anschluß an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Ammoniumkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr. 1	1 fü	N	NH ₄	IC	NNH4IC3.1
--------------	------	---	-----------------	----	-----------

Chromatogramm der Kationenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₂	IC	NNO2IC2.3	-	1

1.6.2014

Elementbestimmungsmethode:

NITRIT

Untersuchungsmethode				BG	OMG
ANULLIC		0,	020	0,060	10
geeignet für:					
Boden	GBL1.1, EXT12H2O1.1				
Humus	Humus				
Pflanze	Pflanze				
Wasser ANULLIC					
Methodenver	weise:				
Norm	In Anlehnung an DIN EN ISO 10304-1				
HFA	IFA D58.5.4.1				
HFA-Code	0714102		•		

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Anionen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Anionen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit quartären Ammoniumgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine Natriumcarbonat/ Hydrogencarbonatlösung verwendet. Wegen der hohen Grundleitfähigkeit des Eluenten wird vor der Leitfähigkeitsdetektion ein sogenannter Supressor zwischengeschaltet, der durch Austausch der Na-Ionen gegen Protonen das stark leitende Natriumhydrogencarbonat in die wenig dissoziierte Kohlensäure, und die Natriumsalze der zu bestimmenden Anionen in deren stark leitende Mineralsäuren umwandelt. Zusätzlich wird durch einen CO₂-Suppressor der CO₂-Peak minimiert. Diese stark leitenden Mineralsäuren der zu bestimmenden Anionen werden sehr empfindlich in einer Leitfähigkeitsmesszelle detektiert. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Anions geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs wird das Anionen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich und den niedrigen Messbereich (unterschiedliche quadratische Gleichungen) ausgewertet. In dem 2-Kanal-System werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Anionensäule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC2.2

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S17.4: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC2.2	

-	2

Liement	Form	Gerat	Metnoden-Nr.	Lapis ait	Seite
N	NO_2	IC	NNO2IC2.3	•	2

- 2-Kanal-IC-Anlage Fa. Metrohm, bestehend aus:
- 2 IC-Pumpen 818
- 2 Leitfähigkeitsdetektoren 819

IC-Separation-Center 820 mit Säulenofen und Suppressor

IC-Liquid-Handling-Einheit 833

2 Pulsationsdämpfer

IC-Eluent-Degaser 837

CO₂-Suppressor 853

IC-Probengeber 838

Probenröhrchen mit Durchstichdeckel

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5

b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen:

a. Anionen: 20 µl

b. Kationen: 50 µl

Software:

a. zur Anlagensteuerung: IC-Net

b. zur Chromatogrammauswertung: MagIC-Net

Chemikalien:

Natriumhydrogencarbont, NaHCO₃

Natriumcarbonat, Na₂CO₃

Schwefelsäure, H₂SO₄ konz.

Lösungen:

Eluent-Anionen: In einem 2 l-Messkolben werden 0,678 g Na₂CO₃ ,sowie 0,084 g Na₂HCO₃

eingewogen und mit H₂O demin. reinst auf 2 l aufgefüllt.

Suppressor-Lösung: a. 1 Liter H₂O demin. reinst werden mit 3 ml H₂SO₄ konz. und 2,52 g

> Oxalsäure versetzt. b. H₂O demin. reinst

Eichung/Standards:

Stammlösungen:

1 g/l Nitrit als Natriumnitrit => 1 g/l NO_2 1 g/l NO_2 :

Stammlösung I: Je 1 ml SO₄-, NO₃-, NO₂-, und PO₄-Stammlösung und je 0,5 ml Cl- und F-

Stammlösung werden in einen 100 ml-Messkolben mit H₂O demin. auf 100

ml aufgefüllt.

=> 0,01 g/l SO₄, NO₃, NO₂, PO₄, und 0,005 g/l Cl, F

Haltbarkeit:

Die Stammlösung I ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₂	IC	NNO2IC2.3	-	3

	Kontrollstandards
K1IC:	1,824 mg/l NO ₂ -N
K2IC:	0,076 mg/l NO ₂ -N

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S17.4) mit insgesamt 19 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung I und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

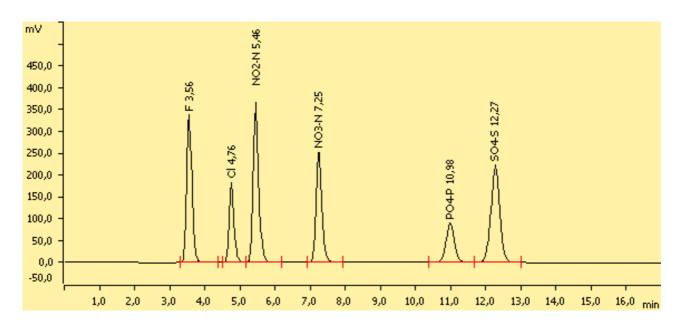
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC2.2 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard QKSt1.1		K1IC (1,824 mg/l N), K2IC (0,076 mg/l N), Messung
		nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial QStM1.1		Alle 50 Proben wird der Standard Wasser HE1IC mit-
		gemessen; erlaubte Abweichung 5 %.


Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Nitritkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr. 1 für N NO ₂ IC NNO2IC
--

Chromatogramm der Anionenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₂	IC	NNO2IC3.1	-	1

20.12.2015

Elementbestimmungsmethode:

NITRIT

Untersuchur	ngsmethode	NG	BG	OMG
ANULLIC		0,005	0,016	9,11
geeignet für:				-
Boden				
Humus				
Pflanze				
Wasser	ANULLIC			
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 10304-1 u. 2			
HFA	D58.5.4.1			
HFA-Code	D;7;1;4;1;-1;2;			

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Anionen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Anionen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit quartären Ammoniumgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine Natriumcarbonat/ Hydrogencarbonatlösung verwendet. Wegen der hohen Grundleitfähigkeit des Eluenten wird vor der Leitfähigkeitsdetektion ein Supressor zwischengeschaltet, der durch Austausch der Na-Ionen gegen Protonen das stark leitende Natriumhydrogencarbonat in die wenig dissoziierte Kohlensäure, und die Natriumsalze der zu bestimmenden Anionen in deren stark leitende Mineralsäuren umwandelt. Diese stark leitenden Mineralsäuren der zu bestimmenden Anionen werden sehr empfindlich in einer Leitfähigkeitsmesszelle detektiert. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Anions geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 0,607 ppm) wird das Anionen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich (Kurventyp: Kubisch, Gewichtung 1) und den niedrigen Messbereich (Kurventyp: Kubisch Gewichtung 1/Konzentration) ausgewertet. Mit Flex 1 (Anionen) und Flex 2 (Kationen) werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Anionensäule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC3.1

Anhang:	<u>Lit.:</u>		
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,		
zeiten	1991		
Sammelanhang S29.1: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,		
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987		
Gerätekurzanleitung IC3.1			

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₂	IC	NNO2IC3.1	-	2

2 Compact IC Flex- Anlagen Fa. Metrohm, bestehend aus:

Compact IC Flex 1 Anionen mit MSM Suppressor und MCS-Suppressor

Compact IC Flex 2 Kationen

IC-Probengeber 858 Professional Sample Processor

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5 b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen: a. Anionen: 20 µl b. Kationen: 50 µl

Software: MagIC-Net3.1

Chemikalien:

Natriumhydrogencarbont, NaHCO₃ Natriumcarbonat, Na₂CO₃ Schwefelsäure, H₂SO₄ konz. Oxalsäuredihydrat, C₂H₂O₄*2H₂O

Lösungen:

In einem 2 l-Messkolben werden 0,678 g Na₂CO₃ ,sowie 0,084 g Na₂HCO₃ **N** Eluent-Anionen:

eingewogen und mit H₂O demin. reinst auf 2 l aufgefüllt.

1 Liter H₂O demin. reinst werden mit 3 ml H₂SO₄ konz. und 0,27g Oxalsäure Suppressor-Lösung:

versetzt.

Eichung/Standards:

Stammlösungen:

 $=> 1 \text{ g/l NO}_2$ 1 g/l NO_2 : 1 g/l Nitrit als Natriumnitrit

Stammlösung I: Je 1 ml SO₄-, NO₃-, NO₂-, und PO₄-Stammlösung und je 0,5 ml Cl- und F-

Stammlösung werden in einen 100 ml-Messkolben mit H₂O demin. auf 100

ml aufgefüllt.

=> 0,01 g/l SO₄, NO₃, NO₂, PO₄, und 0,005 g/l Cl, F

Haltbarkeit:

Die Stammlösung I ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

<u>Kontrollstandards</u>					
K1IC:	1,824 mg/l NO ₂ -N				
K2IC:	0,076 mg/l NO ₂ -N				

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₂	IC	NNO2IC3.1	-	3

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S29.1) mit insgesamt 18 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung I und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

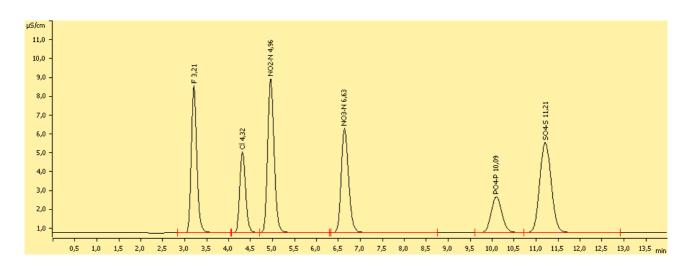
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC3.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard QKSt1.1		K1IC (1,824 mg/l N), K2IC (0,076 mg/l N), Messung	
nach		nach der Eichung, alle 15 Proben; erlaubte	
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).	
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial QStM1.1		Alle 50 Proben wird der Standard Wasser HE3IC mit-	
		gemessen; erlaubte Abweichung 5 %.	


Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine N Nachintegrationen vorgenommen werden.

Die Nitritkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr. 1	für	N	NO ₂	IC	NNO2IC3.1
--------------	-----	---	-----------------	----	-----------

Chromatogramm der Anionenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₃	IC	NNO3IC2.3	-	1

1.6.2014

Elementbestimmungsmethode:

NITRAT

Untersuchur	ľ	١G	BG	OMG		
ANULLIC		0,	010	0,030	7,5	
geeignet für:		·				
Boden	GBL1.1, EXT12H2O1.1					
Humus	3					
Pflanze	inze					
Wasser	r ANULLIC					
Methodenver	weise:					
Norm	In Anlehnung an DIN EN ISO 10304-1					
HFA	D58.4.4.1					
HFA-Code	0714102					

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Anionen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Anionen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit quartären Ammoniumgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine Natriumcarbonat/ Hydrogencarbonatlösung verwendet. Wegen der hohen Grundleitfähigkeit des Eluenten wird vor der Leitfähigkeitsdetektion ein sogenannter Supressor zwischengeschaltet, der durch Austausch der Na-Ionen gegen Protonen das stark leitende Natriumhydrogencarbonat in die wenig dissoziierte Kohlensäure, und die Natriumsalze der zu bestimmenden Anionen in deren stark leitende Mineralsäuren umwandelt. Zusätzlich wird durch einen CO₂-Suppressor der CO₂-Peak minimiert. Diese stark leitenden Mineralsäuren der zu bestimmenden Anionen werden sehr empfindlich in einer Leitfähigkeitsmesszelle detektiert. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Anions geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs wird das Anionen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich und den niedrigen Messbereich (unterschiedliche quadratische Gleichungen) ausgewertet. In dem 2-Kanal-System werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Anionensäule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC2.2

Anhang:	<u>Lit.:</u>		
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,		
zeiten	1991		
Sammelanhang S17.4: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,		
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987		
Gerätekurzanleitung IC2.2			

ı	1	4

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₃	IC	NNO3IC2.3	-	2

- 2-Kanal-IC-Anlage Fa. Metrohm, bestehend aus:
- 2 IC-Pumpen 818
- 2 Leitfähigkeitsdetektoren 819

IC-Separation-Center 820 mit Säulenofen und Suppressor

IC-Liquid-Handling-Einheit 833

2 Pulsationsdämpfer

IC-Eluent-Degaser 837

CO₂-Suppressor 853

IC-Probengeber 838

Probenröhrchen mit Durchstichdeckel

Säulen

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5 b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen:

a. Anionen: 20 µl

b. Kationen: 50 µl

Software:

a. zur Anlagensteuerung: IC-Net

b. zur Chromatogrammauswertung: MagIC-Net

Chemikalien:

Natriumhydrogencarbont, NaHCO₃

Natriumcarbonat, Na₂CO₃

Schwefelsäure, H₂SO₄ konz.

Lösungen:

Eluent-Anionen: In einem 2 l-Messkolben werden 0,678 g Na₂CO₃ , sowie 0,084 g Na₂HCO₃

eingewogen und mit H₂O demin. reinst auf 2 l aufgefüllt.

Suppressor-Lösung: a. 1 Liter H₂O demin. reinst werden mit 3 ml H₂SO₄ konz. und 2,52 g

Oxalsäure versetzt. b. H₂O demin. reinst

Eichung/Standards:

Stammlösungen:

1 g/l NO₃: 1 g/l Nitrat als Natriumnitrat \Rightarrow 1 g/l NO₃

Stammlösung I: Je 1 ml SO₄-, NO₃-, NO₂-, und PO₄-Stammlösung und je 0,5 ml Cl- und F-

Stammlösung werden in einen 100 ml-Messkolben mit H₂O demin. auf 100

ml aufgefüllt.

 \Rightarrow 0,01 g/l SO₄, NO₃, NO₂, PO₄, und 0,005 g/l Cl, F

 \Rightarrow

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₃	IC	NNO3IC2.3	-	3

Haltbarkeit:

Die Stammlösung I ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

	Kontrollstandards
K1IC:	1,354 mg/l NO ₃ -N
K2IC:	0,0564 mg/l NO3-N

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S17.4) mit insgesamt 19 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung I und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

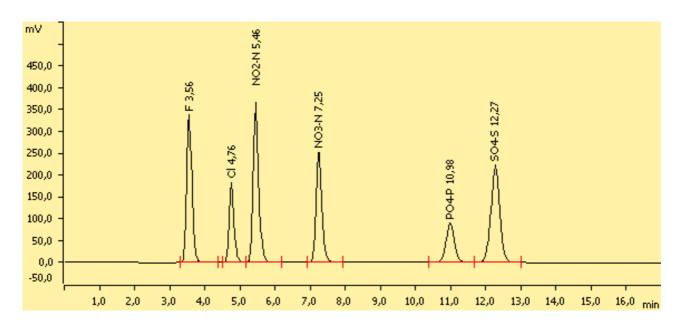
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC2.2 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (1,354 mg/l N), K2IC (0,0564 mg/l N),
		Messung nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1IC mit-
		gemessen; erlaubte Abweichung 5 %.


Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Nitratkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr. 1 für N NO ₃ IC NNO3IC2.
--

Chromatogramm der Anionenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₃	IC	NNO3IC3.1	-	1

20.12.2015

Elementbestimmungsmethode:

NITRAT

Untersuchun	ngsmethode	NG	BG	OMG
ANULLIC		0,005	0,017	9,0
geeignet für:				
Boden				
Humus				
Pflanze				
Wasser	ANULLIC			
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 10304-1 u. 2			
HFA	D58.4.4.1			
HFA-Code	D;7;1;4;1;-1;2;			

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Anionen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Anionen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit quartären Ammoniumgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine Natriumcarbonat/ Hydrogencarbonatlösung verwendet. Wegen der hohen Grundleitfähigkeit des Eluenten wird vor der Leitfähigkeitsdetektion ein Supressor zwischengeschaltet, der durch Austausch der Na-Ionen gegen Protonen das stark leitende Natriumhydrogencarbonat in die wenig dissoziierte Kohlensäure, und die Natriumsalze der zu bestimmenden Anionen in deren stark leitende Mineralsäuren umwandelt. Diese stark leitenden Mineralsäuren der zu bestimmenden Anionen werden sehr empfindlich in einer Leitfähigkeitsmesszelle detektiert. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Anions geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 1,129 ppm) wird das Anionen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich (Kurventyp: Kubisch, Gewichtung 1) und den niedrigen Messbereich (Kurventyp: Kubisch Gewichtung 1/Konzentration) ausgewertet. Mit Flex 1 (Anionen) und Flex 2 (Kationen) werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Anionensäule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC3.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S29.1: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC3.1	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₃	IC	NNO3IC3.1	-	2

2 Compact IC Flex- Anlagen Fa. Metrohm, bestehend aus:

Compact IC Flex 1 Anionen mit MSM Suppressor und MCS-Suppressor

Compact IC Flex 2 Kationen

IC-Probengeber 858 Professional Sample Processor

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5 b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen: a. Anionen: 20 µl b. Kationen: 50 µl

Software: MagIC-Net3.1

Chemikalien:

Natriumhydrogencarbont, NaHCO₃ Natriumcarbonat, Na₂CO₃ Schwefelsäure, H₂SO₄ konz. Oxalsäuredihydrat, C₂H₂O₄*2H₂O

Lösungen:

In einem 2 l-Messkolben werden 0,678 g Na₂CO₃ , sowie 0,084 g Na₂HCO₃ N Eluent-Anionen:

eingewogen und mit H₂O demin. reinst auf 2 l aufgefüllt.

Suppressor-Lösung: 1 Liter H₂O demin. reinst werden mit 3 ml H₂SO₄ konz. und 0,27g Oxalsäure

versetzt.

Eichung/Standards:

Stammlösungen:

 $=> 1 \text{ g/l NO}_3$ 1 g/l NO_3 : 1 g/l Nitrat als Natriumnitrat

Stammlösung I: Je 1 ml SO₄-, NO₃-, NO₂-, und PO₄-Stammlösung und je 0,5 ml Cl- und F-

Stammlösung werden in einen 100 ml-Messkolben mit H₂O demin. auf 100

ml aufgefüllt.

 \Rightarrow 0,01 g/l SO₄, NO₃, NO₂, PO₄, und 0,005 g/l Cl, F

Haltbarkeit:

Die Stammlösung I ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

	Kontrollstandards
K1IC:	1,354 mg/l NO ₃ -N
K2IC:	0,0564 mg/l NO3-N

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₃	IC	NNO3IC3.1	-	3

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S29.1) mit insgesamt 18 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung I und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

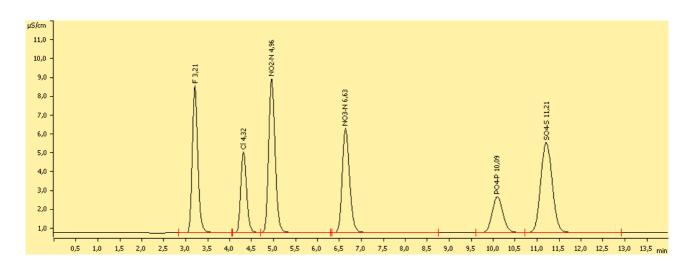
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC3.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (1,354 mg/l N), K2IC (0,0564 mg/l N),
		Messung nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE3IC mit-
		gemessen; erlaubte Abweichung 5 %.


Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die N automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Nitratkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr.	1	für	N	NO ₃	IC	NNO3IC3.1
------------	---	-----	---	-----------------	----	-----------

Chromatogramm der Anionenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

01.07.2017

Datum:

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC-Skalar	NNgesTOC5.1		1

Elementbestimmungsmethode:

STICKSTOFF gesamt

Untersuchungsmethode	NG	BG	OMG
ANULLIC, EXT1:2H2O1.1, GBL 1.1	0,057	0,183	20

geeignet für:

<u> </u>						
Boden	GBL 1.1, EXT1:2H2O1.1					
Humus						
Pflanze						
Wasser	ANULLIC					

Methodenverweise:

Norm	In Anlehnung an DIN EN 12260		
HFA	D58.1.4.1		
HFA-Code	D:8;2;3;4;2;-3		

Prinzip der Methode/chem. Reaktionen:

Der anorganische (Nitrat, Nitrit und Ammonium) und der organische Stickstoffanteil einer Probe wird durch katalytische Verbrennung in synthetischer Luft (20 % Sauerstoff, 80 % Stickstoff) in Stickoxide (NO_x , x =1-3) umgesetzt. Die Probe wird hierzu in das mit Katalysator (Platin auf einem Trägermaterial und Ceroxid) gefüllte, und auf 850 °C aufgeheizte Verbrennungsrohr injiziert:

z.B.
$$2NH_2CH_2COOH +5,5O_2$$
 $\xrightarrow{Pt/CeO_2-Kat, 850 \, ^{\circ}C}$ $2NO \uparrow + 5H_2O + 4CO_2 \uparrow$

Die Stickoxide (NO_x , x =1-3) werden anschließend durch den Trägergasstrom (synthetische Luft) zum Stickstoffdetektor transportiert. Dort wird das Stickstoffmonoxid mit Ozon (O_3), das im Ozongenerator durch Hochspannung aus dem Sauerstoff des Trägergases erzeugt wird, vollständig zu angeregtem Stickstoffdioxid (NO_2^*) umgesetzt, welches sofort unter Sauerstoffabspaltung zu Stickstoffmonoxid und Sauerstoff zerfällt. Bei dieser Reaktion, bei der ein Elektronenübergang stattfindet, wird Energie in Form von Licht (rot und nahes Infrarot) frei (Chemilumineszenz).

$$2NO + O_3 \rightarrow 2NO_2 *\uparrow + O_2 \uparrow + hv$$

Diese Lichtquanten werden in einem Photomultiplier in ein elektrisches Signal umgewandelt, welches proportional zur Stickstoffmonoxidkonzentration ist.

Gemessen wird die Peakfläche, da unterschiedliche organische und anorganische N-Verbindungen ein unterschiedliches Verbrennungsverhalten haben und dadurch zwar die Fläche der Peaks, nicht jedoch die Höhe der Peaks gleich ist.

Störungen:

N-haltige organische Verbindungen mit engem C/N-Verhältnis oder Ringsystemen werden nur zu 98 % aufgeschlossen. Organische Stickstoffverbindungen werden z.T. zu NO₂ oxidiert und nicht erfasst s.o..

Anhang:	<u>Lit.:</u>
Kurzanleitung TOC5.1	Bedienungsanleitung für Formacs HT und
	Formacs NT, Fa. Skalar, 2018

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC-Skalar	NNgesTOC5.1		2

Analysengeräte und Zubehör:

TOC-Analysator Formacs HT mit Probengeber, Fa. Skalar Stickstoffdetektor Formacs NT, Fa. Skalar Probenteller mit 80 Positionen, Fa. Skalar Reagenzgläser 8 ml aus Glas Elektrode für den Ozongenerator ((Fa. Skalar, Best.Nr. 2ND10303)

Chemikalien:

Pt-Katalysator (Fa. Skalar, Best.Nr. 2CA10316) CeO₂ (Fa. Skalar, Best.Nr. 2CA10305) Al-Support (Fa. Skalar, Best.Nr. 2CA16353) Halogenabsorber (Fa. Skalar, Best.Nr. 2CA10080) Quarzwolle (Fa. Skalar, Best.Nr. 2CA10359) Ozonabsorber (Fa. Skalar, Best.Nr. 2ND10301) Synthetische Luft Harnstoff

Lösungen:

Keine

Eichung/Standards:

Stammlösung:

TNb-Stammlösung (Fa. Seraltec): 1000 mg/l (NH₄)₂SO₄/KNO₃ (stabilisiert)

Haltbarkeit:

Die Stammlösung ist geschlossen im Kühlschrank ca, 6 Wochen haltbar.

Die Standards aus der Stammlösung müssen für jede Eichung frisch angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Die Kontrollstandards müssen alle 2 Tage frisch angesetzt werden!

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC-Skalar	NNgesTOC5.1		3

Einzelbestimmung:

Mehrelementbestimmung:

1. Standardreihe	Einspritzvol.
	[µl]
0,2 mg/l N	200
0,4 mg/l N	200
0,6 mg/l N	200
0,8 mg/l N	200
1,0 mg/l N	200
1,2 mg/l N	200
1,4 mg/l N	200
1,6 mg/l N	200
1,8 mg/l N	200
2,0 mg/l N	200

2. Standardreihe	Einspritzvol.
	[µl]
2,0 mg/l N	200
4,0 mg/l N	200
6,0 mg/l N	200
8,0 mg/l N	200
10,0 mg/l N	200
12,0 mg/l N	200
14,0 mg/l N	200
16,0 mg/l N	200
18,0 mg/l N	200
20,0 mg/l N	200

<u>Kontrollstandards</u>			
TCN1	1,0 mg/l N		
TCN2	10,0 mg/l N		
Harnstoff	10,0 mg/l N		

Durchführung:

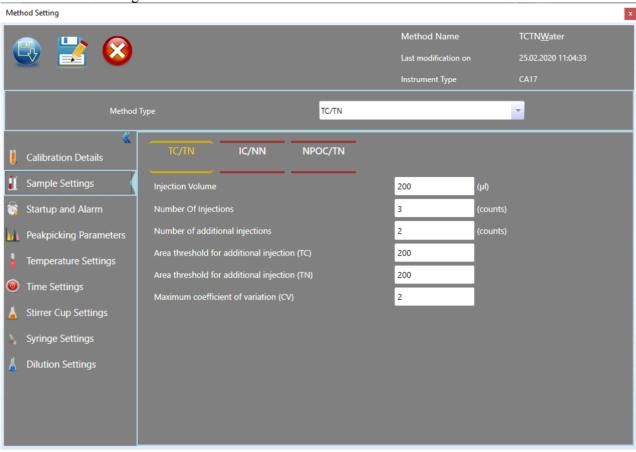
siehe Gerätekurzanleitung TOC5.1

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	Nges	TOC-Skalar	NNgesTOC5.1		4	

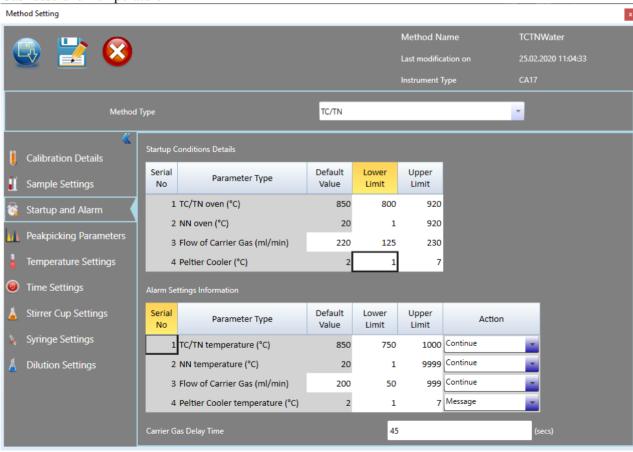
Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

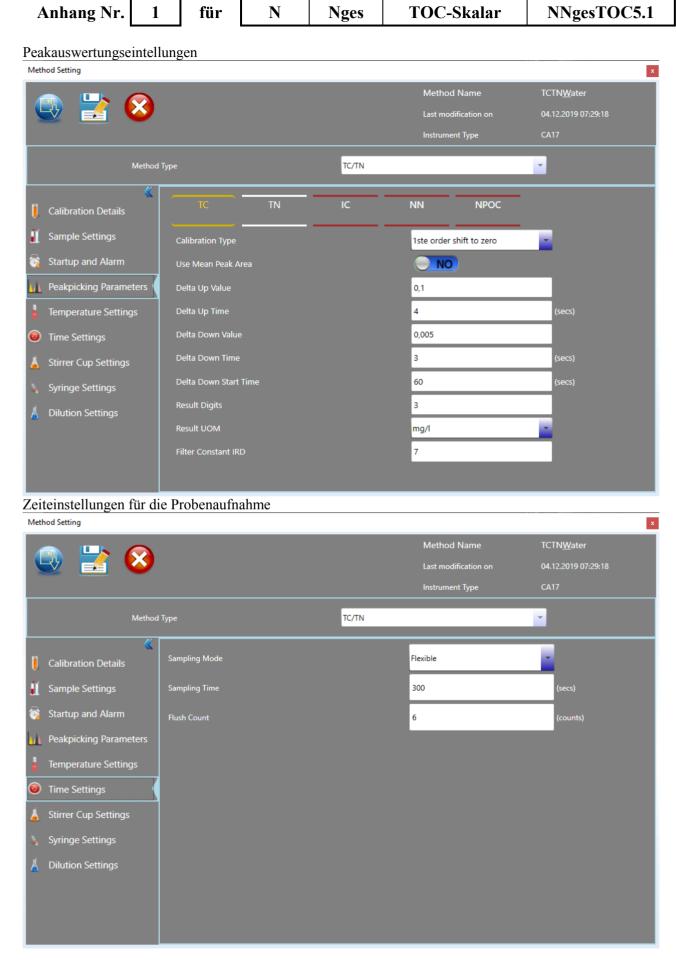
Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Die Gerätesoftware passt den Eichkurvenverlauf
		optimal an, indem sie ab 3 Eichpunkten ein Polynom
		1ter (linear) oder 2ter (quadratisch) Ordnung durch die
		Eichpunkte legt. Berechnet werden
		Verfahrensstandardabweichung, Sollwert: ≤3 % bei
		Standardreihe 1, ≤ 2% bei Standardreihe 2. Die Eichkurve sollte linear sein
Kontrollstandard	QKSt.1.1	Vor jedem Probenblock und nach jedem Probenblock
		von maximal 20 Proben werden ein TCN1 und ein
		TCN2-Standard gemessen. Die erlaubte Abweichung
		beträgt bei TCN1 und bei TCN2 5 %. Liegt der
		Messwert eines Standards außerhalb des erlaubten
		Bereichs, so wird die Messung aller Proben die sich
		zwischen dem falschen Standard und dem nächsten
		richtigen Standard befinden erneut gemessen. Es werden nur die Proben für die Nachmessung markiert
		deren Messwert im Gültigkeitsbereich des fehlerhaften
		Standards liegen. Dieser ist für TCN1 0-2 mg/l N und
		für TCN2 2-20 mg/l N.
Mehrfachmessung	QMM1.1	3-fach-Messung; das Gerät führt einen Test zur
		Ermittlung von Ausreißern durch. Wurde kein
		Ausreißer gefunden, wird die prozentuale Abweichung
		vom Mittelwert berechnet, die maximal 2 % sein darf.
		Wurde ein Ausreißer gefunden, werden bis zu 2
		zusätzliche Messungen durchgeführt. Nach
		Eliminierung der Ausreißer wird der Mittelwert und
		der Variationskoeffizient berechnet, der ≤2 % sein
XXX: 1 1 1	OWD 41.2	sollte.
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Stickstoffbilanz	QNB1.2	Siehe Methodenbeschreibung. Prüfen?
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard WasserHE3IC mit-
		gemessen; erlaubte Abweichung: 5 %.

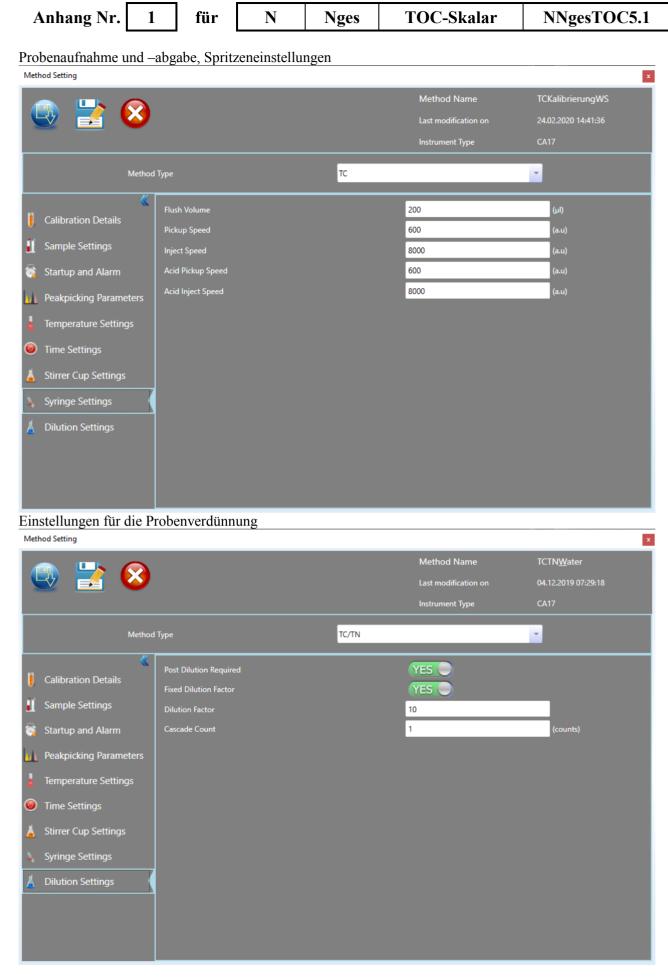

Auswertung/Datendokumentation:

Die gemessenen Nges-Konzentrationen werden in die entsprechenden Datenlisten eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm Relaqs bearbeitet.


Anhang Nr. 1 für N Nges TOC-Skalar NNgesTOC5.1

Geräteeinstellungen:


Probenahmeeinstellungen


Gasflüsse und Temperaturen

Anhang Nr. 1 für N Nges TOC-Skalar NNgesTOC5.1

15.04.2017

Datum:

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC-Skalar	NNgesTOC7.1		1

Elementbestimmungsmethode:

STICKSTOFF gesamt

Untersuchungsmethode	NG	BG	OMG
CNMIK1.1, CNMIKF1.1	0,051	0,165	20

geeignet für:

Boden	CNMIK1.1, CNMIKF1.1
Humus	CNMIK1.1, CNMIKF1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN 12260
HFA	D58.1.5.1
HFA-Code	D:8;2;3;4;2;-3

Prinzip der Methode/chem. Reaktionen:

Der anorganische (Nitrat, Nitrit und Ammonium) und der organische Stickstoffanteil einer Probe wird durch katalytische Verbrennung in synthetischer Luft (20 % Sauerstoff, 80 % Stickstoff) in Stickoxide (NO_x , x=1-3) umgesetzt. Die Probe wird hierzu in das mit Katalysator (Platin auf einem Trägermaterial und Ceroxid) gefüllte, und auf 825 °C aufgeheizte Verbrennungsrohr injiziert:

z.B.
$$2NH_2CH_2COOH +5,5O_2$$
 $\xrightarrow{Pt/CeO_2-Kat, 825 \, ^{\circ}C}$ $2NO \uparrow + 5H_2O + 4CO_2 \uparrow$

Die Stickoxide (NO_x , x =1-3) werden anschließend durch den Trägergasstrom (synthetische Luft) zum Stickstoffdetektor transportiert. Dort wird das Stickstoffmonoxid mit Ozon (O_3), das im Ozongenerator durch Hochspannung aus dem Sauerstoff des Trägergases erzeugt wird, vollständig zu angeregtem Stickstoffdioxid (NO_2^*) umgesetzt, welches sofort unter Sauerstoffabspaltung zu Stickstoffmonoxid und Sauerstoff zerfällt. Bei dieser Reaktion, bei der ein Elektronenübergang stattfindet, wird Energie in Form von Licht (rot und nahes Infrarot) frei (Chemilumineszenz).

$$2NO + O_3 \rightarrow 2NO_2 \uparrow + O_2 \uparrow + hv$$

Diese Lichtquanten werden in einem Photomultiplier in ein elektrisches Signal umgewandelt, welches proportional zur Stickstoffmonoxidkonzentration ist.

Gemessen wird die Peakfläche, da unterschiedliche organische und anorganische N-Verbindungen ein unterschiedliches Verbrennungsverhalten haben, und dadurch zwar die Fläche der Peaks, nicht jedoch die Höhe der Peaks gleich ist.

Störungen:

N-haltige organische Verbindungen mit engem C/N-Verhältnis oder Ringsystemen werden nur zu 98 % aufgeschlossen. Organische Stickstoffverbindungen werden z.T. zu NO₂ oxidiert und nicht erfasst s.o..

Anhang:	<u>Lit.:</u>
Kurzanleitung TOC6.1	Bedienungsanleitung für Formacs HT und
	Formacs NT, Fa. Skalar, 2018

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC-Skalar	NNgesTOC7.1		2

Analysengeräte und Zubehör:

TOC-Analysator Formacs HT mit Probengeber, Fa. Skalar Stickstoffdetektor Formacs NT, Fa. Skalar Probenteller mit 80 Positionen, Fa. Skalar Reagenzgläser 8 ml aus Glas Elektrode für den Ozongenerator ((Fa. Skalar, Best.Nr. 2ND10303)

Chemikalien:

Pt-Katalysator (Fa. Skalar, Best.Nr. 2CA10316) CeO₂ (Fa. Skalar, Best.Nr. 2CA10305) Al-Support (Fa. Skalar, Best.Nr. 2CA16353) Halogenabsorber (Fa. Skalar, Best.Nr. 2CA10080) Quarzwolle (Fa. Skalar, Best.Nr. 2CA10359) Ozonabsorber (Fa. Skalar, Best.Nr. 2ND10301) Synthetische Luft Harnstoff K_2SO_4 p.a.

Lösungen:

 $0,1~\mathrm{M~K_2SO_4}$ -Lösung: $17,43~\mathrm{g~K_2SO_4}$ in $800~\mathrm{ml~H_2O}$ demin. lösen und auf $1~\mathrm{l}$ auffüllen. oder

0,25 M K₂SO₄-Lösung: 43,57 g K₂SO₄ in 800 ml H₂O demin. lösen und auf 1 l auffüllen.

Eichung/Standards:

Stammlösung:

TNb-Stammlösung (Fa. Seraltec): 1000 mg/l (NH₄)₂SO₄/KNO₃ (stabilisiert)

Haltbarkeit:

Die Stammlösung ist geschlossen im Kühlschrank ca., 6 Wochen haltbar.

Die Standards aus der Stammlösung müssen für jede Eichung frisch angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Die Kontrollstandards müssen alle 2 Tage frisch angesetzt werden!

Eichstandards:

Die Standards für die Eichung werden mit demin. Wasser angesetzt.

Kontrollstandards:

Die Kontrollstandards werden mit 0,1 M oder 0,25 M $\rm K_2SO_4$ -Lösung angesetzt. Die Konzentration der $\rm K_2SO_4$ -Lösung muss in Kontrollstandards und Proben gleich hoch sein.

Die Kontrollstandards müssen täglich frisch angesetzt werden!

N

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC-Skalar	NNgesTOC7.1		3

Einzelbestimmung:

Mehrelementbestimmung:?

1. Standardreihe	Einspritzvol.
	[µl]
0,2 mg/l N	100
0,4 mg/l N	100
0,6 mg/l N	100
0,8 mg/l N	100
1,0 mg/l N	100
1,2 mg/l N	100
1,4 mg/l N	100
1,6 mg/l N	100
1,8 mg/l N	100
2,0 mg/l N	100

0 0 1 1 1	T: 1
2. Standardreihe	Einspritzvol.
	[µl]
2,0 mg/l N	100
4,0 mg/l N	100
6,0 mg/l N	100
8,0 mg/l N	100
10,0 mg/l N	100
12,0 mg/l N	100
14,0 mg/l N	100
16,0 mg/l N	100
18,0 mg/l N	100
20,0 mg/l N	100

<u>Kontrollstandards</u>					
TCN1	1,0 mg/l N				
TCN2	10,0 mg/l N				
Harnstoff	10,0 mg/l N				

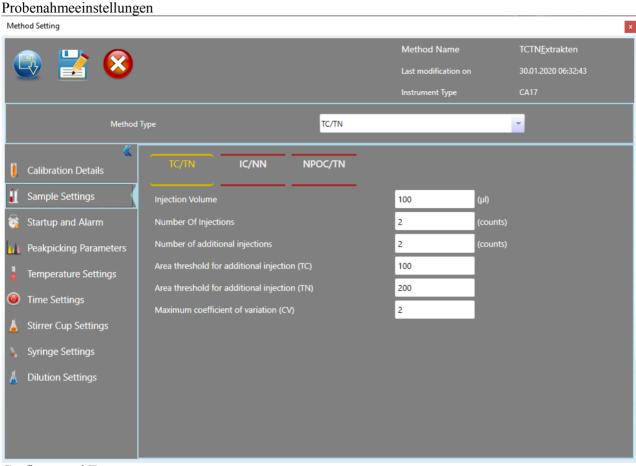
Durchführung:

siehe Gerätekurzanleitung TOC7.1

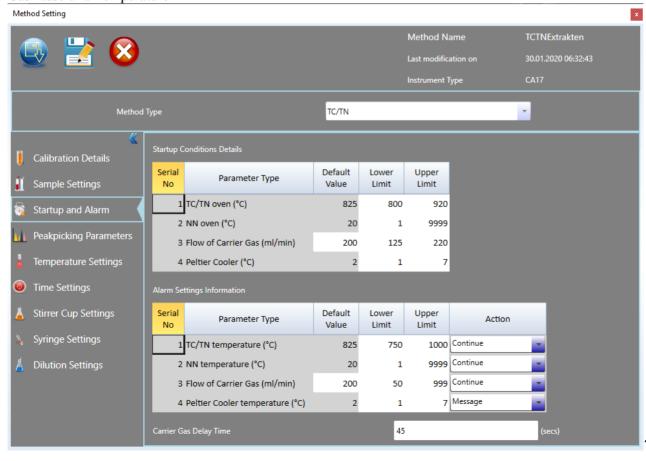
Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC-Skalar	NNgesTOC7.1		4

Qualitätskontrolle:

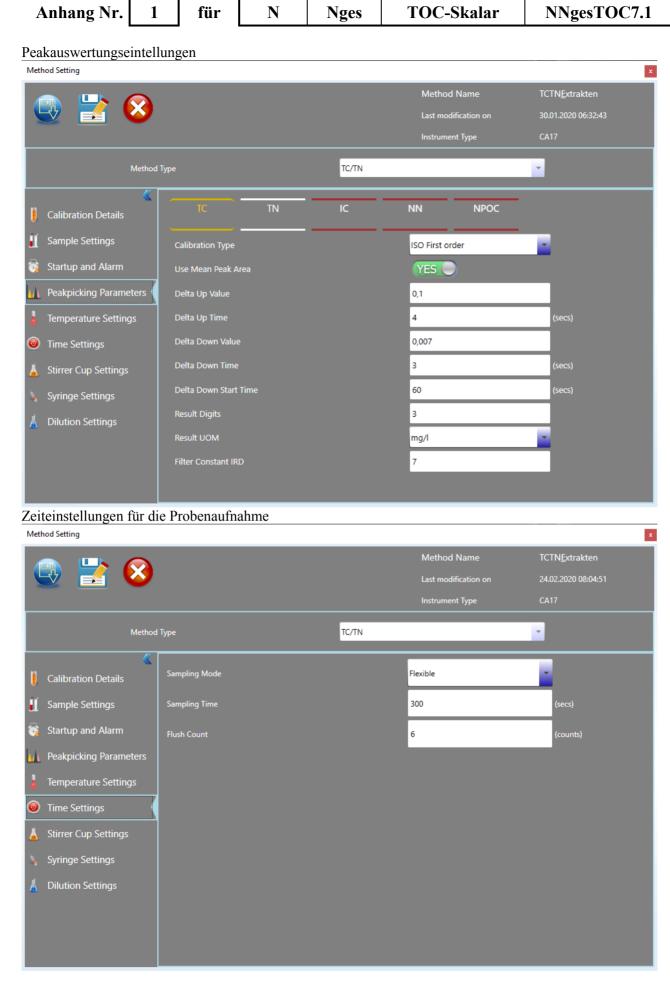
Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):


Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Die Gerätesoftware passt den Eichkurvenverlauf optimal an, indem sie ab 3 Eichpunkten ein Polynom 1ter (linear) oder 2ter (quadratisch) Ordnung durch die Eichpunkte legt. Berechnet werden Verfahrensstandardabweichung, Sollwert: ≤3 % bei Standardreihe 1, ≤ 2% bei Standardreihe 2. Die Eichkurve sollte linear sein
Kontrollstandard	QKSt.1.1	Vor jedem Probenblock und nach jedem Probenblock von maximal 20 Proben werden ein TCN1 und ein TCN2-Standard gemessen. Die erlaubte Abweichung beträgt bei TCN1 und bei TCN2 5 %. Liegt der Messwert eines Standards außerhalb des erlaubten Bereichs, so wird die Messung aller Proben die sich zwischen dem falschen Standard und dem nächsten richtigen Standard befinden erneut gemessen. Es werden nur die Proben für die Nachmessung markiert deren Messwert im Gültigkeitsbereich des fehlerhaften Standards liegen. Dieser ist für TCN1 0-2 mg/l N und für TCN2 2-20 mg/l N.
Mehrfachmessung	QMM1.1	3-fach-Messung; das Gerät führt einen Test zur Ermittlung von Ausreißern durch. Wurde kein Ausreißer gefunden, wird die prozentuale Abweichung vom Mittelwert berechnet, die maximal 2 % sein darf. Wurde ein Ausreißer gefunden, werden bis zu 2 zusätzliche Messungen durchgeführt. Nach Eliminierung der Ausreißer wird der Mittelwert und der Variationskoeffizient berechnet, der ≤2 % sein sollte.
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

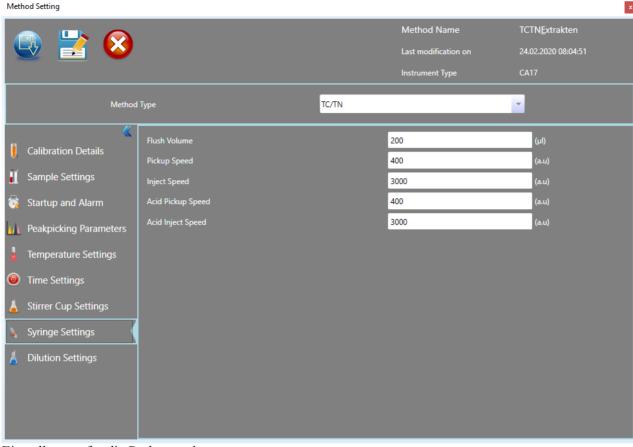
Auswertung/Datendokumentation:

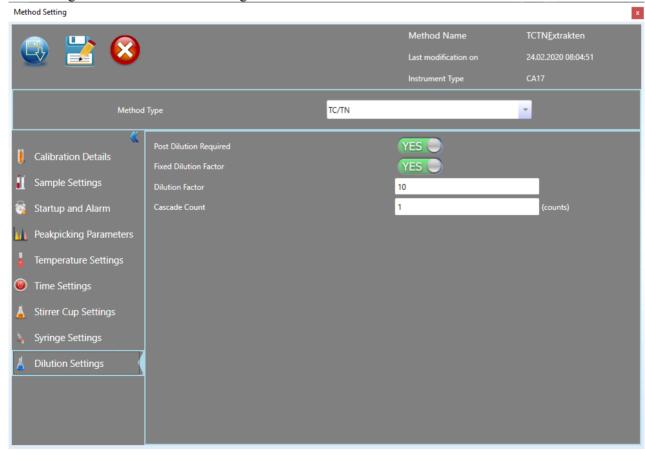

Die gemessenen Nges-Konzentrationen werden in die entsprechenden Datenlisten eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm Relaqs bearbeitet.

Anhang Nr. 1 für N Nges TOC-Skalar NNgesTOC7.1


Geräteeinstellungen:

Gasflüsse und Temperaturen





Anhang Nr. 1 für N Nges TOC-Skalar NNgesTOC7.1

Probenaufnahme und -abgabe, Spritzeneinstellungen

Einstellungen für die Probenverdünnung

Anhang Nr. 1 für N Nges TOC-Skalar NNgesTOC7.1

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Na	Nages	IC	NaNagesIC2.2	-	1

Datum:

15.7.2012

Elementbestimmungsmethode:

NATRIUM

Untersuchun	gsmethode	NG	BG	OMG
ANULLIC		0,003	0,009	5,0
geeignet für:				
Boden				·
Humus				·
Pflanze				·
Wasser	ANULLIC			
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 14911			·
HFA D39.1.4.6				·
HFA-Code	0713401			

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Kationen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Kationen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit Carboxylgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Na Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine verdünnte Salpetersäurelösung verwendet. Diese hat eine außerordentlich hohe Ionenäquivalentleitfähigkeit. Daher nimmt auf Grund der geringeren Ionenäquivalentleitfähigkeit der getrennten Kationen die Leitfähigkeit ab, wenn die Kationen die Trennsäule mit dem Eluenten verlassen und in die Leitfähigkeitsdetektorzelle gelangen. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Kations geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 0,25 ppm) wird das Kationen-Chromatogramm doppelt aufgenommen und mit unterschiedlichen Eichkurven für den hohen Messbereich (= linear durch Null) und den niedrigen Messbereich (= linear) ausgewertet. In dem 2-Kanal-System werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Säule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC2.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S17.3: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC2.1	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Na	Nages	IC	NaNagesIC2.2	-	2

Analysengeräte und Zubehör:

- 2-Kanal-IC-Anlage Fa. Metrohm, bestehend aus:
- 2 IC-Pumpen 818
- 2 Leitfähigkeitsdetektoren 819

IC-Separation-Center 820 mit Säulenofen

IC-Liquid-Handling-Einheit 833

2 Pulsationsdämpfer

IC-Eluent-Degaser 837

IC-Probengeber 838

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5

b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen:

a. Anionen: 20 µl

b. Kationen: 50 μl

Software:

a. zur Anlagensteuerung: IC-Net

b. zur Chromatogrammauswertung: MagIC-Net

Chemikalien:

Salpetersäure, HNO₃, 1 M

Na

Lösungen:

Eluent-Kationen: In einen 2 l-Messkolben werden 12 ml 1 M Salpetersäure gegeben und mit

H₂O demin. reinst auf 2 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

1 g/l Na: 1 g/l Natrium als Natriumnitrat \Rightarrow 1 g/l Na

Stammlösung II: Je 1 ml K-, NH₄-, Na-, Ca-, und Mg-Stammlösung werden in einen 100 ml-

Messkolben mit H₂O demin. reinst auf 100 ml aufgefüllt.

 \Rightarrow 0,01 g/l K, NH₄, Na, Ca, Mg.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Na	Nages	IC	NaNagesIC2.2	-	3

Haltbarkeit:

Die Stammlösung II ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

	Kontrollstandard
K1IC:	2,0 mg/l Na
K2IC:	0,1 mg/l Na

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S17.3) mit insgesamt 19 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung II und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt, oder eine neue Grundeichung durchgeführt werden.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC2.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (2,0 mg/l Na), K2IC (0,1 mg/l Na), Messung
		nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE3IC mit-
		gemessen; erlaubte Abweichung 5 %.

Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Natriumkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr. 1 für Na Nages IC NaNagesIC2.2

Chromatogramm der Kationenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Na	Nages	IC	NaNagesIC3.1	-	1

Datum:

20.12.2015

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode			BG	OMG
ANULLIC	ANULLIC			7,50
geeignet für:				
Boden				
Humus				
Pflanze				
Wasser ANULLIC				
Methodenver	weise:			
Norm In Anlehnung an DIN EN ISO 14911				
HFA D39.1.4.6				
HFA-Code				

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Kationen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Kationen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit Carboxylgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Na Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine verdünnte Salpetersäurelösung verwendet. Diese hat eine außerordentlich hohe Ionenäquivalentleitfähigkeit. Daher nimmt auf Grund der geringeren Ionenäquivalentleitfähigkeit der getrennten Kationen die Leitfähigkeit ab, wenn die Kationen die Trennsäule mit dem Eluenten verlassen und in die Leitfähigkeitsdetektorzelle gelangen. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Kations geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 0,25 ppm) wird das Kationen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich (Kurventyp: linear durch 0, Gewichtung 1) und den niedrigen Messbereich (Kurventyp: linear, Gewichtung 1) ausgewertet. Mit Flex 1 (Anionen) und Flex 2 (Kationen) werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Säule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC3.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S29.1: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC3.1	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Na	Nages	IC	NaNagesIC3.1	-	2

Analysengeräte und Zubehör:

2 Compact IC Flex- Anlagen Fa. Metrohm, bestehend aus:

Compact IC Flex 1 Anionen mit MSM Suppressor und MCS-Suppressor

Compact IC Flex 2 Kationen

IC-Probengeber 858 Professional Sample Processor

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5 b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard Probenschleifen:

a. Anionen: 20 μlb. Kationen: 50 μl

Software: MagIC-Net3.1

Chemikalien:

Salpetersäure, HNO₃, 1 M

Lösungen:

Eluent-Kationen: In einen 2 l-Messkolben werden 10 ml 1 M Salpetersäure gegeben und mit

H₂O demin. reinst auf 2 l aufgefüllt.

Eichung/Standards:

Na

Stammlösungen:

1 g/l Na: 1 g/l Natrium als Natriumnitrat \Rightarrow 1 g/l Na

Stammlösung II: Je 1 ml K-, NH₄-, Na-, Ca-, und Mg-Stammlösung werden in einen 100 ml-

Messkolben mit H₂O demin. reinst auf 100 ml aufgefüllt.

 \Rightarrow 0,01 g/l K, NH₄, Na, Ca, Mg.

Haltbarkeit:

Die Stammlösung II ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

	Kontrollstandard
K1IC:	2,0 mg/l Na
K2IC:	0,1 mg/l Na

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S29.1) mit insgesamt 18 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung II und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Na	Nages	IC	NaNagesIC3.1	-	3

Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt, oder eine neue Grundeichung durchgeführt werden.

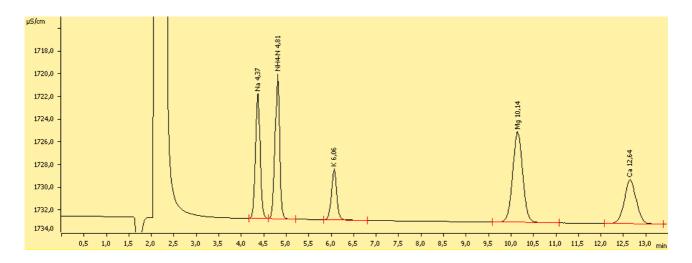
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC3.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (2,0 mg/l Na), K2IC (0,1 mg/l Na), Messung
		nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE3IC mit-
		gemessen; erlaubte Abweichung 5 %.


Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Natriumkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr. 1 für Na Nages IC NaNagesIC3.1

Chromatogramm der Kationenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP19.2	1

Datum:

01.01.2019

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode	NG	BG	OMG
OAKW2.1, OAKWEG3.1	0,005	0,015	10

geeignet für:

Boden	OAKW2.1, OAKWEG3.1
Humus	OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D39.1.6.4
HFA-Code	D;4;1;2;1;-1;0 (589,592 nm, radial)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen Na kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Analysengeräte und Zubehör:

Anhang:	<u>Lit.:</u>
Sammelanhang S33.1: Geräteparameter und	Nölte: ICP Emissionsspektroskopie für
Standardzusammen-	Praktiker; Weinheim, 2002
setzung	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP6.1	Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP19.2	2

iCAP 6500 der Fa. Thermo Fisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 2 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac mit Probenrack für 60 Positionen für Hauptelemente, bzw. 21 Positionen für Schwermetalle

PP-Röhrchen Natur, 12 ml, Fa. Greiner bio-one

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Laminar Flow Box FBS der Fa. Spetec, für Probengeber (zur Verhinderung von Staubeintrag in die Probengefäße)

Rechner mit Software QTEGRA

5000 ml Varipette, sowie 250 µl, 500 µl und 1000 µl Pipetten der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Mischfitting (Fa. Thermo Fisher) zur zur gleichmässigen Vermischung von Probelösung und internem Standard

Dilutor der Fa. Hamilton

Chemikalien:

Salpetersäure (HNO3), 65 %, p.a.

Y, AAS-Standard Yttrium 1 g/l Y (Fa B. Kraft)

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Interner Standard: 10 ml Yttriumlösung werden in einen 1 l Glaskolben gegeben, mit 30 ml

65 %. HNO₃ p.a. versetzt und mit H₂O demin. bis zur Eichmarke

aufgefüllt.

Eichung/Standards:

Stammlösungen:

Na: ICP-Konzentrat (Fa B. Kraft) => 10 g/l Na

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Im folgenden wird nur die Herstellung der Na-Standardlösungen beschrieben. Die Zugaben aller anderen Elemente, die sich auch in den beschriebenen Lösungen befinden, werden im Sammelanhang S33.1 beschrieben.

Standardlösung KW 1: In einen 250 ml PFA-Kolben werden 0,05 ml des 10 g/l Na enthaltenden

ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang S33.1), mit 7,5 ml der 65

%igen HNO₃ p.a. versetzt und mit H₂O bidemin. aufgefüllt.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP19.2	3
Standardlös	sung KW 2:	und Ti, 5 mg/l Fe, K und Mg, In einen 250 ml PFA-Kolben v ICP-Konzentrates, sowie di	d Ni, 200 μg/l Pb und Zn, 2 mg/l M 10 mg/l P, 20 mg/l Ca und 200 mg/l werden 0,250 ml des 10 g/l Na enth e entsprechenden Mengen der melanhang S33.1), mit 7,5 ml der 6 O bidemin. aufgefüllt.	/l Al. altenden anderen
			und Ni, 500 µg/l Pb und Zn, 1 10 mg/l Fe, Mn und Na, 50 mg/l C	_
Standardlös	sung KW 3:	ICP-Konzentrates, sowie di	werden 0,200 ml des 10 g/l Na enthe entsprechenden Mengen der melanhang <i>S33.1</i>), mit 7,5 ml der 6 O bidemin. aufgefüllt.	anderen
		. •	und Ni, 1000 µg/l Pb und Zn, 0,5 i, 6 mg/l P, 8 mg/l Na, 10 mg/l K	•
Standardlösung KW 4:		ICP-Konzentrates, sowie di	werden 0,100 ml des 10 g/l Na enthe entsprechenden Mengen der melanhang <i>S33.1</i>), mit 7,5 ml der 6 O bidemin. aufgefüllt.	anderen
Standardlösung KW 5:			Ii, 2000 μg/l Pb und Zn, 4 mg/l Na mg/l K, Mg und Mn, 50 mg/l Al, 1	
		ICP-Konzentrates, sowie di	werden 0,150 ml des 10 g/l Na enthe entsprechenden Mengen der melanhang <i>S33.1</i>), mit 7,5 ml der 6 O bidemin. aufgefüllt.	anderen

=> 1000 µg/l Cu und Ni, 4000 µg/l Pb und Zn, 2 mg/l K und P, 5 mg/l Mn, 6 mg/l Na, 10 mg/l Al und S, 50 mg/l Fe und Mg, 100 mg/l Ca.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP19.2	4

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Na auch andere Elemente enthalten (siehe Sammelanhang S33.1), verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Na
KW 1	2,0 mg/l Na
KW 2	10,0 mg/l Na
KW 3	8,0 mg/l Na
KW 4	4,0 mg/l Na
KW 5	6,0 mg/l Na

	Kontrollstandard
K24	10,0 mg/l Na

Methode:	OAKW2.1Boden
<u>wicthode.</u>	OAKW2.1Humus
	OAKWEG3.1Boden
Element:	Na
Wellenlänge:	589.592
Plasma-	radial
beobachtung:	
Messbereich	BG – OMG
[mg/l]:	
Standards:	Blank
	KW 1
	KW 2
	KW 3
	KW 4
	KW 5
Bemerkungen:	Fensterweite: 18
	Pixelbreite: 2
	Pixelhöhe: 1
	Untergrund-
	Korrektur:
	Pos. links: fixed
	Pos. rechts: fixed

Zur Herstellung der Blank-Lösung werden 7,5 ml der 65 %igen HNO_3 p.a. in einen 250 ml PFA-Kolben gegeben und mit H_2O bidemin. aufgefüllt.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP19.2	5

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP6.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S33.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 24 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974 Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %

Auswertung/Datendokumentation:

Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite	
Na	Nages	ICP(sim)	NaNagesICP19.2	6	

Element Form Gerät Methoden-		Methoden-Nr.	Seite	
Na	Nages	ICP(sim)	NaNagesICP20.1	1

Datum:

01.05.2014

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode		BG	OMG
ANULL, ANULLIC, EXT1:2H2O1.1, GBL1.1, DAN1.1, DAN2.2	0,004	0,011	30

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1
Humus	DAN1.1, DAN2.2
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL, ANULLIC

Methodenverweise:

Norm	n Anlehnung an DIN EN ISO 11885		
HFA	D39.1.4.4, D39.1.5.4 und D39.1.6.4		
HFA-Code	D;4;1;2;-1;-1;0		

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen Na kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich iCAP 7400 mit	Nölte: ICP Emissionsspektroskopie für Praktiker;
Ionenchromatograph Fa. Metrohm	Weinheim, 2002
Sammelanhang S24.1: Geräteparameter und	Montaser, Golightly: Inductively Coupled Plasmas
Standardzusammen-	in Analytical Atomic Spectrometry;
setzung	Weinheim, 1987
Kurzanleitung ICP5.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP20.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 μl, Varipette 100-1000 μl, Varipette 500-5000 μl sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

1000 ml und 2000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 150 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 5 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Na: Standard (Fa B. Kraft) \Rightarrow 5 g/l Na

Na

Al, Ca, Fe, K, Mg, Mn, P, S:

Standard (Fa B. Kraft) => jeweils 5 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S24.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Na auch andere Elemente enthalten (siehe Sammelanhang S24.1), verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Na
HE 1	0,5 mg/l Na
HE 2	20,0 mg/l Na
HE 3	5,0 mg/l Na
HE 4	10,0 mg/l Na
HE 5	2,5 mg/l Na
HE 6	1,0 mg/l Na

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP20.1	3

	Kontrollstandard
K1	5,0 mg/l Na

	I	1
Methode:	ANULL	ANULL
	ANULLIC	ANULLIC
	EXT1:2H2O1.1	EXT1:2H2O1.1
	GBL1.1	GBL1.1
	DAN1.1Pflanze	DAN1.1Pflanze
	DAN2.2Pflanze	DAN2.2Pflanze
	DAN1.1Humus	DAN1.1Humus
	DAN2.2Humus	DAN2.2Humus
Element:	Na	Na
Wellenlänge:	589.592	589.592
Messbereich [mg/l]:	BG - 0.5	0,5 - OMG
Standards:	Blank	Blank
	HE 1	HE 1
		HE 2
		HE 3
		HE 4
		HE 5
		HE 6
Bemerkungen:	Fensterweite: 20	Fensterweite: 20
	Pixelbreite: 3	Pixelbreite: 3
	Pixelhöhe: 2	Pixelhöhe: 2
	Untergrund-	Untergrund-
	Korrektur:	Korrektur:
	Pos. links: 5	Pos. links: 5
	Pixelanzahl: 2	Pixelanzahl: 2
	Pos. rechts: 15	Pos. rechts: 15
	Pixelanzahl: 2	Pixelanzahl: 2

Der Blank, die Standards und der Kontrollstandard werden in 2 %-iger HNO_3 (30 ml HNO_3 65 %, p.a. in 1000 ml) in 1 Liter Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S24.1 zusammengestellt.

Wässrige Proben werden vor dem Messen mit $180~\mu l$ HNO $_3$ konz. pro 6~m l Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

Werden Proben verdünnt, müssen die durch die zusätzliche Säurezugabe veränderten

Verdünnungsfaktoren beachtet werden.

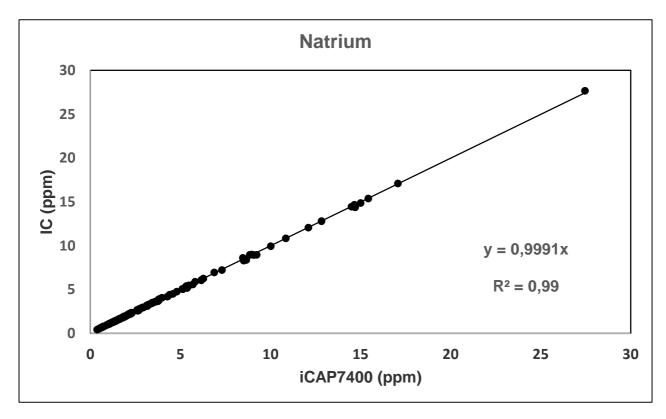
Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP20.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 24
		Proben und nach jeder Eichungswiederholung;
		erlaubte Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Al-Bilanz	QAlB1.1	Siehe Methodenbeschreibung
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1
		mitgemessen; erlaubte Abweichung 5 %
		Bei Pflanzenproben: Standard NHARZ, erlaubte
		Abweichung 10 %
		Bei Humusproben: Standard NFVH, erlaubte
		Abweichung 10 %

Auswertung/Datendokumentation:


Na

Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr.	1	für	Na	Nages	ICP(sim)	NaNagesICP20.1
------------	---	-----	----	-------	----------	----------------

Methodenvergleich ICP Iris Advantage mit iCAP 7400

Darstellung einer Vergleichsmessung der Methode NaNagesICP7.3 und der hier beschriebenen Methode an der Wasserserie 2013W078 (151 Proben):

Na

Anhang Nr.	1	für	Na	Nages	ICP(sim)	NaNagesICP20.1	l
------------	---	-----	----	-------	----------	----------------	---

Na

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP21.1	1

Datum:

01.05.2014

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode	NG	BG	OMG
AKE1.1, AKEG1.1, AKH3.1, AKT2.1	0,006	0,019	30

geeignet für:

Boden	AKE1.1, AKEG1.1, AKT2.1
Humus	AKEG1.1, AKH3.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D39.1.5.4
HFA-Code	D;4;1;2;-1;-1;0;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen Na kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich iCAP 7400 mit Iris Advantage	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002
Sammelanhang S25.1: Geräteparameter und Standardzusammensetzung Kurzanleitung ICP5.1	Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP21.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 2 mm, für stark salzhaltige Lösungen

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 μl, Varipette 100-1000 μl, Varipette 500-5000 μl sowie 250 μl, 500 μl und

 $1000~\mu l$ Pipetten der Fa. Eppendorf

250 ml-Messkolben aus Glas

Chemikalien:

keine

Lösungen:

keine

Eichung/Standards:

Stammlösungen:

Na: Standard (Fa B. Kraft) \Rightarrow 5 g/l Na

Al, Ca, Fe, K, Mg, Mn: Standard (Fa B. Kraft) => jeweils 5 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S25.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Na auch andere Elemente enthalten (siehe Sammelanhang S25.1), verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Na
AKE 1	10,0 mg/l Na
AKE 2	5,0 mg/l Na
AKE 3	1,0 mg/l Na
AKE 4	20,0 mg/l Na

	Kontrollstandard
K5	10,0 mg/l Na

Na

Methoden-Nr.	Seite	
NaNagesICP21 1	3	

	T
Methode:	AKE1.1
	AKEG1.1
	AKH3.1
	AKT2.1
Element:	Na
Wellenlänge:	589.592
Messbereich[mg/l]:	BG – OMG
Standards:	Blank
	AKE 1
	AKE 2
	AKE 3
	AKE 3
Bemerkungen:	Fensterweite: 21
	Pixelbreite: 3
	Pixelhöhe: 2
	<u>Untergrund-</u>
	Korrektur:
	Pos. links: 3
	Pixelanzahl: 2
	Pos. rechts: 18
	Pixelanzahl: 2

Gerät

ICP(sim)

Der Blank, die Standards und der Kontrollstandard werden mit der jeweils verwendeten Perkolationslösung in 250 ml Glaskolben angesetzt.

Na

Durchführung:

Element

Na

Form

Nages

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S25.1 zusammengestellt.

AKEG-Perkolate werden mit $180 \,\mu l$ 65 % iger HNO₃ p.a. pro 6 ml Probe versetzt und 1:5 verdünnt. Die Standards werden mit 1:5 verdünnter Perkolationslösung angesetzt und ebenfalls angesäuert (3 ml 65 % iger HNO₃ p.a. auf $100 \,\mathrm{ml}$).

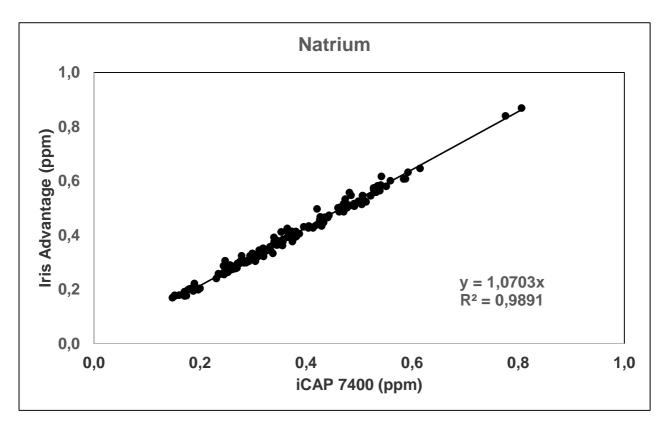
AKT- und AKH-Perkolate werden vor dem Messen 1:2 verdünnt. Die Standards werden mit 1:2 verdünnter Perkolationslösung angesetzt.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP21.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K5; Messung nach der Eichung, alle 24
		Proben und nach jeder Eichungswiederholung;
		erlaubte Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards Harste 30-50, BZE-THUE, Solling 0-10,
		Solling0-10neu, BioSoil und BZE-HUM; erlaubte
		Abweichung 10 % - 15 %


Auswertung/Datendokumentation:

Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr.	1	für	Na	Nages	ICP(sim)	NaNagesICP21.1
------------	---	-----	----	-------	----------	----------------

Methodenvergleich ICP Iris Advantage mit iCAP 7400

Darstellung einer Vergleichsmessung der Methode NaNagesICP10.1 und der hier beschriebenen Methode an den Bodenserien 2013B057 und 2013B059 (140 Proben):

Na

Anhang Nr.	1	für	Na	Nages	ICP(sim)	NaNagesICP21.1
------------	---	-----	----	-------	----------	----------------

Na

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP22.1	1

Datum:

01.08.2014

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2,	0,004	0,0121	15
OAKWEG3.1	0,004	0,0121	13

geeignet für:

<u> </u>	
Boden	OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1
Humus	OAKW1.1, OAKW1.2, OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	n Anlehnung an DIN EN ISO 11885		
HFA	D39.1.6.4		
HFA-Code	D;4;1;2;-1;-1;0;		

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Na Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S26.1: Geräteparameter und Standardzusammen-	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002
setzung Kurzanleitung ICP5.1	Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP22.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Na: ICP-Konzentrat (Fa B. Kraft) => 10 g/l Na

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Na auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

Na

Na

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP22.1	3

	<u>Standards</u>		
KW 0	0,0 mg/l Na		
KW 1	4,0 mg/l Na		
KW 2	10,0 mg/l Na		
KW 3	3,0 mg/l Na		
KW 4	1,0 mg/l Na		
KW 5 KW 6	5,0 mg/l Na 4,0 mg/l Na		
KW 7	6,0 mg/l Na		
KW 8	8,0 mg/l Na		

	Kontrollstandard
K24	10,0 mg/l Na

Methode:	OAKW2.1Boden
	OAKWEG2.1Boden
	OAKWEG2.2Boden
	OAKWEG3.1Boden
	OAKW1.1Humus
	OAKW1.2Humus
	OAKW2.1Humus
Element:	Na
Wellenlänge:	589.592
Messbereich [mg/l]:	BG – OMG
Standards:	Blank
	KW 1
	KW 2
	KW 3
	KW 4
	KW 5
	KW 6
	KW 7
	KW 8
Bemerkungen:	Fensterweite: 17
	Pixelbreite: 3
	Pixelhöhe: 2
	<u>Untergrund-</u>
	Korrektur:
	Pos. links: 4
	Pixelanzahl: 2
	Pos. rechts: 14
	Pixelanzahl: 2
ur Harstellung der E	lindlägung der Ste

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit $\rm H_2O$ bidemin. aufgefüllt.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP22.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %.

Auswertung/Datendokumentation:

Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Na

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP22.1	1

Datum:

01.08.2014

Elementbestimmungsmethode:

NICKEL

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1	1,7	5,6	1500

geeignet für:

Boden	OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1
Humus	OAKW1.1, OAKW1.2, OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D42.1.6.3
HFA-Code	D;4;1;2;-1;-1;0;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Ni Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S26.1: Geräteparameter und Standardzusammensetzung Kurzanleitung ICP5.1	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987
	Weimienii, 1907

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP22.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 $\mu l,~1000~\mu l$ und 5000 μl Varipetten, sowie 250 $\mu l,~500~\mu l$ und 1000 μl Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Ni: ICP-Standard (Fa B. Kraft) => 1 g/l Ni

As, Ba, Cd, Co, Cr, Cu, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ni auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

0 μg/l Ni

 $100 \mu g/l Ni$

200 μg/l Ni

300 μg/l Ni

500 μg/l Ni

600 µg/l Ni

800 μg/l Ni

1000 μg/l Ni 1500 μg/l Ni

	Kontrollstandard
K24	100 μg/l Ni

Standards

KW 0 KW 1

KW 2

KW 3

KW 4

KW 5

KW 6

KW 7

KW 8

Methode:	OAKW2.1Boden
	OAKWEG2.1Boden
	OAKWEG2.2Boden
	OAKWEG3.1Boden
	OAKW1.1Humus
	OAKW1.2Humus
	OAKW2.1Humus
Element:	Ni
Wellenlänge:	231.604
Messbereich	BG – OMG
[µg/l]:	
Standards:	Blank
	KW 1
	KW 2
	KW 3
	KW 4
	KW 5
	KW 6
	KW 7
	KW 8
Dama anlaran a ana	
Bemerkungen:	Fensterweite: 20
	Pixelbreite: 3 Pixelhöhe: 5
	Pixelhöhe: 5
	<u>Untergrund-</u>
	Korrektur:
	Pos. links: 6
	Pixelanzahl: 2
	Pos. rechts: 19
	Pixelanzahl: 2

Ni

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP22.1	4

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit $_2$ O bidemin. aufgefüllt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und	
		nach jeder Eichungswiederholung; erlaubte	
		Abweichung 3 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,	
		NFVH; erlaubte Abweichung 10 %.	

Auswertung/Datendokumentation:

Die gemessenen Ni-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Ni

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP24.1	1

Datum:

01.07.2016

Elementbestimmungsmethode:

NICKEL

Untersuchungsmethode	NG	BG	OMG
EXTEDTA1.1	2,8	8,5	4000

geeignet für:

Boden	EXTEDTA1.1
Humus	
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885	
HFA	D42.1.5.2	
HFA-Code	D:4;1;2;-1;-1;0;	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S28.1: Geräteparameter und Standardzusammensetzung Kurzanleitung ICP5.1	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Glas

Chemikalien:

Na-EDTA (Titriplex III) $(C_{10}H_{14}N_2Na_2O_8 * 2H_2O)$

Lösungen:

0,1 m EDTA-Lösung: in einen 1 l-Kolben wird eine Ampulle 0,1 molare Titriplex III Lösung gegeben und mit H₂O demin. bis zur Eichmarke aufgefüllt.

Eichung/Standards:

Stammlösungen:

Ni: ICP-Standard (Fa B. Kraft) => 1 g/l Ni

Cd, Co, Cr, Cu, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S28.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ni auch andere Elemente enthalten (siehe Sammelanhang S28.1), verwendet:

	<u>Standards</u>
EDTA 0	0 μg/l Ni
EDTA 1	200 μg/l Ni
EDTA 2	4000 μg/l Ni
EDTA 3	1000 μg/l Ni
EDTA 4	500 μg/l Ni
EDTA 5	2000 μg/l Ni

Ni

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP24.1	3

	Kontrollstandard
K23	500 μg/l Ni

Methode:	EXTEDTA1.1
Element:	Ni
Wellenlänge:	231.604
Messbereich	BG – OMG
[µg/l]:	
Standards:	EDTA 0
	EDTA 1
	EDTA 2
	EDTA 3
	EDTA 4
	EDTA 5
Bemerkungen:	Fensterweite: 20
	Pixelbreite: 2
	Pixelhöhe: 5
	<u>Untergrund-</u>
	Korrektur:
	Pos. links: 6
	Pixelanzahl: 2
	Pos. rechts: 19
	Pixelanzahl: 2

Der Blank, die Standards und die Kontrollstandards werden mit der verwendeten Extraktionslösung in 100 ml Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S28.1 zusammengestellt. Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K23; Messung nach der Eichung, alle 15 Proben und	
		nach jeder Eichungswiederholung; erlaubte	
		Abweichung 5 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial	QStM1.1	Solling0-10; erlaubte Abweichung 10 %.	

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP24.1	4

Auswertung/Datendokumentation:

Die gemessenen Ni-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP-MS	NiNigesICPMS1.1	1

Datum:

01.11.2018

Elementbestimmungsmethode:

NICKEL

Untersuchungsmethode	NG	BG	OMG
OAKW2.1, OAKWEG3.1	0,006	0,017	700

geeignet für:

<u> </u>	
Boden	OAKW2.1, OAKWEG3.1
Humus	OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 17294-2
HFA	D42.1.6.10
HFA-Code	D;5;3;1;2;-1;0;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Ni Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	Lit.:
Anhang 1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S30.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Form	Gerät	Methoden-Nr.	Seite	
Ni	Niges	ICP-MS	NiNigesICPMS1.1	2	

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

1000, 2000 und 5000ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Y, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l Al, Mg, Fe, K: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25 ml HCl im 5 l-Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40ml Salpetersäure (HNO₃) im 2 l-Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10~ml Salpetersäure (HNO3) im 2~l-Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 10 ppm, Ge 1 ppm, Y 10 ppm, Re 5 ppb, Rh 100 ppb) = 10 ml Sc, 1 ml Ge, 10 ml Y, 0,1 ml Rh jeweils aus 1 g/l und 1 ml Re aus 5 mg/l plus 20 ml HNO₃ im 1000 ml Glas-Messkolben mit bidemin. Wasser auffüllen.

Aus dieser Stammlösung eine 1:10 Verdünnung (mit bi-demin H₂O aufgefüllt) zum Messen herstellen (mindestens 100 ml).

Basislösung für Standards und Kontrollstandard:

Ansatz der Lösung (Al 50 ppm, Mg 50 ppm, Fe 20 ppm, K 10 ppm)=

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP-MS	NiNigesICPMS1.1	3

Jeweils 5 ml Al und Mg, 2 ml Fe und 1 ml K mit 60 ml HCl und 20 ml HNO3 in einem 1000 ml Messkolben mit bi-demin H2O auffüllen.

Eichung/Standards:

Stammlösungen:

Ni: ICP-Standard (Fa B. Kraft) => 1 g/l Ni

Cd, Co, Cr, Cu, Pb, Zn, Hg, W: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg, Al, Fe, K: ICP-Standard (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S30.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in einer dem Königswasserextrakt entsprechenden Mischung aus HCl und HNO₃ mit Zusatz von 50 ppm Al, 50 ppm Mg, 20 ppm Fe und 10 ppm K, die neben Ni auch andere Elemente enthalten (siehe Sammelanhang S30.1), verwendet:

	<u>Standards</u>
Blank	0 μg/l Ni
KWSM1	5 μg/l Ni
KWSM2	10 μg/l Ni
KWSM3	20 μg/l Ni
KWSM4	50 μg/l Ni
KWSM5	2 μg/l Ni

	Kontrollstandard
K24MS	
5μg/l Ni	

Methode:	OAKWSM	OAKWEGSM
Element:	Ni	Ni
Masse:	59,9308	59.9308
Messbereich	BG - OMG	BG – OMG
[µg/l]:	0,34 - 14000	0,85 - 35000
Standards:	Blank	Blank
	KWSM1	KWSM1
	KWSM2	KWSM2
	KWSM3	KWSM3
	KWSM4	KWSM4
	KWSM5	KWSM5

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP-MS	NiNigesICPMS1.1	4

Bemerkungen:	Kollisions/Reaktions-	Kollisions/Reaktions-
	<u>zelle:</u>	<u>zelle:</u>
	Gasfluss H ₂ : 0,5 ml	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml	Gasfluss He: 4,5 ml

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. OAKW-Aufschlusslösungen werden 1:20 vom PrepFAST-Probengeber verdünnt, OAKWEG-Aufschlusslösungen 1:50.

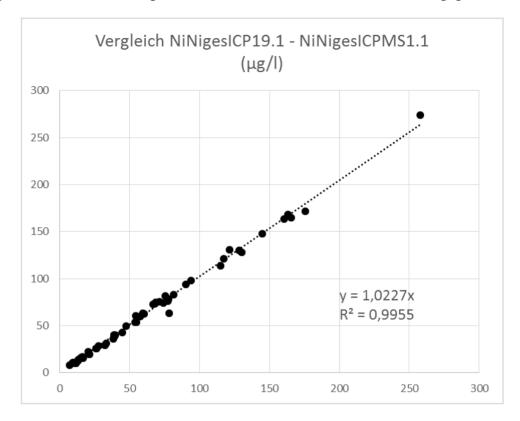
Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (OAKWSM-1, OAKWEGSM-1, OAKWSMHg-1, OAKWEGSMHg-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S30.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	ISE974, BZE-SAC, NFVH; erlaubte Abweichung 10
		%.


Auswertung/Datendokumentation:

Die gemessenen Ni-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für	Ni Niges	ICP-MS	NiNigesICPMS1.1
------------------	----------	--------	-----------------

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Königswasser-Aufschluss-Serie mit den beiden angegebenen Methoden

Anhang Nr. 1 für Ni Niges ICP-MS NiNigesICPMS1.1

Element Form		Form	Gerät	Methoden-Nr.	Seite
	Ni	Niges	ICP-MS	NiNigesICPMS2.1	1

Datum:

01.11.2018

Elementbestimmungsmethode:

NICKEL

Untersuchungsmethode	NG	BG	OMG
ANULL		0,024	100
geeignet für:			
Boden			
Humus			

Methodenverweise:

Pflanze

Wasser

Norm In Anlehnung an DIN EN ISO 17294-2	
HFA	D42.1.4.7.
HFA-Code	D;5;3;1;2;-1;0;

Prinzip der Methode/chem. Reaktionen:

ANULL

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Ni Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S31.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Form	Gerät	Methoden-Nr.	Seite	
Ni	Niges	ICP-MS	NiNigesICPMS2.1	2	

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

2000 und 5000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃),69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP Q/Qnova CALIBRATION solution

Sc, Ge, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25ml HCl im 5 l- Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40 ml Salpetersäure (HNO₃) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10 ml Salpetersäure (HNO3) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 50 ppm, Ge 50 ppm, Re 5 ppm, Rh 5 ppm) =

 $5\ ml\ Sc,\, 5\ ml\ Ge,\, 0,5\ ml\ Re,\, 0,5\ ml\ Rh\ und\, 2\ ml\ HNO_3\ im\, 100\ ml\ PFA$ - Messkolben mit bidemin. Wasser auffüllen.

Aus dieser Stammlösung eine 1:100 Verdünnung in 2% HNO₃-Lösung zum Messen herstellen (mindestens 100 ml).

Element	Form	Gerät	Methoden-Nr.	Seite	
Ni	Niges	ICP-MS	NiNigesICPMS2.1	3	

Eichung/Standards:

Stammlösungen:

Ni: ICP-Standard (Fa B. Kraft) \Rightarrow 1 g/l Ni

Cd, Co, Cr, Cu, Pb, Zn: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg: ICP-Standard (Fa B. Kraft) \Rightarrow 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S31.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in 2 % HNO3 mit Zusatz von 10 ppm Mg, die neben Ni auch andere Elemente enthalten (siehe Sammelanhang S31.1), verwendet:

<u>Standards</u>				
Blank	0 μg/l Ni			
Wasser SM1	0,5 μg/l Ni			
Wasser SM2	1 μg/1 Ni			
Wasser SM3	2 μg/l Ni			
Wasser SM4	5 μg/l Ni			
Wasser SM5	10 μg/l Ni			
Wasser SM6	20 μg/l Ni			

<u>Kontrollstandard</u>
K25MS
20 μg/l Ni

Methode:	WasserSM-1
Element:	Ni
Masse:	59,9308
Messbereich	BG - OMG
[µg/l]:	0,024 - 100
Standards:	Wasser SM0
	Wasser SM1
	Wasser SM2
	Wasser SM3
	Wasser SM4
	Wasser SM5
	Wasser SM6
	Wasser SM7

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP-MS	NiNigesICPMS2.1	4

Bemerkungen:	Kollisions/Reaktions-
	<u>zelle:</u>
	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (WasserSM-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S31.1 zusammengestellt.

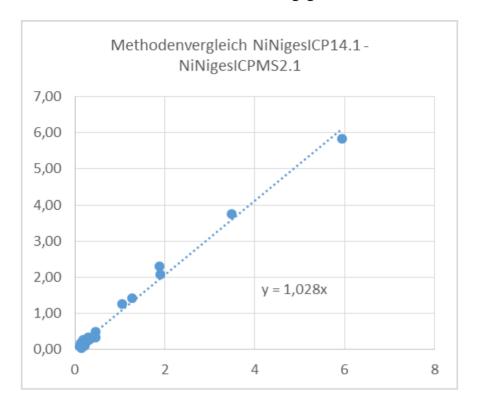
Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K25MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	WasserSM1; erlaubte Abweichung 10 %.

Ni


Auswertung/Datendokumentation:

Die gemessenen Ni-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Ni Niges ICP-MS NiNigesICPMS2.1

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Wasser-Serie mit den beiden angegebenen Methoden

Anhang Nr. 1 für Ni Niges ICP-MS NiNigesICPMS2.1

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP-MS	NiNigesICPMS4.1	1

Datum:

01.06.2019

Elementbestimmungsmethode:

NICKEL

Untersuchungsmethode	NG	BG	OMG
DAN2.2	0,012	0,035	100

geeignet für:

B B	<u> </u>		
Boden			
Humus			
Pflanze	DAN2.2		
Wasser			

Methodenverweise:

Norm	m In Anlehnung an DIN EN ISO 17294-2	
HFA	D42.1.6.10	
HFA-Code	D;5;3;1;2;-1;0;	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Ni Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S32.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Form	Gerät	Methoden-Nr.	Seite	
Ni	Niges	ICP-MS	NiNigesICPMS4.1	2	

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

2000 und 5000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃),69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25ml HCl im 5 l- Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40 ml Salpetersäure (HNO₃) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10 ml Salpetersäure (HNO3) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 50 ppm, Ge 50 ppm, Re 5 ppm, Rh 5 ppm) =

 $5\ ml\ Sc,\, 5\ ml\ Ge,\, 0,5\ ml\ Re,\, 0,5\ ml\ Rh\ und\, 2\ ml\ HNO_3\ im\, 100\ ml\ PFA$ - Messkolben mit bidemin. Wasser auffüllen.

Aus dieser Stammlösung eine 1:100 Verdünnung in 2% HNO₃-Lösung zum Messen herstellen (mindestens 100 ml).

Element	Form	Gerät	Methoden-Nr.	Seite	
Ni	Niges	ICP-MS	NiNigesICPMS4.1	3	

Eichung/Standards:

Stammlösungen:

Ni: ICP-Standard (Fa B. Kraft) \Rightarrow 1 g/l Ni

Cd, Co, Cr, Cu, Pb, Zn: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg: ICP-Standard (Fa B. Kraft) \Rightarrow 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S32.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in 0,5 % HNO₃ mit Zusatz von 5 ppm Mg, die neben Ni auch andere Elemente enthalten (siehe Sammelanhang S32.1), verwendet:

Stan	<u>dards</u>
Blank	0 μg/l Ni
DAN SM1	0,5 μg/l Ni
DAN SM2	1 μg/1 Ni
DAN SM3	2 μg/1 Ni
DAN SM4	5 μg/l Ni
DAN SM5	10 μg/l Ni
DAN SM6	20 μg/l Ni

Kor	ntrollstandard
K26MS 10 μg/l Ni	

Methode:	DANSM-1
Element:	Ni
Masse:	59,9308
Messbereich	BG - OMG
[µg/l]:	0,070 - 200
Standards:	DAN SM0
	DAN SM1
	DAN SM2
	DAN SM3
	DAN SM4
	DAN SM5
	DAN SM6
	DAN SM7

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP-MS	NiNigesICPMS4.1	4

Bemerkungen:	Kollisions/Reaktions-
	<u>zelle:</u>
	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben.

Die Aufschlusslösungen werden 1:2 verdünnt.

Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (DANSM-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S32.1 zusammengestellt.

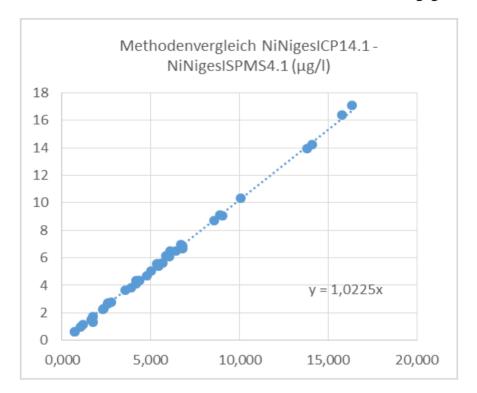
Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K26MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	NHARZ; erlaubte Abweichung 10 %.

Ni


Auswertung/Datendokumentation:

Die gemessenen Ni-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr.	1	für	Ni	Niges	ICP-MS	NiNigesICPMS4.1
------------	---	-----	----	-------	--------	-----------------

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Pflanzen-Druckaufschluss-Serie mit den beiden angegebenen Methoden

Anhang Nr. 1 für Ni Niges ICP-MS NiNigesICPMS4.1

Element	Form	Gerät	Methoden-Nr.	Seite
P	Pges	ICP(sim)	PPgesICP19.2	1

Datum:

01.01.2019

Elementbestimmungsmethode:

PHOSPHOR

Untersuchungsmethode	NG	BG	OMG
OAKW2.1, OAKWEG3.1	0,003	0,01	20

geeignet für:

Boden	OAKW2.1, OAKWEG3.1
Humus	OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D44.1.6.1
HFA-Code	D;4;2;2;1;-1;0 (178.284 nm, axial)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S33.1: Geräteparameter und	Nölte: ICP Emissionsspektroskopie für
Standardzusammen-	Praktiker; Weinheim, 2002
setzung	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP6.1	Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

iCAP 6500 der Fa. Thermo Fisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 2 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac mit Probenrack für 60 Positionen für Hauptelemente, bzw. 21 Positionen für Schwermetalle

PP-Röhrchen Natur, 12 ml, Fa. Greiner bio-one

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Laminar Flow Box FBS der Fa. Spetec, für Probengeber (zur Verhinderung von Staubeintrag in die Probengefäße)

Rechner mit Software OTEGRA

5000 ml Varipette, sowie 250 µl, 500 µl und 1000 µl Pipetten der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Mischfitting (Fa. Thermo Fisher) zur zur gleichmässigen Vermischung von Probelösung und internem Standard

Dilutor der Fa. Hamilton

Chemikalien:

Salpetersäure (HNO3), 65 %, p.a.

Y, AAS-Standard Yttrium 1 g/l Y (Fa B. Kraft)

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Interner Standard: 10 ml Yttriumlösung werden in einen 1 l Glaskolben gegeben, mit 30 ml

65 %. HNO₃ p.a. versetzt und mit H₂O demin. bis zur Eichmarke

aufgefüllt.

Eichung/Standards:

Stammlösungen:

P: ICP-Konzentrat (Fa B. Kraft) \Rightarrow 10 g/l P

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Im folgenden wird nur die Herstellung der P-Standardlösungen beschrieben. Die Zugaben aller anderen Elemente, die sich auch in den beschriebenen Lösungen befinden, werden im Sammelanhang S33.1 beschrieben.

Standardlösung KW 1: In einen 250 ml PFA-Kolben werden 0,25 ml des 10 g/l P enthaltenden

Element	Form	Gerät	Methoden-Nr.	Seite
P	Pges	ICP(sim)	PPgesICP19.2	3

ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang *S33.1*), mit 7,5 ml der 65 %igen HNO₃ p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> $50~\mu g/l$ Cd, Co, Cr, Cu und Ni, $200~\mu g/l$ Pb und Zn, 2~mg/l Mn, Na, S und Ti, 5~mg/l Fe, K und Mg, 10~mg/l P, 20~mg/l Ca und 200~mg/l Al.

Standardlösung KW 2:

In einen 250 ml PFA-Kolben werden 0,200 ml des 10 g/l P enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang *S33.1*), mit 7,5 ml der 65 %igen HNO₃ p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 100 μ g/l Cd, Co, Cr, Cu und Ni, 500 μ g/l Pb und Zn, 1 mg/l Ti, 2 mg/l Ba und Mg, 8 mg/l P, 10 mg/l Fe, Mn und Na, 50 mg/l Ca und K und 100 mg/l Al.

Standardlösung KW 3:

In einen 250 ml PFA-Kolben werden 0,150 ml des 10 g/l P enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang *S33.1*), mit 7,5 ml der 65 %igen HNO₃ p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 200 μ g/l Cd, Co, Cr, Cu und Ni, 1000 μ g/l Pb und Zn, 0,5 mg/l Al und Ca, 1 mg/l Mn, 5 mg/l Ti, 6 mg/l P, 8 mg/l Na, 10 mg/l K und Mg, 200 mg/l Fe.

Standardlösung KW 4:

In einen 250 ml PFA-Kolben werden 0,100 ml des 10 g/l P enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang *S33.1*), mit 7,5 ml der 65 %igen HNO₃ p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 400 μ g/l Co, Cr, Cu und Ni, 2000 μ g/l Pb und Zn, 4 mg/l Na und P, 5 mg/l S, 10 mg/l Ca und Ti, 20 mg/l K, Mg und Mn, 50 mg/l Al, 100 mg/l, Ca.

Standardlösung KW 5:

In einen 250 ml PFA-Kolben werden 0,050 ml des 10 g/l P enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang *S33.1*), mit 7,5 ml der 65 %igen HNO₃ p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 1000 μg/l Cu und Ni, 4000 μg/l Pb und Zn, 2 mg/l K und P, 5 mg/l Mn, 6 mg/l Na, 10 mg/l Al und S, 50 mg/l Fe und Mg, 100 mg/l Ca.

Element	Form	Gerät	Methoden-Nr.	Seite
P	Pges	ICP(sim)	PPgesICP19.2	4

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben P auch andere Elemente enthalten (siehe Sammelanhang S33.1), verwendet:

	<u>Standards</u>
Blank	0,0 mg/l P
KW 1	10,0 mg/l P
KW 2	8,0 mg/l P
KW 3	6,0 mg/l P
KW 4	4,0 mg/l P
KW 5	2,0 mg/l P

	Kontrollstandard
K24	10,0 mg/l P

	
Methode:	OAKW2.1Boden
	OAKW2.1Humus
	OAKWEG3.1Boden
Element:	P
Wellenlänge:	178.284
Plasma-	axial
beobachtung:	
Messbereich	0,5-1000
[mg/l]:	
Standards:	Blank
	KW 1
	KW 2
	KW 3
	KW 4
	KW 5
Bemerkungen:	Fensterweite: 20
	Pixelbreite: 2
	Pixelhöhe: 2
	<u>Untergrund-</u>
	Korrektur:
	Pos. links: fixed
	Pos. rechts: fixed

Zur Herstellung der Blank-Lösung werden 7,5 ml der 65 %igen HNO_3 p.a. in einen 250 ml PFA-Kolben gegeben und mit H_2O bidemin. aufgefüllt.

Element	Form	Gerät	Methoden-Nr.	Seite
P	Pges	ICP(sim)	PPgesICP19.2	5

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP6.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S33.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 24 Proben und	
		nach jeder Eichungswiederholung; erlaubte	
		Abweichung 5 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974 Lösung, BZE-SAC,	
		NFVH; erlaubte Abweichung 10%	

Auswertung/Datendokumentation:

Die gemessenen P-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite	
P	Pges	ICP(sim)	PPgesICP19.2	6	

Methoden-Nr.	Seite
PPgesICP20.1	1

Datum:

01.05.2014

Elementbestimmungsmethode:

Form

Pges

PHOSPHOR

Untersuchungsmethode	NG	BG	OMG
ANULL, ANULLIC, EXT1:2H2O1.1, GBL1.1, DAN1.1, DAN2.2	0,003	0,011	25

Gerät

ICP(sim)

geeignet für:

Element

P

Boden	EXT1:2H2O1.1, GBL1.1, DAN1.1
Humus	DAN1.1, DAN2.2
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL, ANULLIC

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D44.1.4.1, D44.1.5.1 und D44.1.6.1
HFA-Code	D4;1;2;-1;-1;0

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

_

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich iCAP 7400 mit Iris	Nölte: ICP Emissionsspektroskopie für Praktiker;
Advantage	Weinheim, 2002
Sammelanhang S24.1: Geräteparameter und	Montaser, Golightly: Inductively Coupled Plasmas
Standardzusammen-	in Analytical Atomic Spectrometry;
setzung	Weinheim, 1987
Kurzanleitung ICP5.1	

Element	Form	Gerät	Methoden-Nr.	Seite
P	Pges	ICP(sim)	PPgesICP20.1	2

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 μl, Varipette 100-1000 μl, Varipette 500-5000 μl sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

1000 ml und 2000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 150 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 5 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

P: Standard (Fa B. Kraft) \Rightarrow 5 g/l P

Al, Ca, Fe, K, Mg, Mn, Na, S:

Standard (Fa B. Kraft) => jeweils 5 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S24.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben P auch andere Elemente enthalten (siehe Sammelanhang S24.1), verwendet:

<u>Standards</u>		
Blank	0,0 mg/l P	
HE 1	20,0 mg/l P	
HE 2	10,0 mg/l P	
HE 3	5,0 mg/l P	
HE 4	0,5 mg/l P	
HE 5	2,5 mg/l P	
HE 6	1,0 mg/l P	

	Kontrollstandard
K1	10,0 mg/l P

	T	ı
Methode:	ANULL	ANULL
	ANULLIC	ANULLIC
	EXT1:2H2O1.1	EXT1:2H2O1.1
	GBL1.1	GBL1.1
	DAN1.1Pflanze	DAN1.1Pflanze
	DAN2.2Pflanze	DAN2.2Pflanze
	DAN1.1Humus	DAN1.1Humus
	DAN2.2Humus	DAN2.2Humus
	DAN1.1Boden	DAN1.1Boden
Element:	P	P
Wellenlänge:	178.284	178.284
Messbereich [mg/l]:	BG - 0.5	0,5 - OMG
Standards:	Blank	Blank
	HE 6	HE 1
		HE 2
		HE 3
		HE 4
		HE 5
		HE 6
Bemerkungen:	Fensterweite: 20	Fensterweite: 20
	Pixelbreite: 3	Pixelbreite: 3
	Pixelhöhe: 5	Pixelhöhe: 5
	Untergrund-	Untergrund-
	Korrektur:	Korrektur:
	Pos. links: 5	Pos. links: 5
	Pixelanzahl: 2	Pixelanzahl: 2
	Pos. rechts: 15	Pos. rechts: 15
	Pixelanzahl: 2	Pixelanzahl: 2

Der Blank, die Standards und der Kontrollstandard werden in 2 %-iger HNO_3 (30 ml HNO_3 65 %, p.a. in 1000 ml) in 1 Liter Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S24.1 zusammengestellt.

Wässrige Proben werden vor dem Messen mit 180 µl HNO₃ konz. pro 6 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

Werden Proben verdünnt, müssen die durch die zusätzliche Säurezugabe veränderten

Verdünnungsfaktoren beachtet werden.

Element	Form	Gerät	Methoden-Nr.	Seite
P	Pges	ICP(sim)	PPgesICP20.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 24	
		Proben und nach jeder Eichungswiederholung;	
		erlaubte Abweichung 3 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Al-Bilanz	QAlB1.1	Siehe Methodenbeschreibung	
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung	
IBW			
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung	
NFV			
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung	
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung	
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1	
		mitgemessen; erlaubte Abweichung 5 %	
		Bei Pflanzenproben: Standard NHARZ, erlaubte	
		Abweichung 10 %	
		Bei Humusproben: Standard NFVH, erlaubte	
		Abweichung 10 %	
		Bei Bodenproben: Solling15-35, erlaubte	
		Abweichung 10%	

Auswertung/Datendokumentation:

Die gemessenen P-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr.	1	für	P	Pges	ICP(sim)	PPgesICP20.1
------------	---	-----	---	------	----------	--------------

Methodenvergleich ICP Iris Advantage mit iCAP 7400

Darstellung einer Vergleichsmessung der Methode PPgesICP7.3 und der hier beschriebenen Methode an der Wasserserie 2013W078:

Anhang Nr.	1	für	P	Pges	ICP(sim)	PPgesICP20.1
------------	---	-----	---	------	----------	--------------

Methoden-Nr.	Seite
PPgesICP22.1	1

Datum:

01.08.2014

Elementbestimmungsmethode:

Form

Pges

PHOSPHOR

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2,	0,004	0.013	25
OAKWEG3.1	0,004	0,013	23

Gerät

ICP(sim)

geeignet für:

Element

P

Boden	OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1
Humus	OAKW1.1, OAKW1.2, OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D44.1.6.1
HFA-Code	D;4;1;2;-1;-1;0;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

_

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S26.1: Geräteparameter und Standardzusammensetzung Kurzanleitung ICP5.1	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
P	Pges	ICP(sim)	PPgesICP22.1	2

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 $\mu l,~1000~\mu l$ und 5000 μl Varipetten, sowie 250 $\mu l,~500~\mu l$ und 1000 μl Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

P: ICP-Konzentrat (Fa B. Kraft) => 10 g/l P

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben P auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

	<u>Standards</u>		
KW 0	0,0 mg/l P		
KW 1	1,0 mg/l P		
KW 2	2,0 mg/l P		
KW 3	4,0 mg/l P		
KW 4	6,0 mg/l P		
KW 5	8,0 mg/l P		
KW 6	10,0 mg/l P		
KW 7	15,0 mg/l P		
KW 8	20,0 mg/l P		

	Kontrollstandard	
K24	10,0 mg/l P	

Methode:	OAKW2.1Boden
1110000	OAKWEG2.1Boden
	OAKWEG2.2Boden
	OAKWEG3.1Boden
	OAKW1.1Humus
	OAKW1.2Humus
	OAKW2.1Humus
Element:	P
Wellenlänge:	178.284
Messbereich [mg/l]:	BG – OMG
Standards:	Blank
	KW 1
	KW 2
	KW 3
	KW 4
	KW 5
	KW 6
	KW 7
	KW 8
Bemerkungen:	Fensterweite: 21
	Pixelbreite: 3
	Pixelhöhe: 5
	<u>Untergrund-</u>
	Korrektur:
	Pos. links: 1
	Pixelanzahl: 2
	Pos. rechts: 20
	Pixelanzahl: 2

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO₃ p.a. in einen 250 ml PFA-Kolben gegeben und mit H₂O bidemin. aufgefüllt.

Р

Element	Form	Gerät	Methoden-Nr.	Seite
P	Pges	ICP(sim)	PPgesICP22.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %.

Auswertung/Datendokumentation:

Die gemessenen P-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
P	PO4	SKALAR	PPO4CFC3.1	-	1

Datum:

1.07.2012

Elementbestimmungsmethode:

Phosphat

Untersuchungsmethode		BG	OMG
		(0,05)	<mark>15</mark>

geeignet für:

0 0	
Boden	Bray-Extrakt
Humus	EXTH2O
Pflanze	
Wasser	ANULL

Methodenverweise:

Norm	
HFA	D44.2.4.5
HFA-Code	9;2;-1;3;2;8

Prinzip der Methode/chem. Reaktionen:

Grundlage der Methode ist die Molybdänblau-Reaktion.

Ammoniumheptamolybdat reagiert in stark salpetersaurer Lösung mit ortho-Phosphat zum bei höherer Konzentration gelb ausfallenden Dodecamolybdophosphat:

$$Mo_7O_{24}^{6-} + 4 H_2O$$
 ----> $7 MoO_4^{2-} + 8 H^+$
 $PO_4^{3-} + 12 MoO_4^{2-} + 24 H^+$ \rightarrow $[P(Mo_{12}O_{40})]^{3-} + 12 H_2O$

Mit Ascorbinsäure als Reduktionsmittel bildet sich aus dem Dodecamolybdophosphat ein Mo(V)/Mo(VI)-Mischkomplex unbekannter Zusammensetzung, der blau gefärbt ist.

Durch einen schnellen Zusatz von Arsenit und Citrat wird zum einen der blaue Farbkomplex stabilisiert und zum anderen durch Molybdat-Komplexierung eine Reaktion von weiterem ortho-Phosphat, das aus labilen org. Verbindungen oder aus Polyphosphaten freigestetzt wird, verhindert. Das Spektrum des gebildeten Farbkomplexes ist in Anhang 1 abgebildet. Der Aufbau der Cont.-Flow-Reaktionseinheit ist im Anhang 2 abgebildet. Die Messung erfolgt bei 700 nm.

Störungen:

Die Intensität der Blaufärbung ist stark abhängig vom pH, von der Ionenstärke und den Redox-Bedingungen der Lösung. Deshalb muß bei konstanter Säure- und Reduktionsmittel-Konzentration gemessen werden. Dies ist bei Verdünnungen zu berücksichtigen.

Bei gefärbten Humusextrakten muss parallel der Blindwert der gefärbten Lösung gemessen werden. Dies geschieht in einem Parallel-Kanal, bei dem anstelle des Molybdat-Reagenzes Wasser und des Citrat-Arsenit-Reagenzes nur Citrat zugesetzt werden.

Anhang:	<u>Lit.:</u>
Anhang 1: Spektrum des Farbkomplexes	Dick, W.A., Tabatabai, M.A.: J. Environm.
Anhang 2: ContFlow-Flußdiagramm	Qual. 6, 1977, S. 31 ff
Kurzanleitung SKALAR 1.5	Murphy, J., Riley, P.: Anal. Chim. Acta 27,
	1962, S. 31 ff
	Lange, B., Vejdelek, Z.J.: Photometrische
	Analyse, Verlag Chemie 1980, S.375 ff

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
P	PO4	SKALAR	PPO4CFC3.1	-	2

4-Kanal-Continuous-Flow-System SAN PLUS mit automatischem Probennehmer SA1070, online-Dilutor und Systemkontroller, Fa. Skalar

Chemikalien:

Blaue Tinte der Firma Pelikan Nr. 4001 als Primerlösung

FFD 6 (Schmiermittel) Ascorbinsäure: C₆H₈O₆

Ammoniumheptamolybdattetrahydrat: (NH₄)₈Mo₇O₂₄* 4 H₂O

Tri-Natriumcitratdihydrat: C₈H₆Na₃O₂ * 2 H₂O

Natriumarsenit-Lsg (0,05m): NaAsO₂

Essigsäure: CH₃COOH

Trichloressigsäure: C₂HCL₃O₂

Nartiumhydroxid: NaOH als Spüllösung 1 mol/l

Phosphat-Standardlösung

Lösungen für Phosphat und Phosphat- Blindwert:

1. Reagenzlösungen:

I (Ascorbinsäure-Lsg): in einem 500ml Kolben werden 8,8g Asorbinsäure und 41g Trichloressigsäure eingewogen und mit H₂O demin auf 500 ml aufgefüllt. Vor der Messung mit 500 ul FFD 6 versetzen.

II (Ammoniummolybdat-Lsg): in einem 500ml Kolben werden 6,2 g Ammoniummolydat eingewogen und mit H₂O demin auf 500 ml aufgefüllt mit 500µl FFD 6 versetzten.

7g Natriumcitrat in eine 500ml Kolben einwiegen mit 400 ml Natriumarsenit-III (Arsenit-Lsg):

Lsg. lösen, 12,5ml Essigsäure zusetzten und mit Natriumarsenit-Lsg. auf 500

ml auffüllen.

IV (H₂O demin-Lsg): einem 500 ml Kolben mit H₂O demin auf 500 ml aufgefüllt mit 500 μl FFD 6 versetzen.

V (Essigsäure-Lsg): 12,5 ml Essigsäure in einen 500 ml Kolben mit H₂O demin versetzen und

dann 500 µl FFD 6 zusetzen.

Primer Lösung: 12 ml blaue Tinte der Firma Pelikan mit 240 ml H₂O demin mischen

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen
	offen	geschlossen	
	(am Gerät)	im Kühlschrank	
I	1 Tag	/	
II	2 Woche	/	
III	4 Woche	/	Achtung! Giftig!
IV	1 Woche	/	
V	4 Woche	/	

Eichung/Standards:

Stammlösungen:

PO₄: Phosphat-Standardlösung 1000mg/l PO4³-

 $=> 1 \text{ g PO}_4/1$

Haltbarkeit:

geschlossen im Kühlschrank: ein halbes Jahr.

Standards:

Die Standards werden mit H₂O demin angesetzt. Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Einzelbestimmung:

Einzelbestimmung:

	<u>hohe</u>		
	Standardreihe		
	1 -15 mg/l		
S1:	0 mg/l PO4		
S2:	1,00 mg/l PO4		
S3:	2,50 mg/l PO4		
S4:	5,00 mg/l PO4		
S5:	7,50 mg/l PO4		
S6:	10,0 mg/l PO4		
S7:	12,5 mg/l PO4		
S8:	15,0 mg/l PO4		

	<u>niedrige</u>		
	<u>Standardreihe</u>		
	0,05 -1 mg/l		
S1:	0 mg/l PO4		
S2:	0,05 mg/l PO4		
S3:	0,10 mg/l PO4		
S4:	0,02 mg/l PO4		
S5:	0,04 mg/l PO4		
S6:	0,06 mg/l PO4		
S7:	0,08 mg/l PO4		
S8:	1,00 mg/l PO4		

<u>Kontrollstandards</u>		
KSK1 hoch:	8,0 mg/l PO4	
KSK1 niedrig:	0,7 mg/l PO4	

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.5 beschrieben. Lösungen mit niedriger Konz. werden mit der niedrigen Standardreihe, Proben mit hoher Konzentration mit der hohen Standardreihe gemessen. Die Auswertung erfolgt bei der niedrigen Standardreihe linear und bei der hohen Standardreihe quadratisch.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.5 beschrieben.

Wartung:

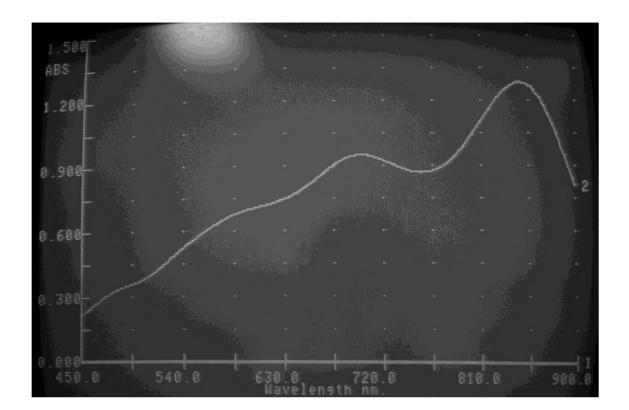
Spülen:

Bei den Analysenläufen wird als Spüllösung H_2O demin mit 1 ml/l FFD 6 verwendet. Nach längeren Stillstandszeiten und vor einer neuen Analysen-Serie sollte das System mit 1 Mol NaOH gespült werden, um Molybdänblau-Ausfällungen herauszulösen.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
P	PO4	SKALAR	PPO4CFC3.1	-	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

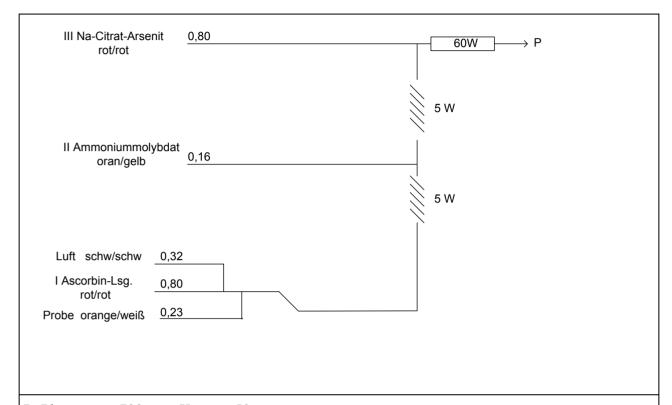

Qualitätskontrolle	Methode	Durchführung
Basislinienkontrolle	QBL2.1	Lineare Basislinienkorrektur durch Messen der Höhe
		der Basislinie am Anfang, nach jeweils 15 Proben und
		am Ende eines Laufs
Driftkontrolle	QDK2.1	lineare Driftkontrolle mit 2 Drift-Standards (1. DRIFT
		IGNORE, 2. DRIFT), nach der Kalibrierung, nach
		jedem Kontrollstandardblock und am Ende eines
		Laufes mit dem jeweils höchsten Standard der
		Eichreihe, die Messung von DRIFT IGNORE wird in
		die Berechnung der Drift nicht mit einbezogen
Eichkurvenkontrolle	QEK1.2	Quadratische Anpassung der Eichkurve;
		Bestimmtheitsmaß ≥0,995
Kontrollstandard	QKSt1.1	KSK1 (8,00 mg/l), KSK2 (0,7 mg/l) Messung nach
		der Eichung, alle 15 Proben; erlaubte Abweichung 5
		9%
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die PO4-Konzentrationen können nicht direkt aus der Gerätedatei übernommen werden, sondern müssen mit Hilfe einer Excel-Auswertung aus den Rohdaten ermittelt werden. Bei Verwendung des Blinwertkanals müssen zunächst die Roh-Extinktionen des Blindwertkanals von denen des Messwertkanals abgezogen und dann mit Hilfe einer Eichkurve aus den Standard-Messdaten in Excel ausgewertet werden. Die so ermittelten PO4-P-Konzentrationen sind in die entsprechenden Datenlisten bzw. direkt ins Laborinformations- und Management System LIMS einzutragen.

Anhang Nr. 1 für P PO4 SKALAR PPO4CFC3.1

Spektrum des Farbstoffes


für

P PO4

SKALAR

Aufbau der Reaktionseinheit zur PO₄-Bestimmung

a. Messkanal:

P: Photometer 700 nm, Küvette 50 mm

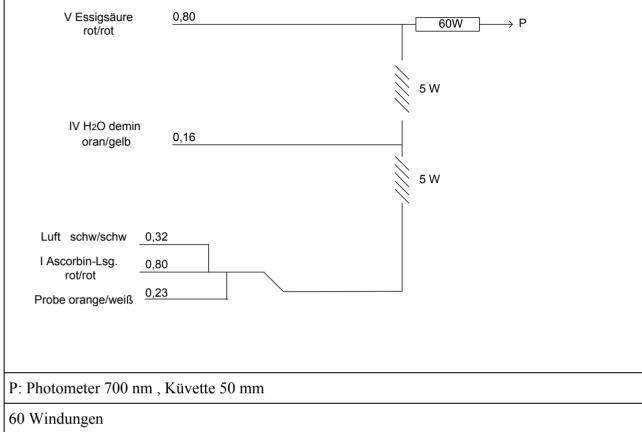
60 Windungen

Probenehmer SA1070 (Skalar)

Spülstation Probenehmer: Zul.: rot/rot, Abl.: rot/rot

Proben/Wasch-Verhältnis: 30 s Probe/ 45 s Wasch

Proben/Std: 48

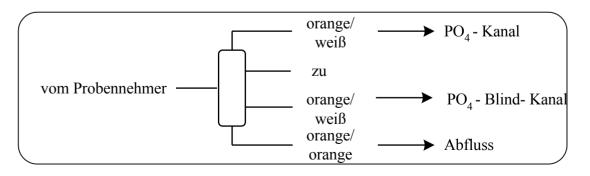

Ρ

Anhang Nr.

für

P **PO4** **SKALAR**

b. Blindkanal:


Probenehmer SA1070 (Skalar)

Spülstation Probenehmer: Zul.: rot/rot, Abl.: rot/rot

Proben/Wasch-Verhältnis: 30 s Probe/ 45 s Wasch

Proben/Std: 48

c. Kopplung mit Blindkanal:

Anhang Nr. 2 für P PO4 SKALAR PPO4CFC3.1

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
P	PO ₄	IC	PPO4IC2.3	-	1

Datum:

1.6.2014

Elementbestimmungsmethode:

PHOSPHAT

Untersuchun	gsmethode	NG	BG	OMG	
ANULLIC		0,018	0,060	5,0	
geeignet für:					
Boden	GBL1.1, EXT12H2O1.1				
Humus					
Pflanze					
Wasser	ANULLIC				
Methodenver	weise:				
Norm	In Anlehnung an DIN EN ISO 10304-1				
HFA	D44.2.4.1				
HFA-Code	0714102				

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Anionen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Anionen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit quartären Ammoniumgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine Natriumcarbonat/ Hydrogencarbonatlösung verwendet. Wegen der hohen Grundleitfähigkeit des Eluenten wird vor der Leitfähigkeitsdetektion ein sogenannter Supressor zwischengeschaltet, der durch Austausch der Na-Ionen gegen Protonen das stark leitende Natriumhydrogencarbonat in die wenig dissoziierte Kohlensäure, und die Natriumsalze der zu bestimmenden Anionen in deren stark leitende Mineralsäuren umwandelt. Zusätzlich wird durch einen CO₂-Suppressor der CO₂-Peak minimiert. Diese stark leitenden Mineralsäuren der zu bestimmenden Anionen werden sehr empfindlich in einer Leitfähigkeitsmesszelle detektiert. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Anions geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs wird das Anionen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich und den niedrigen Messbereich (unterschiedliche quadratische Gleichungen) ausgewertet. In dem 2-Kanal-System werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Anionensäule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC2.2

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S17.4: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC2.2	_

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
P	PO ₄	IC	PPO4IC2.3	-	2

2-Kanal-IC-Anlage Fa. Metrohm, bestehend aus:

2 IC-Pumpen 818

2 Leitfähigkeitsdetektoren 819

IC-Separation-Center 820 mit Säulenofen und Suppressor

IC-Liquid-Handling-Einheit 833

2 Pulsationsdämpfer

IC-Eluent-Degaser 837

CO₂-Suppressor 853

IC-Probengeber 838

Probenröhrchen mit Durchstichdeckel

Säulen

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5

b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen:

a. Anionen: 20 µl

b. Kationen: 50 µl

Software:

a. zur Anlagensteuerung: IC-Net

b. zur Chromatogrammauswertung: MagIC-Net

Chemikalien:

Natriumhydrogencarbont, NaHCO₃

Natriumcarbonat, Na₂CO₃

Schwefelsäure, H₂SO₄ konz.

Lösungen:

Eluent-Anionen: In einem 2 l-Messkolben werden 0,678 g Na₂CO₃ ,sowie 0,084 g Na₂HCO₃

eingewogen und mit H₂O demin. reinst auf 2 l aufgefüllt.

Suppressor-Lösung: a. 1 Liter H₂O demin. reinst werden mit 3 ml H₂SO₄ konz. und 2,52 g

Oxalsäure versetzt. b. H₂O demin. reinst

Eichung/Standards:

Stammlösungen:

1 g/l PO₄: 1 g/l Phosphat als Kaliumhydrogensulfat => 1 g/l PO₄

Stammlösung I: Je 1 ml SO₄-, NO₃-, NO₂-, und PO₄-Stammlösung und je 0,5 ml Cl- und F-

Stammlösung werden in einen 100 ml-Messkolben mit H₂O demin. auf 100

ml aufgefüllt.

=> 0,01 g/l SO₄, NO₃, NO₂, PO₄, und 0,005 g/l Cl, F

Haltbarkeit:

Die Stammlösung I ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

<u>Kontrollstandards</u>			
K1IC:	1,954 mg/l PO ₄ -P		
K2IC:	0,0814 mg/l PO ₄ -P		

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S17.4) mit insgesamt 19 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung I und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

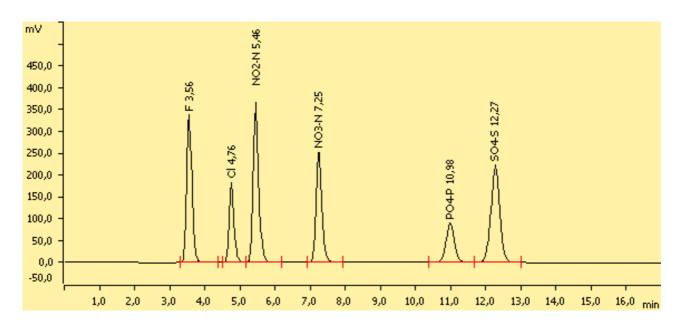
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC2.2 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (1,954 mg/l P), K2IC (0,0814 mg/l P), Messung
		nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1IC mit-
		gemessen; erlaubte Abweichung 5 %.


Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Phosphatkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr. 1 für	P PO ₄	IC	PPO4IC2.3
------------------	-------------------	----	-----------

Chromatogramm der Anionenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
P	PO ₄	IC	PPO4IC3.1	-	1

Datum:

20.12.2015

Elementbestimmungsmethode:

PHOSPHAT

Untersuchun	NG	BG	OMG			
ANULLIC		0,005	0,019	4,88		
geeignet für:						
Boden						
Humus						
Pflanze						
Wasser	ANULLIC					
Methodenver	weise:					
Norm	In Anlehnung an DIN EN ISO 10304-1 u. 2					
HFA	D44.2.4.1					
HFA-Code	D;7;1;4;1;-1;2;					

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Anionen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Anionen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit quartären Ammoniumgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine Natriumcarbonat/ Hydrogencarbonatlösung verwendet. Wegen der hohen Grundleitfähigkeit des Eluenten wird vor der Leitfähigkeitsdetektion ein Supressor zwischengeschaltet, der durch Austausch der Na-Ionen gegen Protonen das stark leitende Natriumhydrogencarbonat in die wenig dissoziierte Kohlensäure, und die Natriumsalze der zu bestimmenden Anionen in deren stark leitende Mineralsäuren umwandelt. Diese stark leitenden Mineralsäuren der zu bestimmenden Anionen werden sehr empfindlich in einer Leitfähigkeitsmesszelle detektiert. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Anions geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 1,629 ppm) wird das Anionen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich (Kurventyp: Kubisch, Gewichtung 1) und den niedrigen Messbereich (Kurventyp: Kubisch Gewichtung 1/Konzentration) ausgewertet. Mit Flex 1 (Anionen) und Flex 2 (Kationen) werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Anionensäule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC3.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S29.1: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC3.1	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
P	PO ₄	IC	PPO4IC3.1	-	2

2 Compact IC Flex- Anlagen Fa. Metrohm, bestehend aus:

Compact IC Flex 1 Anionen mit MSM Suppressor und MCS-Suppressor

Compact IC Flex 2 Kationen

IC-Probengeber 858 Professional Sample Processor

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5 b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen: a. Anionen: 20 µl b. Kationen: 50 µl

Software: MagIC-Net3.1

Chemikalien:

Natriumhydrogencarbont, NaHCO₃ Natriumcarbonat, Na₂CO₃ Schwefelsäure, H₂SO₄ konz. Oxalsäuredihydrat, C₂H₂O₄*2H₂O

Lösungen:

Eluent-Anionen: In einem 2 l-Messkolben werden 0,678 g Na₂CO₃ ,sowie 0,084 g Na₂HCO₃

eingewogen und mit H₂O demin. reinst auf 2 l aufgefüllt.

Suppressor-Lösung: 1 Liter H₂O demin. reinst werden mit 3 ml H₂SO₄ konz. und 0,27g Oxalsäure

versetzt.

Eichung/Standards:

Stammlösungen:

1 g/l PO₄: 1 g/l Phosphat als Kaliumhydrogensulfat => 1 g/l PO₄

Stammlösung I: Je 1 ml SO₄-, NO₃-, NO₂-, und PO₄-Stammlösung und je 0,5 ml Cl- und F-

Stammlösung werden in einen 100 ml-Messkolben mit H₂O demin. auf 100

ml aufgefüllt.

=> 0,01 g/l SO₄, NO₃, NO₂, PO₄, und 0,005 g/l Cl, F

Haltbarkeit:

Die Stammlösung I ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

<u>Kontrollstandards</u>		
K1IC:	1,954 mg/l PO ₄ -P	
K2IC:	0,0814 mg/l PO ₄ -P	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
P	PO ₄	IC	PPO4IC3.1	-	3

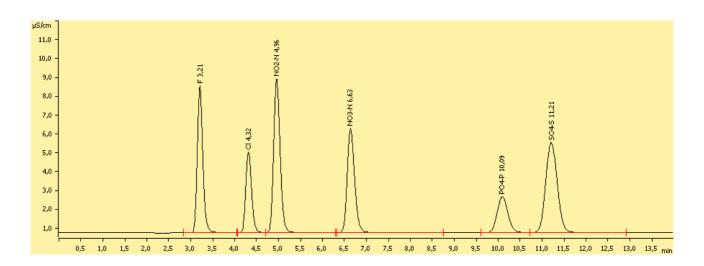
Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S29.1) mit insgesamt 18 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung I und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC3.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):


Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (1,954 mg/l P), K2IC (0,0814 mg/l P), Messung
		nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE3IC mit-
		gemessen; erlaubte Abweichung 5 %.

Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Phosphatkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Chromatogramm der Anionenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Methoden-Nr.	Seite
PbPbgesICP22.1	1

Flomor	ıthestimm	unacma	thada
гление		HILLPSIILE	

Form

Pbges

BLEI

Datum: 01.08.2014

OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1	4,7	15,3	6000

Gerät

ICP(sim)

geeignet für:

Element

Pb

Boden	OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1
Humus	OAKW1.1, OAKW1.2, OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D6.1.6.6
HFA-Code	D;4;1;2;-1;-1;0;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S26.1: Geräteparameter und Standardzusammen-	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002
setzung Kurzanleitung ICP5.1	Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Pb	Pbges	ICP(sim)	PbPbgesICP22.1	2

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μ l, 1000 μ l und 5000 μ l Varipetten, sowie 250 μ l, 500 μ l und 1000 μ l Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Pb: ICP-Standard (Fa B. Kraft) => 1 g/l Pb

As, Ba, Cd, Co, Cr, Cu, Ni, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Pb auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

Pb

Element	Form	Gerät	Methoden-Nr.	Seite
Pb	Pbges	ICP(sim)	PbPbgesICP22.1	3

	<u>Standards</u>
KW 0	0 ~/1 Db
	0 μg/l Pb
KW 1	0 μg/l Pb
KW 2	1000 μg/l Pb
KW 3	$0 \mu g/l Pb$
KW 4	$0 \mu g/l Pb$
KW 5	0 μg/l Pb
KW 6	2000 μg/l Pb
KW 7	4000 μg/l Pb
KW 8	500 μg/l Pb

	Kontrollstandard
K24	500 μg/l Pb

Methode:	OAKW2.1Boden	
	OAKWEG2.1Boden	
	OAKWEG2.2Boder	
	OAKWEG3.1Boden	
	OAKW1.1Humus	
	OAKW1.2Humus	
	OAKW2.1Humus	
Element:	Pb	
Wellenlänge:	220.353	
Messbereich	BG – OMG	
[µg/l]:		
Standards:	Blank	
<u>Startagrass</u>	KW 2	
	KW 6	
	KW 7	
	KW 7	
D 1		
Bemerkungen:	Fensterweite: 20	
	Pixelbreite: 3	
	Pixelhöhe: 3	
	<u>Untergrund-</u>	
	Korrektur:	
	Pos. links: 5	
	Pixelanzahl: 2	
	Pos. rechts: 15	
	Pixelanzahl: 2	
	Pixelanzahl: 2	

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit $\rm H_2O$ bidemin. aufgefüllt.

_	Element	Form	Gerät	Methoden-Nr.	Seite
ĺ	Pb	Pbges	ICP(sim)	PbPbgesICP22.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung		
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und		
		nach jeder Eichungswiederholung; erlaubte		
		Abweichung 3 %		
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie		
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,		
		NFVH; erlaubte Abweichung 10 %.		

Auswertung/Datendokumentation:

Die gemessenen Pb-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Pb	Pbges	ICP(sim)	PbPbgesICP24.1	1

Datum:

01.07.2016

Elementbestimmungsmethode:

BLEI

Untersuchungsmethode		BG	OMG
EXTEDTA1.1	12,2	37,4	20 000

geeignet für:

Boden	EXTEDTA1.1
Humus	
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D6.1.5.3
HFA-Code	D:4;1;2;-1;-1;0;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Pb

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	Lit.:
Sammelanhang S28.1: Geräteparameter und Standardzusammensetzung	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas
Kurzanleitung ICP5.1	in Analytical Atomic Spectrometry; Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Pb	Pbges	ICP(sim)	PbPbgesICP24.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Glas

Chemikalien:

Na-EDTA (Titriplex III) $(C_{10}H_{14}N_2Na_2O_8 * 2H_2O)$

Lösungen:

0,1 m EDTA-Lösung: in einen 1 l-Kolben wird eine Ampulle 0,1 molare Titriplex III Lösung gegeben und mit H₂O demin. bis zur Eichmarke aufgefüllt.

Eichung/Standards:

Stammlösungen:

Pb: ICP-Standard (Fa B. Kraft) => 1 g/l Pb

Cd, Co, Cr, Cu, Ni, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Pb

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S28.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Pb auch andere Elemente enthalten (siehe Sammelanhang S28.1), verwendet:

<u>Standards</u>		
EDTA 0	0 μg/l Pb	
EDTA 1	10 000 μg/l Pb	
EDTA 2	1000 µg/l Pb	
EDTA 3	5000 μg/l Pb	
EDTA 4	2000 μg/l Pb	
EDTA 5	20 000 μg/l Pb	

	Kontrollstandard
K23	2000 μg/l Pb

Methode:	EXTEDTA1.1
Element:	Pb
Wellenlänge:	220.353
Messbereich	BG – OMG
[µg/l]:	
Standards:	EDTA 0
	EDTA 1
	EDTA 2
	EDTA 3
	EDTA 4
	EDTA 5
Bemerkungen:	Fensterweite: 20
	Pixelbreite: 2
	Pixelhöhe: 5
	<u>Untergrund-</u>
	Korrektur:
	Pos. links: 5
	Pixelanzahl: 2
	Pos. rechts: 15
	Pixelanzahl: 2

Der Blank, die Standards und die Kontrollstandards werden mit der verwendeten Extraktionslösung in 100 ml Glaskolben angesetzt.

Pb

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S28.1 zusammengestellt. Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K23; Messung nach der Eichung, alle 15 Proben und	
		nach jeder Eichungswiederholung; erlaubte	
		Abweichung 5 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial	QStM1.1	Solling0-10; erlaubte Abweichung 10 %.	

Element	Form	Gerät	Methoden-Nr.	Seite
Pb	Pbges	ICP(sim)	PbPbgesICP24.1	4

Auswertung/Datendokumentation:

Die gemessenen Pb-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Pb	Pbges	ICP-MS	PbPbgesICPMS1.1	1

Datum:

01.11.2018

Elementbestimmungsmethode:

BLEI

Untersuchungsmethode		BG	OMG
OAKW2.1, OAKWEG3.1	0,005	0,014	2500

geeignet für:

<u> </u>	
Boden	OAKW2.1, OAKWEG3.1
Humus	OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 17294-2		
HFA	D6.1.6.9		
HFA-Code	D;5;3;1;2;-1;6;		

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe Pb gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Sammelanhang S30.1: Geräteparameter und Standardzusammensetzung Kurzanleitung ICPMS1.1	

Seite
2

Element	Form	Gerät	Methoden-Nr.	Seite
Pb	Pbges	ICP-MS	PbPbgesICPMS1.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife: 1,5ml loop

Rechner mit Software OTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. **Eppendorf**

100 und 250 ml-Messkolben aus Teflon/PFA

1000, 2000 und 5000ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Y, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Mg, Fe, K: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO3 und 25 ml HCl im 5 l-Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40ml Salpetersäure (HNO₃) im 2 l-Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10 ml Salpetersäure (HNO₃) im 2 1-Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 10 ppm, Ge 1 ppm, Y 10 ppm, Re 5 ppb, Rh 100 ppb) = 10 ml Sc, 1 ml Ge, 10 ml Y, 0,1 ml Rh jeweils aus 1 g/l und 1 ml Re aus 5 mg/l plus 20 ml HNO₃ im 1000 ml Glas- Messkolben mit bidemin. Wasser auffüllen.

Aus dieser Stammlösung eine 1:10 Verdünnung (mit bi-demin H2O aufgefüllt) zum Messen herstellen (mindestens 100 ml).

Basislösung für Standards und Kontrollstandard:

Ansatz der Lösung (Al 50 ppm, Mg 50 ppm, Fe 20 ppm, K 10 ppm) =

Element	Form	Gerät	Methoden-Nr.	Seite
Pb	Pbges	ICP-MS	PbPbgesICPMS1.1	3

Jeweils 5 ml Al und Mg, 2 ml Fe und 1 ml K mit 60 ml HCl und 20 ml HNO3 in einem 1000 ml Messkolben mit bi-demin H2O auffüllen.

Eichung/Standards:

Stammlösungen:

Pb: ICP-Standard (Fa B. Kraft) => 1 g/l Pb

Cd, Co, Cr, Cu, Ni, Zn, Hg, W: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg, Al, Fe, K: ICP-Standard (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S30.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in einer dem Königswasserextrakt entsprechenden Mischung aus HCl und HNO₃ mit Zusatz von 50 ppm Al, 50 ppm Mg, 20 ppm Fe und 10 ppm K, die neben Pb auch andere Elemente enthalten (siehe Sammelanhang S30.1), verwendet:

	<u>Standards</u>
Blank	0 μg/l Pb
KWSM1	2 μg/l Pb
KWSM2	5 μg/l Pb
KWSM3	10 μg/l Pb
KWSM4	20 μg/l Pb
KWSM5	50 μg/l Pb

Kontrollstandard	
K24MS	
25 μg/l Pb	

<u>Pb</u>

Methoden-Nr.	Seite	
PbPbgesICPMS1.1	4	

Methode:	OAKWSM	OAKWEGSM
Element:	Pb	Pb
Masse:	205,9747	205,9747
	206,9759	206,9759
	207,9766	207,9766
Messbereich	BG – OMG	BG – OMG
[µg/l]:	0,28 - 50000	0,7 - 75000
Standards:	Blank	Blank
	KWSM1	KWSM1
	KWSM2	KWSM2
	KWSM3	KWSM3
	KWSM4	KWSM4
	KWSM5	KWSM5

Gerät

ICP-MS

Bemerkungen:	Kollisions/Reaktions-	Kollisions/Reaktions-
	<u>zelle:</u>	<u>zelle:</u>
	Gasfluss H ₂ : 0,5 ml	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml	Gasfluss He: 4,5 ml

Durchführung:

Element

Pb

Form

Pbges

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. OAKW-Aufschlusslösungen werden 1:20 vom PrepFAST-Probengeber verdünnt, OAKWEG-Aufschlusslösungen 1:50.

Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (OAKWSM-1, OAKWEGSM-1, OAKWSMHg-1, OAKWEGSMHg-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S30.1 zusammengestellt.

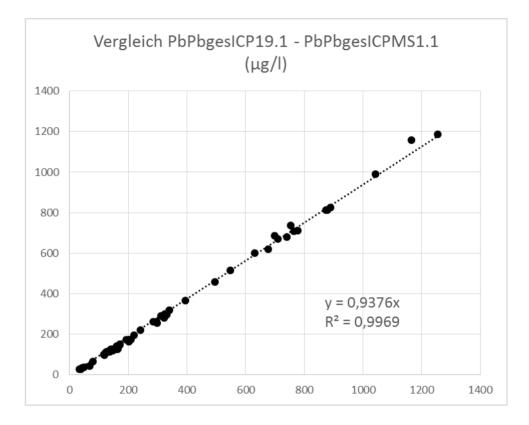
Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Pb

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	ISE974, BZE-SAC, NFVH; erlaubte Abweichung 10
		%.


Auswertung/Datendokumentation:

Die Pb-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr.	1	für	Pb	Pbges	ICP-MS	PbPbgesICPMS1.1
------------	---	-----	----	-------	--------	-----------------

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Königswasser-Aufschluss-Serie mit den beiden angegebenen Methoden

Anhang Nr.	1	für	Pb	Pbges	ICP-MS	PbPbgesICPMS1.1
------------	---	-----	----	-------	--------	-----------------

Element	Form	Gerät Methoden-Nr.		Seite
Pb	Pbges	ICP-MS	PbPbgesICPMS2.1	1

Datum:

01.11.2018

Elementbestimmungsmethode:

BLEI

Untersuchungsmethode	NG	BG	OMG
ANULL	0,002	0,005	100
geeignet für:			
Boden			
Humus			

Methodenverweise:

Pflanze Wasser

Norm	In Anlehnung an DIN EN ISO 17294-2
HFA	D6.1.4.6
HFA-Code	D;5;3;1;2;-1;6;

Prinzip der Methode/chem. Reaktionen:

ANULL

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe Pb gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S31.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Pb	Pbges	ICP-MS	PbPbgesICPMS2.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

2000 und 5000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃),69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25ml HCl im 5 l- Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40 ml Salpetersäure (HNO₃) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10 ml Salpetersäure (HNO3) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 50 ppm, Ge 50 ppm, Re 5 ppm, Rh 5 ppm) =

5~ml Sc, 5~ml Ge, 0.5~ml Re, 0.5~ml Rh und 2~ml HNO $_3~\text{im}$ 100~ml PFA- Messkolben mit bidemin. Wasser auffüllen.

Aus dieser Stammlösung eine 1:100 Verdünnung in 2% HNO₃-Lösung zum Messen herstellen (mindestens 100 ml).

Pb

Element Form Gerät Methode		Methoden-Nr.	Seite	
Pb	Pbges	ICP-MS	PbPbgesICPMS2.1	3

Eichung/Standards:

Stammlösungen:

Pb: ICP-Standard (Fa B. Kraft) => 1 g/l Pb

Cd, Co, Cr, Cu, Ni, Zn: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg: ICP-Standard (Fa B. Kraft) => 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S31.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in 2 % HNO3 mit Zusatz von 10 ppm Mg, die neben Pb auch andere Elemente enthalten (siehe Sammelanhang S31.1), verwendet:

Stand	ards_
Blank	0 μg/l Pb
Wasser SM1	0,5 μg/l Pb
Wasser SM2	1 μg/l Pb
Wasser SM3	2 μg/l Pb
Wasser SM4	5 μg/l Pb
Wasser SM5	10 μg/l Pb
Wasser SM6	20 μg/l Pb
Wasser SM7	50 μg/l Pb

Kontrollstandard	
K25MS	
50 μg/l Pb	

Pb

1	sene	_

Element	Form	Gerät	Methoden-Nr.	Seite
Pb	Pbges	ICP-MS	PbPbgesICPMS2.1	4

Methode:	WasserSM-1
Element:	Pb
Masse:	205,9747
	206,9759
	207,9766
Messbereich	BG – OMG
[µg/l]:	0,005 - 100
Standards:	Wasser SM0
	Wasser SM1
	Wasser SM2
	Wasser SM3
	Wasser SM4
	Wasser SM5
	Wasser SM6
	Wasser SM7
Bemerkungen:	Kollisions/Reaktions-
	<u>zelle:</u>
	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml

Durchführung:

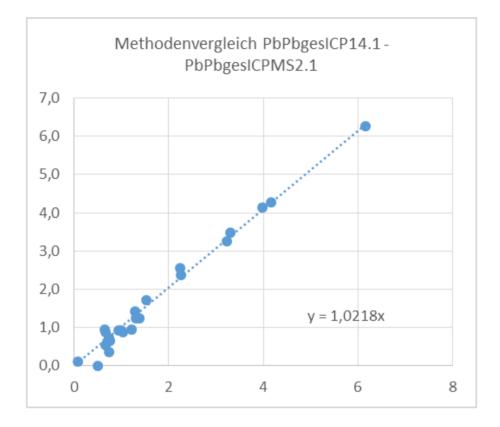
Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (WasserSM-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S31.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K25MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	WasserSM1; erlaubte Abweichung 10 %.


Auswertung/Datendokumentation:

Die gemessenen Pb-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Pb Pbges ICP-MS PbPbgesICPMS2.1

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Wasser-Serie mit den beiden angegebenen Methoden

Anhang Nr.	1	für	Pb	Pbges	ICP-MS	PbPbgesICPMS2.1
------------	---	-----	----	-------	--------	-----------------

Element	Form	Gerät	Methoden-Nr.	Seite
Pb	Pbges	ICP-MS	PbPbgesICPMS4.1	1

Datum:

01.06.2019

Elementbestimmungsmethode:

BLEI

Untersuchungsmethode	NG	BG	OMG
DAN2.2	0,0013	0,0039	100

geeignet für:

B B	
Boden	
Humus	
Pflanze	DAN2.2
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 17294-2
HFA	D6.1.4.6.9
HFA-Code	D;5;3;1;2;-1;6;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe Pb gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S32.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Element Form Gerät		Methoden-Nr.	Seite
Pb	Pbges	ICP-MS	PbPbgesICPMS4.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

2000 und 5000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃),69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25ml HCl im 5 l- Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40 ml Salpetersäure (HNO₃) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10 ml Salpetersäure (HNO3) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 50 ppm, Ge 50 ppm, Re 5 ppm, Rh 5 ppm) =

5~ml Sc, 5~ml Ge, 0.5~ml Re, 0.5~ml Rh und 2~ml HNO $_3~\text{im}$ 100~ml PFA- Messkolben mit bidemin. Wasser auffüllen.

Aus dieser Stammlösung eine 1:100 Verdünnung in 2% HNO₃-Lösung zum Messen herstellen (mindestens 100 ml).

Pb

Element	lement Form Gerät		Methoden-Nr.	Seite
Pb	Pbges	ICP-MS	PbPbgesICPMS4.1	3

Eichung/Standards:

Stammlösungen:

Pb: ICP-Standard (Fa B. Kraft) => 1 g/l Pb

Cd, Co, Cr, Cu, Ni, Zn: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg: ICP-Standard (Fa B. Kraft) => 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S32.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in 0,5 % HNO₃ mit Zusatz von 5 ppm Mg, die neben Pb auch andere Elemente enthalten (siehe Sammelanhang S32.1), verwendet:

	<u>Standards</u>
Blank	0 μg/l Pb
DAN SM1	0,5 μg/l Pb
DAN SM2	1 μg/l Pb
DAN SM3	2 μg/l Pb
DAN SM4	5 μg/l Pb
DAN SM5	10 μg/l Pb
DAN SM6	20 μg/l Pb
DAN SM7	50 μg/l Pb

	<u>Kontrollstandard</u>
K26M	S
10 μg/	l Pb

Pb

Seite	

Methoden-Nr.

PbPbgesICPMS4.1

Methode:	DANSM-1
Element:	Pb
Masse:	205,9747
	206,9759
	207,9766
Messbereich	BG – OMG
[µg/l]:	0,008 - 200
Standards:	DAN SM0
	DAN SM1
	DAN SM2
	DAN SM3
	DAN SM4
	DAN SM5
	DAN SM6
	DAN SM7
Bemerkungen:	Kollisions/Reaktions-
	zelle:

Gasfluss H₂: 0,5 ml Gasfluss He: 4,5 ml

Durchführung:

Element

Pb

Form

Pbges

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. Die Aufschlusslösungen werden 1:2 verdünnt.

Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (DANSM-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S32.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Gerät

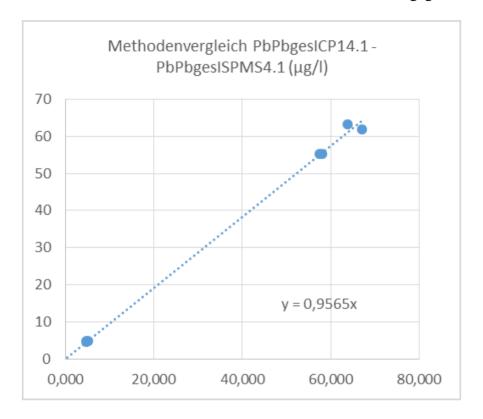
ICP-MS

Pb

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard QKSt.1.1		K26MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	NHARZ; erlaubte Abweichung 10 %.


Auswertung/Datendokumentation:

Die gemessenen Pb-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Pb Pbges ICP-MS PbPbgesICPMS4.1

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Pflanzen-Druckaufschluss-Serie mit den beiden angegebenen Methoden

Anhang Nr.	1	für	Pb	Pbges	ICP-MS	PbPbgesICPMS4.1
------------	---	-----	----	-------	---------------	-----------------

 Element	Form Gerät		Methoden-Nr.	Seite
S	Sges	ICP(sim)	SSgesICP19.2	1

Datum:

01.01.2019

Elementbestimmungsmethode:

SCHWEFEL

Untersuchungsmethode	NG	BG	OMG
OAKW2.1, OAKWEG3.1	0,003	0,009	20

geeignet für:

<u> </u>	
Boden	OAKW2.1, OAKWEG3.1
Humus	OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D54.1.6.1
HFA-Code	D;4;2;2;1;-1;0 (182.034 nm, axial)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S33.1: Geräteparameter und	Nölte: ICP Emissionsspektroskopie für
Standardzusammen-	Praktiker; Weinheim, 2002
setzung	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP6.1	Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

S

E	lement	Form	Gerät	Methoden-Nr.	Seite
	S	Sges	ICP(sim)	SSgesICP19.2	2

Analysengeräte und Zubehör:

iCAP 6500 der Fa. Thermo Fisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 2 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac mit Probenrack für 60 Positionen für Hauptelemente, bzw. 21 Positionen für Schwermetalle

PP-Röhrchen Natur, 12 ml, Fa. Greiner bio-one

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Laminar Flow Box FBS der Fa. Spetec, für Probengeber (zur Verhinderung von Staubeintrag in die Probengefäße)

Rechner mit Software OTEGRA

5000 ml Varipette, sowie 250 µl, 500 µl und 1000 µl Pipetten der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Mischfitting (Fa. Thermo Fisher) zur zur gleichmässigen Vermischung von Probelösung und internem Standard

Dilutor der Fa. Hamilton

Chemikalien:

Salpetersäure (HNO3), 65 %, p.a.

Y, AAS-Standard Yttrium 1 g/l Y (Fa B. Kraft)

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Interner Standard: 10 ml Yttriumlösung werden in einen 1 l Glaskolben gegeben, mit 30 ml

65 %. HNO₃ p.a. versetzt und mit H₂O demin. bis zur Eichmarke

aufgefüllt.

Eichung/Standards:

Stammlösungen:

S: ICP-Konzentrat (Fa B. Kraft) => 10 g/l S

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, P, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Im folgenden wird nur die Herstellung der S-Standardlösungen beschrieben. Die Zugaben aller anderen Elemente, die sich auch in den beschriebenen Lösungen befinden, werden im Sammelanhang S33.1 beschrieben.

S

Element	Form	Gerät	Methoden-Nr.	Seite
S	Sges	ICP(sim)	SSgesICP19.2	3

Standardlösung KW 1:

In einen 250 ml PFA-Kolben werden 0,05 ml des 10 g/l S enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang *S33.1*), mit 7,5 ml der 65 %igen HNO₃ p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> $50 \mu g/l$ Cd, Co, Cr, Cu und Ni, $200 \mu g/l$ Pb und Zn, 2 mg/l Mn, Na, S und Ti, 5 mg/l Fe, K und Mg, 10 mg/l P, 20 mg/l Ca und 200 mg/l Al.

Standardlösung KW 4:

In einen 250 ml PFA-Kolben werden 0,125 ml des 10 g/l S enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang *S33.1*), mit 7,5 ml der 65 %igen HNO₃ p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 400 μ g/l Co, Cr, Cu und Ni, 2000 μ g/l Pb und Zn, 4 mg/l Na und P, 5 mg/l S, 10 mg/l Ca und Ti, 20 mg/l K, Mg und Mn, 50 mg/l Al, 100 mg/l, Ca.

Standardlösung KW 5:

In einen 250 ml PFA-Kolben werden 0,250 ml des 10 g/l S enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang *S33.1*), mit 7,5 ml der 65 %igen HNO₃ p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 1000 μ g/l Cu und Ni, 4000 μ g/l Pb und Zn, 2 mg/l K und P, 5 mg/l Mn, 6 mg/l Na, 10 mg/l Al und S, 50 mg/l Fe und Mg, 100 mg/l Ca.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben S auch andere Elemente enthalten (siehe Sammelanhang S33.1), verwendet:

<u>Standards</u>				
Blank	0,0 mg/l S			
KW 1	2,0 mg/l S			
KW 2	1,0 mg/l S			
KW 3	5,0 mg/l S			
KW 4	10,0 mg/l S			
KW 5	0,0 mg/l S			

Element	Form	Gerät	Methoden-Nr.	Seite
S	Sges	ICP(sim)	SSgesICP19.2	4

<u>Kontrollstandard</u>			
K24	5,0 mg/l S		
Methode:	OAKW2.1Boden		
	OAKW2.1Humus		
	OAKWEG3.1Boden		
Element:	S		
Wellenlänge:	182.034		
Plasma-	axial		
beobachtung:			
Messbereich	0,45 - 1000		
[mg/l]:			
Standards:	Blank		
	KW 1		
	KW 4		
	KW 5		
Bemerkungen:	Fensterweite: 20		
	Pixelbreite: 3		
	Pixelhöhe: 5		
	<u>Untergrund-</u>		
	Korrektur:		
	Pos. links: fixed		
	Pos. rechts: fixed		

Zur Herstellung der Blank-Lösung werden 7,5 ml der 65 %igen HNO_3 p.a. in einen 250 ml PFA-Kolben gegeben und mit H_2O bidemin. aufgefüllt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP6.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S33.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 24 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974 Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10%

S

Element	Form	Gerät	Methoden-Nr.	Seite
S	Sges	ICP(sim)	SSgesICP19.2	5

Auswertung/Datendokumentation:

Die gemessenen S-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite	
S	Sges	ICP(sim)	SSgesICP19.2	6	

Element	Form	Gerät	Methoden-Nr.	Seite
S	Sges	ICP(sim)	SSgesICP20.1	1

Datum:

01.05.2014

Elementbestimmungsmethode:

SCHWEFEL

Untersuchungsmethode	NG	BG	OMG
ANULL, ANULLIC, EXT1:2H2O1.1, GBL1.1, DAN1.1, DAN2.2	0,006	0,018	25

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1, DAN1.1
Humus	DAN1.1, DAN2.2
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL, ANULLIC

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D54.1.4.1, D54.1.5.1 und D54.1.6.1
HFA-Code	D;4;1;2;-1;-1;0

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich iCAP 7400 mit Iris	Nölte: ICP Emissionsspektroskopie für Praktiker;
Advantage	Weinheim, 2002
Sammelanhang S24.1: Geräteparameter und	Montaser, Golightly: Inductively Coupled Plasmas
Standardzusammen-	in Analytical Atomic Spectrometry;
setzung	Weinheim, 1987
Kurzanleitung ICP5.1	

S

Element Form		Form	Gerät	Methoden-Nr.	Seite
	S	Sges	ICP(sim)	SSgesICP20.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 μ l, Varipette 100-1000 μ l, Varipette 500-5000 μ l sowie 250 μ l, 500 μ l und 1000 μ l Pipetten der Fa. Eppendorf

1000 ml und 2000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 150 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 5 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

S: Standard (Fa B. Kraft) \Rightarrow 5 g/l S

Al, Ca, Fe, K, Mg, Mn, Na, P:

Standard (Fa B. Kraft) => jeweils 5 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S24.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben S auch andere Elemente enthalten (siehe Sammelanhang S24.1), verwendet:

<u>Standards</u>			
Blank	0,0 mg/l S		
HE 1	0,5 mg/l S		
HE 2	2,5 mg/l S		
HE 3	1,0 mg/l S		
HE 4	20,0 mg/l S		
HE 5	10,0 mg/l S		

S

	Kontrollstandard
K1	10,0 mg/l S

3.6.4.1	ANTITI	ANTITI	
Methode:		ANULL	
	ANULLIC	ANULLIC	
	EXT1:2H2O1.1	EXT1:2H2O1.1	
	GBL1.1	GBL1.1	
	DAN1.1Pflanze	DAN1.1Pflanze	
	DAN2.2Pflanze	DAN2.2Pflanze	
	DAN1.1Humus	DAN1.1Humus	
	DAN2.2Humus	DAN2.2Humus	
	DAN1.1Boden	DAN1.1Boden	
Element:	S	S	
Wellenlänge:	182.034	182.034	
Messbereich [mg/l]:	BG - 0.5	0,5 - OMG	
Standards:	Blank	Blank	
	HE 1	HE 1	
		HE 2	
		HE 3	
		HE 4	
		HE 5	
Bemerkungen:	Fensterweite: 21	Fensterweite: 21	
	Pixelbreite: 3	Pixelbreite: 3	
	Pixelhöhe: 5	Pixelhöhe: 5	
	Untergrund-	Untergrund-	
	Korrektur:	Korrektur:	
	Pos. links: 3	Pos. links: 3	
	Pixelanzahl: 2	Pixelanzahl: 2	
	Pos. rechts: 20	Pos. rechts: 20	
	Pixelanzahl: 2	Pixelanzahl: 2	

Der Blank, die Standards und der Kontrollstandard werden in 2 %-iger HNO₃ (30 ml HNO₃ 65 %, p.a. in 1000 ml) in 1 Liter Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S24.1 zusammengestellt. Wässrige Proben werden vor dem Messen mit 180 µl HNO₃ konz. pro 6 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

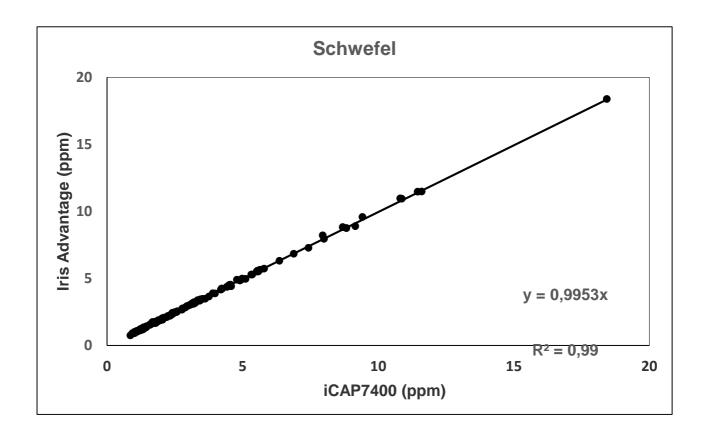
Werden Proben verdünnt, müssen die durch die zusätzliche Säurezugabe veränderten Verdünnungsfaktoren beachtet werden.

Element	Element Form Gerät		Methoden-Nr.	Seite
S	Sges	ICP(sim)	SSgesICP20.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung		
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 24		
		Proben und nach jeder Eichungswiederholung;		
		erlaubte Abweichung 3 %		
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie		
Al-Bilanz	QAlB1.1	Siehe Methodenbeschreibung		
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung		
IBW				
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung		
NFV				
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung		
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung		
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1		
		mitgemessen; erlaubte Abweichung 5 %		
		Bei Pflanzenproben: Standard NHARZ, erlaubte		
		Abweichung 10 %		
		Bei Humusproben: Standard NFVH, erlaubte		
		Abweichung 10 %		
		Bei Bodenproben: Solling15-35, erlaubte		
		Abweichung 10%		


Auswertung/Datendokumentation:

Die gemessenen S-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr.	1	für	S	Sges	ICP(sim)	SSgesICP20.1
------------	---	-----	---	------	----------	--------------

Methodenvergleich ICP Iris Advantage mit iCAP 7400

Darstellung einer Vergleichsmessung der Methode SSgesICP7.3 und der hier beschriebenen Methode an der Wasserserie 2013W078 (151 Proben):

Anhang Nr. 1 für	S	Sges	ICP(sim)	SSgesICP20.1
------------------	---	------	----------	--------------

Element	Form	Gerät	Methoden-Nr.	Seite
S	Sges	ICP(sim)	SSgesICP22.1	1

Datum:

01.08.2014

Elementbestimmungsmethode:

SCHWEFEL

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1	0,008	0,024	25

geeignet für:

Boden OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1		
Humus	OAKW1.1, OAKW1.2, OAKW2.1	
Pflanze		
Wasser		

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885	
HFA	D54.1.6.1	
HFA-Code	D;4;1;2;-1;-1;0;	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S26.1: Geräteparameter und Standardzusammensetzung	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas
Kurzanleitung ICP5.1	in Analytical Atomic Spectrometry; Weinheim, 1987

S

Element	Form	Gerät	Methoden-Nr.	Seite
S	Sges	ICP(sim)	SSgesICP22.1	2

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 $\mu l,~1000~\mu l$ und 5000 μl Varipetten, sowie 250 $\mu l,~500~\mu l$ und 1000 μl Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

S: ICP-Konzentrat (Fa B. Kraft) => 10 g/l S

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, P, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben S auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

S

Element	Form	Gerät	Methoden-Nr.	Seite
S	Sges	ICP(sim)	SSgesICP22.1	3

	Standards	
KW 0		0,0 mg/l S
KW 1		1,0 mg/l S
KW 2		0,0 mg/l S
KW 3		20,0 mg/l S
KW 4		5,0 mg/l S
KW 5		10,0 mg/l S
KW 6		0,0 mg/l S
KW 7		0,0 mg/l S
KW 8		0,0 mg/l S

	Kontrollstandard
K24	5,0 mg/l S

Methode:	OAKW2.1Boden
	OAKWEG2.1Boden
	OAKWEG2.2Boden
	OAKWEG3.1Boden
	OAKW1.1Humus
	OAKW1.2Humus
	OAKW2.1Humus
Element:	S
Wellenlänge:	182.034
Messbereich [mg/l]:	BG – OMG
Standards:	Blank
	KW 1
	KW 3
	KW 4
	KW 5
Bemerkungen:	Fensterweite: 21
	Pixelbreite: 3
	Pixelhöhe: 5
	Untergrund-
	Korrektur:
	Pos. links: 3
	Pixelanzahl: 2
	Pos. rechts: 18
	Pixelanzahl: 2
L	

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit $_2$ O bidemin. aufgefüllt.

Element	Form	Gerät	Methoden-Nr.	Seite
S	Sges	ICP(sim)	SSgesICP22.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %.

Auswertung/Datendokumentation:

Die gemessenen S-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
S	SO ₄	IC	SSO4IC2.3	•	1

Datum:

1.6.2014

Elementbestimmungsmethode:

SULFAT

Untersuchun	gsmethode	NG	BG	OMG
ANULLIC		0,008	0,025	11
geeignet für:				
Boden	GBL1.1, EXT12H2O1.1			
Humus				
Pflanze				
Wasser ANULLIC				
Methodenverweise:				
Norm	In Anlehnung an DIN EN ISO 10304-1			
HFA	D54.2.4.1			
HFA-Code	0714102			

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Anionen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Anionen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit quartären Ammoniumgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine Natriumcarbonat/ Hydrogencarbonatlösung verwendet. Wegen der hohen Grundleitfähigkeit des Eluenten wird vor der Leitfähigkeitsdetektion ein sogenannter Supressor zwischengeschaltet, der durch Austausch der Na-Ionen gegen Protonen das stark leitende Natriumhydrogencarbonat in die wenig dissoziierte Kohlensäure, und die Natriumsalze der zu bestimmenden Anionen in deren stark leitende Mineralsäuren umwandelt. Zusätzlich wird durch einen CO₂-Suppressor der CO₂-Peak minimiert. Diese stark leitenden Mineralsäuren der zu bestimmenden Anionen werden sehr empfindlich in einer Leitfähigkeitsmesszelle detektiert. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Anions geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs wird das Anionen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich und den niedrigen Messbereich (unterschiedliche quadratische Gleichungen) ausgewertet. In dem 2-Kanal-System werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Anionensäule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC2.2

ϵ	\mathcal{E}
Anhang:	Lit.:
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S17.4: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC2.2	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
S	SO ₄	IC	SSO4IC2.3	-	2

2-Kanal-IC-Anlage Fa. Metrohm, bestehend aus:

2 IC-Pumpen 818

2 Leitfähigkeitsdetektoren 819

IC-Separation-Center 820 mit Säulenofen und Suppressor

IC-Liquid-Handling-Einheit 833

2 Pulsationsdämpfer

IC-Eluent-Degaser 837

CO₂-Suppressor 853

IC-Probengeber 838

Probenröhrchen mit Durchstichdeckel

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5

b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen:

a. Anionen: 20 µl

b. Kationen: 50 µl

Software:

a. zur Anlagensteuerung: IC-Net

b. zur Chromatogrammauswertung: MagIC-Net

Chemikalien:

Natriumhydrogencarbont, NaHCO₃

Natriumcarbonat, Na₂CO₃

Schwefelsäure, H₂SO₄ konz.

Lösungen:

Eluent-Anionen: In einem 2 1 Messkolben werden 0,678 g Na₂CO₃ ,sowie 0,084 g Na₂HCO₃

eingewogen und mit H₂O demin. reinst auf 2 l aufgefüllt.

Suppressor-Lösung: a. 1 Liter H₂O demin. reinst werden mit 3 ml H₂SO₄ konz. und 2,52 g

> Oxalsäure versetzt. b. H₂O demin. reinst

Eichung/Standards:

Stammlösungen:

 1 g/l SO_4 : 1 g/l Sulfat als Natriumsulfat $=> 1 \text{ g/l SO}_4$

Stammlösung I: Je 1 ml SO₄-, NO₃-, NO₂-, und PO₄-Stammlösung und je 0,5 ml Cl- und F-

Stammlösung werden in einen 100 ml-Messkolben mit H₂O demin. auf 100

ml aufgefüllt.

 \Rightarrow 0,01 g/l SO₄, NO₃, NO₂, PO₄, und 0,005 g/l Cl, F

Elemen	t Form	Gerät	Methoden-Nr.	Lapis alt	Seite
S	SO ₄	IC	SSO4IC2.3	-	3

Haltbarkeit:

Die Stammlösung I ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

	Kontrollstandards
K1IC:	2,0 mg/l SO ₄ -S
K2IC:	0,0833 mg/l SO ₄ -S

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S17.4) mit insgesamt 19 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung I und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

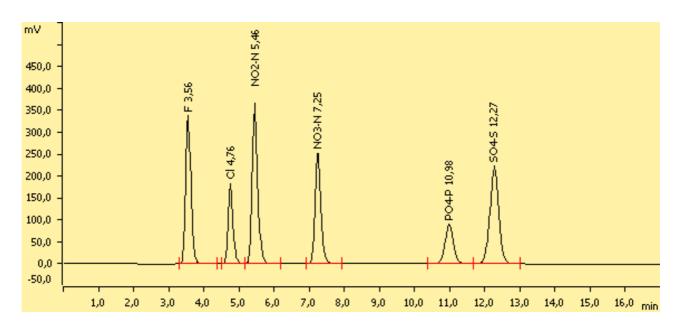
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC2.2 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (2,0 mg/l S), K2IC (0,0833 mg/l S), Messung
		nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1IC mit-
		gemessen; erlaubte Abweichung 5 %.


Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss Nachintegrationen vorgenommen werden.

Die Sulfatkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Amang N1. 1 101 5 504 1C 55041C2.5	Anhang Nr.	1	für	S	SO ₄	IC	SSO4IC2.3
--	------------	---	-----	---	-----------------	----	-----------

Chromatogramm der Anionenmessung mit Retentionszeiten:

Chromatogram des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
S	SO ₄	IC	SSO4IC3.1	•	1

Datum:

20.12.2015

Elementbestimmungsmethode:

SULFAT

Untersuchun	gsmethode	NG	BG	OMG
ANULLIC		0,005	0,017	10,0
geeignet für:				
Boden				
Humus				
Pflanze				
Wasser ANULLIC				
Methodenverweise:				
Norm	In Anlehnung an DIN EN ISO 10304-1 u. 2			
HFA	D54.2.4.1			
HFA-Code	D;7;1;4;1;-1;2;			

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Anionen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Anionen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit quartären Ammoniumgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine Natriumcarbonat/ Hydrogencarbonatlösung verwendet. Wegen der hohen Grundleitfähigkeit des Eluenten wird vor der Leitfähigkeitsdetektion ein Supressor zwischengeschaltet, der durch Austausch der Na-Ionen gegen Protonen das stark leitende Natriumhydrogencarbonat in die wenig dissoziierte Kohlensäure, und die Natriumsalze der zu bestimmenden Anionen in deren stark leitende Mineralsäuren umwandelt. Diese stark leitenden Mineralsäuren der zu bestimmenden Anionen werden sehr empfindlich in einer Leitfähigkeitsmesszelle detektiert. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Anions geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 1,667 ppm) wird das Anionen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich (Kurventyp: Kubisch, Gewichtung 1) und den niedrigen Messbereich (Kurventyp: Kubisch Gewichtung 1/Konzentration) ausgewertet. Mit Flex 1 (Anionen) und Flex 2 (Kationen) werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Anionensäule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC3.1

Anhang:	<u>Lit.:</u>		
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,		
zeiten	1991		
Sammelanhang S29.1: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,		
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987		
Gerätekurzanleitung IC3.1			

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
S	SO ₄	IC	SSO4IC3.1	-	2

2 Compact IC Flex- Anlagen Fa. Metrohm, bestehend aus:

Compact IC Flex 1 Anionen mit MSM Suppressor und MCS-Suppressor

Compact IC Flex 2 Kationen

IC-Probengeber 858 Professional Sample Processor

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5 b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen: a. Anionen: 20 μl b. Kationen: 50 μl

Software: MagIC-Net3.1

Chemikalien:

Natriumhydrogencarbont, NaHCO₃ Natriumcarbonat, Na₂CO₃ Schwefelsäure, H₂SO₄ konz. Oxalsäuredihydrat, C₂H₂O₄*2H₂O

Lösungen:

Eluent-Anionen: In einem 2 1 Messkolben werden 0,678 g Na₂CO₃ ,sowie 0,084 g Na₂HCO₃

eingewogen und mit H₂O demin. reinst auf 2 l aufgefüllt.

Suppressor-Lösung: 1 Liter H₂O demin. reinst werden mit 3 ml H₂SO₄ konz. und 0,27g Oxalsäure

versetzt.

Eichung/Standards:

Stammlösungen:

1 g/l SO₄: 1 g/l Sulfat als Natriumsulfat \Rightarrow 1 g/l SO₄

Stammlösung I: Je 1 ml SO₄-, NO₃-, NO₂-, und PO₄-Stammlösung und je 0,5 ml Cl- und F-

Stammlösung werden in einen 100 ml-Messkolben mit H₂O demin. auf 100

ml aufgefüllt.

 \Rightarrow 0,01 g/l SO₄, NO₃, NO₂, PO₄, und 0,005 g/l Cl, F

Haltbarkeit:

Die Stammlösung I ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

<u>Kontrollstandards</u>				
K1IC:	2,0 mg/l SO ₄ -S			
K2IC:	0,0833 mg/l SO ₄ -S			

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
S	SO ₄	IC	SSO4IC3.1	-	3	

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S29.1) mit insgesamt 18 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung I und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC),bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC3.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (2,0 mg/l S), K2IC (0,0833 mg/l S), Messung
		nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE3IC mit-
		gemessen; erlaubte Abweichung 5 %.


Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Sulfatkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr.	1	für	S	SO ₄	IC	SSO4IC3.1
------------	---	-----	---	-----------------	----	-----------

Chromatogramm der Anionenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Seite
Ti	Tiges	ICP(sim)	TiTigesICP19.2	1

Datum:

01.01.2019

Elementbestimmungsmethode:

TITAN

Untersuchungsmethode	NG	BG	OMG
OAKW2.1, OAKWEG3.1	0,0006	0,002	20

geeignet für:

Boden	OAKW2.1, OAKWEG3.1
Humus	OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885					
HFA	D64.1.6.1					
HFA-Code	D;4;2;2;1;-1;0 (337,280 nm, axial)					

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden. Die Plasmabetrachtung erfolgt radial.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrund-korrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S33.1: Geräteparameter und	Nölte: ICP Emissionsspektroskopie für
Standardzusammen-	Praktiker; Weinheim, 2002
setzung	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP6.1	Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Ti

Element	Form	Gerät	Methoden-Nr.	Seite
Ti	Tiges	ICP(sim)	TiTigesICP19.2	2

iCAP 6500 der Fa. Thermo Fisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 2 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac mit Probenrack für 60 Positionen für Hauptelemente, bzw. 21 Positionen für Schwermetalle

PP-Röhrchen Natur, 12 ml, Fa. Greiner bio-one

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Laminar Flow Box FBS der Fa. Spetec, für Probengeber (zur Verhinderung von Staubeintrag in die Probengefäße)

Rechner mit Software OTEGRA

5000 ml Varipette, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Mischfitting (Fa. Thermo Fisher) zur zur gleichmässigen Vermischung von Probelösung und internem Standard

Dilutor der Fa. Hamilton

Chemikalien:

Salpetersäure (HNO3), 65 %, p.a.

Y, AAS-Standard Yttrium 1 g/l Y (Fa B. Kraft)

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Interner Standard: 10 ml Yttriumlösung werden in einen 1 l Glaskolben gegeben, mit 30 ml

65 %. HNO₃ p.a. versetzt und mit H₂O demin. bis zur Eichmarke

aufgefüllt.

Eichung/Standards:

Stammlösungen:

Ti: ICP-Konzentrat (Fa B. Kraft) => 10 g/l Ti

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, P, S:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Im folgenden wird nur die Herstellung der Ti-Standardlösungen beschrieben. Die Zugaben aller anderen Elemente, die sich auch in den beschriebenen Lösungen befinden, werden im Sammelanhang S33.1 beschrieben.

Standardlösung KW 1: In einen 250 ml PFA-Kolben werden 0,05 ml des 10 g/l Ti enthaltenden

ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang S33.1), mit 7,5 ml der 65

%igen HNO₃ p.a. versetzt und mit H₂O bidemin. aufgefüllt.

Τi

Element	Form	Gerät	Methoden-Nr.	Seite
Ti	Tiges	ICP(sim)	TiTigesICP19.2	3

=> $50~\mu g/l$ Cd, Co, Cr, Cu und Ni, $200~\mu g/l$ Pb und Zn, 2~mg/l Mn, Na, S und Ti, 5~mg/l Fe, K und Mg, 10~mg/l P, 20~mg/l Ca und 200~mg/l Al.

Standardlösung KW 2:

In einen 250 ml PFA-Kolben werden 0,025 ml des 10 g/l Ti enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang *S33.1*), mit 7,5 ml der 65 %igen HNO₃ p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 100 μ g/l Cd, Co, Cr, Cu und Ni, 500 μ g/l Pb und Zn, 1 mg/l Ti, 2 mg/l Ba und Mg, 8 mg/l P, 10 mg/l Fe, Mn und Na, 50 mg/l Ca und K und 100 mg/l Al.

Standardlösung KW 3:

In einen 250 ml PFA-Kolben werden 0,125 ml des 10 g/l Ti enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang *S33.1*), mit 7,5 ml der 65 %igen HNO₃ p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 200 μ g/l Cd, Co, Cr, Cu und Ni, 1000 μ g/l Pb und Zn, 0,5 mg/l Al und Ca, 1 mg/l Mn, 5 mg/l Ti, 6 mg/l P, 8 mg/l Na, 10 mg/l K und Mg, 200 mg/l Fe.

Standardlösung KW 4:

In einen 250 ml PFA-Kolben werden 0,250 ml des 10 g/l Ti enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang S33.1), mit 7,5 ml der 65 %igen HNO₃ p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 400 μ g/l Co, Cr, Cu und Ni, 2000 μ g/l Pb und Zn, 4 mg/l Na und P, 5 mg/l S, 10 mg/l Ca und Ti, 20 mg/l K, Mg und Mn, 50 mg/l Al, 100 mg/l, Ca.

=> 1000 μ g/l Cu und Ni, 4000 μ g/l Pb und Zn, 2 mg/l K und P, 5 mg/l Mn, 6 mg/l Na, 10 mg/l Al und S, 50 mg/l Fe und Mg, 100 mg/l Ca.

Element	Form	Gerät	Methoden-Nr.	Seite
Ti	Tiges	ICP(sim)	TiTigesICP19.2	4

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ti auch andere Elemente enthalten (siehe Sammelanhang S33.1), verwendet:

<u>Standards</u>		
Blank	0,0 mg/l Ti	
KW 1	2,0 mg/l Ti	
KW 2	1,0 mg/l Ti	
KW 3	5,0 mg/l Ti	
KW 4	10,0 mg/l Ti	
KW 5	0,0 mg/l Ti	

	Kontrollstandard
K24	10,0 mg/l Ti

Methode:	OAKW2.1Boden
	OAKW2.1Humus
	OAKWEG3.1Boden
Element:	S
Wellenlänge:	337.280
Plasma-	radial
beobachtung:	
Messbereich	BG – OMG
[mg/l]:	
Standards:	Blank
	KW 3
	KW 4
	KW 5
Bemerkungen:	Fensterweite: 16
	Pixelbreite: 3
	Pixelhöhe: 2
	Untergrund-
	Korrektur:
	Pos. links: fixed
	Pos. rechts: fixed

Zur Herstellung der Blank-Lösung werden 7,5 ml der 65 %igen $\rm HNO_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit $\rm H_2O$ bidemin. aufgefüllt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP6.1 beschrieben.

Τi

_	Element	Form	Gerät	Methoden-Nr.	Seite
	Ti	Tiges	ICP(sim)	TiTigesICP19.2	5

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S33.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 24 Proben und nach jeder Eichungswiederholung; erlaubte Abweichung 5 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC, erlaubte Abweichung 10 %	

Auswertung/Datendokumentation:

Die gemessenen Ti-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS) bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite	
Ti	Tiges	ICP(sim)	TiTigesICP19.2	6	

Element	Form	Gerät	Methoden-Nr.	Seite
Ti	Tiges	ICP(sim)	TiTigesICP22.1	1

Elementbestimmungsmethode:

TITAN

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1	0,0005	0,0016	20

geeignet für:

Boden	OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1
Humus	OAKW1.1, OAKW1.2, OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D64.1.6.1
HFA-Code	D;4;1;2;-1;-1;1;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S26.1: Geräteparameter und Standardzusammen-	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002
setzung Kurzanleitung ICP5.1	Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987

Ti

01.08.2014

Datum:

Element	Form	Gerät	Methoden-Nr.	Seite
Ti	Tiges	ICP(sim)	TiTigesICP22.1	2

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 $\mu l,~1000~\mu l$ und 5000 μl Varipetten, sowie 250 $\mu l,~500~\mu l$ und 1000 μl Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Ti: ICP-Konzentrat (Fa B. Kraft) => 10 g/l Ti

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, P, S:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

П

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ti auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

Element	Form	Gerät	Methoden-Nr.	Seite
Ti	Tiges	ICP(sim)	TiTigesICP22.1	3

	<u>Standards</u>
KW 0	0,0 mg/l Ti
KW 1	0,0 mg/l Ti
KW 2	1,0 mg/l Ti
KW 3	8,0 mg/l Ti
KW 4	2,0 mg/l Ti
KW 5	16,0 mg/l Ti
KW 6	0,0 mg/l Ti
KW 7	0,0 mg/l Ti
KW 8	0,0 mg/l Ti

Kontrollstandard	
K24	1,0 mg/l Ti

Methode:	OAKW2.1Boden
	OAKWEG2.1Boden
	OAKWEG2.2Boden
	OAKWEG3.1Boden
	OAKW1.1Humus
	OAKW1.2Humus
	OAKW2.1Humus
Element:	Ti
Wellenlänge:	336.121
Messbereich	BG – OMG
[mg/l]:	
Standards:	Blank
	KW 2
	KW 3
	KW 4
	KW 5
Bemerkungen:	Fensterweite: 20
<u>Bennerikangeni</u>	Pixelbreite: 2
	Pixelhöhe: 3
	i momono.
	Untergrund-
	Korrektur:
	Pos. links: 5
	Pixelanzahl: 1
	Pos. rechts: 19
	Pixelanzahl: 1

<u>Ti</u>

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit H_2O bidemin. aufgefüllt.

Element	Form	Gerät	Methoden-Nr.	Seite
Ti	Tiges	ICP(sim)	TiTigesICP22.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung		
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und		
		nach jeder Eichungswiederholung; erlaubte		
		Abweichung 3 %		
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie		
Standardmaterial	QStM1.1	Für Standards ISE974 und BZE-SAC, erlaubte		
		Abweichung 10 %.		

Auswertung/Datendokumentation:

Die gemessenen Ti-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP(sim)	ZnZngesICP22.1	1

Datum:

01.08.2014

Elementbestimmungsmethode:

ZINK

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1	0,26	0,87	3000

geeignet für:

Boden	OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1
Humus	OAKW1.1, OAKW1.2, OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D73.1.6.4
HFA-Code	D;4;1;2;-1;-1;2;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S26.1: Geräteparameter und Standardzusammen-	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002
setzung Kurzanleitung ICP5.1	Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP(sim)	ZnZngesICP22.1	2

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 $\mu l,~1000~\mu l$ und 5000 μl Varipetten, sowie 250 $\mu l,~500~\mu l$ und 1000 μl Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Zn: ICP-Standard (Fa B. Kraft) => 1 g/l Zn

As, Ba, Cd, Co, Cr, Cu, Ni, Pb:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Zn auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP(sim)	ZnZngesICP22.1	3

	Standards
KW 0	0 μg/l Zn
KW 1	400 μg/l Zn
KW 2	800 μg/l Zn
KW 3	1200 µg/l Zn
KW 4	1600 μg/l Zn
KW 5	2000 μg/l Zn
KW 6	$3000 \mu g/l Zn$
KW 7	0 μg/l Zn
KW 8	0 μg/l Zn

	Kontrollstandard
K24	500 μg/l Zn

Methode:	OAKW2.1Boden
iviculouc.	OAKWEG2.1Boden
	OAKWEG2.2Boden
	OAKWEG3.1Boden
	OAKW1.1Humus
	OAKW1.2Humus
	OAKW2.1Humus
Element:	Zn
Wellenlänge:	202.548
Messbereich	BG – OMG
[µg/l]:	
Standards:	Blank
	KW 1
	KW 2
	KW 3
	KW 4
	KW 5
	KW 6
Bemerkungen:	Fensterweite: 20
_	Pixelbreite: 3
	Pixelhöhe: 5
	Untergrund-
	Korrektur:
	Pos. links: 4
	Pixelanzahl: 2
	Pos. rechts: 15
	Pixelanzahl: 1

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit $\rm H_2O$ bidemin. aufgefüllt.

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP(sim)	ZnZngesICP22.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %.

Auswertung/Datendokumentation:

Die gemessenen Zn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP(sim)	ZnZngesICP24.1	1

Elementbestimmungsmethode:

Datum:

ZINK

Untersuchungsmethode	NG	BG	OMG
EXTEDTA1.1	1	3	10 000

geeignet für:

Boden	EXTEDTA1.1
Humus	
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D73.1.5.2
HFA-Code	D:4;1;2;-1;-1;1;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S28.1: Geräteparameter und Standardzusammensetzung Kurzanleitung ICP5.1	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

01.07.2016

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP(sim)	ZnZngesICP24.1	2

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Glas

Chemikalien:

Na-EDTA (Titriplex III) $(C_{10}H_{14}N_2Na_2O_8 * 2H_2O)$

Lösungen:

0,1 m EDTA-Lösung: in einen 1 l-Kolben wird eine Ampulle 0,1 molare Titriplex III Lösung gegeben und mit H₂O demin. bis zur Eichmarke aufgefüllt.

Eichung/Standards:

Stammlösungen:

Zn: ICP-Standard (Fa B. Kraft) => 1 g/l Zn

Cd, Co, Cr, Cu, Ni, Pb:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S28.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Zn auch andere Elemente enthalten (siehe Sammelanhang S28.1), verwendet:

<u>Standards</u>		
EDTA 0	0 μg/l Zn	
EDTA 1	6000 µg/l Zn	
EDTA 2	4000 µg/l Zn	
EDTA 3	2000 µg/l Zn	
EDTA 4	$1000 \mu g/l Zn$	
EDTA 5	$10~000~\mu g/l~Zn$	

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP(sim)	ZnZngesICP24.1	3

	Kontrollstandard
K23	2000 μg/l Zn

Methode:	EXTEDTA1.1
Element:	Zn
Wellenlänge:	213.856
Messbereich	BG – OMG
[µg/l]:	
Standards:	EDTA 0
<u>Standards.</u>	
	EDTA 1
	EDTA 2
	EDTA 3
	EDTA 4
	EDTA 5
Bemerkungen:	Fensterweite: 20
	Pixelbreite: 3
	Pixelhöhe: 5
	<u>Untergrund-</u>
	Korrektur:
	Pos. links: 3
	Pixelanzahl: 2
	Pos. rechts: 19
	Pixelanzahl: 2

Der Blank, die Standards und die Kontrollstandards werden mit der verwendeten Extraktionslösung in 100 ml Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S28.1 zusammengestellt. Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K23; Messung nach der Eichung, alle 15 Proben und	
		nach jeder Eichungswiederholung; erlaubte	
		Abweichung 5 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial	QStM1.1	Solling0-10; erlaubte Abweichung 10 %.	

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP(sim)	ZnZngesICP24.1	4

Auswertung/Datendokumentation:

Die gemessenen Zn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP-MS	ZnZngesICPMS1.1	1

Elementbestimmungsmethode:

Datum: 01.11.2018

ZINK

Untersuchungsmethode		BG	OMG
OAKW2.1, OAKWEG3.1	0,286	0,095	2000

geeignet für:

<u> </u>	
Boden	OAKW2.1, OAKWEG3.1
Humus	OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 17294-2
HFA	D73.1.6.8
HFA-Code	D;5;3;1;2;-1;0;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S30.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	
-	

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP-MS	ZnZngesICPMS1.1	2

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

1000, 2000 und 5000ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP Q/Qnova CALIBRATION solution

Sc, Ge, Y, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Mg, Fe, K: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25 ml HCl im 5 l-Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40ml Salpetersäure (HNO₃) im 2 l-Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10~ml Salpetersäure (HNO3) im 2~l-Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 10 ppm, Ge 1 ppm, Y 10 ppm, Re 5 ppb, Rh 100 ppb) = 10 ml Sc, 1 ml Ge, 10 ml Y, 0,1 ml Rh jeweils aus 1 g/l und 1 ml Re aus 5 mg/l plus 20 ml HNO₃ im 1000 ml Glas-Messkolben mit bidemin. Wasser auffüllen.

Aus dieser Stammlösung eine 1:10 Verdünnung (mit bi-demin H₂O aufgefüllt) zum Messen herstellen (mindestens 100 ml).

Basislösung für Standards und Kontrollstandard:

Ansatz der Lösung (Al 50 ppm, Mg 50 ppm, Fe 20 ppm, K 10 ppm) =

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP-MS	ZnZngesICPMS1.1	3

Jeweils 5 ml Al und Mg, 2 ml Fe und 1 ml K mit 60 ml HCl und 20 ml HNO3 in einem 1000 ml Messkolben mit bi-demin H2O auffüllen.

Eichung/Standards:

Stammlösungen:

Zn: ICP-Standard (Fa B. Kraft) $\Rightarrow 1 g/1 Zn$

Cd, Co, Cr, Cu, Ni, Pb, Hg, W: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg, Al, Fe, K: ICP-Standard (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S30.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in einer dem Königswasserextrakt entsprechenden Mischung aus HCl und HNO₃ mit Zusatz von 50 ppm Al, 50 ppm Mg, 20 ppm Fe und 10 ppm K, die neben Zn auch andere Elemente enthalten (siehe Sammelanhang S30.1), verwendet:

	Standards	
Blank		0 μg/l Zn
KWSM1		0 μg/1 Zn 2 μg/1 Zn
KWSM2		$5 \mu g/1 Zn$
KWSM3		10 μg/l Zn
KWSM4		20 μg/l Zn
KWSM5		50 μg/l Zn

<u>Kontrollstandard</u>
K24MS
25 μg/l Zn

Methode:	OAKWSM	OAKWEGSM	
Element:	Zn	Zn	
Masse:	65,9260	65,9260	
Messbereich	BG - OMG	BG – OMG	
[µg/l]:	1,9 - 40000	4,75 - 100000	
Standards:	Blank	Blank	
	KWSM1	KWSM1	
	KWSM2	KWSM2	
	KWSM3	KWSM3	
	KWSM4	KWSM4	
	KWSM5	KWSM5	

Element Forn		Gerät	Methoden-Nr.	Seite	
Zn	Znges	ICP-MS	ZnZngesICPMS1.1	4	

Bemerkungen:	Kollisions/Reaktions-	Kollisions/Reaktions-	
	<u>zelle:</u>	<u>zelle:</u>	
	Gasfluss H ₂ : 0,5 ml	Gasfluss H ₂ : 0,5 ml	
	Gasfluss He: 4,5 ml	Gasfluss He: 4,5 ml	

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. OAKW-Aufschlusslösungen werden 1:20 vom PrepFAST-Probengeber verdünnt, OAKWEG-Aufschlusslösungen 1:50.

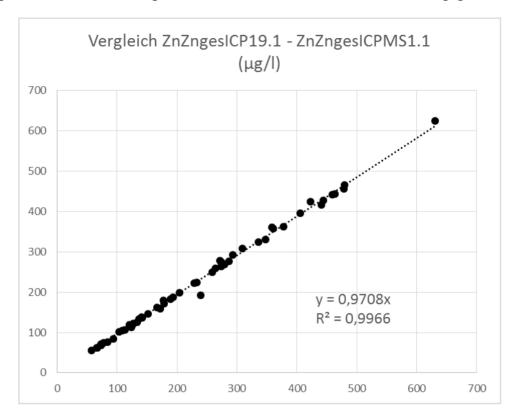
Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (OAKWSM-1, OAKWEGSM-1, OAKWSMHg-1, OAKWEGSMHg-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S30.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K24MS; Messung nach der Eichung, alle 10 Prober	
		und nach jeder Eichungswiederholung; erlaubte	
		Abweichung 5 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial	QStM1.1	ISE974, BZE-SAC, NFVH; erlaubte Abweichung 10	
		%.	


Auswertung/Datendokumentation:

Die Zn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für	Zn Znges	ICP-MS	ZnZngesICPMS1.1
------------------	----------	--------	-----------------

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Königswasser-Aufschluss-Serie mit den beiden angegebenen Methoden

Anhang Nr. 1 für Zn Znges ICP-MS ZnZngesICPMS1.1

	Element	Form	Gerät	Methoden-Nr.	Seite
Zn Znges CPMS ZnZngesICPMS2.1	Zn	Znges	ICP-MS	ZnZngesICPMS2.1	1

Datum:

01.11.2018

Elementbestimmungsmethode:

ZINK

Untersuchungsmethode	NG	NG BG C		
ANULL	0,047	0,140	1000	
geeignet für:	-			
Boden				
Humus				

Methodenverweise:

Pflanze Wasser

Norm	n Anlehnung an DIN EN ISO 17294-2		
HFA	73.1.4.6		
HFA-Code	D;5;3;1;2;-1;0;		

Prinzip der Methode/chem. Reaktionen:

ANULL

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S31.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP-MS	ZnZngesICPMS2.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

2000 und 5000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃),69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25ml HCl im 5 l- Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40 ml Salpetersäure (HNO₃) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10 ml Salpetersäure (HNO3) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 50 ppm, Ge 50 ppm, Re 5 ppm, Rh 5 ppm) =

5 ml Sc, 5 ml Ge, 0.5 ml Re, $0.5 \text{ ml Rh und } 2 \text{ ml HNO}_3 \text{ im } 100 \text{ ml PFA- Messkolben mit bidemin.}$ Wasser auffüllen.

Aus dieser Stammlösung eine 1:100 Verdünnung in 2% HNO₃-Lösung zum Messen herstellen (mindestens 100 ml).

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP-MS	ZnZngesICPMS2.1	3

Eichung/Standards:

Stammlösungen:

Zn: ICP-Standard (Fa B. Kraft) => 1 g/l Zn

Cd, Co, Cr, Cu, Ni, Pb: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg: ICP-Standard (Fa B. Kraft) => 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S31.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in 2 % HNO3 mit Zusatz von 10 ppm Mg, die neben Zn auch andere Elemente enthalten (siehe Sammelanhang S31.1), verwendet:

Stand	<u>ards</u>
Blank	0 μg/l Zn
Wasser SM1	$0.5 \mu\mathrm{g/l}\mathrm{Zn}$
Wasser SM2	1 μg/l Zn
Wasser SM3	2 μg/l Zn
Wasser SM4	5 μg/l Zn
Wasser SM5	10 μg/l Zn
Wasser SM6	$100 \mu g/1 Zn$
Wasser SM7	200 μg/l Zn

Kontrollstandard	
K25MS	
100 μg/l Zn	

Methode:	WasserSM-1
Element:	Zn
Masse:	65,9260
Messbereich	BG - OMG
[µg/l]:	0,140 - 1000
Standards:	Wasser SM0
	Wasser SM1
	Wasser SM2
	Wasser SM3
	Wasser SM4
	Wasser SM5
	Wasser SM6
	Wasser SM7

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP-MS	ZnZngesICPMS2.1	4

Bemerkungen:	Kollisions/Reaktions-
	<u>zelle:</u>
	Gasfluss H ₂ : 5 ml
	Gasfluss He: 45 ml

Durchführung:

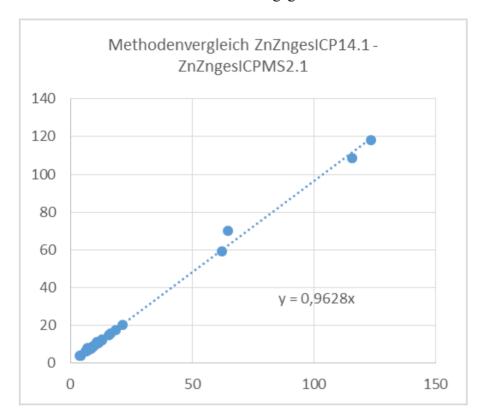
Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (WasserSM-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S31.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K25MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	WasserSM1; erlaubte Abweichung 10 %.


Auswertung/Datendokumentation:

Die gemessenen Zn -Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1	für Zn	Znges ICP-MS	S ZnZngesICPMS2.1
--------------	--------	--------------	-------------------

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Wasser-Serie mit den beiden angegebenen Methoden

Anhang Nr. 1 für Zn Znges ICP-MS ZnZngesICPMS2.1

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP-MS	ZnZngesICPMS4.1	1

Elementbestimmungsmethode:

Datum:

01.06.2019

ZINK

Untersuchungsmethode	NG	BG	OMG
DAN2.2	0,082	0,245	2000

geeignet für:

Boden	
Humus	
Pflanze	DAN2.2
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 17294-2
HFA	D73.1.6.8
HFA-Code	D;5;3;1;2;-1;0;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S32.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP-MS	ZnZngesICPMS4.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

2000 und 5000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃),69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25ml HCl im 5 l- Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40 ml Salpetersäure (HNO₃) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10 ml Salpetersäure (HNO3) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 50 ppm, Ge 50 ppm, Re 5 ppm, Rh 5 ppm) =

5 ml Sc, 5 ml Ge, 0,5 ml Re, 0,5 ml Rh und 2 ml HNO₃ im 100 ml PFA- Messkolben mit bidemin. Wasser auffüllen.

Aus dieser Stammlösung eine 1:100 Verdünnung in 2% HNO₃-Lösung zum Messen herstellen (mindestens 100 ml).

Element	Form	Gerät	Methoden-Nr.	Seite	
Zn	Znges	ICP-MS	ZnZngesICPMS4.1	3	ı

Eichung/Standards:

Stammlösungen:

Zn: ICP-Standard (Fa B. Kraft) => 1 g/l Zn

Cd, Co, Cr, Cu, Ni, Pb: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg: ICP-Standard (Fa B. Kraft) => 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S32.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in 0,5 % HNO₃ mit Zusatz von 5 ppm Mg, die neben Zn auch andere Elemente enthalten (siehe Sammelanhang S32.1), verwendet:

	<u>Standards</u>
Blank	0 μg/l Zn
DAN SM1	0,5 μg/l Zn
DAN SM2	1 μg/l Zn
DAN SM3	2 μg/l Zn
DAN SM4	5 μg/l Zn
DAN SM5	10 μg/l Zn
DAN SM6	100 μg/l Zn
DAN SM7	$200 \mu g/l Zn$

<u>Kontrollstandard</u>
K26MS
50 μg/l Zn

Methode:	DANSM-1
Element:	Zn
Masse:	65,9260
Messbereich	BG – OMG
[µg/l]:	0,48 - 4000
Standards:	DAN SM0
	DAN SM1
	DAN SM2
	DAN SM3
	DAN SM4
	DAN SM5
	DAN SM6
	DAN SM7

Element	Form	Gerät	Methoden-Nr.	Seite
Zn	Znges	ICP-MS	ZnZngesICPMS4.1	4

Bemerkungen:	Kollisions/Reaktions-
	<u>zelle:</u>
	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben.

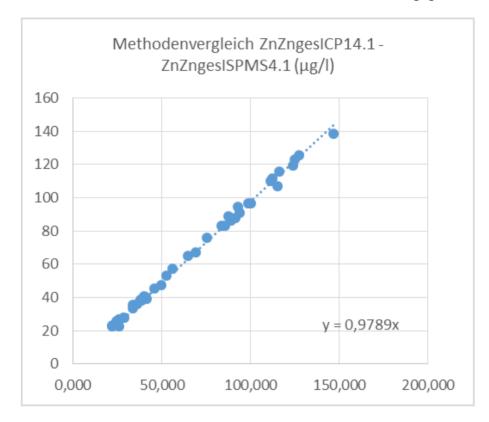
Die Aufschlusslösungen werden 1:2 verdünnt.

Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (DANSM-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S32.1 zusammengestellt.

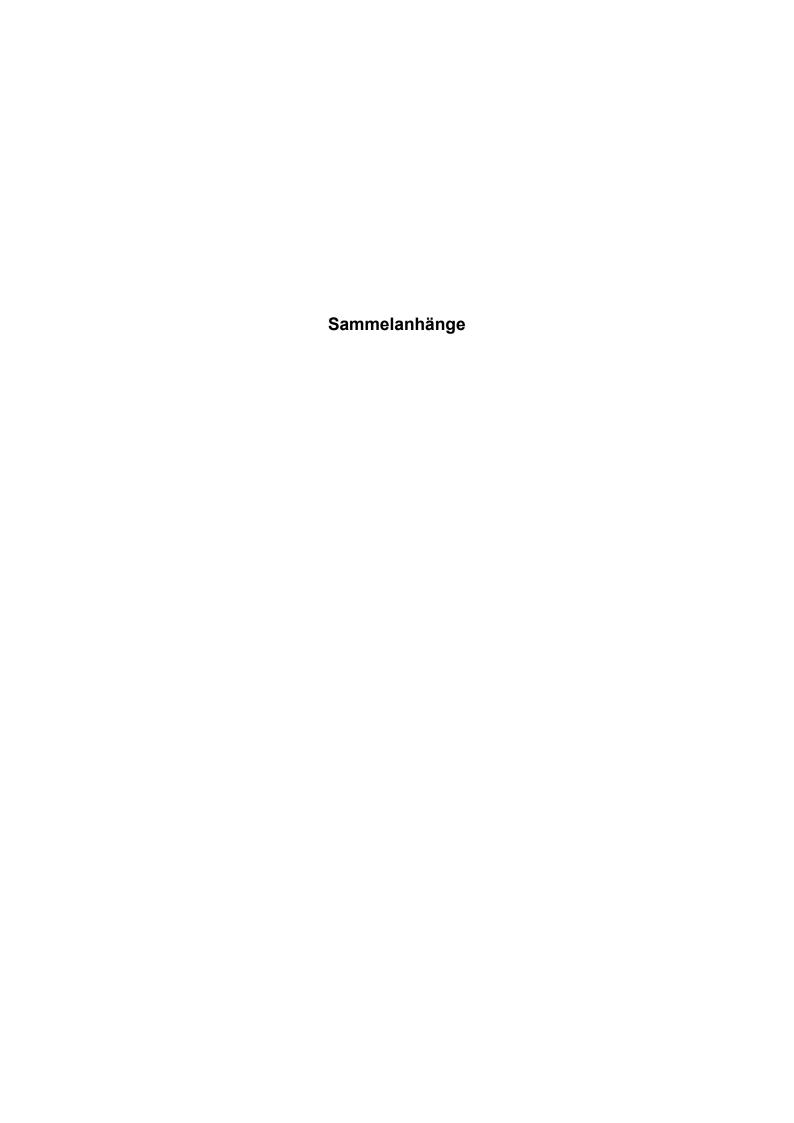
Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):


Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K26MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	NHARZ; erlaubte Abweichung 10 %.

Auswertung/Datendokumentation:


Die gemessenen Zn -Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Pflanzen-Druckaufschluss-Serie mit den beiden angegebenen Methoden

Anhang Nr. 1 für Zn Znges ICP-MS ZnZngesICPMS4.1

Sammelanhang		Element	Form	Gerät	Methoden-Nr.	Seite
S17.3	für	M	Mges	IC	MMgesIC2.2	1
	_'	MMgesIC2.2	2 = Ca, K, M	Ig, Na, NH ₄ , NO ₂ , NO ₃ ,	PO ₄ , SO ₄ , Cl, F	

Datum: 15.7.2012

Grundeichung und Geräteparameter für IC Metrohm für die Methode ANULLIC

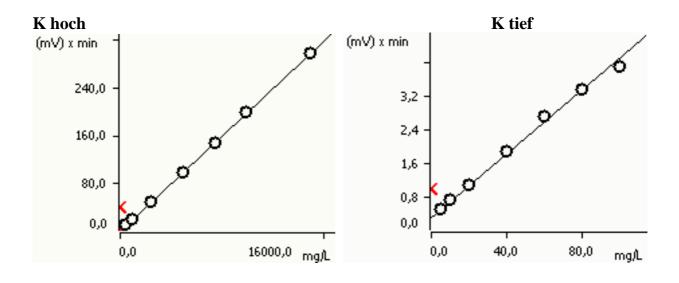
a. Verwendete Standards:

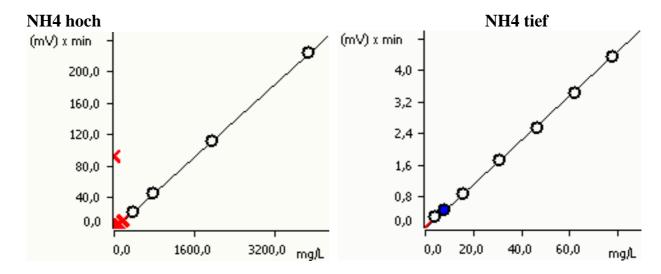
In den nachfolgenden Tabellen ist angegeben, wie viel mg/l des jeweiligen Anions oder Kations, bzw. wie viel ppb des jeweiligen Elements sich in den Standards für die Grundeichung befinden. Für Anionen und Kationen werden jeweils getrennte Standards angesetzt.

NO2	mg/l lon 0,005 0,005 0,01 0,01	ppb Eleme 5,00 5,00 3,04 2,26	nt mg/l lon 0,01 0,01 0,02 0,02 0,02	ppb Elemer 10,00 10,00 6,08 4,51	nt mg/l lon 0,02 0,02 0,04 0,04	ppb Elemer 20,00 20,00 12,16 9,03		nt mg/l lon 0,04 0,08 0,08	1t mg/l lon pb Elemer 0,04 40,00 0,04 40,00 0,08 24,32 0,08 18,06 0,08 26,06	lon .
ωÑ	0,01	3,04 2,26	0,02	6,08 4,51	0,04	12,16 9,03	0,08		24,32 18,06	
P04 S04	0,01	3,26 3,33	0,02 0,02	6,51 6,67	0,04 0,04	13,03 13,33	0,08 0,08		26,06 26,67	
N N A	0,005	5,00 3,89	0,01 0,01	10,00 7,78	0,02 0.02	20,00 15,55	0,04		40,00 31,10	
7	0,005	5,00 0	0,00	10,00	0,02	20,00	0,04		40,00	
Ca	0,005	5,00	0,01	10,00	0,02	20,00	0,04			40,00
StdNr	2/1	6	D+ BQ/I	7	2	8	1 3	<u>-</u>	3	9
П	0,08	80,00	0,10	100,00	0,15	150,00	0	00.	-	200,00
Ω	0,08	80,00	0,10	100,00	0,15	150,00	0	20		200,00
NO2	0,16	48,63	0,25	75,99	0,30	91,19	0	,40		121,58
NO3	0,16	36,12	0,25	56,43	0,30	67,72	0	40		90,29
SO4	0,16	53,33	0,25	83,33	0,30	100,00	00	. 40 00 0	,40 133,33 ,40 133,33	
Na	0,08	80,00	0,10	100,00	0,15	150,00	0	,20		200,00
NH4	0,08	62,21	0,10	77,76	0,15	116,64	_),20		155,52
~	0,08	80,00	0,10	100,00	0,15	150,00	_),20		200,00
S.⊠	0,08	80,00	0,10	100,00	0,15	150,00 150,00		0,20		200,00
ā	0,00	00,00	ç,	100,00	,	150,00		0,20		200,00

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite
S17.3	für	M	Mges	IC	MMgesIC2.2	2
	•	MMgesIC2.	2 = Ca, K, M	Ig, Na, NH ₄ , NO ₂ , NO ₃ ,	PO ₄ , SO ₄ , Cl, F	

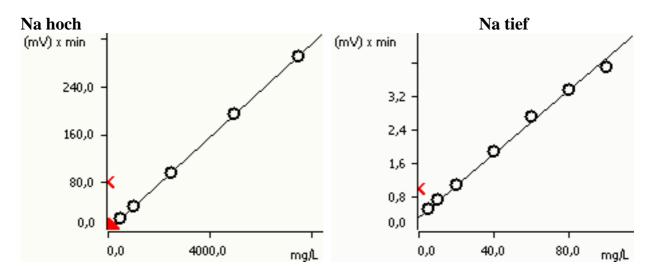
Die Standards 1-10 werden aus der Stammlösung I (Anionen), bzw. Stammlösung II (Kationen) angesetzt, die Standards 11-19 aus den 1 g/l-Stammlösungen der Ionen. Die Herstellung der Stammlösungen für die Standardherstellung sind in der jeweiligen Methode angegeben. Es müssen für die Standards 1-10 bei den Kationen säuregespülte PFA-Kolben verwendet werden. Alle übrigen Standards werden in Glaskolben angesetzt. Für Kationen muss mit HNO₃ vorgespült werden, für Anionen mit demin. Wasser.

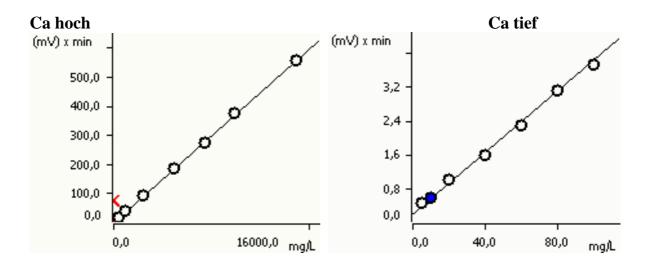

StdNr		10		1		12		13		14
	mg/l lon	ppb Element		ppb Elemer	ent mg/l lon	ppb Element		ppb Element		ppb Elemei
П	0,25	250,00	0,50	500,00	1,00	1000,00		2500,00		5000,00
Ω	0,25	250,00	0,50	500,00	1,00	1000,00	2,50	2500,00	5,00	5000,00
	0,50	151,98	1,00	303,95	2,00	607,90	5,00	1519,76	10,00	3039,51
	0,50	112,87	1,00	225,73	2,00	451,47	5,00	1128,67	10,00	2257,34
P04	0,50	162,87	1,00	325,73	2,00	651,47	5,00	1628,66	10,00	3257,33
	0,50	166,67	1,00	333,33	2,00	666,67	5,00	1666,67	10,00	3333,33
Na	0,25	250,00	0,50	500,00	1,00	1000,00	2,50	2500,00	5,00	5000,00
NH4	0,25	194,40	0,50	388,80	1,00	777,60	2,50	1944,01	5,00	3888,02
×	0,25	250,00	0,50	500,00	1,00	1000,00	2,50	2500,00	5,00	5000,00
Μg	0,25	250,00	0,50	500,00	1,00	1000,00	2,50	2500,00	5,00	5000,00
Ca	0,25	250,00	0,50	500,00	1,00	1000,00	2,50	2500,00	5,00	5000,00
StdNr		15		16		17		18		19
ı	mg/l lon	ppb Element	nt mg/l lon	ppb Element mg/l lon	nt mg/l lon	ppb Element mg/l lon	nt mg/l Ion	ppb Element mg/l lon	t mg/l lon	ppb Element
ידי	7,50	7500,00	10,00	10000,00						
Ω	7,50	7500,00	10,00	10000,00	15,00	15000,00				
NO2	15,00	4559,27	20,00	6079,03	30,00					
NO3	15,00	3386,00	20,00	4514,67	30,00	6772,01	40,00	9029,35	50,00	11286,68
P04	15,00	4885,99								
S04	15,00	5000,00	20,00	6666,67	30,00					
Na	7,50	7500,00								
NI NI 4	7 50	7500 00	1000	10000 00	15 00	15000 00				
Mg	7,50	7500,00				0				
Ca	7,50	7500.00	10 00	10000,00	15.00	15000,00				

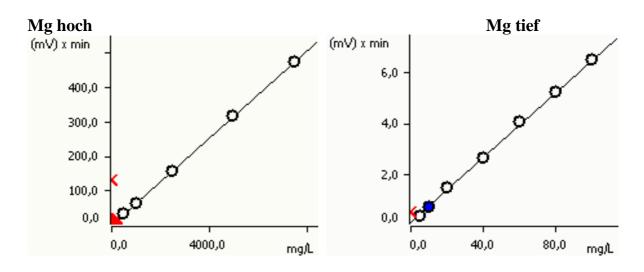

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite
S17.3	für	M	Mges	IC	MMgesIC2.2	3
	=	MMgesIC2.	2 = Ca, K, M	Ig, Na, NH ₄ , NO ₂ , NO ₃ ,	PO ₄ , SO ₄ , Cl, F	

b. Eichkurven:

Dargestellt sind jeweils die Eichkurvenverläufe der hohen Eichung und des unteren Teils der tiefen Eichung. Die Art der Eichkurvenauswertung (linear, quadratisch, durch den Nullpunkt) ist in der Methodendokumentation (siehe c.) angegeben.

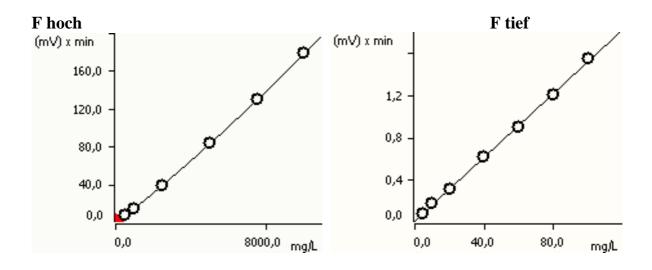

Achtung! In allen Graphiken ist die Einheit (mg/l) falsch! Es muss µg/l heißen!

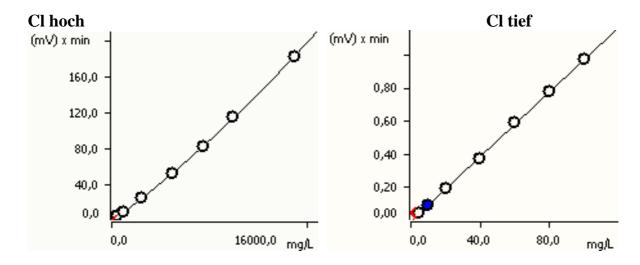


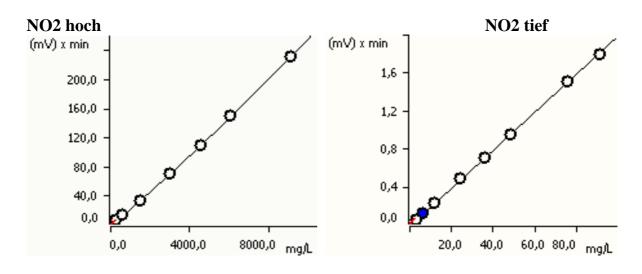


Sammelanhang	:
C17 3	

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC2.2	4
MMgesIC2.	2 = Ca, K, M	Ig, Na, NH ₄ , NO ₂ , NO ₃ , I	PO ₄ , SO ₄ , Cl, F	

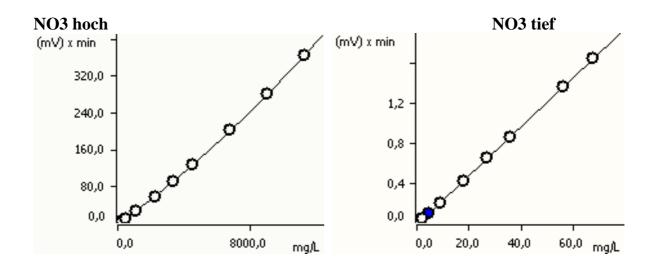


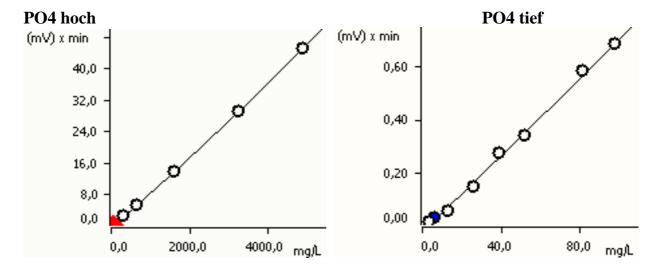


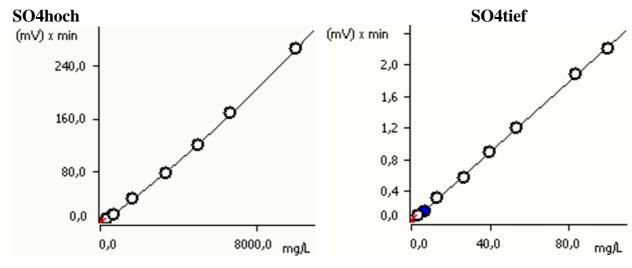


Sammelanhang
S17.3

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC2.2	5
MMgesIC2.	2 = Ca, K, M	Ig, Na, NH ₄ , NO ₂ , NO ₃ , I	PO ₄ , SO ₄ , Cl, F	







Sammelanhang
S17.3

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC2.2	6
MMgesIC2.	2 = Ca, K, M	Ig, Na, NH ₄ , NO ₂ , NO ₃ ,	PO ₄ , SO ₄ , Cl, F	

Sammelanhang
S17.3

fiir

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC2.2	7
MMgesIC2.	2 = Ca, K, M	Ig, Na, NH ₄ , NO ₂ , NO ₃ , I	PO ₄ , SO ₄ , Cl, F	

c. Methodenparamter

Im Folgenden ist vollständige Methodendokumentation des Gerätes mit allen Methodenparametern abgebildet:

Methodenparameter

Methodenname Methode An Kat1

Speicherdatum Methode 2008-09-08 15:51:17 UTC+2

Methodenversion 12

MethodengruppeMain groupMethodenstatusoriginalMethode gespeichert vonlabor

Startparameter

Anionen hoch

Hardware assignment

Datenquelle Kanal 1 (771_Anionen)

Kanal Analogsignal Injektionsventil nicht definiert Säule nicht definiert Pumpe nicht definiert

Data acquisition

Aufnahmedauer 14,5 min

771_Anionen

Gerätetyp 771 IC Interface

Kanal 1

Warngrenze 2499 mV

Kanal 2

Warngrenze 2499 mV

771_Kationen

Gerätetyp 771 IC Interface

Kanal 1

Warngrenze 2499 mV

Kanal 2

Warngrenze 2499 mV

Kationen hoch

Hardwarezuordnung

Datenquelle Kanal 1 (771_Kationen)

Kanal Analogsignal Injektionsventil nicht definiert Säule nicht definiert Pumpe nicht definiert

Datenaufnahme

Aufnahmedauer 14,5 min

Anionen tief

Hardwarezuordnung

Datenquelle Kanal 1 (771_Anionen)

Kanal Analogsignal Injektionsventil nicht definiert Säule nicht definiert

Sammelanhang		Element	Form	Gerät	Methoden-Nr.	Seite	
S17.3	für	M	Mges	IC	MMgesIC2.2	8	
	•	MMgesIC2.2 = Ca, K, Mg, Na, NH ₄ , NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F					

Kommentar

Nr.

Pumpe nicht definiert

Datenaufnahme

Aufnahmedauer 14,5 min

Kationen tief

Hardwarezuordnung

Datenquelle Kanal 1 (771_Kationen)

Kanal Analogsignal Injektionsventil nicht definiert Säule nicht definiert Pumpe nicht definiert

Datenaufnahme

Aufnahmedauer 14,5 min

Befehl

Zeitprogramm

Hauptprogramm

Gerät

Zeit

Modul	Parameter	······o····a··	
	Sequenz		8
	Sequenz		1
771_Anionen Kanal 1		n IC Net	3
Anionen tief Anionen hoch 771_Kationen Kanal 1	Start Datenaufnah	nme	2 4 5
Kationen tief Kationen hoch	Start Datenaufnahme Start Datenaufnahme Warten auf IC Net		9 6 7
E			
Gerät Modul			Nr. 11
AT_CAL			
Gerät Modul			Nr. 17
	771_Anionen Kanal 1 Anionen tief Anionen hoch 771_Kationen Kanal 1 Kationen tief Kationen hoch E Gerät Modul AT_CAL Gerät	Sequenz PROBE Sequenz AN_KAT_CAL 771_Anionen Kanal 1 Anionen tief Anionen hoch 771_Kationen Kanal 1 Kationen tief Kationen hoch Gerät Modul Start Datenaufnahr Warten auf IC Net C:\Programme\Met Net\Systems\IC\PR	Sequenz PROBE Sequenz AN_KAT_CAL 771_Anionen Kanal 1 Anionen tief Anionen hoch 771_Kationen Kanal 1 Kationen tief Kationen hoch Start Datenaufnahme Warten auf Injektion IC Net Warten auf Injektion IC Net Start Datenaufnahme Warten auf IC Net E Gerät Modul Befehl Farameter Start IC Net C:\Programme\Metrohm\IC Net 2.3\IC Net\Systems\IC\PROBE.smt AT_CAL Gerät Modul Refehl Kommentar

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite	
S17.3	für	M	Mges	IC	MMgesIC2.2	9	
	_	MMgesIC2.2 = Ca, K, Mg, Na, NH ₄ , NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F					

Integration

Anionen hoch

Empfindlichkeit 50 Glättung 30 Minimale Höhe 0,01 mV 0,001 (mV) x min Minimale Fläche 2,5 min Integrationsstart Polarität + **Negative Peaks** aus Driftkompensation aus Overflow ignorieren aus Blindprobe subtrahieren aus Savitzky-Golay aus Ereignisse aktivieren aus

Ereignisse

Start [min]	Ende [min]	Ereignis	Parameter
2	2,8	Glättung	1
3,5	5,8	gemeinsame B	Basislinie
5,8	14,5	Tal-Tal	

Kationen hoch

Empfindlichkeit	50
Glättung	10
Minimale Höhe	0,005 mV
Minimale Fläche	0,0005 (mV) x min
Integrationsstart	3,5 min
Polarität	+
Negative Peaks	aus
Driftkompensation	aus
Overflow ignorieren	aus
Blindprobe subtrahieren	aus
Savitzky-Golay	aus
Ereignisse aktivieren	aus

Ereignisse

Start [min]	Ende [min]	Ereignis Par	ameter
4	5,5	Gemeinsame Basislinie	
5,5	13	Tal-Tal	
6,0	14,5	Minimale Fläche	0,02

Sammelanhang		Element	Form	
S17.3	für	M	Mges	

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC2.2	10
MMgesIC2.2 = Ca, K, Mg, Na, NH ₄ , NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F				

Anionen tief		
	Empfindlichkeit	100
	Glättung	5
	Minimale Höhe	0,01 mV
	Minimale Fläche	0,001 (mV) x min
	Integrationsstart	2,5 min
	Polarität	+
	Negative Peaks	aus
	Driftkompensation	aus
	Overflow ignorieren	aus
	Blindprobe subtrahieren	aus
	Savitzky-Golay	aus
	Ereignisse aktivieren	aus

Ereignisse

Start [min]	Ende [min]	Ereignis	Parameter
2	3	Glättung	2
3,5	14,5	Tal-Tal	
8,5	14,5	Glättung	20

Kationen tief

Empfindlichkeit	50
Glättung	7
Minimale Höhe	0,005 mV
Minimale Fläche	0,0005 (mV) x min
Integrationsstart	3,5 min
Polarität	+
Negative Peaks	aus
Driftkompensation	aus
Overflow ignorieren	aus
Blindprobe subtrahieren	aus
Savitzky-Golay	aus
Ereignisse aktivieren	aus

Ereignisse

Start [min]	Ende [min]	Ereignis	Parameter
3,8	14,5	Tal-Tal	
6,0	14,5	Minimale Höhe	0,1
6	14,5	Minimale Fläche	0,01
7	14,5	Glättung	20

Sammelanhang
S17.3

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC2.2	11
MMgesIC2.2 = Ca, K, Mg, Na, NH ₄ , NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F				

Komponenten

Anionen hoch

Name	Zeit [min]	Fenster [%]	Referenz
F	2,648	5,0	keine
CI	3,882	5,0	keine
NO2-N	4,442	5,0	keine
NO3-N	6,122	5,0	keine
PO4-P	9,720	5,0	keine
SO4-S	11.03	5.0	keine

Totzeit Manuell 1,9 min

Identifikation

Referenzkomponenten Höhe Andere Komponenten Zeit Retentionszeit nachführen aus

Kationen hoch

Name	Zeit [min]	Fenster	[%] Referenz
Na	4,782	5	keine
NH4-N	5,292	5	keine
K	6,940	5	keine
Mg	11,025	5	keine
Ca	14,127	5	keine

Totzeit Manuell 0,01 min

Identifikation

Referenzkomponenten Höhe Andere Komponenten Zeit Retentionszeit nachführen aus

Anionen tief

Name	Zeit [min]	Fenster [%] Referenz
F	2,648	5,0	keine
CI	3,882	5,0	keine
NO2-N	4,442	5,0	keine
NO3-N	6,122	5,0	keine
PO4-P	9,720	5,0	keine
SO4-S	11,03	5,0	keine

Totzeit Manuell 0,01 min

Identifikation

Referenzkomponenten Höhe Andere Komponenten Zeit Retentionszeit nachführen aus

Sammelanhang
C17 3

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC2.2	12
MMgesIC2.2 = Ca, K, Mg, Na, NH ₄ , NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F				

Kationen tief

Name	Zeit [min]	Fenste	r [%] Referenz
Na	4,782	5	keine
NH4-N	5,292	5	keine
K	6,940	5	keine
Mg	11,025	5	keine
Ca	14.127	5	keine

Totzeit Manuell 0,01 min

Identifikation

Referenzkomponenten Höhe Andere Komponenten Zeit Retentionszeit nachführen aus

Standards

Konzentrationseinheit

mg/L (= Eingabe, real jedoch μg/l!)

Name	1	2	3	4	5	6	7	8	9
F	5,00	10,00	20,00	40,00	60,00	80,00	100,00	150,00	200,00
CI	5,00	10,00	20,00	40,00	60,00	80,00	100,00	150,00	200,00
NO2-N	3,04	6,08	12,16	24,32	36,47	48,63	75,99	91,19	121,58
NO3-N	2,26	4,51	9,03	18,06	27,09	36,12	56,43	67,72	90,29
PO4-P	3,26	6,51	13,03	26,06	39,09	52,12	81,43	97,72	130,29
SO4-S	3,33	6,67	13,33	26,67	40,00	53,33	83,33	100,00	133,33
Na	5,00	10,00	20,00	40,00	60,00	80,00	100,00	150,00	200,00
NH4-N	3,89	7,78	15,55	31,10	46,66	62,21	77,76	116,64	155,52
K	5,00	10,00	20,00	40,00	60,00	80,00	100,00	150,00	200,00
Mg	5,00	10,00	20,00	40,00	60,00	80,00	100,00	150,00	200,00
Ca	5,00	10,00	20,00	40,00	60,00	80,00	100,00	150,00	200,00

Checkstandards

Name	1	2
F	2000	100
CI	2000	100
NO2-N	1824	75,99
NO3-N	1354	56,43
PO4-P	1954	81,43
SO4-S	2000	83,33
Na	2000	100
NH4-N	1555	77,76
K	2000	100
Mg	2000	100
Ca	2000	100

Sammelanhang
S17.3

Element	Form	Gerät	Methoden-Nr.	Seite		
M	Mges	IC	MMgesIC2.2	13		
MMgesIC2.2 = Ca, K, Mg, Na, NH ₄ , NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F						

Kalibrierung

Anionen hoch

Komponente	Messgrösse	Kurventyp	Gewichtung
F	Fläche	Quadratisch	1
CI	Fläche	Quadratisch	1
NO2-N	Fläche	Quadratisch	1
NO3-N	Fläche	Quadratisch	1
PO4-P	Fläche	Quadratisch	1
SO4-S	Fläche	Quadratisch	1

Kationen hoch

Komponente	Messgrösse	Kurventyp	Gewichtung
Na	Fläche	Linear durch 0	1
NH4-N	Fläche	Linear	1
K	Fläche	Linear durch 0	1
Mg Ca	Fläche	Linear durch 0	1
Ca	Fläche	Linear durch 0	1

Anionen tief

Komponente	Messgrösse	Kurventyp	Gewichtung
F	Fläche	Linear	1
CI	Fläche	Linear	1
NO2-N	Fläche	Linear	1
NO3-N	Fläche	Linear	1
PO4-P	Fläche	Quadratisch	1
SO4-S	Fläche	Linear	1

Kationen tief

Komponente	Messgrösse	Kurventyp	Gewichtung
Na	Fläche	Linear	1
NH4-N	Fläche	Linear	1
K	Fläche	Linear	1
Mg	Fläche	Linear	1
Ca	Fläche	Linear	1

Eigenschaften Kalibrierung

Kalibriermethode Externer Standard

Kalibriermodus Ersetzen

Funktionstyp Messgrösse = f (Konzentration)

Punkt im Ursprung zur Kalibrierkurve aus Blindwertkorrektur für Inline-Kalibrierung aus

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite
S17.3	für	M	Mges	IC	MMgesIC2.2	14
	•	MMgesIC2.2	2 = Ca, K, M	Ig, Na, NH ₄ , NO ₂ , NO	03, PO4, SO4, Cl, F	

Überwachung

Gültigkeit der Kalibrierung

Unbegrenzt ein Gleicher Tag aus Tage aus

Meldung

Meldung per E-Mail aus Akustisches Signal aus

Aktion

Meldung dokumentieren ein Meldung anzeigen aus Bestimmung abbrechen aus

Resultatdefinitionen

Report

Result

Drucker aus

Name Standarddrucker

PDF-Datei aus

Dateiname

E-Mail senden aus

E-Mailvorlage

Pharmacopöe

Pharmacopöe USP

Dezimalstellen der Resultate

Retentionszeit Höhe Fläche Kapazitätsfaktor Trennstufenzahl Gaussfaktor	2 3 3 3 0 3	Halbwertsbreite Höhenanteil Flächenanteil Auflösung Trennstufenzahl pro Meter Asymmetrie	2 3 3 3 0 3	
Konzentration	3	Konzentrationsanteil	3	
Standardkonzentration	3	Peakstart	2	
Peakende	2	a(0,044)	2	
b(0,044)	2	a(0,05)	2	
b(0,05)	2	a(0,10)	2	
b(0,10)	2	a(0,134)	2	
b(0,134)	2	a(0,324)	2	
b(0,324)	2	a(0,50)	2	
b(0,50)	2	a(0,61)	2	
b(0,61)	2	Basisbreite	2	
Hva	2	Hvb	2	
P/T-Verhältnis A	2	P/T-Verhältnis B	2	
k(0)	6	k(1)	6	
k(2)	6	k(3)	6	
Korrelationskoeffizient	6	Prozentuale Standardabwei	ichung	3
Mittelwert X	3	Mittelwert Y	3	
Standardabweichung X	3	Reststandardabweichung Y	3	
Wiederfindungsrate	3	Wiederfindungsrate (Aufsto	ckung)	3

Sammelanhang
S17.3

füi

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC2.2	15
MMgesIC2.	2 = Ca, K, M	Ig, Na, NH ₄ , NO ₂ , NO ₃ , F	PO ₄ , SO ₄ , Cl, F	

Datenbank

eichung 6-2008

Überwachung

RS.FFIC2-1

Untere Grenze =Case('SD.TYPEVALUE' = 1;95 * 2/100;

Case('SD.TYPEVALUE' =2;90 * 0,1/100;0))

Obere Grenze =Case('SD.TYPEVALUE' = 1;105 * 2/100;

Case('SD.TYPEVALUE' =2;110 * 0,1/100;0))

Einheit mg/L

Meldung Fluorid im Kontrollstandard außerhalb der

vorgegebenen Grenzen!

RS.CICIIC2-1

Untere Grenze =Case('SD.TYPEVALUE' = 1;95 * 2/100;

Case('SD.TYPEVALUE' =2;90 * 0,1/100;0)) =Case('SD.TYPEVALUE' = 1;105 * 2/100;

Case('SD.TYPEVALUE' =2;110 * 0,1/100;0))

Einheit mg/L

Obere Grenze

Obere Grenze

Meldung Chlorid im Kontrollstandard außerhalb der

vorgegebenen Grenzen!

RS.NaNaIC2-1

Untere Grenze =Case('SD.TYPEVALUE' = 1;95 * 2/100;

Case('SD.TYPEVALUE' =2;90 * 0,1/100;0)) =Case('SD.TYPEVALUE' = 1;105 * 2/100;

Case('SD.TYPEVALUE' =2;110 * 0,1/100;0))

Einheit mg/L

Meldung Natrium im Kontrollstandard außerhalb der

vorgegebenen Grenzen!

RS.KKIC2-1

Untere Grenze =Case('SD.TYPEVALUE' = 1;95 * 2/100;

Case('SD.TYPEVALUE' =2;90 * 0,1/100;0))

Obere Grenze = Case('SD.TYPEVALUE' = 1;105 * 2/100; Case('SD.TYPEVALUE' = 2;110 * 0,1/100;0))

mg/L

Meldung Kalium im Kontrollstandard außerhalb der

vorgegebenen Grenzen!

RS.CaCalC2-1

Einheit

Obere Grenze

Obere Grenze

Untere Grenze =Case('SD.TYPEVALUE' = 1;95 * 2/100;

Case('SD.TYPEVALUE' =2;90 * 0,1/100;0)) =Case('SD.TYPEVALUE' = 1;105 * 2/100;

Case('SD.TYPEVALUE' =2:110 * 0.1/100:0))

Einheit mg/L

Meldung Calcium im Kontrollstandard außerhalb der

vorgegebenen Grenzen!

RS.MgMgIC2-1

Untere Grenze =Case('SD.TYPEVALUE' = 1;95 * 2/100;

Case('SD.TYPEVALUE' =2;90 * 0,1/100;0)) =Case('SD.TYPEVALUE' = 1;105 * 2/100;

Casa('SD TVDE\/ALLIE' =2:110 * 0.1/100:0\)

Case('SD.TYPEVALUE' =2;110 * 0,1/100;0))

Einheit mg/L

Meldung Magnesium im Kontrollstandard außerhalb

der vorgegebenen Grenzen!

Sammelanhang
S17.3

Element Form Gerät Methoden-Nr. Seite
M Mges IC MMgesIC2.2 16

MMgesIC2.2 = Ca, K, Mg, Na, NH4, NO2, NO3, PO4, SO4, Cl, F

RS.NNO2IC2-1

Untere Grenze =Case('SD.TYPEVALUE' = 1;95 * 1,824

/100;Case('SD.TYPEVALUE' =2;90 *0,

07599/100;0))

Obere Grenze =Case('SD.TYPEVALUE' = 1;105 * 1,824

/100;Case('SD.TYPEVALUE' =2;110 *0,

07599/100;0))

Einheit mg/L

Meldung Nitrit im Kontrollstandard außerhalb der

vorgegebenen Grenzen!

RS.NNO3IC2-1

Untere Grenze =Case('SD.TYPEVALUE' = 1;95 * 1,354

/100;Case('SD.TYPEVALUE' =2;90 *0,

05643/100;0))

Obere Grenze =Case('SD.TYPEVALUE' = 1;105 * 1,354

/100;Case('SD.TYPEVALUE' =2;110 *0,

05643/100;0))

Einheit mg/L

Meldung Nitrat im Kontrollstandard außerhalb der

vorgegebenen Grenzen!

RS.SSO4IC2-1

Untere Grenze =Case('SD.TYPEVALUE' = 1;95 * 2/100;

Case('SD.TYPEVALUE' =2;90 *0,08333/100;

0))

Obere Grenze =Case('SD.TYPEVALUE' = 1;105 * 2/100;

Case('SD.TYPEVALUE' =2;110 *0,

08333/100;0))

Einheit mg/L

Meldung Sulfat im Kontrollstandard außerhalb der

vorgegebenen Grenzen!

RS.PPO4IC2-1

Untere Grenze =Case('SD.TYPEVALUE' = 1;95 * 1,954

/100;Case('SD.TYPEVALUE' =2;90 *0,

08143/100;0))

Obere Grenze =Case('SD.TYPEVALUE' = 1;105 * 1,954

/100;Case('SD.TYPEVALUE' =2;110 *0,

08143/100;0))

Einheit mg/L

Meldung Phosphat im Kontrollstandard außerhalb der

vorgegebenen Grenzen!

RS.NNH4IC2-1

Untere Grenze =Case('SD.TYPEVALUE' = 1;95 * 1,555

/100;Case('SD.TYPEVALUE' =2;90 *0,

07776/100;0))

Obere Grenze =Case('SD.TYPEVALUE' = 1;105 * 1,555

/100;Case('SD.TYPEVALUE' =2;110 *0,

07776/100;0))

Einheit mg/L

Meldung Ammonium im Kontrollstandard außerhalb der

vorgegebenen Grenzen!

Sammelanhang S17.3

für

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC2.2	17
MMgesIC2.	2 = Ca, K, M	Ig, Na, NH ₄ , NO ₂ , NO ₃ , F	PO ₄ , SO ₄ , Cl, F	

Benutzerdefinierte Resultate

FFIC2-1

Resultattyp Einzelresultat

Formel = Case('RS.Anions hoch.F.CONC' >= 'CV.Wechselgrenze F';

'RS.Anions hoch.F.CONC'; case(error('RS.Anionen tief.F.CONC')

=0;'RS.Anionen tief.F.CONC';"0";"0");0)

Einheit mg/L Dezimalstellen 3

Beschreibung

CICIIC2-1

Resultattyp Einzelresultat

Formel = Case('RS.Anions hoch.Cl.CONC' >= 'CV.Wechselgrenze Cl';

'RS.Anions hoch.Cl.CONC' ;case(error('RS.Anionen tief.Cl.CONC')

=0;'RS.Anionen tief.CI.CONC';"0";"0");0)

Einheit mg/L Dezimalstellen 3

Beschreibung

NNO2IC2-1

Resultattyp Einzelresultat

Formel = Case('RS.Anions hoch.NO2-N.CONC' >= 'CV.Wechselgrenze

NO2-N'; 'RS.Anions hoch.NO2-N.CONC'; case(error('RS.Anionen tief.NO2-N.CONC')=0; 'RS.Anionen tief.NO2-N.CONC'; "0"; "0"); 0)

Einheit mg/L Dezimalstellen 3

Beschreibung

NNO3IC2-1

Resultattyp Einzelresultat

Formel = Case('RS.Anions hoch.NO3-N.CONC' >= 'CV.Wechselgrenze

NO3-N'; 'RS.Anions hoch.NO3-N.CONC'; case(Error('RS.Anionen tief.NO3-N.CONC')=0;'RS.Anionen tief.NO3-N.CONC';"0";"0");0)

Einheit mg/L Dezimalstellen 3

Beschreibung

SSO4IC2-1

Resultattyp Einzelresultat

Formel = Case('RS.Anions hoch.SO4-S.CONC' >= 'CV.Wechselgrenze

SO4-S'; 'RS.Anions hoch.SO4-S.CONC'; case(error('RS.Anionen tief.SO4-S.CONC')=0;'RS.Anionen tief.SO4-S.CONC';"0";"0");0)

Einheit mg/L Dezimalstellen 3

Beschreibung

Sammelanhang S17.3

für

 Element
 Form
 Gerät
 Methoden-Nr.
 Seite

 M
 Mges
 IC
 MMgesIC2.2
 18

 MMgesIC2.2 = Ca, K, Mg, Na, NH4, NO2, NO3, PO4, SO4, Cl, F
 F
 18

PPO4IC2-1

Resultattyp Einzelresultat

Formel = Case('RS.Anions hoch.PO4-P.CONC' >= 'CV.Wechselgrenze

PO4-P'; 'RS.Anions hoch.PO4-P.CONC'; case(error('RS.Anionen tief.PO4-P.CONC')=0;'RS.Anionen tief.PO4-P.CONC';"0";"0");0)

Einheit mg/L

Dezimalstellen 3

Beschreibung

NaNaIC2-1

Resultattyp Einzelresultat

Formel = Case('RS.Kationen hoch.Na.CONC' >= 'CV.Wechselgrenze Na'

; 'RS.Kationen hoch.Na.CONC' ; case(error('RS.Kationen tief.Na.

CONC')=0;'RS.Kationen tief.Na.CONC';"0";"0");0)

Einheit mg/L Dezimalstellen 3

Beschreibung

NNH4IC2-1

Resultattyp Einzelresultat

Formel = Case('RS.Kationen hoch.NH4-N.CONC' >= 'CV.Wechselgrenze

NH4-N'; 'RS.Kationen hoch.NH4-N.CONC'; case(error('RS.

Kationen tief.NH4-N.CONC')=0;'RS.Kationen tief.NH4-N.CONC';"0";"

0") ;0) mg/L

3

Dezimalstellen Beschreibung

2000...0...

KKIC2-1

Einheit

Resultattyp Einzelresultat

Formel = Case('RS.Kationen hoch.K.CONC' >= 'CV.Wechselgrenze K';

'RS.Kationen hoch.K.CONC'; case(error('RS.Kationen tief.K.

CONC')=0;'RS.Kationen tief.K.CONC';"0";"0");0)

Einheit mg/L Dezimalstellen 3

Beschreibung

CaCalC2-1

Resultattyp Einzelresultat

Formel = Case('RS.Kationen hoch.Ca.CONC' >= 'CV.Wechselgrenze Ca'

; 'RS.Kationen hoch.Ca.CONC' ; case(error('RS.Kationen tief.Ca.

CONC')=0;'RS.Kationen tief.Ca.CONC':"0":"0") :0)

Einheit mg/L Dezimalstellen 3

Beschreibung

MgMgIC2-1

Resultattyp Einzelresultat

Formel = Case('RS.Kationen hoch.Mg.CONC' >= 'CV.Wechselgrenze

Mg'; 'RS.Kationen hoch.Mg.CONC'; case(error('RS.Kationen tief.

Mg.CONC')=0;'RS.Kationen tief.Mg.CONC';"0";"0");0)

Einheit mg/L Dezimalstellen 3

Beschreibung

Sammelanhan	g
S17.3	

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC2.2	19
MMgesIC2.	2 = Ca, K, M	Ig, Na, NH ₄ , NO ₂ , NO ₃ , F	PO ₄ , SO ₄ , Cl, F	

Methodeneigenschaften

Probedaten

Name Fixwert Untere Grenze Obere Grenze Ident
Probentyp
Position
Injektionen 1
Volumen 20
Verdünnung 1
Probenmenge
Info 1

Unterschriftenliste Methode

Sammelanhang		Element	Form	Gerät	Methoden-Nr.
S17.3	für	M	Mges	IC	MMgesIC2.2
	•	MMgesIC2.	2 = Ca, K, N	Ig, Na, NH ₄ , NO ₂ , NO ₃ ,	PO ₄ , SO ₄ , Cl, F

Seite

20

Sammelanhang	-
S17.4	fü

Element	Form	Gerät	Methoden-Nr.	Seite
M A	Mges Ax	IC	MMgesIC2.1 AAXIC2.3	1
MMgesIC2. AAXIC2.3		Ig, Na, NH ₄ PO ₄ , SO ₄ , Cl, F		

Datum: 1.6.2014

Grundeichung und Geräteparameter für IC Metrohm für die Methode ANULLIC

a. Verwendete Standards:

In den nachfolgenden Tabellen ist angegeben, wie viel mg/l des jeweiligen Anions oder Kations, bzw. wie viel ppb des jeweiligen Elements sich in den Standards für die Grundeichung befinden. Für Anionen und Kationen werden jeweils getrennte Standards angesetzt.

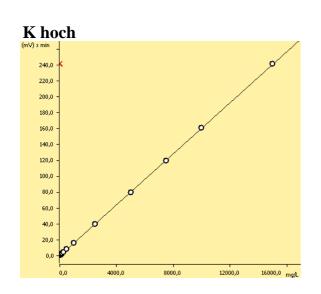
StdNr	:	- !	: :	N !	:	ω !	: :	4 !	: :	5 1 !
	mg/l lon	ppb Eleme	ent mg/l Ion	ppb Eleme	nt mg/l lon	ppb Eleme	nt mg/l Ion	ppb Elemer	nt mg/l Ion	ppb Elem
П	0,005	5,00	0,01	10,00	0,02	20,00	0,04	40,00	0,06	60,00
Ω	0,005	5,00	0,01	10,00	0,02	20,00	0,04	40,00	0,06	60,00
NO2	0,01	3,04	0,02	6,08	0,04	12,16	0,08	24,32	0,12	36,47
NO3	0,01	2,26	0,02	4,51	0,04	9,03	0,08	18,06	0,12	27,09
P04	0,01	3,26	0,02	6,51	0,04	13,03	0,08	26,06	0,12	39,09
S04	0,01	3,33	0,02	6,67	0,04	13,33	0,08	26,67	0,12	40,00
Na	0,005	5,00	0,01	10,00	0,02	20,00	0,04	40,00	0,06	60,00
NH4	0,005	3,89	0,01	7,78	0,02	15,55	0,04	31,10	0,06	46,66
×	0,005	5,00	0,01	10,00	0,02	20,00	0,04	40,00	0,06	60,00
Mg	0,005	5,00	0,01	10,00	0,02	20,00	0,04	40,00	0,06	60,00
Ca	0,005	5,00	0,01	10,00	0,02	20,00	0,04	40,00	0,06	60,00
StdNr		စ		7		∞		9		10
	mg/l lon	ppb Eleme	nt mg/l lon	ppb Eleme	nt mg/l lon	ppb Eleme	nt mg/I Ion	ppb Elemer	nt mg/l Ion	ppb Elem
П	0,08	80,00	0,10	100,00	0,15	150,00	0,20	200,00	0,25	250,00
Ω	0,08	80,00	0,10	100,00	0,15	150,00	0,20	200,00	0,25	250,00
NO2	0,16	48,63	0,25	75,99	0,30	91,19	0,40	121,58	0,50	151,98
NO3	0,16	36,12	0,25	56,43	0,30	67,72	0,40	90,29	0,50	112,87
P04	0,16	52,12	0,25	81,43	0,30	97,72	0,40	130,29	0,50	162,87
S04	0,16	53,33	0,25	83,33	0,30	100,00	0,40	133,33	0,50	166,67
Na	0,08	80,00	0,10	100,00	0,15	150,00	0,20	200,00	0,25	250,00
NH4	0,08	62,21	0,10	77,76	0,15	116,64	0,20	155,52	0,25	194,40
X	0,08	80,00	0,10	100,00	0,15	150,00	0,20	200,00	0,25	250,00
Mg	0,08	80,00	0,10	100,00	0,15	150,00	0,20	200,00	0,25	250,00
Ca	0,08	80,00	0 10	100 00	0 15	2000		200 00	0 25	000

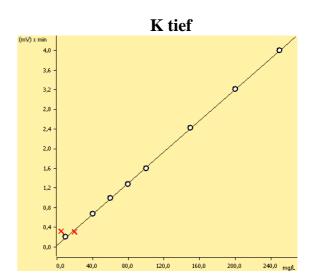
Sammelanhang	_	Elen
S17.4	für	\mathbf{N}
		A

Element	Form	Gerät	Methoden-Nr.	Seite
M A	Mges Ax	IC	MMgesIC2.1 AAXIC2.3	2
MMgesIC2. AAXIC2.3 =		Ig, Na, NH ₄ PO ₄ , SO ₄ , Cl, F		

Die Standards 1-10 werden aus der Stammlösung I (Anionen), bzw. Stammlösung II (Kationen) angesetzt, die Standards 11-18 aus den 1 g/l-Stammlösungen der Ionen. Die Herstellung der Stammlösungen für die Standardherstellung sind in der jeweiligen Methode angegeben. Es müssen für die Standards 1-10 bei den Kationen säuregespülte PFA-Kolben verwendet werden. Alle übrigen Standards werden in Glaskolben angesetzt. Für Kationen muss mit HNO₃ vorgespült werden, für Anionen mit demin. Wasser.

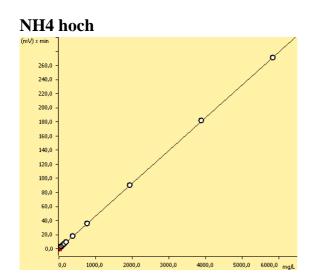
StdNr		10		11		12		13		14
	mg/l lon	ppb Elemer	nt mg/l lion	ppb Element	t mg/l lion	ppb Element	t mg/l Ion	ppb Element mg/l lon	mg/l lon	ppb Element
TI	0,25	250,00	0,50	500,00	1,00	1000,00 2,50	2,50	2500,00	5,00	5000,00
Ω	0,25	250,00	0,50	500,00	1,00					1000,00
	2,50	2500,00	5,00	5000,00						
-	0,50	151,98	1,00	303,95	2,00	607,90	5,00	1519,76	10,00	3039,51
NO3	0,50	112,87	1,00	225,73	2,00	451,47	5,00	1128,67	10,00	2257,34
	0,50	162,87	1,00	325,73	2,00	651,47	5,00	1628,66	10,00	3257,33
	0,50	166,67	1,00	333,33	2,00	666,67	5,00	1666,67	10,00	3333,33
Na	0,25	250,00	0,50	500,00	1,00	1000,00	2,50	2500,00	5,00	5000,00
NH4	0,25	194,40	0,50	388,80	1,00	777,60	2,50	1944,01	5,00	3888,02
~	0,25	250,00	0,50	500,00	1,00	1000,00	2,50	2500,00	5,00	5000,00
Mg	0,25	250,00	0,50	500,00	1,00	1000,00	2,50	2500,00	5,00	5000,00
Ca	0,25	250,00	0,50	500,00	1,00	1000,00	2,50	2500,00	5,00	5000,00
StdNr		15		16		17		18		19
	mg/I lon	ppb Element	nt mg/l Ion	ppb Element mg/l lon	t mg/l lon	ppb Element mg/l lion	t mg/l lion	ppb Element mg/l lon	mg/l lon	ppb Element
П	7,50	7500,00	10,00	10000,00						
Ω	7,50	7500,00	10,00	10000,00	15,00	15000,00				
NO2	15,00	4559,27	20,00	6079,03	30,00					
NO3	15,00	3386,00	20,00	4514,67	30,00	6772,01	40,00	9029,35		
P04	15,00	4885,99								
S04	15,00	5000,00	20,00	6666,67	30,00					
Na	7,50	7500,00								
NH4	7,50	5832,02								
~	7,50	7500,00	10,00	10000,00	15,00	15000,00				
Mg	7,50	7500,00								
Ca	7.50	7500.00	10.00	10000.00	15.00	15000.00				

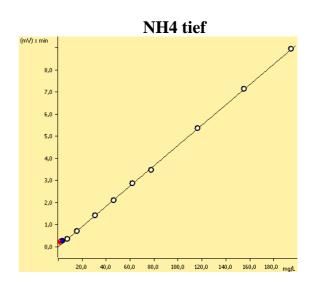

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.
S17.4	für	M	Mges	IC	MMgesIC2.1
		A	Ax		AAXIC2.3
	_	MMgesIC2.	1 = Ca, K, M	Ig. Na. NH ₄	


b. Eichkurven:

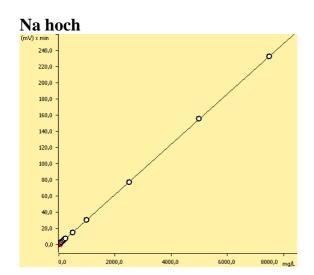
Dargestellt sind jeweils die Eichkurvenverläufe der hohen Eichung und des unteren Teils der tiefen Eichung. Die Art der Eichkurvenauswertung (linear, quadratisch, durch den Nullpunkt) ist in der Methodendokumentation (siehe c.) angegeben. Die Wechselgrenzen zwischen der tiefen und der hohen Eichung sind in der vorangegangenen Tabelle grau hinterlegt.

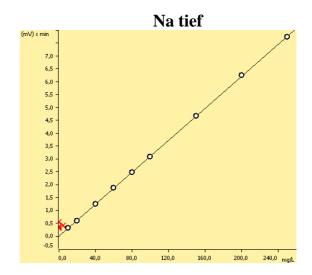
Achtung! In allen Graphiken ist die Einheit (mg/l) falsch! Es muss µg/l heißen!

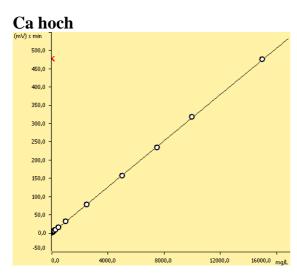

 $AAXIC2.3 = NO_2$, NO_3 , PO_4 , SO_4 , Cl, F

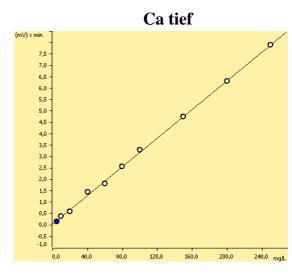


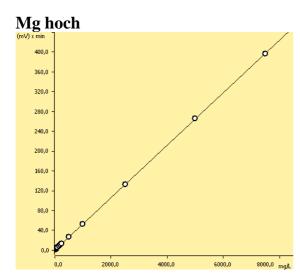
Seite

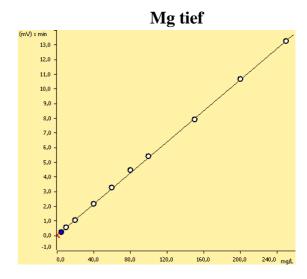

3

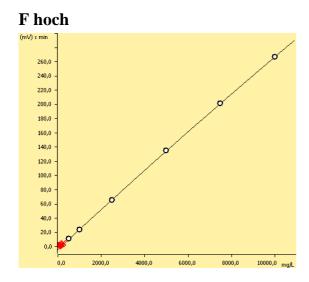


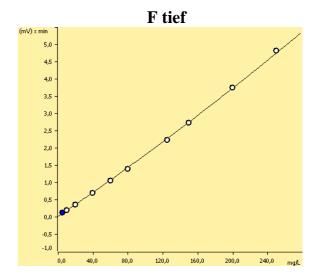


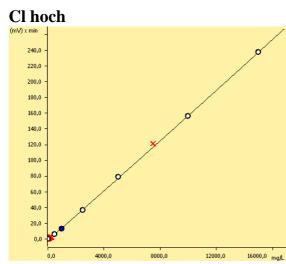

Sammelanhang	
S17.4	

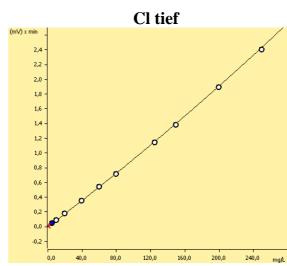

	Element	Form	Gerät	Methoden-Nr.	Seite
	M	Mges	IC	MMgesIC2.1	4
	A	Ax		AAXIC2.3	
MMgesIC2.1 = Ca, K, Mg, Na, NH ₄					
	AAXIC23-	- NO ₂ NO ₂	PO4 SO4 CL F		

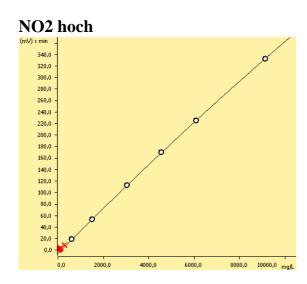


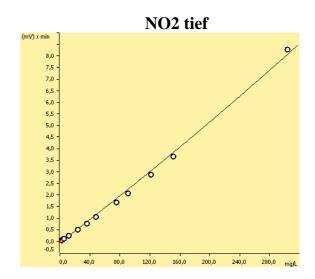


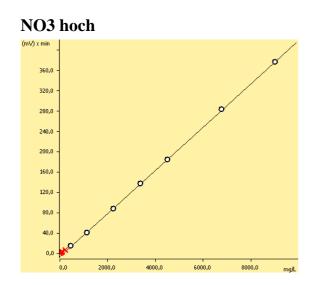


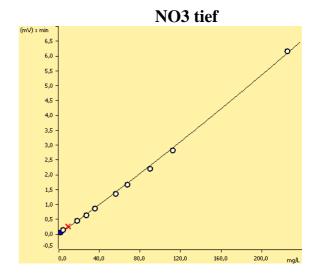


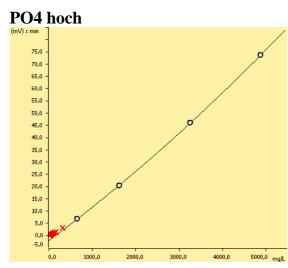

Sammelanhang
S17.4

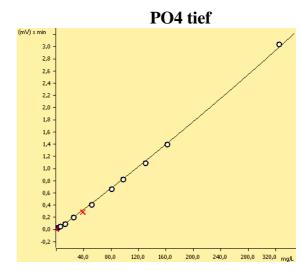

	Element	Form	Gerät	Methoden-Nr.	Seite
	M	Mges	IC	MMgesIC2.1	5
	A	Ax		AAXIC2.3	
MMgesIC2.1 = Ca, K, Mg, Na, NH4					
$AAXIC2.3 = NO_2, NO_3, PO_4, SO_4, Cl, F$					

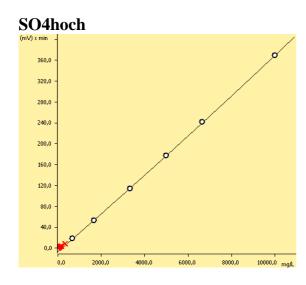









Sammelanhang
S17.4


	Element	Form	Gerät	Methoden-Nr.	Seite
	M	Mges	IC	MMgesIC2.1	6
	A	Ax		AAXIC2.3	
MMgesIC2.1 = Ca, K, Mg, Na, NH4					
	AAXIC2.3 =	= NO ₂ , NO ₃ ,	PO ₄ , SO ₄ , Cl, F		



Sammelanhang	
S17.4	

Element	Form	Gerät	Methoden-Nr.	Seite	
M A	Mges Ax	IC	MMgesIC2.1 AAXIC2.3	7	
MMgesIC2.1 = Ca, K, Mg, Na, NH ₄ AAXIC2.3 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F					
AAAIC2.5 -	-1002, 1003,	ГО4, SO4, CI, Г			

c. Methodenparamter

Im Folgenden ist vollständige Methodendokumentation des Gerätes mit allen Methodenparametern abgebildet:

Methodenparametern abgebildet:	
Methodenparameter	
Methodenname A8 K6 Juli 2014 FR (1) Speicherdatum Methode 2014-07-02 11:27:33 UTC+2 Methodenversion 4 Methodengruppe aktuelle Methoden Methodenstatus original Methode gespeichert von (voller Name) Methode gespeichert von (Kurzname) labor	
Startparameter	
771_Anionen	
Gerätetyp	
Kanal 2	
Warngrenze	mV
Gerätetyp	
Warngrenze	mV
Warngrenze	mV
Anionen tief	
Hardwarezuordnung	
Datenquelle Kanal 1 (771_Anionen) Kanal Analogsignal Injektionsventil nicht definiert Säule nicht definiert Pumpe nicht definiert	
Aufnahmedauer	mir
Anions hoch	
Hardwarezuordnung Datenquelle	
Kanal Analogsignal Injektionsventil nicht definiert Säule nicht definiert Pumpe nicht definiert Datenaufnahme	
Aufnahmedauer	mir
Kationen tief	
Hardwarezuordnung Datenquelle	
Injektionsventil	

Sammelanhang	
S17.4	

	Element	Form	Gerät	Methoden-Nr.	Seite
	M A	Mges Ax	IC	MMgesIC2.1 AAXIC2.3	8
MMgesIC2.1 = Ca, K, Mg, Na, NH ₄ AAXIC2.3 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F					

	Pumpe nicht definiert
	Datenaufnahme
	Aufnahmedauer
Kationen ho	och
	Hardwarezuordnung
	Datenquelle Kanal 1 (771_Kationen)
	Kanal
	Injektionsventil
	Säule nicht definiert
	Pumpe nicht definiert
	Datenaufnahme
	Aufnahmedauer

Hauptprogramm

Zeit	Gerät	Befehl	Kommentar	Nr.
	Modul	Parameter		
		Sequenz PROBE, Bedingung = 'SD. TYPENAME' = "Sample"		8
		Sequenz AN_KAT_CAL, Bedingung = 'SD. TYPENAME' <> "Sample"		1
	771_Anionen Kanal 1	Warten auf Injektion IC Net		3
0,0	Anionen tief	Start Datenaufnahme		2
0,0	Anions hoch	Start Datenaufnahme		4
	771_Kationen Kanal 1	Warten auf Injektion IC Net		5
0,0	Kationen tief	Start Datenaufnahme		9
0,0	Kationen hoch	Start Datenaufnahme		6
		Warten auf IC Net		7
PROB	E			
Zeit	Gerät Modul	Befehl Parameter	Kommentar	Nr.
		Start IC Net C:\Programme\Metrohm\IC Net 2.3\IC Net\Systems\IC\PROBE.smt		11

Sammelanhang
S17.4

	Element	Form	Gerät	Methoden-Nr.	Seite	
	M	Mges	IC	MMgesIC2.1	9	
	A	Ax		AAXIC2.3		
	$MMgesIC2.1 = Ca, K, Mg, Na, NH_4$					
$AAXIC2.3 = NO_2$, NO_3 , PO_4 , SO_4 , Cl , F						

AN_KAT_CAL

Zeit	Gerät Modul	Befehl Parameter	Kommentar	Nr.
		Start IC Net C:\Programme\Metrohm\IC Net\Systems\IC\STANDAR		17

Integration

Anionen tief

Empfindlichkeit	
Glättung	
Minimale Höhe	mV
Minimale Fläche	(mV) x min
Integrationsstart	min
Polarität	
Negative Peaks	
Driftkompensation aus	
Overflow ignorieren	
Blindprobe subtrahieren	
Savitzky-Golay aus	
Ereignisse aktivieren aus	

Ereignisse

Start [min]	Ende [min]	Ereignis	Parameter
2,76	4,3	Glättung	2
4,3	16,0	Tal-Tal	
8,5	14	Glättung	20

Anions hoch

Empfindlichkeit	60
Glättung	30
Minimale Höhe	1 mV
Minimale Fläche	1 (mV) x min
Integrationsstart	,8 min
Polarität	+
Negative Peaks	IS
Driftkompensation	IS
Overflow ignorieren	IS
Blindprobe subtrahieren	
Savitzky-Golav au	ıs

Start [min]	Ende [min]	Ereignis	Parameter
2,76	4,3	Glättung	1

Sammelanhang S17.4

Element	Form	Gerät	Methoden-Nr.	Seite	
M	Mges	IC	MMgesIC2.1	10	
A	Ax		AAXIC2.3		
MMgesIC2.1 = Ca, K, Mg, Na, NH ₄					
AAXIC2.3 =	= NO ₂ , NO ₃ ,	PO ₄ , SO ₄ , Cl. F			

	Start [min]	Ende [min]	Ereignis	Parameter
	4,3	6,65	Gemeinsame Basislinie	
	6,7	14	Tal-Tal	
onen tie		14	i ai- i ai	
onen tie				50
	•			
	Overflow ignori	ieren		aus
	Blindprobe sub	trahieren		aus
	Savitzky-Golay	'		aus
	Ereignisse akti	vieren		aus
	Ereignisse			
	Start [min]	Ende [min]	Ereignis	Parameter
	3,8	16,2	Tal-Tal	
	5,76	16,2	Minimale Höhe	0,1
	5,76		Minimale Höhe Minimale Fläche	
		16,2 16,2 16,2		0,1 0,01 20
onen ho	5,76 5,76 5,76	16,2	Minimale Fläche	0,01
onen ho	5,76 5,76 5,76 och	16,2 16,2	Minimale Fläche	0,01
onen ho	5,76 5,76 5,76 och Empfindlichkeit	16,2 16,2	Minimale Fläche Glättung	0,01 2050
onen ho	5,76 5,76 5,76 och Empfindlichkeit Glättung	16,2 16,2	Minimale Fläche Glättung	0,01 20 50 10
onen ho	5,76 5,76 5,76 cch Empfindlichkeit Glättung Minimale Höhe	16,2 16,2	Minimale Fläche Glättung	0,01 20 50 10
onen ho	5,76 5,76 5,76 cch Empfindlichkeit Glättung Minimale Höhe Minimale Fläch	16,2 16,2	Minimale Fläche Glättung	0,01 20 50 10 0,005 0,0005
onen ho	5,76 5,76 5,76 Empfindlichkeit Glättung Minimale Höhe Minimale Fläch Integrationssta	16,2 16,2	Minimale Fläche Glättung	0,01 20
onen ho	5,76 5,76 5,76 Empfindlichkeit Glättung Minimale Höhe Minimale Fläch Integrationssta	16,2 16,2	Minimale Fläche Glättung	0,01 20
onen ho	5,76 5,76 5,76 Empfindlichkeit Glättung Minimale Höhe Minimale Fläch Integrationssta Polarität Negative Peak	16,2 16,2	Minimale Fläche Glättung	0,01 20
onen ho	5,76 5,76 5,76 Empfindlichkeit Glättung Minimale Höhe Minimale Fläch Integrationssta Polarität Negative Peak	16,2 16,2	Minimale Fläche Glättung	0,01 20
onen ho	5,76 5,76 5,76 Empfindlichkeit Glättung Minimale Höhe Minimale Fläch Integrationssta Polarität Negative Peak Driftkompensat	16,2 16,2 t	Minimale Fläche Glättung	0,01 20
onen ho	5,76 5,76 5,76 Empfindlichkeit Glättung Minimale Höhe Minimale Fläch Integrationssta Polarität Negative Peak Driftkompensat Overflow ignori	16,2 16,2 t	Minimale Fläche Glättung	0,01 20
onen ho	5,76 5,76 5,76 Empfindlichkeit Glättung Minimale Höhe Minimale Fläch Integrationssta Polarität Negative Peak Driftkompensat Overflow ignori	16,2 16,2 t	Minimale Fläche Glättung	0,01 20
onen ho	5,76 5,76 5,76 ch Empfindlichkeit Glättung Minimale Höhe Minimale Fläch Integrationssta Polarität Negative Peak Driftkompensat Overflow ignori Blindprobe sub	16,2 16,2 t	Minimale Fläche Glättung	0,01 20
onen ho	5,76 5,76 5,76 ch Empfindlichkeit Glättung Minimale Höhe Minimale Fläch Integrationssta Polarität Negative Peak Driftkompensat Overflow ignori Blindprobe sub	16,2 16,2 t	Minimale Fläche Glättung	0,01 20
onen ho	5,76 5,76 5,76 5,76 Empfindlichkeit Glättung Minimale Höhe Minimale Fläch Integrationssta Polarität Negative Peak Driftkompensat Overflow ignori Blindprobe sub Savitzky-Golay Ereignisse akti	16,2 16,2 t	Minimale Fläche Glättung	0,01 20
onen ho	5,76 5,76 5,76 5,76 Empfindlichkeit Glättung Minimale Höhe Minimale Fläch Integrationssta Polarität Negative Peak Driftkompensat Overflow ignori Blindprobe sub Savitzky-Golay Ereignisse aktir	16,2 16,2 t	Minimale Fläche Glättung	0,01 20

Sammelanhang S17.4

für

	Element	Form	Gerät	Methoden-Nr.	Seite	
	M	Mges	IC	MMgesIC2.1	11	
	A	Ax		AAXIC2.3		
	MMgesIC2.1 = Ca, K, Mg, Na, NH4					
$AAXIC2.3 = NO_2, NO_3, PO_4, SO_4, Cl, F$						

Ereignisse

Start [min]	Ende [min]	Ereignis	Parameter
5,76	16,2	Minimale Fläche	0,02
5,76	16,2	Minimale Höhe	0,1

Komponenten

Anionen tief

Name	Zeit [min]	Fenster [%]	Referenz
F	3,543	5,0	keine
CI	4,745	5,0	keine
NO2-N	5,443	5,0	keine
NO3-N	7,19	5,0	keine
PO4-P	10,958	5,0	keine
SO4-S	12,135	5,0	keine

Identifikation

Referenzkomponenten Höhe
Andere Komponenten Zeit
Retentionszeit nachführen aus

Anions hoch

Name	Zeit [min]	Fenster [%]	Referenz
F	3,543	5,0	keine
CI	4,745	5,0	keine
NO2-N	5,443	5,0	keine
NO3-N	7,19	5,0	keine
PO4-P	10,958	5,0	keine
SO4-S	12,135	5,0	keine

Identifikation

Kationen tief

Name	Zeit [min]	Fenster [%]	Referenz
Na	4,802	5	keine
NH4-N	5,267	5	keine
K	6,762	5	keine
Mg	11,627	5	keine

Sammelanhang S17.4

für

Element	Form	Gerät	Methoden-Nr.	Seite	
M	Mges	IC	MMgesIC2.1	12	
A	Ax		AAXIC2.3		
MMgesIC2.	1 = Ca, K, M	Ig, Na, NH ₄			
AAXIC2.3 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F					

	Name			Ze	eit [min]	F	enster [9	6]		Re	ferenz
	Ca			14	,70	5					keine
	Totzeit . Identifikat							Manu	ell		0,01
	Refer	enzkomp	onenter	١							Höhe
	Ander	re Kompo	onenten								. Zeit
	Reten	tionszeit	nachfüh	ren							. aus
ationen h	ioch										
	Name			Ze	eit [min]	F	enster [%	6]		Re	ferenz
	Na			4,	802	5					keine
	NH4-N			5,	267	5					keine
	K			6,	762	5					keine
	Mg			11	,627	5					keine
	Ca			14	,70	5					keine
	Totzeit .							Manu	ell		. 0,01
	Identifikat	ion									
	Reten	tionszeit	nachtur	iren		• • • •				• • • • • •	. aus
tandards	s										
		ationsein	heit								mg/L
	Konzentra										
	Name	1	2	3	4	5	6	7	8	9	
			2 10,00	3 20,00	4 40,00		6 80,00		8 150,00	9 200,00	
	Name	1									
	Name F	1 5,00	10,00	20,00	40,00	60,00 60,00	80,00	125,00	150,00	200,00	
	Name F CI	1 5,00 5,00	10,00 10,00	20,00	40,00 40,00	60,00 60,00 36,47	80,00 80,00	125,00 125,00	150,00 150,00	200,00	
	Name F CI NO2-N	1 5,00 5,00 3,04	10,00 10,00 6,08	20,00 20,00 12,16	40,00 40,00 24,32	60,00 60,00 36,47	80,00 80,00 48,63	125,00 125,00 75,99	150,00 150,00 91,19	200,00 200,00 121,58	
	Name F CI NO2-N NO3-N	1 5,00 5,00 3,04 2,26	10,00 10,00 6,08 4,51	20,00 20,00 12,16 9,03	40,00 40,00 24,32 18,06	60,00 60,00 36,47 27,09	80,00 80,00 48,63 36,12	125,00 125,00 75,99 56,43	150,00 150,00 91,19 67,72	200,00 200,00 121,58 90,29	
	Name F CI NO2-N NO3-N PO4-P	1 5,00 5,00 3,04 2,26 3,26	10,00 10,00 6,08 4,51 6,51	20,00 20,00 12,16 9,03 13,03	40,00 40,00 24,32 18,06 26,06	60,00 60,00 36,47 27,09 39,09	80,00 80,00 48,63 36,12 52,12	125,00 125,00 75,99 56,43 81,43	150,00 150,00 91,19 67,72 97,72	200,00 200,00 121,58 90,29 130,29	
	Name F CI NO2-N NO3-N PO4-P SO4-S	1 5,00 5,00 3,04 2,26 3,26 3,33	10,00 10,00 6,08 4,51 6,51 6,67	20,00 20,00 12,16 9,03 13,03 13,33	40,00 40,00 24,32 18,06 26,06 26,67	60,00 60,00 36,47 27,09 39,09 40,00	80,00 80,00 48,63 36,12 52,12 53,33	125,00 125,00 75,99 56,43 81,43 83,33	150,00 150,00 91,19 67,72 97,72 100,00	200,00 200,00 121,58 90,29 130,29 133,33	
	Name F CI NO2-N NO3-N PO4-P SO4-S Na NH4-N K	1 5,00 5,00 3,04 2,26 3,26 3,33 5,00 3,89 5,00	10,00 10,00 6,08 4,51 6,51 6,67 10,00 7,78 10,00	20,00 20,00 12,16 9,03 13,03 13,33 20,00 15,55 20,00	40,00 40,00 24,32 18,06 26,06 26,67 40,00 31,10 40,00	60,00 60,00 36,47 27,09 39,09 40,00 60,00 46,66 60,00	80,00 80,00 48,63 36,12 52,12 53,33 80,00 62,21 80,00	125,00 125,00 75,99 56,43 81,43 83,33 100,00 77,76 100,00	150,00 150,00 91,19 67,72 97,72 100,00 150,00	200,00 200,00 121,58 90,29 130,29 133,33 200,00 155,52 200,00	
	Name F CI NO2-N NO3-N PO4-P SO4-S Na NH4-N	1 5,00 5,00 3,04 2,26 3,26 3,33 5,00 3,89	10,00 10,00 6,08 4,51 6,51 6,67 10,00 7,78	20,00 20,00 12,16 9,03 13,03 13,33 20,00 15,55	40,00 40,00 24,32 18,06 26,06 26,67 40,00 31,10	60,00 60,00 36,47 27,09 39,09 40,00 60,00 46,66	80,00 80,00 48,63 36,12 52,12 53,33 80,00 62,21	125,00 125,00 75,99 56,43 81,43 83,33 100,00 77,76	150,00 150,00 91,19 67,72 97,72 100,00 150,00 116,64	200,00 200,00 121,58 90,29 130,29 133,33 200,00 155,52	

Checkstandards

Sammelanhang S17.4

für

Element	Form	Gerät	Methoden-Nr.	Seite		
M	Mges	IC	MMgesIC2.1	13		
A	Ax		AAXIC2.3			
MMgesIC2	MMgesIC2.1 = Ca, K, Mg, Na, NH ₄					
AAXIC2.3	AAXIC2.3 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F					

Name	1	2
F	2000	100
CI	2000	100
NO2-N	1824	75,99
NO3-N	1354	56,43
PO4-P	1954	81,43
SO4-S	2000	83,33
Na	2000	100
NH4-N	1555	77,76
K	2000	100
Mg	2000	100
Ca	2000	100

Kalibrierung

Anionen tief

Komponente	Messgrösse	Kurventyp	Gewichtung
F	Fläche	Quadratisch	1/Konzentration
CI	Fläche	Quadratisch	1/Konzentration
NO2-N	Fläche	Quadratisch	1/Konzentration
NO3-N	Fläche	Quadratisch	1/Konzentration
PO4-P	Fläche	Quadratisch	1/Konzentration
SO4-S	Fläche	Quadratisch	1/Konzentration

Anions hoch

Komponente	Messgrösse	Kurventyp	Gewichtung
F	Fläche	Quadratisch	1
CI	Fläche	Quadratisch	1
NO2-N	Fläche	Quadratisch	1
NO3-N	Fläche	Quadratisch	1
PO4-P	Fläche	Quadratisch	1
SO4-S	Fläche	Quadratisch	1

Kationen tief

Komponente	Messgrösse	Kurventyp	Gewichtung
Na	Fläche	Linear	1
NH4-N	Fläche	Linear	1
K	Fläche	Linear	1
Mg	Fläche	Linear	1
Ca	Fläche	Linear	1

Sammelanhang S17.4

Element	Form	Gerät	Methoden-Nr.	Seite	
M	Mges	IC	MMgesIC2.1	14	
A Ax			AAXIC2.3		
MMgesIC2.1 = Ca, K, Mg, Na, NH ₄					
AAXIC2.3 =	= NO ₂ , NO ₃ ,	PO ₄ , SO ₄ , Cl, F			

Kationen ho	ch			
	Komponente	Messgrösse	Kurventyp	Gewichtung
	Na	Fläche	Linear durch 0	1
	NH4-N	Fläche	Linear	1
	K	Fläche	Linear durch 0	1
	Mg	Fläche	Linear durch 0	1
	Ca	Fläche	Linear durch 0	1
Eigenschafte	en Kalibrierung			
	Kalibriermethode			. Externer Standard
	Kalibriermodus			Ersetzen
	Funktionstyp		Messgröss	se = f(Konzentration)
	Punkt im Ursprung zur Kalibrier	kurve		aus
	Blindwertkorrektur für Inline-Ka	librierung		aus
Überwachun	g			
	Gültigkeit der Kalibrierung			
	Unbegrenzt			ein
	Gleicher Tag			
	Tage			aus
	Meldung			
	Meldung per E-Mail			aus
	Akustisches Signal			
	Aktion			
	Meldung dokumentieren			ein
	Meldung anzeigen			
	Bestimmung abbrechen			
Resultatdet	tinitionen			
Report				
	Result			
	Drucker			
	Name			. Standarddrucker
	PDF-Datei			aus
	Dateiname			
	E-Mail senden			aus
	E-Mailvorlage			
Pharmacopö	ie			
	Pharmacopöe			USP
Dezimalstelle	en der Resultate			
	Retentionszeit	2	Halbwertsbreite	2
	Höhe	3	Höhenanteil	3
	Fläche	3	Flächenanteil	3
	Kapazitätsfaktor			3
	Trennstufenzahl		•	Meter 0
	Gaussfaktor		-	3

Sammelanhang
S17.4

Element	Form	Gerät	Methoden-Nr.	Seite
M A	Mges Ax	IC	MMgesIC2.1 AAXIC2.3	15
MMgesIC2.1 = Ca, K, Mg, Na, NH ₄ AAXIC2.3 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F				

Dezimalstellen	der Resultate	
	Konzentration	Konzentrationsanteil 3
	Konzentrationsmittelwert 3	Standardabweichung 3 Konzentrationsmittelwert
	Konfidenzintervall, 95% 3	Nachweisgrenze, 95% Konfidenz 3
	Standardkonzentration 3	Peakstart 2
	Peakende 2	a(0,044)
	b(0,044) 2	a(0,05)
	b(0,05)	a(0,10)
	b(0,10) 2	a(0,134) 2
	b(0,134)2	a(0,324)
	b(0,324) 2	a(0,50)
	b(0,50) 2	a(0,61)
	b(0,61) 2	Basisbreite
	Hva 2	Hvb
	P/T-Verhältnis A	P/T-Verhältnis B 2
	k(0) 6	k(1) 6
	k(2) 6	k(3) 6
	Korrelationskoeffizient 6	Prozentuale Standardabweichung 3
	Mittelwert X 3	Mittelwert Y
	Standardabweichung X	Reststandardabweichung Y 3
	Wiederfindungsrate 3	Wiederfindungsrate (Aufstockung) 3
Datenbank	Wildermitted Inguitation	Wildermiddingsrate (Adiotockang)
	8 K6 Juli 2014 FN (1) Datenbank 1	
Überwachung	o No Suil 2014 F N (1) Date I Dalik T	
_	S.FF	
	Untere Grenze	=Case('SD TYPEVALUE' = 1:95 * 2/100:
	C	Case('SD.TYPEVALUE' =2;90 * 0,1/100;0))
	Obere Grenze	Case('SD.TYPEVALUE' = 1;105 * 2/100; ase('SD.TYPEVALUE' =2;110 * 0,1/100;0))
	Einheit	
	Meldung	Fluorid im Kontrollstandard außerhalb der
		vorgegebenen Grenzen!
R	S.CICI	
	Untere Grenze	=Case('SD.TYPEVALUE' = 1;95 * 2/100; case('SD.TYPEVALUE' =2;90 * 0,1/100;0))
	Obere Grenze	Case('SD.TYPEVALUE' = 1;105 * 2/100; ase('SD.TYPEVALUE' = 2;110 * 0,1/100;0))
	Einheit	
	Meldung	
	Meldang	vorgegebenen Grenzen
R	S.NaNages	
	Untere Grenze	=Case('SD.TYPEVALUE' = 1;95 * 2/100;
	C	Case('SD.TYPEVALUE' =2;90 * 0,1/100;0))
		ase('SD.TYPEVALUE' =2;110 * 0,1/100;0))
	Einheit	
	Meldung	Natrium im Kontrollstandard außerhalb der vorgegebenen Grenzen!

Sammelanhang
S17.4

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC2.1	16
A	Ax		AAXIC2.3	
MMgesIC2.1 = Ca, K, Mg, Na, NH ₄				
$AAXIC2.3 = NO_2, NO_3, PO_4, SO_4, Cl, F$				

Überwachung

ing	
RS.KKges	
Untere Grenze))
Obere Grenze = Case('SD.TYPEVALUE' = 1;105 * 2/100); (((
Einheit	
Meldung Kalium im Kontrollstandard außerhalb de vorgegebenen Grenzer	
RS.CaCages	
Untere Grenze = Case('SD.TYPEVALUE' = 1;95 * 2/100	
Obere Grenze = Case('SD.TYPEVALUE' = 1;105 * 2/100 Case('SD.TYPEVALUE' = 2;110 * 0,1/100;0); ())
Einheit	m
Meldung	
RS.MgMgges	
Untere Grenze = Case('SD.TYPEVALUE' = 1;95 * 2/100); (((
Obere Grenze); (((
Einheit	m
Meldung Magnesium im Kontrollstandard außerhal der vorgegebenen Grenzer	b n!
RS.NNO2	
Untere Grenze = Case('SD.TYPEVALUE' = 1;95 * 1,82 /100;Case('SD.TYPEVALUE' = 2;90 *(07599/100;0	0,
Obere Grenze = 1;105 * 1,82 /100;Case('SD.TYPEVALUE' = 1;105 * 1,82 /100;Case('SD.TYPEVALUE' = 2;110 *(0,
Einheit	m
Meldung Nitrit im Kontrollstandard außerhalb de vorgegebenen Grenzer	
RS.NNO3	
Untere Grenze = Case('SD.TYPEVALUE' = 1;95 * 1,35 /100;Case('SD.TYPEVALUE' = 2;90 *(05643/100;0	0,
Obere Grenze = Case('SD.TYPEVALUE' = 1;105 * 1,35 /100;Case('SD.TYPEVALUE' =2;110 *(05643/100;0	0,
Einheit	m
Meldung Nitrat im Kontrollstandard außerhalb de vorgegebenen Grenzer	
RS.SSO4	
Untere Grenze = Case('SD.TYPEVALUE' = 1;95 * 2/100 Case('SD.TYPEVALUE' = 2;90 *0,08333/100 0	0;
Obere Grenze =Case('SD.TYPEVALUE' = 1;105 * 2/100	0,

Sammelanhang
S17.4

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC2.1	17
A	Ax		AAXIC2.3	
MMgesIC2.1 = Ca, K, Mg, Na, NH ₄				
AAXIC2.3 = NO2, $NO3$, $PO4$, $SO4$, CI , F				

Überwachung
Einheit
Meldung Sulfat im Kontrollstandard außerhalb der
vorgegebenen Grenzen!
RS.PPO4
Untere Grenze = Case('SD.TYPEVALUE' = 1;95 * 1,954 /100;Case('SD.TYPEVALUE' = 2;90 *0, 08143/100;0))
Obere Grenze = Case('SD.TYPEVALUE' = 1;105 * 1,954 /100;Case('SD.TYPEVALUE' =2;110 *0, 08143/100;0))
Einheit
Meldung Phosphat im Kontrollstandard außerhalb der
vorgegebenen Grenzen! RS.NNH4
1.00
Untere Grenze = 1;95 * 1,555 /100;Case('SD.TYPEVALUE' = 2;90 *0, 07776/100;0))
Obere Grenze = Case('SD.TYPEVALUE' = 1;105 * 1,555 /100;Case('SD.TYPEVALUE' = 2;110 *0, 07776/100;0))
Einheit
Meldung Ammonium im Kontrollstandard außerhalb der
vorgegebenen Grenzen!
Benutzerdefinierte Resultate
FF
Resultattyp Einzelresultat
Formel = Case('RS.Anions hoch.F.CONC' >= 'CV.Wechselgrenze F'; 'RS. Anions hoch.F.CONC'; case(error('RS.Anionen tief.F.CONC')=0;'RS. Anionen tief.F.CONC';"0";"0"); case(Error('RS.Anions hoch.F. CONC')=1 and Error('RS.Anionen tief.F.CONC')=0;'RS.Anionen tief.F.CONC';"0"))
Einheit
Dezimalstellen
Beschreibung
CICI
Resultattyp Einzelresultat
Formel = Case('RS.Anions hoch.CI.CONC' >= 'CV.Wechselgrenze Cl'; 'RS.Anions hoch.CI.CONC'; case(error('RS.Anionen tief.CI.CONC') =0; 'RS.Anionen tief.CI.CONC'; "0"; "0"); case(Error('RS.Anions hoch. CI.CONC') =1 and Error('RS.Anionen tief.CI.CONC') =0; 'RS.Anionen
tief.Cl.CONC';"0"))
Einheit
Dezimalstellen
Beschreibung
NNO2
Resultattyp Einzelresultat
Formel = Case('RS.Anions hoch.NO2-N.CONC' >= 'CV.Wechselgrenze
NO2-N'; 'RS.Anions noch.NO2-N.CONC' >= 'CV.Wechseigrenze NO2-N'; 'RS.Anions hoch.NO2-N.CONC'; case(error('RS.Anionen tief.NO2-N.CONC')=0; 'RS.Anionen tief.NO2-N.CONC'; "0"; "0"); case(Error('RS.Anions hoch.NO2-N.CONC')=1 and Error('RS.Anionen tief.NO2-N.CONC')=0; 'RS.Anionen tief.NO2-N.CONC'; "0"))

Sammelanhang
S17.4

Element	Form	Gerät	Methoden-Nr.	Seite
M A	Mges Ax	IC	MMgesIC2.1 AAXIC2.3	18
MMgesIC2. AAXIC2.3 =		Ig, Na, NH ₄ PO ₄ , SO ₄ , Cl, F		

Benutzerdefinierte Resultate

finierte Resultate
Einheit
Dezimalstellen
Beschreibung
NNO3
Resultattyp Einzelresultat
Formel = Case('RS.Anions hoch.NO3-N.CONC' >= 'CV.Wechselgrenze
NO3-N'; 'RS.Anions hoch.NO3-N.CONC'; case(Error('RS.Anionen tief.NO3-N.CONC')=0;'RS.Anionen tief.NO3-N.CONC';"0";"0"); case (Error('RS.Anions hoch.NO3-N.CONC')=1 and Error('RS.Anionen tief.NO3-N.CONC')=0;'RS.Anionen tief.NO3-N.CONC';"0"))
Einheit
Dezimalstellen
Beschreibung
SSO4
Resultattyp Einzelresultat
Formel =Case('RS.Anions hoch.SO4-S.CONC' >= 'CV.Wechselgrenze SO4-S'; 'RS.Anions hoch.SO4-S.CONC'; case(error('RS.Anionen tief.SO4-S.CONC')=0;'RS.Anionen tief.SO4-S.CONC',"0";"0"); case(Error('RS.Anions hoch.SO4-S.CONC')=1 and Error('RS.Anionen tief.SO4-S.CONC')=0;'RS.Anionen tief.SO4-S.CONC';"0"))
Einheit
Dezimalstellen
Beschreibung
PPO4
Resultattyp
Formel = Case('RS.Anions hoch.PO4-P.CONC' >= 'CV.Wechselgrenze PO4-P'; 'RS.Anions hoch.PO4-P.CONC'; case(error('RS.Anionen tief.PO4-P.CONC')=0;'RS.Anionen tief.PO4-P.CONC';"0";"0"); case(Error('RS.Anions hoch.PO4-P.CONC')=1 and Error('RS.Anionen tief.PO4-P.CONC')=0;'RS.Anionen tief.PO4-P.CONC';"0"))
Einheit
Dezimalstellen
Beschreibung
NaNages
Resultattyp Einzelresultat
Formel = Case('RS.Kationen hoch.Na.CONC' >= 'CV.Wechselgrenze Na'; 'RS.Kationen hoch.Na.CONC'; case(error('RS.Kationen tief.Na.CONC')=0;'RS.Kationen tief.Na.CONC';"0";"0"); case(Error('RS.Kationen hoch.Na.CONC')=1 and Error('RS.Kationen tief.Na.CONC')=0;'RS.Kationen tief.Na.CONC';"0")
Einheit
Dezimalstellen
Beschreibung
NNH4
Resultattyp Einzelresultat

Sammelanhang S17.4

für

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC2.1	19
A	Ax		AAXIC2.3	
MMgesIC2.	1 = Ca, K, M	Ig, Na, NH ₄		
AAXIC2.3 =	= NO ₂ , NO ₃ ,	PO ₄ , SO ₄ , Cl. F		

Benutzerdef

Benutzerdefinierte Resultate		
Formel	=Case('RS.Kationen hoch.NH4-N.CONC' >= 'C' NH4-N'; 'RS.Kationen hoch.NH4-N.CONC' Kationen tief.NH4-N.CONC')=0;'RS.Kationen tief.NH0"); case(Error('RS.Kationen hoch.NH4-N.CONC')=0;'RS.Kationen tief.NH4-N.CONC')=0;'RS.Kationen tief.NH4-N.CONC'	; case(error('RS. H4-N.CONC';"0";" IC')=1 and Error(
Einheit		ppm
Dezimalstellen		3
Beschreibung		
KKges		
	Einzelresultat	
Formel	. =Case('RS.Kationen hoch.K.CONC' >= 'CV.We 'RS.Kationen hoch.K.CONC' ; case(error('R CONC')=0;'RS.Kationen tief.K.CONC';"0";"0") Kationen hoch.K.CONC')=1 and Error('RS.Kation =0;'RS.Kationen tief.	S.Kationen tief.K.; case(Error('RS. en tief.K.CONC')
Einheit		ppm
Dezimalstellen		3
Beschreibung		
CaCages		
Resultattyp	Einzelresultat	
Formei	= Case('RS.Kationen hoch.Ca.CONC' >= 'CV.W ; 'RS.Kationen hoch.Ca.CONC' ; case(error('RS CONC')=0;'RS.Kationen tief.Ca.CONC';"0";"0") Kationen hoch.Ca.CONC')=1 and Error('RS.Kation)=0;'RS.Kationen tief	.Kationen tief.Ca. ; case(Error('RS. en tief.Ca.CONC'
Einheit		ppm
Dezimalstellen		3
Beschreibung		
MgMgges		
Resultattyp	Einzelresultat	
Formel	= Case('RS.Kationen hoch.Mg.CONC' >= 'C' Mg'; 'RS.Kationen hoch.Mg.CONC'; case(error(Mg.CONC')=0;'RS.Kationen tief.Mg.CONC';"0"; ('RS.Kationen hoch.Mg.CONC')=1 and Error('RS. CONC')=0;'RS.Kationen tief.	'RS.Kationen tief. "0") ; case(Error .Kationen tief.Mg.
Einheit		ppm
Beschreibung		
Methodeneigenschaften		
•		
Probendaten		
Name	Fixwert Untere Grenze	Obere Grenze
Ident		
Probentyp		
Position		
Injektionen	1	
Volumen	20	

Sammelanhang
S17.4

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC2.1	20
A	Ax		AAXIC2.3	
MMgesIC2.	1 = Ca, K, M	Ig, Na, NH ₄		
AAXIC2.3 =	= NO ₂ , NO ₃ ,	PO ₄ , SO ₄ , Cl, F		

Probendaten

Name	Fixwert	Untere Grenze	Obere Grenze
Verdünnung			
Probenmenge			
Info 1			

Methodenkommentar

Applikationsnotiz

Sammelanhang	
S24.1	

Element	Form	Gerät	Methoden-Nr.	Seite	
M	Mges	ICP(sim)	MMgesICP20.1	1	
MMgesICP20.1 = Al, Ca, Fe, K, Mg, Mn, Na, P, S					

Datum:

01.05.2014

Geräteparameter für ICP iCAP 7400 Radial (Thermo Fisher) für die Methoden ANULL, ANULLIC, EXT1:2H2O1.1, GBL1.1, DAN1.1Pflanze, DAN2.2Pflanze, DAN1.1Humus, DAN2.2Humus

ANALYSEN-VOREINSTELLUNGEN

	Analysen-Vo	reinstellunge	n		
Probeoptionen	#Mess.:	4			
	Verzögerungszeit:	0,0 Sekunder	1		
	Probenspülzeit:	90 Sekunder	ì		
19	Analysenmodus	Normal			
Quelle	Probenzufuhr	Zerstäuber			
Analyse Maximale	Niedriger WL-Bereich	10			
Integrationszeit (Sek)	Hoher WL-Bereich:	15			
Kalibrationsmodus	Konzentration				
Aufnahmeoptionen für Full	Intelli-Frame:		Ja		
Frames	Max Integrationszeit (Sek):		30		
	WL-Bereich:		UV		
	Auto-Inkrement der Probens	amen:	Ja		
	Nutze Eingabe der Probenn	nasse:	Nein		
	Plasmaeir	nstellungen			
Zerstäuberpumpe	Spülpumprate (U/min):		50		
	Analysenpumprate (U/min):		50		
	Pumpenrelaxationszeit (Sel	<):	0		
	Pumpenschlauch-Typ:		Tygon Ora	nge	e/White
	HF-Leistung:		1225		w
	Zerstäubergasstrom:		0,55		L/min
	Hilfsgas:		0,5	Mc	L/min

Sammelanhang	_
S24.1	1

Element	Form	Gerät	Methoden-Nr.	Seite	
M	Mges	ICP(sim)	MMgesICP20.1	2	
MMgesICP20.1 = Al, Ca, Fe, K, Mg, Mn, Na, P, S					

REPORT

SEQUENZAUTOMATION

Report Sequenzautomation

Initialisierungsaktionen

Fehleraktionen Operation

Kalibrieren Keine K1 Keine

Am Ende der 'Initialisierungsaktionen' Sequenz bei jedem QC-Fehler anhalten? Nein

Kontinuierliche Aktionen

Operation Fehleraktionen Frequenz Kalibrieren, Re-Check QC K1 21 21

Spülen

Abschlußaktionen

Operation Fehleraktionen

Keine

Am Ende der 'Abschlußaktionen' Daten bei jedem QC-Fehler ungültig erklären. Nein

Globale QC-Eigenschaften

Zahl mißlungener Linien für QC-Versagen: 1 Maximale QC/Std-Zugriffe je Probenposition: 8 Nur Linien mit QC-Fehler neumessen?: Nein Alarmton beim ersten QC-Fehler?: Nein Alarmton beim zweiten QC-Fehler?: Nein Extra Spülung vor dem QC-Check Ja Max Versuche Rekalibr.-Wiederh. 1 Max Versuche QC-Wiederh. 1 Max Versuche Kalibr.-Wiederh. 1 Max Versuche Neumess. Interner Std 0

Spülaktionen

Spülzeit: 10 Sekunden

Sammelanhang	i
S24.1	

Element	Form	Gerät	Methoden-Nr.	Seite			
M	Mges ICP(sim)		MMgesICP20.1	3			
MMgesICP20.1 = Al, Ca, Fe, K, Mg, Mn, Na, P, S							

SUBARRAY ELEMENTREPORT

Element,	0.1	0.1	11-4	I lasta saucabusa	Untergrund - Links			Untergrund - Rechts		
Wellenlänge und Ordnung	Subarray- Breite	Subarray- Höhe		Untersuchun gsbreite	?	Position	Breite	?	Position	Breit e
AI 167,079 {502}	21	5	10	3	П	1	2		20	2
AI 308,215 {109}	15	2	7/8	2		3	2		14	2
AI 396,152 { 85}	21	2	10	3		4	2		17	2
Ca 315,887 {107}	21	4	10/11	2	X	1	1	\boxtimes	20	2
Ca 315,887 {107}2	21	4	10/11	2		1	1	X	20	2
Ca 393,366 { 86}	21	3	10	3		2	2	\boxtimes	19	2
Fe 238,204 {142}	21	3	10	3	X	3	2		16	1
Fe 238,204 {142}2	21	3	10	3		4	2		20	2
K 766,490 { 44}	20	2	10/11	2	\boxtimes	1	2		19	2
K 766,490 { 44}2	20	2	10/11	2		1	2		19	2
Mg 279,553 {121}	21	4	10	3	\boxtimes	1	2	X	20	2
Mg 285,213 {118}	21	4	10	3	X	2	1	X	21	1
Mn 257,610 {131}	19	4	9	3	\boxtimes	1	2	\boxtimes	18	2
Mn 293,930 {115}	21	3	10	3	\boxtimes	2	2		19	2
Na 589,592 { 57}	20	1	10/11	2	X	5	2	X	15	2
Na 589,592 { 57}2	20	1	10/11	2	X	5	2		16	2
P 178,284 {489}	21	5	10	3	X	5	2		15	2
P 178,284 {489}2	21	5	10	3	\boxtimes	3	2		18	2
S 182,034 {485}	21	5	10/11	2	X	3	2		20	2
S 182,034 {485}2	21	5	9/10	4	X	2	2	X	20	2

STANDARD-ELEMENTREPORT

	Element, Wellenlänge und		Kalibrationsstandards												
			Blank		HE 1		HE 2		HE 3		HE4 HE5 HE6		HE 6		
	Ordnung	?	Konz.	?	Konz.	?	Konz.	?	Konz.	?	Konz.	?	Konz.	?	Konz.
	AI 167,079 {502}	Ø	0	Ø	0,5		2,5		20		5		10		1
	Al 308,215 {109}			Ø		Ø		Ø		Ø	Ì	Ø		Ø	
	Al 396,152 { 85}														
	Ca 315,887 {107}		0		20		2,5	Ø	0,5	Ø	10		60	Ø	5
	Ca 315,887 {107}2			Ø		Ø		Ø		X				X	
	Ca 393,366 { 86}								1						
	Fe 238,204 {142}		0		10		2,5	Ø	0,5		5		7,5		1
	Fe 238,204 {142}2			Ø		Ø		Ø		Ø		M		Ø	
	Mg 279,553 {121}		0		0,5		10		20		2,5		5		50
	Mg 285,213 {118}			Ø		Ø		Ø		Ø		X		Ø	
	Mn 257,610 {131}		0	Ø	0,5	П	2,5		5		10		20		1
	Mn 293,930 {115}			Ø		Ø		冈		Ø		Ø		Ø	
	P 178,284 {489}		0	П	20	П	10	\Box	5	Ø	0,5	Ø	2,5	Ø	1
	P 178,284 {489}2			Ø				冈	•	Ø				Ø	
	S 182,034 {485}	Ø	0	Ø	0,5	Ø	2,5	冈	5	П	20	П	10	П	
	S 182,034 {485}2	X				Ø		冈	1	Ø		Ø		П	

Sammelanhang	_
S24.1	1

Element	Form	Gerät	Methoden-Nr.	Seite			
M	Mges	ICP(sim)	MMgesICP20.1	4			
MMgesI	MMgesICP20.1 = Al, Ca, Fe, K, Mg, Mn, Na, P, S						

HERSTELLUNG DER STANDARDLÖSUNGEN

	HE 1	HE 2	HE 3	HE 4	HE 5	HE 6
Al	0,5 ppm	2,5 ppm	20 ppm	5 ppm	10 ppm	1 ppm
	0,1 ml	0,5 ml	4 ml	1 ml	2 ml	0,2 ml
Ca	20 ppm	2,5 ppm	0,5 ppm	10 ppm	60 ppm	5 ppm
	4 ml	0,5 ml	0,1 ml	2 ml	12 ml	1 ml
Fe	10 ppm	2,5 ppm	0,5 ppm	5 ppm	7,5 ppm	1 ppm
	2 ml	0,5 ml	0,1 ml	1 ml	1,5 ml	0,2 ml
K	5 ppm	2,5 ppm	0,5 ppm	10 ppm	20 ppm	50 ppm
	1 ml	0,5 ml	0,1 ml	2 ml	4 ml	10 ml
Mg	0,5 ppm	10 ppm	20 ppm	2,5 ppm	5 ppm	50 ppm
	0,1 ml	2 ml	4 ml	0,5 ml	1 ml	10 ml
Mn	0,5 ppm	2,5 ppm	5 ppm	10 ppm	20 ppm	1 ppm
	0,1 ml	0,5 ml	1 ml	2 ml	4 ml	0,2 ml
Na	0,5 ppm	20 ppm	5 ppm	10 ppm	2,5 ppm	1 ppm
	0,1 ml	4 ml	1 ml	2 ml	0,5 ml	0,2 ml
P	20 ppm	10 ppm	5 ppm	0,5 ppm	2,5 ppm	1 ppm
	4 ml	2 ml	1 ml	0,1 ml	0,5 ml	0,2 ml
S	0,5 ppm	2,5 ppm	5 ppm	20 ppm	10 ppm	
	0,1 ml	0,5 ml	1 ml	4 ml	2 ml	

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite
S25.1	für	M	Mges	ICP(sim)	MMgesICP21.1	1
					_	
	-	MMgesI	CP21.1 = A1	, Ca, Fe, K, Mg, Mn, Na		

Datum: 01. 05. 2014

Geräteparameter für ICP iCAP 7400 Radial (Thermo Fisher) für die Methoden AKE1.1Boden, AKEG1.1Boden, AKEG1.1Humus, AKH3.1Humus

ANALYSEN-VOREINSTELLUNGEN

	Analysen-V	oreinstellunge	en		
Probeoptionen	#Mess.: 4				
	Verzögerungszeit: 0,0 Sekunder				
	Probenspülzeit:	100 Sekunde	en		
	Analysenmodus	Normal			
Quelle	Probenzufuhr	Zerstäuber			
Analyse Maximale	Niedriger WL-Bereich	10			
Integrationszeit (Sek)	Hoher WL-Bereich:	20			
Kalibrationsmodus	Konzentration				
Aufnahmeoptionen für Full	Intelli-Frame:		Ja		
Frames	Max Integrationszeit (Sek	30			
	WL-Bereich:	UV			
	Auto-Inkrement der Probe	Ja			
	Nutze Eingabe der Probe	nmasse:	Nein		
	Plasmae	einstellungen			
Zerstäuberpumpe	Spülpumprate (U/min):		50		
	Analysenpumprate (U/mir	n):	50		
	Pumpenrelaxationszeit (S	Sek):	0		
	Pumpenschlauch-Typ:	Tygon	Orang	ge/White	
	HF-Leistung:		1200		W
	Zerstäubergasstrom:		0,60		L/min
	Hilfsgas:		1,0		L/min

Sammelanhang	
S25.1	

Element	Form	Gerät	Methoden-Nr.	Seite				
M	Mges	ICP(sim)	MMgesICP21.1	2				
MMgesICP21.1 = Al, Ca, Fe, K, Mg, Mn, Na								

REPORT SEQUENZAUTOMATION

Report	Sequenzaut	tomation
--------	------------	----------

Initialisierungsaktionen

Operation Fehleraktionen

Kalibrieren Keine K5 Keine

Am Ende der 'Initialisierungsaktionen' Sequenz bei jedem QC-Fehler anhalten? Nein

Kontinuierliche Aktionen

<u>Operation</u> <u>Fehleraktionen</u> <u>Frequenz</u>

K5 Kalibrieren, Re-Check QC 24

Abschlußaktionen

Operation Fehleraktionen

K5 Keine

Am Ende der 'Abschlußaktionen' Daten bei jedem QC-Fehler ungültig erklären. Nein

Globale QC-Eigenschaften

1 Zahl mißlungener Linien für QC-Versagen: Maximale QC/Std-Zugriffe je Probenposition: 8 Nur Linien mit QC-Fehler neumessen?: Nein Alarmton beim ersten QC-Fehler?: Nein Alarmton beim zweiten QC-Fehler?: Nein Extra Spülung vor dem QC-Check Ja Max Versuche Rekalibr.-Wiederh. Max Versuche QC-Wiederh. 1 Max Versuche Kalibr.-Wiederh. 1 Max Versuche Neumess, Interner Std.

Spülaktionen

Spülzeit: 10 Sekunden

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite
S25.1	für	M	Mges	ICP(sim)	MMgesICP21.1	3
	•	MMgesI	CP21.1 = A1	, Ca, Fe, K, Mg, Mn, Na		

SUBARRAY ELEMENTREPORT

Element,	0.1	0.1		11.	ι	Intergrund -	Links	Unt	ergrund - F	lechts
Wellenlänge und Ordnung	Subarray- Breite	Subarray- Höhe	Untersuchun Untersuchu gsposition gsbreite		?	Position	Breite	?	Position	Breit e
 AI 308,215 {109}	15	2	7	3		3	1		14	2
Al 396,152 { 85}	21	2	10/11	2		4	2		17	2
 Ca 315,887 {107}	21	2	10/11	2		1	1		17	1
Ca 318,128 {106}	21	2	10	3		1	2		20	2
Fe 238,204 {142}	21	2	10	3		1	2		21	1
K 766,490 { 44}	21	2	10	3		3	2		17	2
Mg 279,553 {121}	21	2	10/11	2		1	2		20	2
Mg 285,213 {118}	21	2	10	3		1	2		19	2
Mn 257,610 {131}	19	2	9	3		1	2		18	2
Mn 293,930 {115}	21	2	10	3		1	2		19	2
Na 589,592 { 57}	21	2	10	3		3	2		18	2

STANDARDS-ELEMENTREPORT

	Element,		Kalibrationsstandards								
	Wellenlänge und	AKE 0			AKE 1		AKE 2		AKE 3		AKE 4
	Ordnung	?	Konz.	?	Konz.	?	Konz.	?	Konz.	?	Konz.
	Al 308,215 {109}	X	0	\boxtimes	20	\boxtimes	10		5		50
	Al 396,152 { 85}	\boxtimes		\boxtimes				\boxtimes			
	Ca 315,887 {107}		0	\boxtimes	20		50		100	\boxtimes	10
	Ca 318,128 {106}	\boxtimes		\boxtimes		\boxtimes		\boxtimes			
	Fe 238,204 {142}	\boxtimes	0	\boxtimes	3		5	\boxtimes	10	\boxtimes	1
	K 766,490 { 44}		0	\boxtimes	10	\boxtimes	20	\boxtimes	5	\boxtimes	2
	Mg 279,553 {121}		0		20		10	\boxtimes	2	\boxtimes	5
l	Mg 285,213 {118}			\boxtimes				X		\boxtimes	
	Mn 257,610 {131}		0		10		1	\boxtimes	3		5
	Mn 293,930 {115}			\boxtimes		\boxtimes		\boxtimes			
	Na 589,592 { 57}		0		10		5		1		20

Sammelanhang	-
S25.1	für

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	ICP(sim)	MMgesICP21.1	4
MMgesI	CP21.1 = A1	, Ca, Fe, K, Mg, Mn, Na		

HERSTELLUNG DER STANDARDLÖSUNGEN

	AKE 1	AKE 2	AKE 3	AKE 4
Al	20 ppm	10 ppm	10 ppm 5 ppm	
	1 ml	0,5 ml	0,25 ml	2,5 ml
Ca	20 ppm	50 ppm	100 ppm	10 ppm
	1 ml	2,5 ml	5 ml	0,5 ml
Fe	3 ppm	5 ppm	10 ppm	1 ppm
	0,15 ml	0,25 ml	0,5 ml	0,05 ml
K	10 ppm	20 ppm	5 ppm	2 ppm
	0,5 ml	1 ml	0,25 ml	0,1 ml
Mg	20 ppm	10 ppm	2 ppm	5 ppm
	1 ml	0,5 ml	0,1 ml	0,25 ml
Mn	10 ppm	1 ppm	3 ppm	5 ppm
	0,5 ml	0,05 ml	0,15 ml	0,25 ml
Na	10 ppm	5 ppm	1 ppm	20 ppm
	0,5 ml	0,25 ml	0,05 ml	1 ml

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite
S26.1	für	M	Mges	ICP(sim)	MMgesICP22.1	1
	-	MMgesIC Ti. Zn	CP22.1 = A1,	Ba, Ca, Cd, Co, Cr, Cu,	Fe, K, Mg, Mn, Na, Ni, P,	Pb, S,

Datum: 01. 05. 2014

Geräteparameter für ICP iCAP 7400 Radial (Thermo Fisher) für die Methoden OAKW1.1Boden, OAKW2.1Boden, OAKWEG2.1Boden, OAKWEG2.2Boden, OAKWEG3.1Boden, OAKW1.1Humus, OAKW2.1Humus

ANALYSEN-VOREINSTELLUNGEN

	Analysen-V	oreinstellunge	n	
Probeoptionen	#Mess.:	3		
	Verzögerungszeit:	n		
	Probenspülzeit:	60 Sekunder	n	
	Analysenmodus	Normal		
Quelle	Probenzufuhr	Zerstäuber		
Analyse Maximale	Niedriger WL-Bereich	15		
Integrationszeit (Sek)	Hoher WL-Bereich:	20		
Kalibrationsmodus	Konzentration			
Aufnahmeoptionen für Full	Intelli-Frame:		Ja	
Frames	Max Integrationszeit (Sek	() :	30	
	WL-Bereich:	UV		
	Auto-Inkrement der Probe	Ja		
	Nutze Eingabe der Probe	Nein		
	Plasmae	einstellungen		
Zerstäuberpumpe	Spülpumprate (U/min):	-7.1	60	
	Analysenpumprate (U/mir	n):	60	
	Pumpenrelaxationszeit (S	Sek):	0	
	Pumpenschlauch-Typ:		Tygon Ora	ange/White
	HF-Leistung:		1350	w
	Zerstäubergasstrom:		0,55	L/min
	Hilfsgas:		0,5	L/min

Sammelanhang	
S26.1	

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	ICP(sim)	MMgesICP22.1	2
MMgesI0 Ti, Zn	CP22.1 = A1,	Ba, Ca, Cd, Co, Cr, Cu, I	Fe, K, Mg, Mn, Na, Ni, P,	Pb, S,

REPORT SEQUENZAUTOMATION

Initialisierungsaktionen

<u>Operation</u> <u>Fehleraktionen</u>

Kalibrieren Keine K24 Keine

Am Ende der 'Initialisierungsaktionen' Sequenz bei jedem QC-Fehler anhalten? Nein

Kontinuierliche Aktionen

Operation Fehleraktionen Frequenz

K24 Kalibrieren, Re-Check QC 12

Abschlußaktionen

<u>Operation</u> <u>Fehleraktionen</u>

K24 Keine

Am Ende der 'Abschlußaktionen' Daten bei jedem QC-Fehler ungültig erklären. Nein

Globale QC-Eigenschaften

Zahl mißlungener Linien für QC-Versagen: 1 Maximale QC/Std-Zugriffe je Probenposition: 8 Nur Linien mit QC-Fehler neumessen?: Ja Alarmton beim ersten QC-Fehler?: Nein Alarmton beim zweiten QC-Fehler?: Nein Extra Spülung vor dem QC-Check Ja Max Versuche Rekalibr.-Wiederh. 1 Max Versuche QC-Wiederh. 1 Max Versuche Kalibr.-Wiederh. 1 Max Versuche Neumess. Interner Std 0

Spülaktionen

Spülzeit: 1 Sekunden

	Sammelanhang		Element	Form	Gerät	Methoden-Nr.	Seite
	S26.1	für	M	Mges	ICP(sim)	MMgesICP22.1	3
-			MMgesIC Ti, Zn	CP22.1 = A1,	Ba, Ca, Cd, Co, Cr, Cu,	Fe, K, Mg, Mn, Na, Ni, P,	Pb, S,

SUBARRAY ELEMENTREPORT

Element,	Cubarray	Subarray-	Untersuchun	Untorquobun	U	ntergrund -	Links	Ur	Untergrund - Re	
Wellenlänge un Ordnung	d Breite	Höhe		gsbreite	?	Position	Breite	?	Position	Breite
AI 167,079 {502	} 21	5	10	3		2	2		20	2
AI 237,312 {142	} 21	5	9/10	4	\boxtimes	3	2	Ø	19	1
Al 308,215 {109	} 21	4	10	3		5	2		20	2
Ba 233,527 {445	5} 20	5	10	3	\boxtimes	1	2	X	19	2
Ca 315,887 {107	7} 21	4	10/11	2	X	1	1	Ø	20	2
Ca 318,128 {106	6} 21	5	10/11	2	Ø	5	1	Ø	20	2
Ca 396,847 { 85	} 21	5	10	3	Ø	1	2	Ø	18	1
Cd 214,438 {457	7} 20	5	10/11	2	Ø	3	2	Ø	19	2
Co 230,786 {446	3} 20	5	10/11	2		6	2		16	2
Cr 267,716 {126	} 20	3	10/11	2	Ø	3	2	Ø	19	2
Cu 324,754 {104	1} 20	1	10/11	2	Ø	1	1	Ø	19	1
Fe 238,204 {142	?} 21	3	10	3	Ø	1	2	Ø	21	1
Fe 238,204 {142	2}2 21	3	10	3	Ø	1	2	Ø	21	1
Fe 238,204 {142	3 21	3	10	3	Ø	1	2		21	1
Fe 271,441 {124	} 20	3	10	3	Ø	2	1	Ø	17	1
K 766,490 { 44}	21	2	10	3	Ø	2	2		18	1
K 766,490 { 44}2	2 21	2	10	3	Ø	3	2	Ø	17	2
Mg 279,553 {12	1} 21	5	10/11	2	Ø	1	1		21	1
Mg 285,213 {11	8} 21	5	10	3	Ø	1	1	Ø	20	2
Mn 257,610 {13	1} 19	4	9	3	Ø	1	1	X	18	2
Mn 293,930 {11	5} 20	2	10/11	2	X	1	2	X	19	2
Na 589,592 { 57	} 17	2	8	3	Ø	4	2	Ø	14	2
Ni 231,604 {446	} 20	4	10/11	2	M	4	2	M	19	2
Pb 220,353 {453	3} 20	5	10	3	Ø	5	2	Ø	15	2
S 182,034 {485}		5	10	3		3	2		18	2
Ti 336,121 {100		3	10	3	Ø	5	1	Ø	19	2
Zn 202,548 {466	3) 20	6	10	3	X	4	2	N	15	1

Sammelanhang		Element	Form	Gerät	Methoden-Nr.	Seite
S26.1	für	M	Mges	ICP(sim)	MMgesICP22.1	4
			CP22.1 = A1,	Ba, Ca, Cd, Co, Cr, Cu,	Fe, K, Mg, Mn, Na, Ni, P,	Pb, S,
		Ti, Zn				

STANDARDS-ELEMENTREPORT

Element,								Kalib	ratio	nsstand	lard:	S						
Wellenlänge und		Blank		KW 1		KW 2		KW 3		KW 4		KW 5		KW 6		KW 7	I	(W 8
Ordnung	?	Konz.	?	Konz.	?	Konz.	?	Konz.	?	Konz.								
 AI 167,079 {502}	X	0		10		20		50		100		200		300		5		1
 AI 237,312 {142}											\boxtimes		Ø					
 AI 308,215 {109}														1				
Ba 233,527 {445}	\boxtimes	0			\boxtimes	4												
 Ca 315,887 {107}	Ø	0	Ø	20		200		1		10	\boxtimes	5	Ø	100	X	50		2,5
Ca 318,128 {106}			\boxtimes		\boxtimes								\boxtimes					
 Ca 396,847 { 85}																		
Cd 214,438 {457}		0		50	X	100	X	150								Ī		
Co 230,786 {446}	Ø	0	Ø	100		200	\boxtimes	500		300	\boxtimes	400	\boxtimes	600		800		1000
 Cr 267,716 {126}	Ø	0	X	100		200	\boxtimes	300	\boxtimes	500	\boxtimes	600		800		1000	\boxtimes	1500
 Cu 324,754 {104}	Ø	0	X	100		200		300		400	\boxtimes	600		800	\boxtimes	1000		1500
Fe 238,204 {142}	Ø	0		50		20		200		100	\boxtimes	2	\boxtimes	5		10		300
 Fe 238,204 {142}2					X													
 Fe 238,204 {142}3			X		X								\boxtimes					
Fe 271,441 {124}					X													
 K 766,490 { 44}	Ø	0	Ø	5	Ø	1		40		20	X	10		60		100		80
K 766,490 { 44}2													\boxtimes					
Mg 279,553 {121}		0		4	\boxtimes	2		40		20	\boxtimes	10		60		100		80
Mg 285,213 {118}			\boxtimes				\boxtimes				\boxtimes		\boxtimes		\boxtimes			
Mn 257,610 {131}	X	0		2	\boxtimes	10		20		1	\boxtimes	5		30		40		50
Mn 293,930 {115}	\boxtimes				\boxtimes		\boxtimes		\boxtimes				\boxtimes					
Na 589,592 { 57}	\boxtimes	0	\boxtimes	2	\boxtimes	10	\boxtimes	3	\boxtimes	1	\boxtimes	5	\boxtimes	4				
Ni 231,604 {446}	\boxtimes	0	\boxtimes	100	\boxtimes	200	\boxtimes	300		500		Ĭ	\boxtimes	800		1000	\boxtimes	1500
Pb 220,353 {453}		0				1000							\boxtimes	2000		4000		500
S 182,034 {485}	\boxtimes	0		2			\boxtimes	20	\boxtimes	5	\boxtimes	10						
Ti 336,121 {100}		0			Ø	1		8	\boxtimes	2		16						
Zn 202,548 {466}	X	0	Ø	400	X	800	\boxtimes	1200	Ø	1600	\boxtimes	2000		3000				

Sammelanhang	i
S26.1	

Element	Form	Gerät	Methoden-Nr.	Seite			
M	Mges	ICP(sim)	MMgesICP22.1	5			
MMgesICP22.1 = Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S,							
Ti, Zn							

HERSTELLUNG DER STANDARDLÖSUNGEN

	KW 1	KW 2	KW 3	KW 4	KW 5	KW 6	KW 7	KW 8
Element	Konz /	Konz /	Konz /	Konz /	Konz /	Konz /	Konz /	Konz /
	Vol	Vol	Vol	Vol	Vol	Vol	Vol	Vol
Cd	50 ppb	100 ppb	150 ppb					
	12,5 μl 100 ppb	25,0 µl 200 ppb	37,5 μl 500 ppb	300 ppb	400 ppb	600 ppb	800 ppb	1000 ppb
Co	25 µl	200 ppb 50 μl	125 µl	75 μl	100 ppb	150 µl	200 μl	250 μl
_	100 ppb	200 ppb	300 ppb	70 μ1 500 ppb	600 ppb	800 ppb	1000 ppb	1500 ppb
Cr	25 µl	200 ppb 50 μl	75 μl	125 ml	150 µl	200 µl	250 µl	375 µl
	100 ppb	200 ppb	300 ppb	400 ppb	600 ppb	800 ppb	1000 ppb	1500 ppb
Cu	25 µl	50 μl	75 µl	100 pps	150 µl	200 µl	250 µl	375 µl
	100 ppb	200 ppb	300 ppb	500 ppb	600 ppb	800 ppb	1000 ppb	1500 ppb
Ni	25 µl	50 μl	75 µl	125 µl	150 µl	200 µl	250 µl	375 µl
		1000 ppb				2000 ppb	4000 ppb	500 ppb
Pb		250 µl				500 μl	1000 µl	125 µl
7.0	400 ppb	800 ppb	1200 ppb	1600 ppb	2000 ppb	3000 ppb	·	
Zn	100 µl	200 µl	300 µl	400 µl	500 µl	750 µl		
٨١	10 ppm	20 ppm	50 ppm	100 ppm	200 ppm	300 ppm	5 ppm	1 ppm
Al	0,25 ml	0,5 ml	1,25 ml	2,5 ml	5 ml	7,5 ml	0,125 ml	0,025 ml
Ca	20 ppm	200 ppm	1 ppm	10 ppm	5 ppm	100 ppm	50 ppm	2,5 ppm
Ca	0,5 ml	5 ml	0,025 ml	0,25 ml	0,125 ml	2,5 ml	1,25 ml	0,0625 ml
Fe	50 ppm	20 ppm	200 ppm	100 ppm	2 ppm	5 ppm	10 ppm	300 ppm
10	1,25 ml	0,5 ml	5 ml	2,5 ml	0,05 ml	0,125 ml	0,25 ml	7,5 ml
K	5 ppm	1 ppm	40 ppm	20 ppm	10 ppm	60 ppm	100 ppm	80 ppm
	0,125 ml	0,025 ml	1 ml	0,5 ml	0,25 ml	1,5 ml	2,5 ml	2 ml
Mg	4 ppm	2 ppm	40 ppm	20 ppm	10 ppm	60 ppm	100 ppm	80 ppm
9	0,1 ml	0,05 ml	1 ml	0,5 ml	0,25 ml	1,5 ml	2,5 ml	2 ml
Mn	2 ppm	10 ppm	20 ppm	1 ppm	5 ppm	30 ppm	40 ppm	50 ppm
	0,05 ml	0,25 ml	0,5 ml	0,025 ml	0,125 ml	0,75 ml	1 ml	1,25 ml
Na	2 ppm	10 ppm	3 ppm	1 ppm	5 ppm	4 ppm	6 ppm	8 ppm
	0,05 ml	0,25 ml	0,075 ml	0,025 ml	0,125 ml	0,1 ml	0,15 ppm	0,2 ml
Р	1 ppm 0,025 ml	2 ppm 0,05 ml	4 ppm 0,1 ml	6 ppm 0,150 ml	8 ppm 0,2 ml	10 ppm 0,25 ml	15 ppm 0,375 ml	20 ppm 0,5 ml
	2 ppm	0,03 1111	20 ppm	5 ppm	10 ppm	0,23 1111	0,3731111	0,3 1111
S	0,05 ml		0,5 ml	0,125 ml	0,25 ml			
_	0,00 1111	4 ppm	0,0 1111	0,1201111	0,201111			
Ва		1 ml						
Ti		1 ppm	8 ppm	2 ppm	16 ppm			
_ ''		0,025 ml	0,2 ml	0,05 ml	0,4 ml			

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite
S26.1	für	M	Mges	ICP(sim)	MMgesICP22.1	6
		MMgesIO Ti, Zn	CP22.1 = Al,	Ba, Ca, Cd, Co, Cr, Cu,	 Fe, K, Mg, Mn, Na, Ni, P,	, Pb, S,

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite
S27.1	für	M	Mges	ICP(sim)	MMgesICP23.1	1
	-	MMgesIC	CP23.1 = A1,	Fe		

Datum:

01. 05. 2014

Geräteparameter für ICP iCAP 7400 Radial (Thermo Fisher) für die Methode EXTOX1.1Boden

ANALYSEN-VOREINSTELLUNGEN

	Analysen-Voreinstellungen							
Probeoptionen	#Mess.:							
	Verzögerungszeit:	1						
	Probenspülzeit:	า						
	Analysenmodus	Normal						
Quelle	Probenzufuhr	Zerstäuber						
Analyse Maximale	Niedriger WL-Bereich	10						
Integrationszeit (Sek)	Hoher WL-Bereich:	15						
Kalibrationsmodus	Konzentration							
Aufnahmeoptionen für Full	Intelli-Frame:		Ja					
Frames	Max Integrationszeit (Sek	30						
	WL-Bereich:	Vis						
	Auto-Inkrement der Probe	Ja						
	Nutze Eingabe der Probe	Nein						
	Plasmae	einstellungen						
Zerstäuberpumpe	Spülpumprate (U/min):		70					
	Analysenpumprate (U/mir	n):	70					
	Pumpenrelaxationszeit (S	Sek):	0					
	Pumpenschlauch-Typ:	Tygon Orange/White						
	HF-Leistung:		1200		w			
	Zerstäubergasstrom:	0,60		L/min				
	Hilfsgas:		1,0	•	L/min			

Sammelanhang	
S27.1	

Element	Form	Gerät	Methoden-Nr.	Seite		
M	Mges	ICP(sim)	MMgesICP23.1	2		
MMgesICP23.1 = Al, Fe						

REPORT SEQUENZAUTOMATION

Report	Sequenzautomation
--------	-------------------

Initialisierungsaktionen

<u>Operation</u> <u>Fehleraktionen</u>

Kalibrieren Keine K5 Keine

Am Ende der 'Initialisierungsaktionen' Sequenz bei jedem QC-Fehler anhalten? Nein

Kontinuierliche Aktionen

Operation Fehleraktionen Frequenz

K5 Kalibrieren, Re-Check QC 20 Spülen Keine 20

Abschlußaktionen

Operation Fehleraktionen

K5 Keine

Am Ende der 'Abschlußaktionen' Daten bei jedem QC-Fehler ungültig erklären. Nein

Globale QC-Eigenschaften

Zahl mißlungener Linien für QC-Versagen: 1 Maximale QC/Std-Zugriffe je Probenposition: Nur Linien mit QC-Fehler neumessen?: Nein Alarmton beim ersten QC-Fehler?: Nein Alarmton beim zweiten QC-Fehler?: Nein Extra Spülung vor dem QC-Check Ja Max Versuche Rekalibr.-Wiederh. 1 Max Versuche QC-Wiederh. 1 Max Versuche Kalibr.-Wiederh. 1 0 Max Versuche Neumess. Interner Std

Spülaktionen

Spülzeit: 1 Sekunden

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite
S27.1	für	M	Mges	ICP(sim)	MMgesICP23.1	3
	•	MMgesIC	CP23.1 = A1,	Fe		

SUBARRAY ELEMENTREPORT

	Element, Cubanna		0 1	Untractichus	Untoroughun	Untergrund - Links			Untergrund - Rechts		
	Wellenlänge und Ordnung	Subarray- Breite	Subarray- Höhe	Untersuchun gsposition	Untersuchun gsbreite	?	Position	Breite	?	Position	Breit e
	AI 237,312 {142}	21	3	10	3	\boxtimes	3	2	Ø	19	1
	Al 396,152 { 85}	21	2	10	3		1	2		18	2
******	Fe 238,204 {142}	21	3	10	3	\boxtimes	1	2		20	2
	Fe 271,441 {124}	19	3	9	3	X	1	2	X	16	2

STANDARDS-ELEMENTREPORT

Element,	Kalibrationsstandards							
Wellenlänge und	OX 0	OX 1	OX 2	OX 3	OX 4			
Ordnung	? Konz.	? Konz.	? Konz.	? Konz.	? Konz.			
Al 237,312 {142}	⊠ 0	☑ 100	50	☑ 20	∑ 5			
Al 396,152 { 85}	\boxtimes							
Fe 238,204 {142}	⊠ 0	∑ 5	☑ 20	50	100			
Fe 271,441 {124}	Ø	\square		\boxtimes				

HERSTELLUNG DER STANDARDLÖSUNGEN

	OX 1	OX 2	OX 3	OX 4
Al	100 ppm	50 ppm	20 ppm	5 ppm
	2 ml	1 ml	0,4 ml	0,1 ml
Fe	5 ppm	20 ppm	50 ppm	100 ppm
	0,1 ml	0,4 ml	1 ml	2 ml

Sammelanhang					
S27.1					

Element	Form	Gerät	Methoden-Nr.	Seite	
M Mges		ICP(sim)	MMgesICP23.1	4	
MMgesICP23.1 = Al, Fe					

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite			
S28.1	für	M	Mges	ICP(sim)	MMgesICP28.1	1			
	•	MMgesICP24.1 = Cd, Co, Cr, Cu, Ni, Pb, Zn							

Datum: 01. 05. 2014

Geräteparameter für ICP iCAP 7400 Radial (Thermo Fisher) für die Methode EXTEDTA1.1Boden

ANALYSEN-VOREINSTELLUNGEN

	Analysen Va	roinatallunga	n		
Probeoptionen	#Mess.:	4	er i		
	Verzögerungszeit:	0,0 Sekunder	1		
	Probenspülzeit:	80 Sekunder			
	Analysenmodus	Normal	8.		
Quelle	Probenzufuhr	Zerstäuber			
Analyse Maximale	Niedriger WL-Bereich	10			
Integrationszeit (Sek)	Hoher WL-Bereich:	15			
Kalibrationsmodus	Konzentration	4.0			
Aufnahmeoptionen für Full	Intelli-Frame:		Ja		
Frames	Max Integrationszeit (Sek):	30			
×	WL-Bereich:		UV		
	Auto-Inkrement der Probens	Ja			
	Nutze Eingabe der Probenn	Nein			
	Plasmaeir				
Zerstäuberpumpe	Spülpumprate (U/min):		50		
	Analysenpumprate (U/min):		50		
	Pumpenrelaxationszeit (Sel	<):	0		
	Pumpenschlauch-Typ:	Tygon O	rang	e/White	
	HF-Leistung:		1350		w
	Zerstäubergasstrom:		0,50		L/min
	Hilfsgas:		0,5	1	L/min

Sammelanhang	i
S28.1	

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	ICP(sim)	MMgesICP28.1	2
MMgesIC	CP24.1 = Cd,	Co, Cr, Cu, Ni, Pb, Zn		

REPORT SEQUENZAUTOMATION

Report	Sequenzaut	tomation
--------	------------	----------

Initialisierungsaktionen

<u>Operation</u> <u>Fehleraktionen</u>

Kalibrieren Keine K23 Keine

Am Ende der 'Initialisierungsaktionen' Sequenz bei jedem QC-Fehler anhalten? Nein

Kontinuierliche Aktionen

Operation Fehleraktionen Frequenz

K23 Kalibrieren, Re-Check QC 12

Abschlußaktionen

Operation Fehleraktionen

K23 Keine

Am Ende der 'Abschlußaktionen' Daten bei jedem QC-Fehler ungültig erklären. Nein

Globale QC-Eigenschaften

1 Zahl mißlungener Linien für QC-Versagen: Maximale QC/Std-Zugriffe je Probenposition: 8 Nur Linien mit QC-Fehler neumessen?: Ja Alarmton beim ersten QC-Fehler?: Nein Alarmton beim zweiten QC-Fehler?: Nein Extra Spülung vor dem QC-Check Ja Max Versuche Rekalibr.-Wiederh. 1 Max Versuche QC-Wiederh. 1 Max Versuche Kalibr.-Wiederh. 1 Max Versuche Neumess, Interner Std. 0

Spülaktionen

Spülzeit: 1 Sekunden

Sammelanhang	
S28.1	

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	ICP(sim)	MMgesICP28.1	3
MMgesIO	CP24.1 = Cd,	Co, Cr, Cu, Ni, Pb, Zn		

SUBARRAY ELEMENTREPORT

	Element,	0	Out		Untersuchus Untersuchus		Untergrund - Links			Untergrund - Rechts			
	Wellenlänge und Ordnung	Subarray- Breite	Subarray- Höhe	Untersuchun gsposition	Untersuchun gsbreite	?	Position	Breite	?	Position	Breit e		
	Cd 214,438 {457}	20	5	10/11	2	\boxtimes	4	2	Ø	19	2		
	Co 230,786 {446}	20	5	10	3		4	2		15	2		
	Cr 267,716 {126}	20	2	10/11	2	\boxtimes	3	2	Ø	18	2		
	Cu 324,754 {104}	20	1	10	3	\boxtimes	1	1		16	1		
*****	Ni 231,604 {446}	20	5	10/11	2		6	2		19	2		
	Pb 220,353 {453}	20	5	10	3	\boxtimes	5	2		15	2		
•••••	Zn 213,856 {458}	20	5	10	3	X	3	2	X	19	2		

STANDARDS-ELEMENTREPORT

Element,		Kalibrationsstandards										
Wellenlänge und	EDTA 0		EDTA 0 EDTA 1		<u>.</u>	EDTA 2 EDTA 3		EDTA 4		EDTA 5		
Ordnung	?	Konz.	?	Konz.	?	Konz.	?	Konz.	?	Konz.	?	Konz.
Cd 214,438 {457}	Ø	0	Ø	100	Ø	400		200	Ø	300	Ø	500
Co 230,786 {446}		0		200		500		2000	Ø	4000	×	1000
Cr 267,716 {126}	Ø	0		4000	Ø	1000	X	500	X	2000	Ø	200
Cu 324,754 {104}	Ø	0	X	200	X	4000		1000		500		2000
Ni 231,604 {446}	Ø	0		2000		1000		4000	X	200	Ø	500
Pb 220,353 {453}	Ø	0		10000		1000		5000	X	2000		20000
Zn 213,856 {458}	X	0	X	6000	X	4000		2000	X	1000		10000

HERSTELLUNG DER STANDARDLÖSUNGEN

	EDTA 1	EDTA 2	EDTA 3	EDTA 4	EDTA 5
Element	Konz / Vol				
Cd	100 ppb	400 ppb	200 ppb	300 ppb	500 ppb
	100 µl	400 µl	200 µl	300 µl	500 μl
Co	200 ppb	500 ppb	2000 ppb	4000 ppb	1000 ppb
	20 µl	50 µl	200 μΙ	400 µl	100 ml
Cr	4000 ppb	1000 ppb	500 ppb	2000 ppb	200 ppb
	400 µl	100 ml	50 µl	200 ml	20 ml
Cu	200 ppb	4000 ppb	1000 ppb	500 ppb	2000 ppb
	20 µl	400 µl	100 μΙ	50 µl	200 μΙ
Ni	2000 ppb	1000 ppb	4000 ppb	200 ppb	500 ppb
	200 µl	100 µl	400 µl	20 µl	50 μl
Pb	10 000	1000 ppb	5000 ppb	2000 ppb	20 000 ppb
	1000 µl	100 μΙ	500 μl	200 µl	2000 ml
Zn	6000 ppb	4000 ppb	2000 ppb	1000 ppb	10 000 ppb
	600 µl	400 µl	200 μΙ	100 µl	1000 ml

Sammelanhang	
S28.1	

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite		
S29.1	für	M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	1		
	MMgesIC3.1 = Ca, K, Mg, Na, NH ₄ AAXIC3.1 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F							

Datum: 20.12.2015

Grundeichung und Geräteparameter für IC Metrohm für die Methode ANULLIC

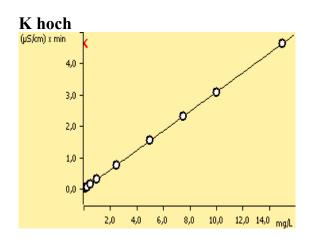
a. Verwendete Standards:

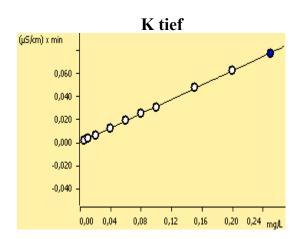
In den nachfolgenden Tabellen ist angegeben, wie viel ppm des jeweiligen Elements sich in den Standards für die Grundeichung befinden. Für Anionen und Kationen werden jeweils getrennte Standards angesetzt.

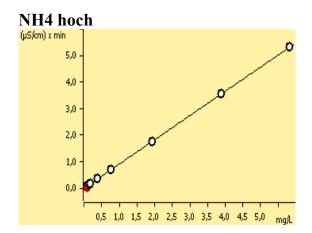
StdNr.	1	2	3	4	5	6	7
	ppm						
F	0,005	0,01	0,02	0,04	0,06	0,08	0,125
Cl	0,005	0,01	0,02	0,04	0,06	0,08	0,125
NO2-N	0,00304	0,00608	0,01216	0,02432	0,03647	0,04863	0,07599
NO3-N	0,00226	0,00451	0,00903	0,01806	0,02709	0,03612	0,05643
PO4-P	0,00326	0,00651	0,01303	0,02606	0,03909	0,05212	0,08143
SO4-S	0,00333	0,00667	0,01333	0,02667	0,04	0,05333	0,08333
Na	0,005	0,01	0,02	0,04	0,06	0,08	0,1
NH4-N	0,00389	0,00778	0,01555	0,0311	0,04666	0,06221	0,07776
K	0,005	0,01	0,02	0,04	0,06	0,08	0,1
Mg	0,005	0,01	0,02	0,04	0,06	0,08	0,1
Ca	0,005	0,01	0,02	0,04	0,06	0,08	0,1

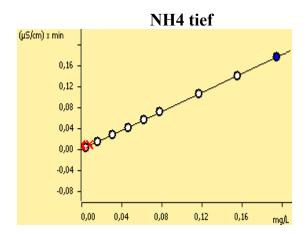
StdNr.	8	9	10	11	12	13	14
	ppm						
F	0,15	0,2	0,25	0,5	1	2,5	5
Cl	0,15	0,2	0,25	0,5	1	2,5	5
NO2-N	0,09119	0,12158	0,15198	0,30395	0,6079	1,51976	3,03951
NO3-N	0,06772	0,09029	0,11287	0,22573	0,45147	1,12867	2,25734
PO4-P	0,09772	0,13029	0,16287	0,32573	0,65147	1,62866	3,25733
SO4-S	0,1	0,13333	0,16667	0,33333	0,66667	1,66667	3,33333
NH4-N	0,11664	0,15552	0,1944	0,3888	0,7776	1,94401	3,88802
K	0,15	0,2	0,25	0,5	1	2,5	5
Mg	0,15	0,2	0,25	0,5	1	2,5	5
Ca	0,15	0,2	0,25	0,5	1	2,5	5

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite
S29.1	für	M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	2
	_	MMgesIC3.		Ig, Na, NH ₄ PO ₄ SO ₄ Cl F		

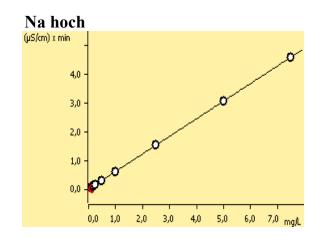

StdNr.	15	16	17	18
	ppm	ppm	ppm	ppm
F	7,5	10	0	0
Cl	7,5	10	15	0
NO2-N	4,55927	6,07903	9,11854	0
NO3-N	3,386	4,51467	6,77201	9,02935
PO4-P	4,88599	0	0	0
SO4-S	5	6,66667	10	0
Na	7,5	0	0	0
NH4-N	5,83203	0	0	0
K	7,5	10	15	0
Mg	7,5	0	0	0
Ca	7,5	10	15	0

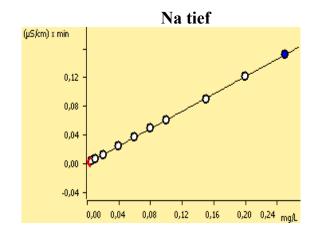

Die Standards 1-10 werden aus der Stammlösung I (Anionen), bzw. Stammlösung II (Kationen) angesetzt, die Standards 11-18 aus den 1 g/l-Stammlösungen der Ionen. Die Herstellung der Stammlösungen für die Standardherstellung ist in der jeweiligen Methode angegeben. Es müssen für die Standards 1-10 bei den Kationen säuregespülte PFA-Kolben verwendet werden. Alle übrigen Standards werden in Glaskolben angesetzt. Für Kationen muss mit HNO₃ vorgespült werden, für Anionen mit bidemin. Wasser.

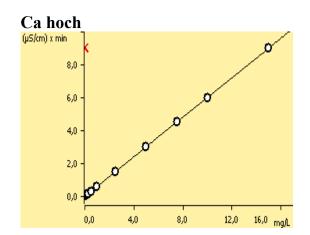

Sammelanhang		Element	Form	Gerät	Methoden-Nr.	Seite		
S29.1	für	M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	3		
		_	MMgesIC3.1 = Ca, K, Mg, Na, NH ₄ AXIC3.1 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F					

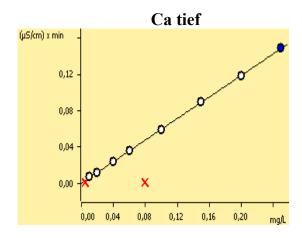

b. Eichkurven:

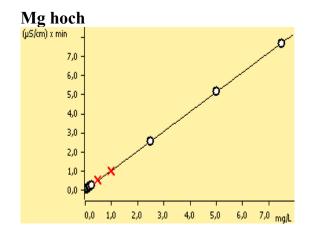
Dargestellt sind jeweils die Eichkurvenverläufe der hohen Eichung und des unteren Teils der tiefen Eichung. Die Art der Eichkurvenauswertung (linear, quadratisch, durch den Nullpunkt) ist in der Methodendokumentation (siehe c.) angegeben. Die Wechselgrenzen zwischen der tiefen und der hohen Eichung sind in der vorangegangenen Tabelle grau hinterlegt.

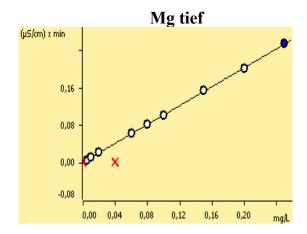


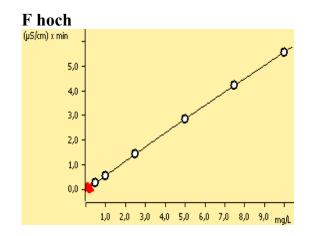


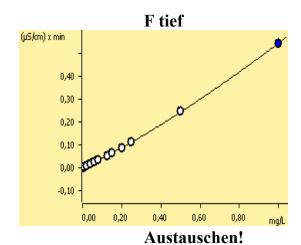


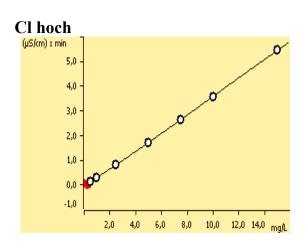

Sammelanhang	
S29.1	

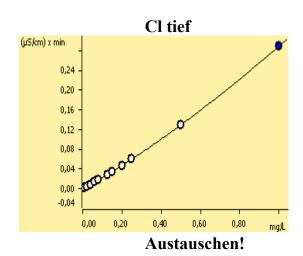

Element	Form	Gerät	Methoden-Nr.	Seite
M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	4
MMgesIC3.		Ig, Na, NH ₄ PO ₄ , SO ₄ , Cl, F		

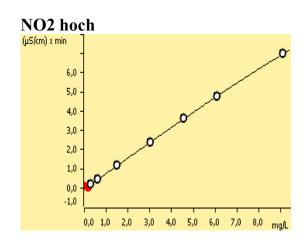


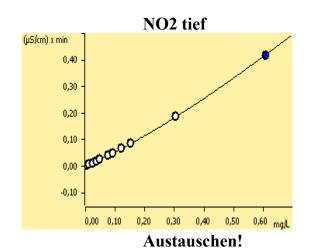


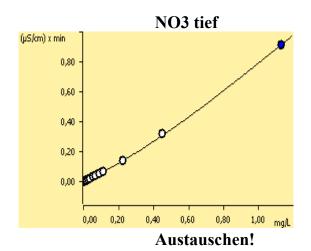


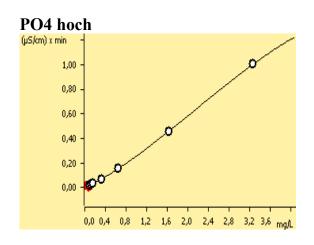


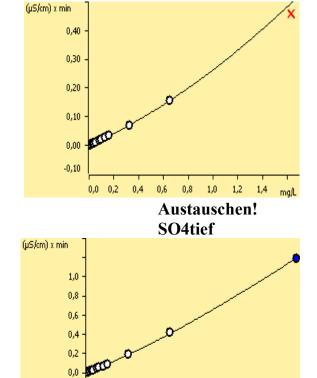

Sammelanhang		Element	Fo
S29.1	für	M	M
		A	A


Element	Form	Gerät	Methoden-Nr.	Seite
M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	5
MMgesIC3. AAXIC3.1 =		Ig, Na, NH ₄ PO ₄ , SO ₄ , Cl, F		



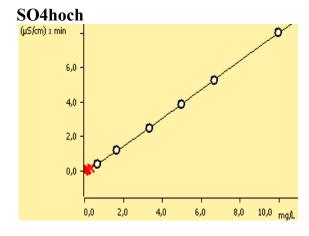





Sammelanhang		Element	Form	Gerät	Methoden-Nr.	Seite		
S29.1	für	M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	6		
		_	MMgesIC3.1 = Ca, K, Mg, Na, NH ₄ AAXIC3.1 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F					

NO3 hoc	e h
(µS/cm) x min	
8,0 -	0
6,0 -	0
4,0 -	~0
2,0 -	
0,0 -	
	0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 mg/L

PO4 tief



0,8 1,0 1,2 1,4 mg/L

Austauschen!

-0,2 -0,4

0,0 0,2 0,4

Sammelanhang		Element	Form	Gerät	Methoden-Nr.	Seite			
S29.1	für	M	Mges Ax	IC	MMgesIC3.1 AAX3.1	7			
		_	MMgesIC3.1 = Ca, K, Mg, Na, NH ₄ AAXIC3.1 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F						

c. Methodenparamter

Im Folgenden ist vollständige Methodendokumentation des Gerätes mit allen Methodenparametern abgebildet:

für

Element	Form	Gerät	Methoden-Nr.	Seite
M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	8
MMgesIC3. AAXIC3.1 =	1 = Ca, K, M	Ig, Na, NH ₄ PO ₄ , SO ₄ , Cl, F	TH THUS	

Methodenparameter

methodenp	parameter
M	ethodenname
S	peicherdatum Methode
M	ethodenversion4
M	ethodengruppe
M	ethodenstatus original
M	lethode gespeichert von (voller Name)
M	lethode gespeichert von (Kurzname) labor
Startparamet	er
Anionen tief	
н	ardwarezuordnung
	Datenquelle LF Detektor 1 (930 Compact IC Flex Anionen)
	Kanal Leitfähigkeit
	Injektionsventil Injektor (930 Compact IC Flex Anionen)
	Säule
	Maximalen Fluss überwacht ja
	Maximalen Druck überwacht
	Pumpe Pumpe (930 Compact IC Flex Anionen)
D	atenaufnahme
	Aufnahmedauer
Anions hoch	
н	ardwarezuordnung
	Datenquelle LF Detektor 1 (930 Compact IC Flex Anionen)
	Kanal Leitfähigkeit
	Injektionsventil nicht definiert
	Säule
	Maximalen Fluss überwacht ja
	Maximalen Druck überwacht
	Pumpe nicht definiert
D	atenaufnahme
_	Aufnahmedauer
Kationen tief	
Н	ardwarezuordnung
	Datenquelle LF Detektor 1 (930 Compact IC Flex
	Kationen)
	Kanal Leitfähigkeit
	Injektionsventil
	Säule
	Maximalen Fluss überwacht ja
	Maximalen Druck überwachtja
	Pumpe
D	atenaufnahme
	Aufnahmedauer
Kationen hoch	
н	ardwarezuordnung
	-

Element	Form	Gerät	Methoden-Nr.	Seite
M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	9
MMgesIC3.		Ig, Na, NH ₄ PO ₄ , SO ₄ , Cl, F		

Datenquelle LF Detektor 1 (930 Compact IC Flex Kationen)	
Kanal Leitfähigkeit	
Injektionsventil nicht definiert	
Säule	
Maximalen Fluss überwacht ja	
Maximalen Druck überwachtja	
Pumpe nicht definiert	
Datenaufnahme	
Aufnahmedauer	min
930 Compact IC Flex Kationen	
Gerätetyp	
Pumpe	
Fluss 1,0	mL/min
Pmin	MPa
Pmax	
Anfahrzeit ein	
Anfahrzeit	min
Eluent nicht definiert	
Aktivja	
Injektor	
Injektor	
Aktiv ja	
Degasser	
Degasser ein	
Aktiv ja	
Ofen	
Ofenein	
Temperatur	°C
Temperaturstabilität überwachen	
Aktiv ja	
LF Detektor 1	
Temperaturkoeffizient	%/°C
Warngrenze	µS/cm
Aktiv ja	
930 Compact IC Flex Anionen	
Gerätetyp	
Pumpe	
Fluss	mL/min
Pmin	MPa
Pmax	MPa
Anfahrzeit ein	
Anfahrzeit	min
Eluentnicht definiert	
Aktivja	
Injektor	

	Element	Form	Gerät	Methoden-Nr.	Seite
	M	Mges	IC	MMgesIC3.1	10
	A	Ax		AAX3.1	
,	MMgesIC3.	1 = Ca, K, M	Ig, Na, NH ₄		
	AAXIC3 1 =	= NO ₂ NO ₃	PO ₄ SO ₄ Cl F		

	Injektor	
	Aktiv ja	
Pe	eristaltik	
	Peristaltikein	
	Geschwindigkeit 3	
	Lösung 1 nicht definiert	
	Lösung 2 nicht definiert	
	Aktiv ja	
M	SM	
	Beim Equilibrieren automatisch ein weiterschalten	
	Intervall	min
	Aktiv ja	
	Rotor nicht definiert	
	Dosino-Regeneration	
	Dosierer nicht definiert	
	Anschluss	
M	CS	
IVI	MCS ein	
D	Aktiv ja	
De	egasser	
	Degasserein	
	Aktivja fen	
Of		
	Ofenein	
	Temperatur	-0
	Temperaturstabilität überwachen	
	Aktiv ja	
LF	Detektor 1	
	Temperaturkoeffizient	
	Warngrenze	μS/cm
	Aktiv ja	
	al Sample Processor	
Ge	erätetyp	
Ra	ack	
	Rackname	
Pe	eristaltik	
	Peristaltik	
	Geschwindigkeit	
	Lösung 1 nicht definiert	
	Lösung 2 nicht definiert	
	Aktiv	
Pe	eripherie Turm	
	Turmrührer	
	Geschwindigkeit	
	Pumpe 1	

Element	Form	Gerät	Methoden-Nr.	Seite
M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	11
MMgesIC3.		Ig, Na, NH ₄ PO ₄ , SO ₄ , Cl, F		

	Lösung		nicht definiert	
Zeitp	rogramm			
Haupt	programm			
Zeit	Gerät Modul	Befehl Parameter	Kommentar	Nr
		Sequenz PROBE, Bedingung = 'SD. TYPENAME' = "Sample"	Programm, wenn Probe	6
		Sequenz KALIBRIERUNG, Bedingung = 'SD. TYPENAME' <> "Sample"	Programm, wenn keine Probe, sondern Std oder CheckStd	9
PROB	E FILTRIEREN			
Zeit	Gerät Modul	Befehl Parameter	Kommentar	Nr
0,0	930 Compact IC Flex Anionen Injektor	Füllen		8
0,0	930 Compact IC Flex Kationen Injektor	Füllen		35
	858 Professional Sample Processor Turm	Drehen (Rack) Probenposition		2
	858 Professional Sample Processor Turm	Lift Arbeitsposition		3
0,0	858 Professional Sample Processor Peristaltik	Ein/Aus Ein, Geschwindigkeit=3		4
		Warten Weiter nach 210 s.		51
	858 Professional Sample Processor Turm	Lift Drehposition		44
0,0	858 Professional Sample Processor Peristaltik	Ein/Aus Aus		7
SPÜL	EN			
Zeit	Gerät Modul	Befehl Parameter	Kommentar	Nr
	858 Professional Sample Processor Turm	Drehen (Rack) Spezialbecher 1		1
	858 Professional Sample Processor Turm	Lift Arbeitsposition		12
0,0	858 Professional Sample Processor Peristaltik	Ein/Aus Ein, Geschwindigkeit=4		13

für

Element	Form	Gerät	Methoden-Nr.	Seite
M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	12
MMgesIC3.		Ig, Na, NH ₄ PO ₄ , SO ₄ , Cl, F		

Zeit	Gerät Modul	Befehl Parameter	Kommentar	Nr
		Warten Weiter nach 90 s.		14
	858 Professional Sample Processor Turm	Drehen (Rack) Spezialbecher 2		22
	858 Professional Sample Processor Turm	Lift Arbeitsposition		24
		Warten Weiter nach 90 s.		23
	858 Professional Sample Processor Turm	Lift Drehposition		45
0,0	858 Professional Sample Processor Peristaltik	Ein/Aus Aus		15
	858 Professional Sample Processor Turm	Drehen (Rack) Spezialbecher 3		25
	858 Professional Sample Processor Turm	Lift Arbeitsposition		26
	858 Professional Sample Processor Turm	Lift Drehposition		27
FILTR	RATION NÄCHSTE PROBE			
Zeit	Gerät Modul	Befehl Parameter	Kommentar	Nr
0,0	930 Compact IC Flex Anionen Injektor	Füllen		11
0,0	930 Compact IC Flex Kationen Injektor	Füllen		16
	858 Professional Sample Processor Turm	Drehen (Rack) Rackposition = 'SD.NEXT.POSITION		18
	858 Professional Sample Processor Turm	Lift Arbeitsposition		19
0,0	858 Professional Sample Processor Peristaltik	Ein/Aus Ein, Geschwindigkeit=3		20
		Warten Weiter nach 270 s.		21
0,0	858 Professional Sample Processor Peristaltik	Ein/Aus Aus		37

PROBE

für

Element	Form	Gerät	Methoden-Nr.	Seite
M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	13
MMgesIC3. AAXIC3.1 =		Ig, Na, NH ₄ PO ₄ , SO ₄ , Cl, F		

	Gerät	Befehl Komment	ar Nr
	Modul	Parameter	
		Sequenz PROBE FILTRIEREN	17
0,0	930 Compact IC Flex Anionen	Injizieren	36
	Injektor		
0,0	930 Compact IC Flex Kationen Injektor	Injizieren	31
0,0	Anionen tief	Start Datenaufnahme	30
0,0	Anions hoch	Start Datenaufnahme	4
0,0	Kationen hoch	Start Datenaufnahme	4
0,0	Kationen tief	Start Datenaufnahme	4:
		Sequenz SPÜLEN	4
KALI	BRIERUNG		
Zeit	Gerät	Befehl Komment	ar Nr
	Modul	Parameter	
	Modul	Parameter	
	Modul	Parameter Sequenz ANIONEN STANDARD FILTRIEREN	5
0,0	930 Compact IC Flex Anionen Injektor	Sequenz	
	930 Compact IC Flex Anionen	Sequenz ANIONEN STANDARD FILTRIEREN	53
0,0	930 Compact IC Flex Anionen Injektor	Sequenz ANIONEN STANDARD FILTRIEREN Injizieren	5:
0,0	930 Compact IC Flex Anionen Injektor Anionen tief	Sequenz ANIONEN STANDARD FILTRIEREN Injizieren Start Datenaufnahme	52 21
0,0	930 Compact IC Flex Anionen Injektor Anionen tief	Sequenz ANIONEN STANDARD FILTRIEREN Injizieren Start Datenaufnahme Start Datenaufnahme	5: 2: 6:
0,0	930 Compact IC Flex Anionen Injektor Anionen tief Anions hoch	Sequenz ANIONEN STANDARD FILTRIEREN Injizieren Start Datenaufnahme Start Datenaufnahme Sequenz SPÜLEN Sequenz	52 24 64 67
0,0	930 Compact IC Flex Anionen Injektor Anionen tief Anions hoch	Sequenz ANIONEN STANDARD FILTRIEREN Injizieren Start Datenaufnahme Start Datenaufnahme Sequenz SPÜLEN Sequenz KATIONEN STANDARD FILTRIEREN	5; 2; 6; 6; 7; 64
0,0	930 Compact IC Flex Anionen Injektor Anionen tief Anions hoch 930 Compact IC Flex Kationen Injektor	Sequenz ANIONEN STANDARD FILTRIEREN Injizieren Start Datenaufnahme Start Datenaufnahme Sequenz SPÜLEN Sequenz KATIONEN STANDARD FILTRIEREN Injizieren	5: 2: 6: 7: 6-

ANIONEN STANDARD FILTRIEREN

	Element	Form	Gerät	Methoden-Nr.	Seite
	M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	14
MMgesIC3.1 = Ca, K, Mg, Na, NH ₄ AAXIC3.1 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F					

Zeit	Gerät Modul	Befehl Parameter	Kommentar	Nr
0,0	930 Compact IC Flex Kationen Injektor	Injizieren		73
0,0	930 Compact IC Flex Anionen Injektor	Füllen		10
	858 Professional Sample Processor Turm	Drehen (Rack) Probenposition		29
	858 Professional Sample Processor Turm	Lift Arbeitsposition		30
0,0	858 Professional Sample Processor Peristaltik	Ein/Aus Ein, Geschwindigkeit=3		31
		Warten Weiter nach 210 s.		5
	858 Professional Sample Processor Turm	Lift Drehposition		48
0,0	858 Professional Sample Processor Peristaltik	Ein/Aus Aus		33
SPÜL	EN NACH KATIONEN STD			
Zeit	Gerät Modul	Befehl Parameter	Kommentar	Nr.
	858 Professional Sample Processor Turm	Drehen (Rack) Spezialbecher 1		53
	858 Professional Sample Processor Turm	Lift Arbeitsposition		54
0,0	858 Professional Sample Processor Peristaltik	Ein/Aus Ein, Geschwindigkeit=4		55
		Warten Weiter nach 120 s.		56
	858 Professional Sample Processor Turm	Drehen (Rack) Spezialbecher 2		57
	858 Professional Sample Processor Turm	Lift Arbeitsposition		58
		Warten Weiter nach 120 s.		59
	858 Professional Sample Processor Turm	Lift Drehposition		74
0,0	858 Professional Sample Processor Peristaltik	Ein/Aus Aus		60
	858 Professional Sample Processor Turm	Drehen (Rack) Spezialbecher 3		61
	858 Professional Sample Processor	Lift		62

Element	Form	Gerät	Methoden-Nr.	Seite	
M	Mges	IC	MMgesIC3.1	15	
A	Ax		AAX3.1		
MMgesIC3.1 = Ca, K, Mg, Na, NH4					
AAXIC3.1 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F					

Zeit	Gerät Modul		Befehl Parameter	Kommentar	Nr
	858 Professional Sa Turm	mple Processor	Lift Drehposition		6:
CATIC	ONEN STANDARD FIL	TRIEREN			
Zeit	Gerät Modul		Befehl Parameter	Kommentar	N
0,0	930 Compact IC Fle Injektor	x Kationen	Füllen		50
	858 Professional Sa Turm	mple Processor	Drehen (Rack) Rackposition = 'SD.POSITIO	Fährt in benachbarte N' +1 Probe	3
	858 Professional Sa Turm	mple Processor	Lift Arbeitsposition		4
0,0	858 Professional Sa Peristaltik	mple Processor	Ein/Aus Ein, Geschwindigkeit=3		4
			Warten Weiter nach 210 s.		33
	858 Professional Sa Turm	mple Processor	Lift Drehposition		7:
0,0	858 Professional Sa Peristaltik	mple Processor	Ein/Aus Aus		4
nteg	ration				
Anion	en tief				
	Empfindlichkeit			100	
	-				
				0,001 µS/	cm
					cm) x mi
					-
	Blindprobe sub			aus	
	-				
	Ereignisse	viereii			
	Start [min]	Ende [min]	Ereignis	Parameter	
	2,6	4,0	Glättung	30	
	4,0	16,0	Tal-Tal		

Element	Form	Gerät	Methoden-Nr.	Seite	
M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	16	
MMgesIC3.1 = Ca, K, Mg, Na, NH ₄ AAXIC3.1 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F					

Glättun Minima Minima Integrat Polaritä Negativ	findlichkeit ung nale Höhe nale Fläche rationsstart rität		Glättung Gemeinsame Basislinie Tal-Tal 5 0,000 0,000 4	. 15 001 µS/cm 001 (µS/cm) x mir 4,1 min
Start [m 2,7 4,0 6,6 Kationen tief Empfind Glättun Minima Minima	findlichkeit . ung nale Höhe nale Fläche . rationsstart .	6,6	Gemeinsame Basislinie Tal-Tal	. 15 001 μS/cm 001 (μS/cm) x mir 4,1 min
Start [m 2,7 4,0 6,6 Kationen tief Empfine Glättun Minima Minima	findlichkeit . ung nale Höhe nale Fläche .	6,6	Gemeinsame Basislinie Tal-Tal	. 15 001 μS/cm 001 (μS/cm) x mir
Start [m 2,7 4,0 6,6 Kationen tief Empfine	findlichkeit .	6,6	Gemeinsame Basislinie Tal-Tal	15
Start [m 2,7 4,0 6,6 Kationen tief	findlichkeit .	6,6	Gemeinsame Basislinie Tal-Tal	
2,7 4,0 6,6	[min]	6,6	Gemeinsame Basislinie	_
Start [m 2,7 4,0	[min]	6,6	Gemeinsame Basislinie	
Start [m	[min]	-	-	
Start [m	[min]	4.0	Glättung	30
	[min]		-	30
Ereian	-	Ende [min]	Ereignis Paramet	eter
-		en	at	aus
			aı	
Blindp [/]	probe subtrah	nieren		aus
Overfl/	flow ignoriere	n	aı	
Driftke	compensation		aı	aus
Negati	ve i cans .			aus
_	tive Peaks		aı	aus aus aus
			aı	aus aus aus
Minima	rationsstart rität			2,8 min . + aus aus aus

für

Element	Form	Gerät	Methoden-Nr.	Seite	
M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	17	
MMgesIC3.1 = Ca, K, Mg, Na, NH ₄ AAXIC3.1 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F					

Driftkompensation aus
Overflow ignorieren
Blindprobe subtrahieren
Savitzky-Golayaus
Ereignisse aktivieren
Foriender

Ereignisse

Start [min]	Ende [min]	Ereignis	Parameter
3,80	5,76	Gemeinsame Basislinie	
5,76	16,2	Glättung	25
5,76	16,2	Tal-Tal	
5,76	16,2	Minimale Fläche	0,02
5,76	16,2	Minimale Höhe	0,1

Komponenten

Anionen tief

Name	Zeit [min]	Fenster [%]	Referenz
F	3,198	5,0	keine
CI	4,306	5,0	keine
NO2-N	4,944	5,0	keine
NO3-N	6,649	5,0	keine
PO4-P	10,061	5,0	keine
SO4-S	11,171	5,0	keine

Totzeit	. Manuell 0,01	min
Identifikation		
Referenzkomponenten	Höhe	
Andere Komponenten	Zeit	

Retentionszeit nachführen aus

Anions hoch

Name	Zeit [min]	Fenster [%]	Referenz
F	3,198	5,0	keine
CI	4,306	5,0	keine
NO2-N	4,944	5,0	keine
NO3-N	6,649	5,0	keine
PO4-P	10,061	5,0	keine
SO4-S	11,171	5,0	keine

Totzeit	. Manuell 1,9 min	1
Identifikation		
Referenzkomponenten	Höhe	
Andere Komponenten	Zeit	
Retentionszeit nachführen	aus	

	Element	Form	Gerät	Methoden-Nr.	Seite		
	M	Mges	IC	MMgesIC3.1	18		
	A	Ax		AAX3.1			
,	MMgesIC3.1 = Ca, K, Mg, Na, NH4						
	AAXIC3.1 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl. F						

	Name			Zeit [min]	Fen	ster [%]		Re	ferenz	
	Na			4,352	5				keine	
	NH4-N			4,776	5				keine	
	K			6,055	5				keine	
	Mg			10,184	5				keine	
	Ca			12,699	5				keine	
	Identifikation Referenzkomponenten Andere Komponenten								Höhe . Zeit	n
Kationen ho		OH SECRETIC	omamen.						. 443	
	Name			Zeit [min]	Fen	ster [%]		Re	ferenz	
	Na			4,352	5				keine	
	NH4-N			4,776	5				keine	
	K			6,055	5				keine	
	Mg			10,184	5				keine	
	Ca			12,699	5				keine	
	Totzeit Identifikatio									n
Standards	Konzentrat	ionsainhait							ma/l	
	- Conservation	ionsemmen							g/L	
	Name	1	2	3	4	5	6	7		
	F	0,00500	0,01000	0,02000	0,04000	0,06000	0,08000	0,12500		
	CI	0,00500	0,01000	0,02000	0,04000	0,06000	0,08000	0,12500		
	NO2-N	0,00304	0,00608	0,01216	0,02432	0,03647	0,04863	0,07599		
	NO3-N	0,00226	0,00451	0,00903	0,01806	0,02709	0,03612	0,05643		
	PO4-P	0,00326	0,00651	0,01303	0,02606	0,03909	0,05212	0,08143		
	SO4-S	0,00333	0,00667	0,01333	0,02667	0,04000	0,05333	0,08333		
	Na	0,00500	0,01000	0,02000	0,04000	0,06000	0,08000	0,10000		
	NH4-N	0,00389	0,00778	0,01555	0,03110	0,04666	0,06221	0,07776		
	K	0,00500	0,01000	0,02000	0,04000	0,06000	0,08000	0,10000		
	Mg	0,00500	0,01000	0,02000	0,04000	0,06000	0,08000	0,10000		
	Ca	0,00500	0,01000	0,02000	0,04000	0,06000	0,08000	0,10000		

für

	Element	Form	Gerät	Methoden-Nr.	Seite		
	M	Mges	IC	MMgesIC3.1	19		
	A	Ax		AAX3.1			
•	MMgesIC3.1 = Ca, K, Mg, Na, NH4						
	$AAXIC3.1 = NO_2, NO_3, PO_4, SO_4, Cl, F$						

Checkstandards

Name	1	2
F	2000	100
CI	2000	100
NO2-N	1824	75,99
NO3-N	1354	56,43
PO4-P	1954	81,43
SO4-S	2000	83,33
Na	2000	100
NH4-N	1555	77,76
K	2000	100
Mg	2000	100
Ca	2000	100

Kalibrierung

Anionen tief

Komponente	Messgrösse	Kurventyp	Gewichtung
F	Fläche	Kubisch	1/Konzentration
CI	Fläche	Kubisch	1/Konzentration
NO2-N	Fläche	Kubisch	1/Konzentration
NO3-N	Fläche	Kubisch	1/Konzentration
PO4-P	Fläche	Kubisch	1/Konzentration
SO4-S	Fläche	Kubisch	1/Konzentration

Anions hoch

Komponente	Messgrösse	Kurventyp	Gewichtung
F	Fläche	Kubisch	1
CI	Fläche	Kubisch	1
NO2-N	Fläche	Kubisch	1
NO3-N	Fläche	Kubisch	1
PO4-P	Fläche	Kubisch	1
SO4-S	Fläche	Kubisch	1

Kationen tief

Komponente	Messgrösse	Kurventyp	Gewichtung
Na	Fläche	Linear	1
NH4-N	Fläche	Linear	1
K	Fläche	Linear	1
Mg	Fläche	Linear	1
Ca	Fläche	Linear	1

Element	Form	Gerät	Methoden-Nr.	Seite	
M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	20	
MMgesIC3.1 = Ca, K, Mg, Na, NH ₄ AAXIC3.1 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F					

Kationen I	hoch				
	Komponente	Messgrösse	Kurventyp	Gewichtung	
	Na	Fläche	Linear durch 0	1	
	NH4-N	Fläche	Linear	1	
	K	Fläche	Linear durch 0	1	
	Mg	Fläche	Linear durch 0	1	
	Ca	Fläche	Linear durch 0	1	
Eigenscha	aften Kalibrierung				
•	Kalibriermethode			Externer Standard	
	Kalibriermodus			_	
	Funktionstyp				
	Punkt im Ursprung zur Kalibrierkurve				
	Blindwertkorrektur für Inline-l				
Überwach		•			
	Gültigkeit der Kalibrierung				
	Unbegrenzt			ein	
	Gleicher Tag			aus	
	Tage			aus	
	Meldung				
	Meldung per E-Mail			aus	
	Akustisches Signal			aus	
	Aktion				
	Meldung dokumentieren			ein	
	Meldung anzeigen			aus	
	Bestimmung abbrechen			aus	
Resultato	definitionen				
Papart					
Report	Result				
	Drucker			aus	
	PDF-Datei				
	-				
	PDF-Datei				
	Bestimmungs-ID				
	Probenidentifikation				
	Probenidentifikation				
	Batchname				
	Zielverzeichnis				
Pharmaco					
. marmaco	Pharmacopõe			USP	

	Element	Form	Gerät	Methoden-Nr.	Seite		
	M	Mges	IC	MMgesIC3.1	21		
	A	Ax		AAX3.1			
,	MMgesIC3.1 = Ca, K, Mg, Na, NH4						
	$AAXIC3.1 = NO_2, NO_3, PO_4, SO_4, Cl, F$						

Dezimalstellen	der Resultate		
Dezimaistelleli	Retentionszeit	2	Halbwertsbreite 2
	Höhe		Höhenanteil
	Fläche	3	Flächenanteil
	Kapazitätsfaktor	3	Auflösung
	Trennstufenzahl	n	Trennstufenzahl pro Meter 0
	Gaussfaktor	3	Asymmetrie
	Konzentration		Konzentrationsanteil
	Konzentration		
	Konzentrationsmittelwert	3	Standardabweichung
	Konfidenzintervall, 95 %	3	Nachweisgrenze, 95 % Konfidenz 3
	Standardkonzentration	3	Peakstart 2
	Peakende	2	a(0,044) 2
	b(0,044)	2	a(0,05) 2
	b(0,05)	2	a(0,10) 2
	b(0,10)	2	a(0,134) 2
	b(0,134)	2	a(0,324) 2
	b(0,324)	2	a(0,50) 2
	b(0,50)	2	a(0,61) 2
	b(0,61)	2	Basisbreite 2
	Hva	2	Hvb 2
	P/T-Verhältnis A	2	P/T-Verhältnis B 2
	k(0)	6	k(1) 6
	k(2)	6	k(3) 6
	Korrelationskoeffizient	6	Prozentuale Standardabweichung 3
	Mittelwert X	3	Mittelwert Y
	Standardabweichung X	3	Reststandardabweichung Y 3
	Wiederfindungsrate	3	Wiederfindungsrate (Aufstockung) 3
Datenbank			
F	_A2_K2_Sep2016_E2_D2		
Überwachung			
R	S.FF		
	Untere Grenze		=Case('SD.TYPEVALUE' = 1;95 * 2/100; ase('SD.TYPEVALUE' =2;90 * 0,1/100;0))
	Obere Grenze		Case('SD.TYPEVALUE' = 1;105 * 2/100; se('SD.TYPEVALUE' =2;110 * 0,1/100;0))
	Einheit		
	Meldung		Fluorid im Kontrollstandard außerhalb der
_			vorgegebenen Grenzen!
R	S.CICI		
	Untere Grenze		=Case('SD.TYPEVALUE' = 1;95 * 2/100; ase('SD.TYPEVALUE' =2;90 * 0,1/100;0))
	Obere Grenze		Case('SD.TYPEVALUE' = 1;105 * 2/100; se('SD.TYPEVALUE' =2;110 * 0,1/100;0))
			ppm
	Meldung		Chlorid im Kontrollstandard außerhalb der
R	S.NNO2		vorgegebenen Grenzen!

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC3.1	22
A	Ax		AAX3.1	
MMgesIC3.1 = Ca, K, Mg, Na, NH4				
AAXIC3.1 = NO2, NO3, PO4, SO4, Cl, F				

Überwachung		
	Untere Grenze	=Case('SD.TYPEVALUE' = 1;95 * 1,824 /100;Case('SD.TYPEVALUE' =2;90 * 0,076 /100;0))
	Obere Grenze	=Case('SD.TYPEVALUE' = 1;105 * 1,824 /100;Case('SD.TYPEVALUE' =2;110 * 0,076 /100;0))
	Meldung	Nitrit im Kontrollstandard außerhalb der vorgegebenen Grenzen!
RS	NNO3	
		=Case('SD.TYPEVALUE' = 1;95 * 1,354 /100;Case('SD.TYPEVALUE' =2;90 * 0,056 /100;0))
	Obere Grenze	_ =Case('SD.TYPEVALUE' = 1;105 * 1,354 /100;Case('SD.TYPEVALUE' =2;110 * 0,056 /100;0))
	Meldung	Nitrate im Kontrollstandard außerhalb der
RS	.PPO4	vorgegebenen Grenzen!
	Untere Grenze	=Case('SD.TYPEVALUE' = 1;95 * 1,954 /100;Case('SD.TYPEVALUE' =2;90 * 0,081 /100;0))
	Obere Grenze	_ =Case('SD.TYPEVALUE' = 1;105 * 1,954 /100;Case('SD.TYPEVALUE' =2;110 * 0,081 /100;0))
	Einheit	
	Meldung	. Phosphat im Kontrollstandard außerhalb der vorgegebenen Grenzen!
RS	.SSO4	
	Untere Grenze	= Case('SD.TYPEVALUE' = 1;95 * 2/100; Case('SD.TYPEVALUE' =2;90 * 0,083/100; 0))
	Obere Grenze	. =Case('SD.TYPEVALUE' = 1;105 * 2/100; Case('SD.TYPEVALUE' =2;110 * 0,083/100; 0))
	Meldung	Sulfat im Kontrollstandard außerhalb der vorgegebenen Grenzen!
RS	.NaNages	
	Untere Grenze	=Case('SD.TYPEVALUE' = 1;95 * 2/100; Case('SD.TYPEVALUE' =2;90 * 0,1/100;0))
	Obere Grenze	_ =Case('SD.TYPEVALUE' = 1;105 * 2/100; Case('SD.TYPEVALUE' =2;110 * 0,1/100;0))
		Natrium im Kontrollstandard außerhalb der vorgegebenen Grenzen!
RS	NNH4	-0/ IOD TVDTVVIII - 4 05 1 1
	Untere Grenze	=Case('SD.TYPEVALUE' = 1;95 * 1,555 /100;Case('SD.TYPEVALUE' =2;90 * 0,078 /100;0))

	Element	Form	Gerät	Methoden-Nr.	Seite
	M	Mges	IC	MMgesIC3.1	23
	A	Ax		AAX3.1	
,	MMgesIC3.1 = Ca, K, Mg, Na, NH4				
	AAXIC3.1 = NO2, NO3, PO4, SO4, Cl, F				

Überwachung	
	Obere Grenze = Case('SD.TYPEVALUE' = 1;105 * 1,555 /100;Case('SD.TYPEVALUE' = 2;110 * 0,078 /100;0))
	Einheit
	Meldung Ammonium im Kontrollstandard außerhalb der vorgegebenen Grenzen!
RS	.KKges
	Untere Grenze = 1;95 * 2/100; Case('SD.TYPEVALUE' = 1;95 * 2/100; Case('SD.TYPEVALUE' =2;90 * 0,1/100;0))
	Obere Grenze = Case('SD.TYPEVALUE' = 1;105 * 2/100; Case('SD.TYPEVALUE' =2;110 * 0,1/100;0))
	Einheit
	Meldung
RS	.CaCages
	Untere Grenze = Case('SD.TYPEVALUE' = 1;95 * 2/100; Case('SD.TYPEVALUE' = 2;90 * 0,1/100;0))
	Obere Grenze = Case('SD.TYPEVALUE' = 1;105 * 2/100;
	Einheit
	Meldung Calicum im Kontrollstandard außerhalb der vorgegebenen Grenzen!
RS	.MgMgges
	Untere Grenze = Case('SD.TYPEVALUE' = 1;95 * 2/100; Case('SD.TYPEVALUE' =2;90 * 0,1/100;0))
	Obere Grenze = Case('SD.TYPEVALUE' = 1;105 * 2/100;
	Einheit
	Meldung Magnesium im Kontrollstandard außerhalb der vorgegebenen Grenzen!
Benutzerdefinie	rte Resultate
FF	
	Resultattyp Einzelresultat
	Formel = Case(Error('RS.Anionen tief.F.AREA') = 0 ; Case('RS.Anionen tief.F.AREA' <= 'RS.Anionen tief.Standard 12.F.AREA' ; 'RS.Anionen tief.F.Cono' ; Case(Error('RS.Anions hoch.F.AREA') = 0 ; Case('RS.Anions hoch.F.AREA' <= 'RS.Anions hoch.Standard 16.F.AREA' ; 'RS.Anions hoch.F.CONC' ; ('ED.Standard 16.F.CONC' + 1) " 'SD. DILUTION') ; 'RS.Anionen tief.F.CONC')) ; Case(Error('RS.Anions hoch.F.AREA') = 0 ; Case('RS.Anions hoch.F.AREA' <= 'RS.Anions hoch.F.AREA' ; 'RS.Anions hoch.F.CONC' ; ('ED. Standard 16.F.CONC' + 1) " 'SD.DILUTION') ; 0))
	Einheit
	Dezimalstellen
	Beschreibung
CIC	
	Resultattyp Einzelresultat

für

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC3.1	24
A	Ax		AAX3.1	
MMgesIC3.1 = Ca, K, Mg, Na, NH4				
AAXIC3.1 =	AAXIC3.1 = NO2, NO3, PO4, SO4, Cl, F			

enutzerdefinierte Resultate
Formel =Case(Error('RS.Anionen tief.CI.AREA') = 0 ; Case('RS.Anionen tief.CI.AREA' <= 'RS.Anionen tief.Standard 12.CI.AREA' ; 'RS. Anionen tief.CI.Conc' ; Case(Error('RS.Anions hoch.CI.AREA') = 0 ; Case('RS.Anions hoch.CI.AREA' <= 'RS.Anions hoch.Standard 17. CI.AREA' ; 'RS.Anions hoch.CI.CONC' ; ('ED.Standard 17.CI.CONC' + 1) * 'SD.DILUTION') ; 'RS.Anionen tief.CI.CONC')) ; Case(Error('RS.Anions hoch.CI.AREA') = 0 ; Case('RS.Anions hoch.CI.AREA' <= 'RS.Anions hoch.Standard 17.CI.CONC' + 1) * 'SD.DILUTION') ; 0))
Einheit
Dezimalstellen
Beschreibung.
NNO2
Resultattyp Einzelresultat
Formel = Case(Error('RS.Anionen tief.NO2-N.AREA') = 0 ; Case('RS. Anionen tief.NO2-N.AREA' <= 'RS.Anionen tief.Standard 13.NO2-N. AREA' ; 'RS.Anionen tief.NO2-N.Conc' ; Case(Error('RS.Anions hoch.NO2-N.AREA') = 0 ; Case('RS.Anions hoch.NO2-N.AREA' <= 'RS.Anions hoch.Standard 17.NO2-N.AREA'; 'RS.Anions hoch.NO2-N.CONC'; ('ED.Standard 17.NO2-N.CONC' + 1) " 'SD.DILUTION') ; 'RS.Anionen tief.NO2-N.CONC')) ; Case(Error('RS.Anions hoch. NO2-N.AREA') = 0 ; Case('RS.Anions hoch.NO2-N.AREA' <= 'RS. Anions hoch.Standard 17.NO2-N.AREA'; 'RS.Anions hoch.NO2-N. CONC'; ('ED.Standard 17.NO2-N.CONC' + 1) " 'SD.DILUTION') ; 0
Einheit
Dezimalstellen
Beschreibung.
NNO3
Resultattyp
Formel = Case(Error('RS.Anionen tief.NO3-N.AREA') = 0 ; Case('RS. Anionen tief.NO3-N.AREA' <= 'RS.Anionen tief.Standard 13.NO3-N. AREA'; 'RS.Anionen tief.NO3-N.Conc'; Case(Error('RS.Anions hoch.NO3-N.AREA') = 0 ; Case('RS.Anions hoch.NO3-N.AREA' <= 'RS.Anions hoch.Standard 18.NO3-N.AREA'; 'RS.Anions hoch.NO3-N.CONC'; ('ED.Standard 18.NO3-N.CONC' + 1) * 'SD.DILUTION'); 'RS.Anionen tief.NO3-N.CONC')); Case(Error('RS.Anions hoch. NO3-N.AREA') = 0; Case('RS.Anions hoch.NO3-N.AREA' <= 'RS. Anions hoch.Standard 18.NO3-N.AREA'; 'RS.Anions hoch.NO3-N. CONC'; ('ED.Standard 18.NO3-N.CONC' + 1) * 'SD.DILUTION'); 0))
Einheit
Dezimalstellen
Beschreibung
PPO4

Resultattyp..... Einzelresultat

für

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	IC	MMgesIC3.1	25
A	Ax		AAX3.1	
MMgesIC3.1 = Ca, K, Mg, Na, NH4				
$AAXIC3.1 = NO_2, NO_3, PO_4, SO_4, Cl, F$				

Benutzerdefinie	te Resultate
	Formel =Case(Error('RS.Anionen tief.PO4-P.AREA') = 0 ; Case('RS. Anionen tief.PO4-P.AREA' <= 'RS.Anionen tief.Standard 11.PO4-P. AREA' ; 'RS.Anionen tief.PO4-P.Cono' ; Case(Error('RS.Anions hoch.PO4-P.AREA') = 0 ; Case('RS.Anions hoch.PO4-P.AREA' <= 'RS.Anions hoch.Standard 15.PO4-P.AREA' ; 'RS.Anions hoch.PO4-P.CONC' ; ('ED.Standard 15.PO4-P.CONC' + 1) * 'SD.DILUTION') ; 'RS.Anionen tief.PO4-P.CONC')) ; Case(Error('RS.Anions hoch. PO4-P.AREA') = 0 ; Case('RS.Anions hoch.PO4-P.AREA' <= 'RS. Anions hoch.Standard 15.PO4-P.AREA' ; 'RS.Anions hoch.PO4-P. CONC' ; ('ED.Standard 15.PO4-P.AREA' ; 'RS.Anions hoch.PO4-P. CONC' ; ('ED.Standard 15.PO4-P.CONC' + 1) * 'SD.DILUTION') ; 0
	Einheit
	Dezimalstellen
	Beschreibung
SS	04
	Resultattyp Einzelresultat
	Formel = Case(Error('RS.Anionen tief.SO4-S.AREA') = 0 ; Case('RS. Anionen tief.SO4-S.AREA' <= 'RS.Anionen tief.Standard 13.SO4-S.
	AREA'; 'RS.Anionen tief.SO4-S.Cono'; Case(Error('RS.Anions hoch.SO4-S.AREA') = 0; Case('RS.Anions hoch.SO4-S.AREA' <= 'RS.Anions hoch.Standard 17.SO4-S.AREA'; 'RS.Anions hoch.SO4-S.CONC'; ('ED.Standard 17.SO4-S.CONC' + 1) * 'SD.DILUTION'); 'RS.Anionen tief.SO4-S.CONC')); Case(Error('RS.Anions hoch.
	SO4-S.AREA') = 0; Case('RS.Anions hoch.SO4-S.AREA' <= 'RS. Anions hoch.Standard 17.SO4-S.AREA'; 'RS.Anions hoch.SO4-S. CONC'; ('ED.Standard 17.SO4-S.CONC' + 1) * 'SD.DILUTION'); 0
	Einheit
	Dezimalstellen
	Beschreibung.
Nai	Nages
	Resultattyp Einzelresultat
	Formel = Case(Error('RS.Kationen tief.Na.AREA') = 0 ; Case('RS.Kationen tief.Na.AREA' <= 'RS.Kationen tief.Standard 10.Na.AREA' ; 'RS. Kationen tief.NA.Conc' ; Case(Error('RS.Kationen hoch.Na.AREA') = 0 ; Case('RS.Kationen hoch.Na.AREA' <= 'RS.Kationen hoch. Standard 15.Na.AREA' ; 'RS.Kationen hoch.Na.CONC' ; ('ED. Standard 15.Na.CONC' + 1) " 'SD.DILUTION') ; 'RS.Kationen tief. Na.CONC')) ; Case(Error('RS.Kationen hoch.Na.AREA') = 0 ; Case('RS.Kationen hoch.Na.AREA' <= 'RS.Kationen hoch.Standard
	15.Na.AREA'; 'RS.Kationen hoch.Na.CONC'; ('ED.Standard 15.Na. CONC' + 1) * 'SD.DILUTION'); 0))
	Einheit
	Dezimalstellen
	Beschreibung.
NN	H4

Resultattyp..... Einzelresultat....

für

MgMgges

7	1	
IC	MMgesIC3.1 AAX3.1	26
MMgesIC3.1 = Ca, K, Mg, Na, NH ₄ AAXIC3.1 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F		
		NH ₄

Benutzerdefinierte	e Resultate
F	iormel=Case(Error('RS.Kationen tief.NH4-N.AREA') = 0 ; Case('RS.Kationen tief.NH4-N.AREA' <= 'RS.Kationen tief.Standard 10.NH4-N.AREA'; 'RS.Kationen tief.NH4-N.Conc'; Case(Error('RS.Kationen hoch.NH4-N.AREA') = 0 ; Case('RS.Kationen hoch.NH4-N.AREA') <= 'RS.Kationen hoch.Standard 15.NH4-N.AREA'; 'RS.Kationen hoch.NH4-N.CONC'; ('ED.Standard 15.NH4-N.CONC' + 1) * 'SD.DILUTION'); 'RS.Kationen tief.NH4-N.CONC'); Case(Error('RS.Kationen hoch.NH4-N.AREA') = 0; Case('RS.Kationen hoch.NH4-N.AREA'; 'RS.Kationen hoch.Standard 15.NH4-N.AREA'; 'RS.Kationen hoch.NH4-N.CONC'; ('ED.Standard 15.NH4-N.CONC' + 1) * 'SD.DILUTION'); 0)
E	inheit
D	Pezimalstellen
В	leschreibung.
KKge	
	Resultattyp
F	ormel =Case(Error('RS.Kationen tief.K.AREA') = 0 ; Case('RS.Kationen tief.K.AREA' <= 'RS.Kationen tief.Standard 10.K.AREA' ; 'RS.
	Kationen tief.K.Conc'; Case(Error('RS.Kationen hoch.K.AREA') = 0 ; Case('RS.Kationen hoch.K.AREA' <= 'RS.Kationen hoch.Standard 17.K.AREA'; 'RS.Kationen hoch.K.CONC'; ('ED.Standard 17.K.
	CONC' + 1) * 'SD.DILUTION'); 'RS.Kationen tief.K.CONC')); Case (Error('RS.Kationen hoch.K.AREA') = 0; Case('RS.Kationen hoch.
	K.AREA' <= 'RS.Kationen hoch.Standard 17.K.AREA'; 'RS.Kationen hoch.K.CONC'; ('ED.Standard 17.K.CONC' + 1) " 'SD.DILUTION'); 0))
E	inheit
D	Pezimalstellen
В	leschreibung.
CaCa	ages
R	Resultattyp Einzelresultat
F	ormel =Case(Error('RS.Kationen tief.Ca.AREA') = 0 ; Case('RS.Kationen tief.Ca.AREA' <= 'RS.Kationen tief.Standard 10.Ca.AREA' ; 'RS.
	Kationen tief.Ca.Conc' ; Case(Error('RS.Kationen hoch.Ca.AREA') = 0 ; Case('RS.Kationen hoch.Ca.AREA' <= 'RS.Kationen hoch.
	Standard 17.Ca.AREA'; 'RS.Kationen hoch.Ca.CONC'; ('ED. Standard 17.Ca.CONC' + 1) * 'SD.DILUTION'); 'RS.Kationen tief.
	Ca.CONC')) ; Case(Error('RS.Kationen hoch.Ca.AREA') = 0 ; Case('RS.Kationen hoch.Ca.AREA' <= 'RS.Kationen hoch.Standard
	17.Ca.AREA' ; 'RS.Kationen hoch.Ca.CONC' ; ('ED.Standard 17.Ca. CONC' + 1) " 'SD.DILUTION') ; 0))
E	inheit
D	Dezimalstellen
В	leschreibung

Resultattyp..... Einzelresultat.....

]	Element	Form	Gerät	Methoden-Nr.	Seite
	M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	27
	MMgesIC3.1 = Ca, K, Mg, Na, NH ₄ AAXIC3.1 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F				
P	AAIC3.1 -	= NO ₂ , NO ₃ ,	PO4, SO4, CI, F		

Benutzerdefinierte Resulta	te
Formel	= Case(Error('RS.Kationen tief.Mg.AREA') = 0; Case('RS.Kationen tief.Mg.AREA' <= 'RS.Kationen tief.Standard 10.Mg.AREA'; 'RS. Kationen tief.Mg.Conc'; Case(Error('RS.Kationen hoch.Mg.AREA') = 0; Case('RS.Kationen hoch.Mg.AREA' <= 'RS.Kationen hoch. Standard 15.Mg.AREA'; 'RS.Kationen hoch.Mg.CONC'; ('ED. Standard 15.Mg.CONC' + 1) * 'SD.DILUTION'); 'RS.Kationen tief. Mg.CONC')); Case(Error('RS.Kationen hoch.Mg.AREA') = 0; Case('RS.Kationen hoch.Mg.AREA' <= 'RS.Kationen hoch.Standard 15.Mg.AREA'; 'RS.Kationen hoch.Mg.CONC'; ('ED.Standard 15.Mg.AREA'; 'RS.Kationen hoch.Mg.CONC' + 1) * 'SD.DILUTION'); 0)
Einheit	ppm
Dezimalste	ellen
Beschreib	ung
FF_KB	
Resultatty	o Einzelresultat
Formel	= Case(Error('RS.Anionen tief.F.AREA') = 0 ; Case('RS.Anionen
	tief.F.AREA' <= 'RS.Anionen tief.Standard 12.F.AREA'; "T"; Case(Error('RS.Anions hoch.F.AREA') = 0; Case('RS.Anions hoch.F.
	AREA' <= 'RS.Anions hoch.Standard 16.F.AREA'; "H"; "H"); "T")); Case(Error('RS.Anions hoch.F.AREA') = 0; Case('RS.Anions hoch.F.AREA' <= 'RS.Anions hoch.Standard 16.F.AREA'; "H"; "H"); "T"))
Einheit	
Dezimalste	ellen
Beschreib	ung
CICI_KB	
Resultatty	oEinzelresultat
Formel	<pre>= Case(Error('RS.Anionen tief.CI.AREA') = 0 ; Case('RS.Anionen tief.CI.AREA' <= 'RS.Anionen tief.Standard 12.CI.AREA' ; "T" ; Case (Error('RS.Anions hoch.CI.AREA') = 0 ; Case('RS.Anions hoch.CI. AREA' <= 'RS.Anions hoch.Standard 17.CI.AREA' ; "H" ; "H") ; "T")) ; Case(Error('RS.Anions hoch.CI.AREA') = 0 ; Case('RS.Anions</pre>
	hoch.Cl.AREA' <= 'RS.Anions hoch.Standard 17.Cl.AREA'; "H"; "H"); "T"))
Einheit	
Dezimalste	ellen
Beschreib	ung
NNO2_KB	
Resultatty	o Einzelresultat
Formel	=Case(Error('RS.Anionen tief.NO2-N.AREA') = 0 ; Case('RS. Anionen tief.NO2-N.AREA' <= 'RS.Anionen tief.Standard 13.NO2-N. AREA'; "T" ; Case(Error('RS.Anions hoch.NO2-N.AREA') = 0 ; Case('RS.Anions hoch.NO2-N.AREA' <= 'RS.Anions hoch.Standard 17.NO2-N.AREA'; "H" ; "H") ; "T")); Case(Error('RS.Anions hoch.NO2-N.AREA') = 0 ; Case('RS.Anions hoch.NO2-N.AREA' <= 'RS.Anions hoch.Standard 17.NO2-N.AREA'; "H" ; "H") ; "T"))
Einheit	
	ellen
	ung
NNO3_KB	
_	DEinzelresultat

für

Element	Form	Gerät	Methoden-Nr.	Seite	
M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	28	
MMgesIC3.1 = Ca, K, Mg, Na, NH ₄ AAXIC3.1 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F					

Benutzerdefinierte Resultate Formel. =Case(Error('RS.Anionen tief.NO3-N.AREA') = 0 ; Case('RS. Anionen tief.NO3-N.AREA' <= 'RS.Anionen tief.Standard 13.NO3-N. AREA'; "T"; Case(Error('RS.Anions hoch.NO3-N.AREA') = 0; Case('RS.Anions hoch.NO3-N.AREA' <= 'RS.Anions hoch.Standard 18.NO3-N.AREA'; "H"; "H"); "T")); Case(Error('RS.Anions hoch.NO3-N.AREA') = 0; Case('RS.Anions hoch.NO3-N.AREA' <= 'RS.Anions hoch.Standard 18.NO3-N.AREA'; "H"; "H"); "T")) PPO4_KB Resultattyp Einzelresultat =Case(Error('RS.Anionen tief.PO4-P.AREA') = 0 ; Case('RS. Anionen tief.PO4-P.AREA' <= 'RS.Anionen tief.Standard 11.PO4-P. AREA'; "T"; Case(Error('RS.Anions hoch.PO4-P.AREA') = 0; Case('RS.Anions hoch.PO4-P.AREA' <= 'RS.Anions hoch.Standard 15.PO4-P.AREA'; "H"; "H"); "T")); Case(Error('RS.Anions hoch.PO4-P.AREA') = 0; Case('RS.Anions hoch.PO4-P.AREA' <= 'RS.Anions hoch.Standard 15.PO4-P.AREA'; "H"; "H"); "T")) Beschreibung..... SSO4_KB Resultattyp Einzelresultat Formel. = Case(Error('RS.Anionen tief.SO4-S.AREA') = 0 ; Case('RS. Anionen tief.SO4-S.AREA' <= 'RS.Anionen tief.Standard 13.SO4-S. AREA'; "T"; Case(Error('RS.Anions hoch.SO4-S.AREA') = 0; Case('RS.Anions hoch.SO4-S.AREA' <= 'RS.Anions hoch.Standard 17.SO4-S.AREA'; "H"; "H"); "T")); Case(Error('RS.Anions hoch.SO4-S.AREA') = 0; Case('RS.Anions hoch.SO4-S.AREA' <= 'RS.Anions hoch.Standard 17.SO4-S.AREA'; "H"; "H"); "T")) NaNages KB Resultattyp..... Einzelresultat Formel. = Case(Error('RS.Kationen tief.Na.AREA') = 0 ; Case('RS.Kationen tief.Na.AREA' <= 'RS.Kationen tief.Standard 10.Na.AREA'; "T"; Case(Error('RS.Kationen hoch.Na.AREA') = 0; Case('RS. Kationen hoch.Na.AREA' <= 'RS.Kationen hoch.Standard 15.Na. AREA'; "H"; "H"); "T")); Case(Error('RS.Kationen hoch.Na. AREA') = 0 ; Case('RS.Kationen hoch.Na.AREA' <= 'RS.Kationen hoch.Standard 15.Na.AREA'; "H"; "H"); "T")) KKges_KB

Resultattyp Einzelresultat

für

Form	Gerät	Methoden-Nr.	Seite		
Mges Ax	IC	MMgesIC3.1 AAX3.1	29		
MMgesIC3.1 = Ca, K, Mg, Na, NH4 $AAXIC3.1 = NO2 NO2 PO4 SO4 Cl. F$					
	Mges Ax = Ca, K, M	Mges IC Ax	Mges IC MMgesIC3.1 Ax AAX3.1		

Benutzerdefinierte Res	sultate
Forme	el =Case(Error('RS.Kationen tief.K.AREA') = 0 ; Case('RS.Kationen tief.K.AREA' <= 'RS.Kationen tief.Standard 10.K.AREA' ; "T" ; Case(Error('RS.Kationen hoch.K.AREA') = 0 ; Case('RS.Kationen hoch. K.AREA' <= 'RS.Kationen hoch.Standard 17.K.AREA' ; "H" ; "H"); "T")); Case(Error('RS.Kationen hoch.K.AREA') = 0 ; Case('RS. Kationen hoch.K.AREA' <= 'RS.Kationen hoch.Standard 17.K.AREA' ; "H" ; "H"); "T"))
Einhei	t
Dezim	alstellen
Besch	reibung.
NNH4_KB	
Result	attyp Einzelresultat
Forme	H=Case(Error('RS.Kationen tief.NH4-N.AREA') = 0; Case('RS. Kationen tief.NH4-N.AREA' <= 'RS.Kationen tief.Standard 10.NH4-N. AREA'; "T"; Case(Error('RS.Kationen hoch.NH4-N.AREA') = 0; Case('RS.Kationen hoch.NH4-N.AREA' <= 'RS.Kationen hoch. Standard 15.NH4-N.AREA'; "H"; "H"); "T")); Case(Error('RS. Kationen hoch.NH4-N.AREA') = 0; Case('RS.Kationen hoch.NH4-N.AREA' <= 'RS.Kationen hoch.Standard 15.NH4-N.AREA'; "H"; "H"); "T"))
Einhei	t
Dezim	alstellen
Besch	reibung
CaCages	_KB
Result	tattypEinzelresultat
Forme	El =Case(Error('RS.Kationen tief.Ca.AREA') = 0 ; Case('RS.Kationen tief.Ca.AREA' <= 'RS.Kationen tief.Standard 10.Ca.AREA'; "T"; Case(Error('RS.Kationen hoch.Ca.AREA') = 0 ; Case('RS.Kationen hoch.Ca.AREA' <= 'RS.Kationen hoch.Standard 17.Ca.AREA'; "H"; "H"); "T")); Case(Error('RS.Kationen hoch.Ca.AREA') = 0 ; Case('RS.Kationen hoch.Ca.AREA' <= 'RS.Kationen hoch.Standard 17.Ca.AREA'; "H"; "H"); "T"))
Einhei	t
Dezim	alstellen
Besch	reibung.
MgMgges	_KB
Result	lattypEinzelresultat
Forme	EL
Einhei	t
Dezim	alstellen
Besch	reibung.

Seite 22 von 23

Methodeneigenschaften

ımelanhang
S29.1

F	lement	Form	Gerät	Methoden-Nr.	Seite
	M A	Mges Ax	IC	MMgesIC3.1 AAX3.1	30
MMgesIC3.1 = Ca, K, Mg, Na, NH ₄ AAXIC3.1 = NO ₂ , NO ₃ , PO ₄ , SO ₄ , Cl, F					

Probendaten				
Name	Anzeigename	Fixwert	Untere Grenze	Obere Grenze
Ident	Ident			
Probentyp	Probentyp			
Position	Position			
Injektionen	Injektionen	1		
Volumen	Volumen	20		
Verdünnung	Verdünnung			
Probenmenge	Probenmenge			
Info 1	Info 1			
Batchname	Batchname			

Methodenkommentar

Applikationsnotiz

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite
S30.1	für	M	Mges	ICP-MS	MMgesICPMS1.1	1
		MMgesl	CPMS1.1 =	<u>l</u> Cd, Co, Cr, Cu, Hg, N	l Ji, Zn, Pb	

Datum: 01.01.2019

Geräteparameter und Grundeichung für iCAP RQ der Fa. Thermo Scientific für die Methode ICPMS1.1

a. Verwendete Standards

Die Herstellung der Standardlösungen ist in der jeweiligen Methode angegeben.

Element	K24MS	KWSM1	KWSM2	KWSM3	KWSM4	KWSM5
Cd	5 ppb	0.1 ppb	0.2 ppb	0.5 ppb	1 ppb	2 ppb
Co	5 ppb	20 ppb	1 ppb	2 ppb	5 ppb	10 ppb
Cr	5 ppb	20 ppb	50 ppb	2 ppb	5 ppb	10 ppb
Cu	5 ppb	5 ppb	10 ppb	20 ppb	1 ppb	2 ppb
Hg	50 ppt	500 ppt	1000 ppt	50 ppt	100 ppt	200 ppt
Ni	5 ppb	5 ppb	10 ppb	20 ppb	50 ppb	2 ppb
Pb	25 ppb	2 ppb	5 ppb	10 ppb	20 ppb	50 ppb
Zn	25 ppb	100 ppb	5 ppb	10 ppb	20 ppb	50 ppb

Sammelanhang		
S30.1	für	

Element	Form	Gerät	Methoden-Nr.	Seite	
M	Mges	ICP-MS	MMgesICPMS1.1	2	
MMgesICPMS1.1 = Cd, Co, Cr, Cu, Hg, Ni, Zn, Pb					

b. Methodenparameter

Gerätetuning:

Additional Gas Flow 1	0
Additional Gas Flow 2	0
Additional Gas Flow 3	0
Additional Stabilization Time	10
Angular Deflection	-270
Auxilliary Flow	0.65
CCT Bias	-21
CCT Entry Lens	-105
CCT Exit Lens	-60
CCT Focus Lens	-2.1
CCT1 Flow	4.5
CCT1 Shut-Off Valve	1
CCT2 Flow	0.5
CCT2 Shut-Off Valve	1
Cool Flow	14
D1 Lens	-340
D2 Lens	-158
Deflection Entry Lens	-35
Extraction Lens 1 Negative	0
Extraction Lens 1 Polarity	0
Extraction Lens 1 Positive	0
Extraction Lens 2	-116
Filename	2019B028OAKW_a_14.10.2019.imexp
Focus Lens	-4.125
Identifier	mp_KED-H2
Nebulizer Flow	1.109
Peristaltic Pump Speed	40
Plasma Power	1550
Pole Bias	-18
Quad Entry Lens	-56
Sampling Depth	5
Source Autotune Configuration	SourceTune High Matrix-mp
Spray Chamber Temperature	2.7
Torch Horizontal Position	-0.7
Torch Vertical Position	-0.3
Virtual CCT Mass Maximum Dac Limit Set	4095
Virtual CCT Mass parameter b	1
Virtual CCT Mass to Dac Factor	60
Virtual CCT Mass to Dac Offset	37.5

Sammelanhang				
S30.1				

Element	Form	Gerät	Methoden-Nr.	Seite		
M	Mges	ICP-MS	MMgesICPMS1.1	3		
MMgesICPMS1.1 = Cd, Co, Cr, Cu, Hg, Ni, Zn, Pb						

Acquisitionsparameter:

Identifier	Channels	Dwell time (s)	Fit Type	Forcing	Internal Standard	Is Internal Standard	Measurement mode	Resolution	Spacing (u)
45Sc (mp_KED-H2)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	Normal	0.1
45Sc (mp_KED-H2,1)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	High	0.1
52Cr (mp_KED-H2)	1	0.01	Linear	Blank	45Sc (mp_KED-H2,1)	False	mp_KED-H2	High	0.1
59Co (mp_KED-H2)	1	0.01	Linear	Blank	45Sc (mp_KED-H2,1)	False	mp_KED-H2	High	0.1
60Ni (mp_KED-H2)	1	0.01	Linear	Blank	74Ge (mp_KED-H2)	False	mp_KED-H2	Normal	0.1
63Cu (mp_KED-H2)	1	0.01	Linear	Blank	74Ge (mp_KED-H2)	False	mp_KED-H2	Normal	0.1
66Zn (mp_KED-H2)	1	0.01	Linear	Blank	74Ge (mp_KED-H2)	False	mp_KED-H2	Normal	0.1
74Ge (mp_KED-H2)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	Normal	0.1
74Ge (mp_KED-H2,1)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	High	0.1
103Rh (mp_KED-H2)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	Normal	0.1
103Rh (mp_KED-H2,1)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	High	0.1
111Cd (mp_KED-H2)	1	0.01	Linear	Blank	103Rh (mp_KED-H2)	False	mp_KED-H2	Normal	0.1
187Re (mp_KED-H2)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	Normal	0.1
187Re (mp_KED-H2,1)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	High	0.1
206Pb (mp_KED-H2)	1	0.01	Linear	Blank	187Re (mp_KED-H2,1)	False	mp_KED-H2	High	0.1
207Pb (mp_KED-H2)	1	0.01	Linear	Blank	187Re (mp_KED-H2,1)	False	mp_KED-H2	High	0.1
208Pb (mp_KED-H2)	1	0.01	Linear	Blank	187Re (mp_KED-H2,1)	False	mp_KED-H2	High	0.1

Probenparameter:

Sample Type	Dilution Facor	Main Runs
BLK	1	4
QC	1	4
STD	1	4
Blind	1	4
Samples	20	4

No. of sweeps	100
Time per sweep[s]	0.17
Time per main run[s]	17
Order of modes	mp_KED-H2
Maximum monitored wash time[s]	300
Minimum monitored wash time[s]	30

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite
S30.1	für	M	Mges	ICP-MS	MMgesICPMS1.1	4
			_			
	MMgesICPMS1.1 = Cd, Co, Cr, Cu, Hg, Ni, Zn, Pb					

Inter-Element-Korrekturen:

Analyte	Correction	Enabled
59Co (mp_KED-H2)		False
63Cu (mp_KED-H2)		False
66Zn (mp_KED-H2)		False
111Cd (mp_KED-H2)		False
52Cr (mp_KED-H2)		False
60Ni (mp_KED-H2)		False
103Rh (mp_KED-H2)		False
74Ge (mp_KED-H2)	- 0.118421 * 77Se	False
207Pb (mp_KED-H2)		False
208Pb (mp_KED-H2)	+ 1 * 206Pb (mp_KED-H2) + 1 * 207Pb (mp_KED-H2)	True
187Re (mp_KED-H2)	- 0.0993789 * 189Os	False
45Sc (mp_KED-H2)		False
206Pb (mp_KED-H2)		False
45Sc (mp_KED-H2,1)		False
74Ge (mp_KED-H2,1)	- 0.118421 * 77Se	False
103Rh (mp_KED-H2,1)		False
187Re (mp_KED-H2,1)	- 0.0993789 * 189Os	False

Sammelanhang			
S30.1			

Element	Form	Gerät	Methoden-Nr.	Seite		
M	Mges	ICP-MS	MMgesICPMS1.1	5		
MMgesICPMS1.1 = Cd, Co, Cr, Cu, Hg, Ni, Zn, Pb						

ICP- MS

Methoden/Templates OAKWSM, OAKWEGSM, OAKWSMHg, OAKWEGSMHg

Interner Standard

Stammlösung IS 2% HNO3

Element	Konzentration		
Sc	10 ppm	10 ml	
Ge	1 ppm	1 ml	auf 1000ml
Υ	10 ppm	10 ml	mit bi-demin
Rh	100 ppb	0,1 ml	auffüllen
		aus 1g/l	
Re	5 ppb	1 ml	
		aus 5mg/l	

!!! vor dem Auffüllen **20ml HNO3 supr.** dazupipettieren !!!

für Messung 1:10 verdünnen:		
	Sc	1000 ppb
50 ml Stammlösung	Ge	500 ppb
	Υ	1000 ppb
auffüllen auf	Re	0,5 ppb
500ml bi-demin H2O	Rh	10 ppb

Sammelanhang	_
S30.1	1
	I

Element	Form	Gerät	Methoden-Nr.	Seite		
M	Mges	ICP-MS	MMgesICPMS1.1	6		
MMges	MMgesICPMS1.1 = Cd, Co, Cr, Cu, Hg, Ni, Zn, Pb					

ICP-MS

Methoden/Templates OAKWSM, OAKWEGSM

Standards ICP- MS

in 250 ml in Basislsg. KöWa (1:10)

Element	KWSM 1 Konz / Vol	KWSM 2 Konz / Vol	KWSM 3 Konz / Vol	KWSM 4 Konz / Vol	KWSM 5 Konz / Vol
Cd	<u>0,1 ppb</u>	<u>0,2 ppb</u>	<u>0,5 ppb</u>	<u>1 ppb</u>	<u>2 ppb</u>
	25 μΙ	50 μΙ	125 µl	250 μΙ	500 μΙ
Co	<u>20 ppb</u>	<u>1 ppb</u>	<u>2 ppb</u>	<u>5 ppb</u>	<u>10 ppb</u>
	5000 μl	250 μΙ	500 μl	1250 μΙ	2500 μl
Cr	<u>20 ppb</u>	<u>50 ppb</u>	<u>2 ppb</u>	<u>5 ppb</u>	<u>10 ppb</u>
	5000 μl	12,5 μl	500 μl	1250 μΙ	2500 µl
Cu	<u>5 ppb</u>	<u>10 ppb</u>	<u>20 ppb</u>	<u>1 ppb</u>	<u>2 ppb</u>
	1250 μΙ	2500 μΙ	5000 μl	250 μΙ	500 μl
Ni	<u>5 ppb</u>	<u>10 ppb</u>	<u>20 ppb</u>	<u>50 ppb</u>	<u>2 ppb</u>
	1250 μΙ	2500 μΙ	5000 μl	12,5 μl	500 μl
Pb	<u>2 ppb</u>	<u>5 ppb</u>	<u>10 ppb</u>	<u>20 ppb</u>	<u>50 ppb</u>
	500 μl	1250 μΙ	2500 μΙ	5000 μl	12,5 μΙ
Zn	<u>100 ppb</u>	<u>5 ppb</u>	<u>10 ppb</u>	<u>20 ppb</u>	<u>50 ppb</u>
	25 μΙ	1250 μΙ	2500 μΙ	5000 μl	12,5 μΙ
Hg	<u>500 ppt</u>	<u>1000 ppt</u>	<u>50 ppt</u>	<u>100 ppt</u>	<u>200 ppt</u>
	1250 μΙ	2500 μΙ	125 μΙ	250 μΙ	500 μl

aus 1g/l	aus 1mg/l	aus 0,1mg/l
-----------------	------------------	--------------------

!!! vor dem Auffüllen mit bi demin H2O - auch des Blanks- 25ml Basislsg. KöWa dazupipettieren !!!

ad 250ml ad 250ml	ad 250ml
-------------------	----------

Basislösung KöWa

(10fach konzentriert // Säuren dann 1:20 in Standards und Kontrollstandard)

<u>Element</u>	<u>Konzentration</u>	zu dosierende Menge	
Al	50 ppm	50 ml	
Mg	50 ppm	50 ml	
Fe	20 ppm	20 ml	
К	10 ppm	10ml	mit bi-demin H2O
		aus 1g/l	
			auf 1000 ml
HCl 37%		60 ml	auffüllen
HNO3 supr. 69%		20 ml	

Sammelanhang S30.1

für

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	ICP-MS	MMgesICPMS1.1	7
MMges	ICPMS1.1 = 0	Cd, Co, Cr, Cu, Hg, N	i, Zn, Pb	

ICP-MS

Methoden/Templates OAKWSMHg, OAKWEGSMHg

Standards ICP- MS

in 250 ml in Basislsg. KöWa (1:10)

	KWSM 1	KWSM 2	KWSM 3	KWSM 4	KWSM 5	KWSM 6
Element	Konz / Vol	Konz / Vol	Konz / Vol	Konz / Vol	Konz / Vol	Konz / Vol
Cd	<u>0,1 ppb</u>	<u>0,2 ppb</u>	<u>0,5 ppb</u>	<u>1 ppb</u>	<u>2 ppb</u>	
	25 μΙ	50 μl	125 μΙ	250 μΙ	500 μl	
Co	20 ppb	<u>1 ppb</u>	<u>2 ppb</u>	<u>5 ppb</u>	<u>10 ppb</u>	
	الم 5000	250 μΙ	500 μl	1250 μΙ	2500 μΙ	
Cr	<u>20 ppb</u>	<u>50 ppb</u>	<u>2 ppb</u>	<u>5 ppb</u>	<u>10 ppb</u>	
	5000 μl	12,5 μΙ	500 μl	1250 μΙ	2500 μl	
Cu	<u>5 ppb</u>	<u>10 ppb</u>	<u>20 ppb</u>	<u>1 ppb</u>	2 ppb	
	1250 µl	2500 μΙ	5000 μl	250 μΙ	500 μl	
Ni	<u>5 ppb</u>	<u>10 ppb</u>	<u>20 ppb</u>	<u>50 ppb</u>	<u>2 ppb</u>	
	1250 µl	2500 μΙ	5000 μl	12,5 μl	500 μl	
Pb	<u>2 ppb</u>	<u>5 ppb</u>	<u>10 ppb</u>	<u>20 ppb</u>	<u>50 ppb</u>	
	500 μl	1250 µl	2500 μl	5000 μl	12,5 μΙ	
Zn	<u>100 ppb</u>	<u>5 ppb</u>	<u>10 ppb</u>	<u>20 ppb</u>	<u>50 ppb</u>	
	25 μΙ	1250 µl	2500 μl	5000 μl	12,5 μΙ	
Hg	500 ppt	1000 ppt	<u>50 ppt</u>	<u>100 ppt</u>	200 ppt	
	1250 μΙ	2500 μΙ	125 μΙ	250 μΙ	500 μl	
w						<u>1ppb</u>
						250 μΙ

aus 1g/l aus 1mg/l aus 0,1mg/l

!!! vor dem Auffüllen mit bi demin H2O - auch des Blanks- 25ml Basislsg. KöWa dazupipettier

ad 250ml ad 250ml ad 250ml	ad 250ml	ad 250ml	ad 250ml
----------------------------	----------	----------	----------

Basislösung KöWa

(10fach konzentriert // Säuren dann 1:20 in Standards und Kontrollstandard)

Element	Konzentration	ı dosierende Men	qe
	50 ppm	50 ml	
Mg	50 ppm	50 ml	
Fe	20 ppm	20 ml	
К	10 ppm	10ml	nit bi-demin H2C
		aus 1g/l	
			auf 1000 ml
HCl 37%		60 ml	auffüllen
HNO3 supr. 69	1%	20 ml	

Sammelanhang	_
S30.1	

Element	Form	Gerät	Methoden-Nr.	Seite			
M	Mges	ICP-MS	MMgesICPMS1.1	8			
MMgesICPMS1.1 = Cd, Co, Cr, Cu, Hg, Ni, Zn, Pb							

ICP-MS

Methoden/Templates OAKWSM, OAKWEGSM, OAKWSMHg, OAKWEGSMHg

K24MS

in 250 ml in Basislsg. KöWa (1:10)

Element	Konzentration	zu dosierende Menge	
Cr	5 ppb	1250 μl	
Cd	5 ppb	1250 μΙ	
Co	5 ppb	1250 μΙ	
Ni	5 ppb	1250 μΙ	mit bi-demin H2O
Cu	5 ppb	1250 μΙ	auf 250 ml
Zn	25 ppb	6250 µl	auffüllen
Pb	25 ppb	6250 μl	
		aus 1mg/l	
Hg	1 ppb	2500 μΙ	
		aus 0,1mg/l	

!!! vor dem Auffüllen 25ml Basislsg. KöWa dazupir

Basislösung KöWa

(10fach konzentriert // Säuren dann 1:20 in Standards und Kontrollstandard)

<u>Element</u>	<u>Konzentration</u>	zu dosierende Menge	
Al	50 ppm	50 ml	
Mg	50 ppm	50 ml	
Fe	20 ppm	20 ml	
К	10 ppm	10ml	mit bi-demin H2O
		aus 1g/l	
			auf 1000 ml
HCl 37%		60 ml	auffüllen
HNO3 supr. 69%		20 ml	

Sammelanhang S30.1

für

Element	Form	Gerät	Methoden-Nr.	Seite			
M	Mges	ICP-MS	MMgesICPMS1.1	9			
MMgesICPMS1.1 = Cd, Co, Cr, Cu, Hg, Ni, Zn, Pb							

Methoden-Templates für ICP-MS

Königswasser-Aufschluss

LIMS-Methode	Probenart	Glas/Teflon	SM/HE/Hg	Template-Name	Probenverd.	Eich-Std.	Kontroll-Std	Standardmaterial	Interne StdLösung	ICP-MS-Methoden
OAKW2.1	Boden	Teflon	SM	OAKWSM-1	1:20	KWSM1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Boden	Glas	SM	OAKWSM-1	1:20	KWSM1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG3.1	Boden	Teflon	SM	OAKWEGSM-1	1:50	KWSM1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG2.2	Boden	Glas	SM	OAKWEGSM-1	1:50	KWSM1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Humus	Teflon	SM	OAKWSM-1	1:20	KWSM1-5	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Humus	Glas	SM	OAKWSM-1	1:20	KWSM1-5	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Boden	Teflon	HE	OAKW-1	1:20	KWHE1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Boden	Glas	HE	OAKW-1	1:20	KWHE1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG3.1	Boden	Teflon	HE	OAKWEG-1	1:50	KWHE1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG2.2	Boden	Glas	ICP	OAKWEG-1	1:50	KWHE1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Humus	Teflon	HE	OAKW-1	1:20	KWHE1-5	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Humus	Glas	HE	OAKW-1	1:20	KWHE1-5	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Boden	Teflon	SM+Hg	OAKWSMHg-1	1:20	KWSM1-6	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Boden	Glas	SM+Hg	OAKWSMHg-1	1:20	KWSM1-6	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG3.1	Boden	Teflon	SM+Hg	OAKWEGSMHg-1	1:50	KWSM1-6	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG2.2	Boden	Glas	SM+Hg	OAKWEGSMHg-1	1:50	KWSM1-6	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Humus	Teflon	SM+Hg	OAKWSMHg-1	1:20	KWSM1-6	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Humus	Glas	SM+Hg	OAKWSMHg-1	1:20	KWSM1-6	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1

Wasserproben-SM

LIMS-Methode	Probenart	BrCl	SM/HE/Hg	Template-Name	Probenverd.	Eich-Std.	Kontroll-Std	Standardmaterial	Interne StdLösung	ICP-MS-Methoden
ANULL	Wasser	х	SM		1:1	WasserSM1-7	K25MS	WasserSM1	WasserSM-IS	XXgesICPMS2.1
								WasserSM1(Hg),		
ANULL-Hg	Wasser	BrCl	SM+Hg	WasserSMHg-1	1:1	Hg 1-5; WasserSMHg1-7	K25MSHg	NIST(Hg)	WasserSMHg-IS	XXgesICPMS3.1

<u>Druckaufschluss</u>

LIMS-Methode	Probenart		SM/HE/Hg	Template-Name	Probenverd.	Eich-Std.	Kontroll-Std	Standardmaterial	Interne StdLösung	ICP-MS-Methoden
DAN2.2	Pflanze	Х	SM	DANSM-1	1:2	WasserSM1-7	K26MS	NHarz	WasserSM-IS	XXgesICPMS2.1
DAN2.2	Pflanze	х	SM+Hg	DANSMHg-1	1:2	WasserSM1-7		NHarz	WasserSM-IS	XXgesICPMS2.1
DAN2.2	Humus	х	SM	DANSM-1	1:2	WasserSM1-7	K26MS	NFVH	WasserSM-IS	XXgesICPMS2.1
DAN2.2	Humus	х	SM+Hg	DANSMHg-1	1:2	WasserSM1-7		NFVH	WasserSM-IS	XXgesICPMS2.1

Sammelanhang	_
S30.1	

Element	Form	Gerät	Methoden-Nr.	Seite				
M	Mges	ICP-MS	MMgesICPMS1.1	10				
MMgesICPMS1.1 = Cd, Co, Cr, Cu, Hg, Ni, Zn, Pb								

Sammelanhang		Element	Form	Gerät	Methoden-Nr.	Seite		
S31.1	für	M	Mges	ICP-MS	MMgesICPMS2.1	1		
	•	MMgesICPMS2.1 = Cd, Co, Cr, Cu, Ni, Pb, Zn						

Datum: 01.01.2019

Geräteparameter und Grundeichung für iCAP RQ der Fa. Thermo Scientific für die Methode ICPMS2.1

a. Verwendete Standards

Die Herstellung der Standardlösungen ist in der jeweiligen Methode angegeben.

Element	K25MS	Wasser SM1	Wasser SM2	Wasser SM3	Wasser SM4	Wasser SM5	Wasser SM6	Wasser SM7
Cd	10 ppb	0.5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	
Co	20 ppb	0.5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	
Cr	20 ppb	0.5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	
Cu	20 ppb	0.5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	
Ni	20 ppb	0.5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	
Pb	50 ppb	0.5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	50 ppb
Zn	100 ppb	0.5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	100 ppb	500 ppb

Sammelanhang	
S31.1	für

	Element	Form	Gerät	Methoden-Nr.	Seite	
	M	Mges	ICP-MS	MMgesICPMS2.1	2	
MMgesICPMS2.1 = Cd, Co, Cr, Cu, Ni, Pb, Zn						

b. Methodenparameter

Gerätetuning:

0.1
0
0
0
10
-270
0.8
-21
-95
-60
-2.5
4.5
1
0.5
1
14
-340
-158
-35
0
0
0
-76.667
2019W067_WasserSM_09.10.2019.imexp
-4.125
mp_KED-H2
1.104
40
1550
-18
-56
5
SourceTune High Matrix-mp
2.7
-0.547
-0.393
4095
1
60
37.5

Sammelanhang					
S31.1					

Element	Form	Gerät	Methoden-Nr.	Seite				
M	Mges	ICP-MS	MMgesICPMS2.1	3				
MMgesICPMS2.1 = Cd, Co, Cr, Cu, Ni, Pb, Zn								

Acquisitionsparameter:

Identifier	Channels	Dwell time (s)	Fit Type	Forcing	Internal Standard	Is Internal Standard	Measurement mode	Resolution	Spacing (u)
45Sc (mp_KED-H2,1)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	High	0.1
45Sc (mp_KED-H2)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	Normal	0.1
52Cr (mp_KED-H2)	1	0.01	Linear	Blank	45Sc (mp_KED-H2,1)	False	mp_KED-H2	High	0.1
59Co (mp_KED-H2)	1	0.01	Linear	Blank	45Sc (mp_KED-H2,1)	False	mp_KED-H2	High	0.1
60Ni (mp_KED-H2)	1	0.01	Linear	Blank	74Ge (mp_KED-H2)	False	mp_KED-H2	Normal	0.1
63Cu (mp_KED-H2)	1	0.01	Linear	Blank	74Ge (mp_KED-H2)	False	mp_KED-H2	Normal	0.1
66Zn (mp_KED-H2)	1	0.01	Linear	Blank	74Ge (mp_KED-H2)	False	mp_KED-H2	Normal	0.1
74Ge (mp_KED-H2,1)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	High	0.1
74Ge (mp_KED-H2)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	Normal	0.1
103Rh (mp_KED-H2,1)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	High	0.1
103Rh (mp_KED-H2)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	Normal	0.1
111Cd (mp_KED-H2)	1	0.01	Linear	Blank	103Rh (mp_KED-H2)	False	mp_KED-H2	Normal	0.1
187Re (mp_KED-H2,1)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	High	0.1
187Re (mp_KED-H2)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	Normal	0.1
206Pb (mp_KED-H2)	1	0.01	Linear	Blank	187Re (mp_KED-H2,1)	False	mp_KED-H2	High	0.1
207Pb (mp_KED-H2)	1	0.01	Linear	Blank	187Re (mp_KED-H2,1)	False	mp_KED-H2	High	0.1
208Pb (mp_KED-H2)	1	0.01	Linear	Blank	187Re (mp_KED-H2,1)	False	mp_KED-H2	High	0.1

Probenparameter:

Sample Type	Dilution Facor	Main Runs
BLK	1	4
QC	1	4
STD	1	4
Samples	1	4

No. of sweeps	100
Time per sweep[s]	0.17
Time per main run[s]	17
Order of modes	mp_KED-H2
Maximum monitored wash time[s]	300
Minimum monitored wash time[s]	30

Sammelanhang	
S31.1	für

	Element	Form	Gerät	Methoden-Nr.	Seite		
	M	Mges	ICP-MS	MMgesICPMS2.1	4		
MMgesICPMS2.1 = Cd, Co, Cr, Cu, Ni, Pb, Zn							

Inter-Element-Korrekturen:

Analyte	Correction	Enabled
59Co (mp_KED-H2)		False
63Cu (mp_KED-H2)		False
66Zn (mp_KED-H2)		False
111Cd (mp_KED-H2)		False
52Cr (mp_KED-H2)		False
60Ni (mp_KED-H2)		False
103Rh (mp_KED-H2)		False
74Ge (mp_KED-H2)	- 0.118421 * 77Se	False
207Pb (mp_KED-H2)		False
208Pb (mp_KED-H2)	+ 1 * 206Pb (mp_KED-H2) + 1 * 207Pb (mp_KED-H2)	True
187Re (mp_KED-H2)	- 0.0993789 * 189Os	False
45Sc (mp_KED-H2)		False
206Pb (mp_KED-H2)		False
45Sc (mp_KED-H2,1)		False
74Ge (mp_KED-H2,1)	- 0.118421 * 77Se	False
187Re (mp_KED-H2,1)	- 0.0993789 * 189Os	False
103Rh (mp_KED-H2,1)		False

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite	
S31.1	für	M	Mges	ICP-MS	MMgesICPMS2.1	5	
		MMgesICPMS2.1 = Cd, Co, Cr, Cu, Ni, Pb, Zn					

c. Zusammensetzung der Lösungen und Standards

ICP- MS

Methode/Template WasserSM

Interner Standard

Stammlösung in 2% HNO3 supr.

Element	Konzentration		
Sc	50 ppm	5ml	
Ge	50 ppm	5ml	auf 100ml
Re	5 ppm	0,5ml	mit bi-demin
Rh	5 ppm	0,5ml	auffüllen
		aus 1g/l	

!!! vor dem Auffüllen 2 ml HNO3 suprapur dazupipettieren !!!

für Messung 1:100 verdünnen:		
	Sc	500 ppb
5ml Stammlösung	Ge	500 ppb
plus 10ml HNO3 suprapur /5ooml bi-demin	Re	50 ppb
	Rh	50 ppb

Sammelanhang	
S31.1	

ü	r	

Element	Form	Gerät	Methoden-Nr.	Seite			
M	Mges	ICP-MS	MMgesICPMS2.1	6			
MMgesI	MMgesICPMS2.1 = Cd, Co, Cr, Cu, Ni, Pb, Zn						

ad 250ml

ad 250ml

Standards ICP- MS

Methode/Template WasserSM

ICP- MS

plus 2% HNO3 suprapur plus 10ppm Mg in $250\,$ ml bi- demin H2O

SM 7	Konz / Vol						200 ppb 500 μ l	<u>50 ppb</u> 125 μl	aus 100mg/l
SM 6	Konz / Vol	20 ppb 50 pl	20 ppb 50 μl	<u>30 pbb</u>	20 ppb 50 pl	20 ppb 50 μl	<u>100 ррь</u> 250 µl	20 ppb 50 µl	aus 100mg/l
SM 5	Konzentration	<u>10 ppb</u>	<u>10 ppb</u>	<u>10 ppb</u>	<u>10 ppb</u>	<u>10 ppb</u>	<u>10 ppb</u>	<u>10 ppb</u>	
SM 4	Konzentration	qdd <u>s</u>	qdd <u>s</u>	qdd <u>S</u>	qdd <u>S</u>	qdd <u>S</u>	qdd <u>S</u>	<u>qdd 5</u>	
SM 3	Konzentration	2 ppb	2 ppb	<u>2 ppb</u>	2 ppb	2 ppb	2 ppb	<u>2 ppb</u>	
SM 2	Konzentration	<u>1 ppb</u>	<u>1 ppb</u>	<u>1 ppb</u>	<u>1 ppb</u>	<u>1 ppb</u>	<u>1 ppb</u>	<u>1 ppb</u>	
SM 1	Konzentration	0,5 ppb	0,5 ppb	0,5 ppb	0,5 ppb	0,5 ppb	0,5 ppb	<u>0,5 ppb</u>	
	Element	J)	PS	8	Ni	3	Zn	Pb	

Mit den 7 Schwermetallen einen Ausgangsstandard von je 1 ppm in 2%HNO3 suprapur ansetzen: $jeweils~100\mu$ aus 1g/l in einen~100ml PFA-Messkolben pipettieren.

für:	<u>SM6</u> <u>SM7</u>	das jeweils oben in den Kästchen angegebene Volumen	aus 100mg/l in 250ml pipettieren
	SM 5	2500 µl /250ml	pipettieren
für :	SM 4	500 µl /250ml 1250 µl /250ml	pipettieren
gsstandard einmalig für:	SM 3	500 µl /250ml	pipettieren
Aus diesem Ausgang	SM 2	250 µl /250ml	pipettieren
	SM 1	125 µl /250ml	pipettieren

!!! vor dem Auffüllen aller Standards und des Blanks jeweils 5ml HNO3 suprapur und 250µl Mg aus 10g/l in 250ml dazupipettieren !!!

Sammelanhang
S31.1

Element	Form	Gerät	Methoden-Nr.	Seite				
M Mges		ICP-MS	MMgesICPMS2.1	7				
MMgesICPMS2.1 = Cd, Co, Cr, Cu, Ni, Pb, Zn								

ICP- MS

Methode/Template WasserSM

K25MS

in 250 ml plus 2% HNO3 suprapur plus 10ppm Mg

Element	<u>Konzentration</u>	zu dosierende Menge	
Cr	20 ppb	50 μΙ	
Cd	10 ppb	25 μΙ	
Co	20 ppb	50 μΙ	auf 250ml
Ni	20 ppb	50 μΙ	auffüllen
Cu	20 ppb	50 μΙ	
Zn	100 ppb	250 μΙ	
Pb	50 ppb	125 μΙ	
		aus 100mg/l	

!!! vor dem Auffüllen **5ml HNO3 suprapur** und **250μl Mg aus 10g/l** dazupipettieren !!!

Sammelanhang S31.1

für

Element	Form	Gerät	Methoden-Nr.	Seite					
M	Mges ICP-MS		MMgesICPMS2.1 8						
MMgesICPMS2.1 = Cd, Co, Cr, Cu, Ni, Pb, Zn									

Methoden-Templates für ICP-MS

Königswasser-Aufschluss

LIMS-Methode	Probenart	Glas/Teflon	SM/HE/Hg	Template-Name	Probenverd.	Eich-Std.	Kontroll-Std	Standardmaterial	Interne StdLösung	ICP-MS-Methoden
OAKW2.1	Boden	Teflon	SM	OAKWSM-1	1:20	KWSM1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Boden	Glas	SM	OAKWSM-1	1:20	KWSM1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG3.1	Boden	Teflon	SM	OAKWEGSM-1	1:50	KWSM1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG2.2	Boden	Glas	SM	OAKWEGSM-1	1:50	KWSM1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Humus	Teflon	SM	OAKWSM-1	1:20	KWSM1-5	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Humus	Glas	SM	OAKWSM-1	1:20	KWSM1-5	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Boden	Teflon	HE	OAKW-1	1:20	KWHE1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Boden	Glas	HE	OAKW-1	1:20	KWHE1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG3.1	Boden	Teflon	HE	OAKWEG-1	1:50	KWHE1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG2.2	Boden	Glas	ICP	OAKWEG-1	1:50	KWHE1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Humus	Teflon	HE	OAKW-1	1:20	KWHE1-5	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Humus	Glas	HE	OAKW-1	1:20	KWHE1-5	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Boden	Teflon	SM+Hg	OAKWSMHg-1	1:20	KWSM1-6	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Boden	Glas	SM+Hg	OAKWSMHg-1	1:20	KWSM1-6	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG3.1	Boden	Teflon	SM+Hg	OAKWEGSMHg-1	1:50	KWSM1-6	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG2.2	Boden	Glas	SM+Hg	OAKWEGSMHg-1	1:50	KWSM1-6	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Humus	Teflon	SM+Hg	OAKWSMHg-1	1:20	KWSM1-6	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Humus	Glas	SM+Hg	OAKWSMHg-1	1:20	KWSM1-6	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1

Wasserproben-SM

LIMS-Methode	Probenart	BrCl	SM/HE/Hg	Template-Name	Probenverd.	Eich-Std.	Kontroll-Std	Standardmaterial	Interne StdLösung	ICP-MS-Methoden
ANULL	Wasser	x	SM	WasserSM-1	1:1	WasserSM1-7	K25MS	WasserSM1	WasserSM-IS	XXgesICPMS2.1
								WasserSM1(Hg),		
ANULL-Hg	Wasser	BrCl	SM+Hg	WasserSMHg-1	1:1	Hg 1-5; WasserSMHg1-7	K25MSHg	NIST(Hg)	WasserSMHg-IS	XXgesICPMS3.1

Druckaufschluss

LIMS-Methode	Probenart		SM/HE/Hg	Template-Name	Probenverd.	Eich-Std.	Kontroll-Std	Standardmaterial	Interne StdLösung	ICP-MS-Methoden
DAN2.2	Pflanze	х	SM	DANSM-1	1:2	WasserSM1-7	K26MS	NHarz	WasserSM-IS	XXgesICPMS2.1
DAN2.2	Pflanze	х	SM+Hg	DANSMHg-1	1:2	WasserSM1-7		NHarz	WasserSM-IS	XXgesICPMS2.1
DAN2.2	Humus	х	SM	DANSM-1	1:2	WasserSM1-7	K26MS	NFVH	WasserSM-IS	XXgesICPMS2.1
DAN2.2	Humus	х	SM+Hg	DANSMHg-1	1:2	WasserSM1-7		NFVH	WasserSM-IS	XXgesICPMS2.1

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite
S32.1	für	M	Mges	ICP-MS	MMgesICPMS4.1	1
		MMgesI	CPMS4.1 = 0	l Cd, Co, Cr, Cu, Hg, N	l Ji, Pb, Zn	

Datum: 01.01.2019

Geräteparameter und Grundeichung für iCAP RQ der Fa. Thermo Scientific für die Methode ICPMS4.1

a. Verwendete Standards

Die Herstellung der Standardlösungen ist in der jeweiligen Methode angegeben.

Element	K26MS	DAN SM1	DAN SM2	DAN SM3	DAN SM4	DAN SM5	DAN SM6	DAN SM7
Cd	10 ppb	0,5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	
Со	20 ppb	0,5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	
Cr	20 ppb	0,5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	
Cu	20 ppb	0,5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	
Hg	100 ppt	25 ppt	50 ppt	100 ppt	200 ppt	500 ppt		
Ni	20 ppb	0,5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	
Pb	50 ppb	0,5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	50 ppb
Zn	100 ppb	0,5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	100 ppb	500 ppb

Sammelanhang	_
S32.1	fü

ir	,	

Element	Form	Gerät	Methoden-Nr.	Seite				
M	Mges	ICP-MS	MMgesICPMS4.1	2				
MMgesICPMS4.1 = Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn								

b. Methodenparameter

Gerätetuning:

Additional Gas Flow 1	0
Additional Gas Flow 2	0
Additional Gas Flow 3	0
Additional Stabilization Time	10
Angular Deflection	-270
Auxilliary Flow	0.65
CCT Bias	-21
CCT Entry Lens	-105
CCT Exit Lens	-60
CCT Focus Lens	-2.1
CCT1 Flow	4.5
CCT1 Shut-Off Valve	1
CCT2 Flow	0.5
CCT2 Shut-Off Valve	1
Cool Flow	14
D1 Lens	-340
D2 Lens	-158
Deflection Entry Lens	-35
Extraction Lens 1 Negative	0
Extraction Lens 1 Polarity	0
Extraction Lens 1 Positive	0
Extraction Lens 2	-116
Filename	2019B007_DANSM_11.07.2019.imexp
Focus Lens	-4.125
Identifier	mp_KED-H2
Nebulizer Flow	1.089
Peristaltic Pump Speed	40
Plasma Power	1550
Pole Bias	-18
Quad Entry Lens	-56
Sampling Depth	5
Source Autotune Configuration	SourceTune High Matrix-mp
Spray Chamber Temperature	2.7
Torch Horizontal Position	-0.7
Torch Vertical Position	-0.3
Virtual CCT Mass Maximum Dac Limit Set	4095
Virtual CCT Mass parameter b	1
Virtual CCT Mass to Dac Factor	60
Virtual CCT Mass to Dac Offset	37.5

Sammelanhang					
S32.1					

für

Element	Form	Gerät	Methoden-Nr.	Seite				
M	Mges	ICP-MS	MMgesICPMS4.1	3				
MMgesICPMS4.1 = Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn								

Acquisitionsparameter:

Identifier	Channels	Dwell time (s)	Fit Type	Forcing	Internal Standard	Is Internal Standard	Measurement mode	Resolution	Spacing (u)
45Sc (mp_KED-H2,1)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	High	0.1
45Sc (mp_KED-H2)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	Normal	0.1
52Cr (mp_KED-H2)	1	0.01	Linear	Blank	45Sc (mp_KED-H2,1)	False	mp_KED-H2	High	0.1
59Co (mp_KED-H2)	1	0.01	Linear	Blank	45Sc (mp_KED-H2,1)	False	mp_KED-H2	High	0.1
60Ni (mp_KED-H2)	1	0.01	Linear	Blank	74Ge (mp_KED-H2)	False	mp_KED-H2	Normal	0.1
63Cu (mp_KED-H2)	1	0.01	Linear	Blank	74Ge (mp_KED-H2)	False	mp_KED-H2	Normal	0.1
66Zn (mp_KED-H2)	1	0.01	Linear	Blank	74Ge (mp_KED-H2)	False	mp_KED-H2	Normal	0.1
74Ge (mp_KED-H2,1)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	High	0.1
74Ge (mp_KED-H2)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	Normal	0.1
103Rh (mp_KED-H2,1)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	High	0.1
103Rh (mp_KED-H2)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	Normal	0.1
111Cd (mp_KED-H2)	1	0.01	Linear	Blank	103Rh (mp_KED-H2)	False	mp_KED-H2	Normal	0.1
187Re (mp_KED-H2,1)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	High	0.1
187Re (mp_KED-H2)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	Normal	0.1
206Pb (mp_KED-H2)	1	0.01	Linear	Blank	187Re (mp_KED-H2,1)	False	mp_KED-H2	High	0.1
207Pb (mp_KED-H2)	1	0.01	Linear	Blank	187Re (mp_KED-H2,1)	False	mp_KED-H2	High	0.1
208Pb (mp_KED-H2)	1	0.01	Linear	Blank	187Re (mp_KED-H2,1)	False	mp_KED-H2	High	0.1

Probenparameter:

Sample Type	Dilution Facor	Main Runs
BLK	1	4
QC	1	4
STD	1	4
Samples	2	4

No. of sweeps	100
Time per sweep[s]	0.16
Time per main run[s]	16
Order of modes	mp_KED-H2
Maximum monitored wash time[s]	300
Minimum monitored wash time[s]	30

Sammelanhang	-
S32.1	für

Element	Form	Gerät	Methoden-Nr.
M	Mges	ICP-MS	MMgesICPMS4.1
MMgesI	CPMS4.1 = 0	Cd, Co, Cr, Cu, Hg, N	i, Pb, Zn

Seite

Inter-Element-Korrekturen:

Analyte	Correction	Enabled
59Co (mp_KED-H2)		False
63Cu (mp_KED-H2)		False
66Zn (mp_KED-H2)		False
111Cd (mp_KED-H2)		False
52Cr (mp_KED-H2)		False
60Ni (mp_KED-H2)		False
103Rh (mp_KED-H2)		False
74Ge (mp_KED-H2)	- 0.118421 * 77Se	False
207Pb (mp_KED-H2)		False
208Pb (mp_KED-H2)	+ 1 * 206Pb (mp_KED-H2) + 1 * 207Pb (mp_KED-H2)	True
187Re (mp_KED-H2)	- 0.0993789 * 189Os	False
45Sc (mp_KED-H2)		False
206Pb (mp_KED-H2)		False
45Sc (mp_KED-H2,1)		False
74Ge (mp_KED-H2,1)	- 0.118421 * 77Se	False
187Re (mp_KED-H2,1)	- 0.0993789 * 189Os	False
103Rh (mp_KED-H2,1)		False

Sammelanhang		Element	Form	Gerät	Methoden-Nr.	Seite
S32.1	für	M	Mges	ICP-MS	MMgesICPMS4.1	5
		MMgesI	CPMS4.1 = 0	Cd, Co, Cr, Cu, Hg, N	li, Pb, Zn	

c. Zusammensetzung der Lösungen und Standards

ICP-MS

Methode/Template DAN SM

Interner Standard

Stammlösung in 2% HNO3 supr.

Element	Konzentration		
Sc	50 ppm	5ml	
Ge	50 ppm	5ml	auf 100ml
Re	5 ppm	0,5ml	mit bi-demin
Rh	5 ppm	0,5ml	auffüllen
		aus 1ø/l	

!!! vor dem Auffüllen 2ml HNO3 suprapur dazupipettieren !!!

für Messung 1:100 verdünnen:		
	Sc	500 ppb
5ml Stammlösung	Ge	500 ppb
plus 10ml HNO3 suprapur /500ml bi-demin	Re	50 ppb
	Rh	50 ppb

Sammelanhang	
S32.1	

Element	Form	Gerät	Methoden-Nr.	Seite
M	Mges	ICP-MS	MMgesICPMS4.1	6
MMgesI	CPMS4.1 =	Cd, Co, Cr, Cu, Hg, N	Ni, Pb, Zn	

ad 250ml

ad 250ml

ICP- MS Methode/Template DAN SM

Standards ICP- MS
plus 0,5% HNO3 suprapur plus 5ppm Mg in 250 ml bi- demin H2O

SM7	Konz / Vol						<u>200 ppb</u> 500 μl	<u>50ρρβ</u> 125 μΙ	aus 100mg/l
SM 6	Konz / Vol	1d 05 9dd 07	<u>ρα ος μη</u>	<u>ρο ρου</u>	pd 05	<u>ρο ρου</u>	<u>100 ppb</u> 250 μΙ	pd 05	aus 100mg/l
SM 5	Konzentration	<u>10 ppb</u>	<u>10 ppb</u>	<u>10 ppb</u>	<u>10 ppb</u>	<u>10 ppb</u>	<u>10 ppb</u>	<u>10 ppb</u>	
SM4	Konzentration	qdd <u>s</u>	qdd <u>S</u>	qdd <u>s</u>	qdd <u>S</u>	qdd <u>s</u>	qdd <u>s</u>	qdd <u>s</u>	
SM3	Konzentration	<u>2 ppb</u>	<u>2 ppb</u>	<u>2 ppb</u>	<u>2 ppb</u>	<u>2 ppb</u>	<u>2 ppb</u>	<u>2 ppb</u>	
SM 2	Konzentration	<u>1 ppb</u>	<u>1 ppb</u>	<u>1 ppb</u>	<u>1 ppb</u>	<u>1 ppb</u>	<u>1 ppb</u>	<u>1 ppb</u>	
SM 1	Konzentration	9'2 ddd 5'0	qdd <u>5′0</u>	9,5 ppb	qdd <u>5′0</u>	9,5 ppb	9,5 ppb	qdd <u>5′0</u>	
	Element	Cr	В	%	Ni	no	Zn	Pb	

Mit den 7 Schwermetallen einen **Ausgangsstandard** von je 1 ppm in 2%HNO3 suprapur ansetzen: $jeweils 100\mu l$ aus 1g/l in einen 100ml PFA-Messkolben pipettieren.

für:	<u>SM5</u>	500 µl/250ml 1250 µl/250ml 2500 µl/250ml das jeweils oben in den Kästchen angegebene Volumen	aus 100mg/l in 250ml pipettieren	
	SM 5	2500 µl /250ml	pipettieren	
für :	SM 4	1250 µl /250ml	pipettieren	
liesem Ausgangsstandard einmalig für :	SM 3	500 µl /250ml	pipettieren	
Aus diesem Ausgang	SM 2	250 µl /250ml	pipettieren	
	SM 1	125 µl /250ml	pipettieren	

! vor dem Auffüllen aller Standards und des Blanks jeweils 1,250ml HNO3 suprapur und 125µl Mg aus 10g/l in 250ml dazupipettieren !

Sammelanhang S32.1

für

Element	Form	Gerät	Methoden-Nr.	Seite		
M	Mges	ICP-MS	MMgesICPMS4.1	7		
MMgesICPMS4.1 = Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn						

ICP- MS

Methode/Template DANSM

K26MS

in 250 ml plus 0,5% HNO3 suprapur plus 5ppm Mg

Element	Konzentration	zu dosierende Menge	zu dosierende Menge	zu dosierende Menge	
Cr	5 ppb	1250 µl			
Cd	2 ppb	500 μl			
Co	5 ppb	1250 μΙ			auf 250ml
Ni	10 ppb		25 μΙ		auffüllen
Cu	10 ppb		25 μΙ		
Zn	50 ppb		125 μΙ		
Pb	10 ppb		2 5 μl		
Hg	20 ppb			500 μl	
-		aus 1mg/l	aus 100mg/l	aus 10mg/l	

!!! vor dem Auffüllen 1,250ml HNO3 suprapur und 125μl Mg aus 10g/l dazupipettieren !!!

Sammelanhang S32.1

für

Element	Form	Gerät	Methoden-Nr.	Seite			
M	Mges	ICP-MS	MMgesICPMS4.1	8			
MMgesICPMS4.1 = Cd, Co, Cr, Cu, Hg, Ni, Pb, Zn							

Methoden-Templates für ICP-MS

Königswasser-Aufschluss

LIMS-Methode	Probenart	Glas/Teflon	SM/HE/Hg	Template-Name	Probenverd.	Eich-Std.	Kontroll-Std	Standardmaterial	Interne StdLösung	ICP-MS-Methoden
OAKW2.1	Boden	Teflon	SM	OAKWSM-1	1:20	KWSM1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Boden	Glas	SM	OAKWSM-1	1:20	KWSM1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG3.1	Boden	Teflon	SM	OAKWEGSM-1	1:50	KWSM1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG2.2	Boden	Glas	SM	OAKWEGSM-1	1:50	KWSM1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Humus	Teflon	SM	OAKWSM-1	1:20	KWSM1-5	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Humus	Glas	SM	OAKWSM-1	1:20	KWSM1-5	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Boden	Teflon	HE	OAKW-1	1:20	KWHE1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Boden	Glas	HE	OAKW-1	1:20	KWHE1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG3.1	Boden	Teflon	HE	OAKWEG-1	1:50	KWHE1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG2.2	Boden	Glas	ICP	OAKWEG-1	1:50	KWHE1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Humus	Teflon	HE	OAKW-1	1:20	KWHE1-5	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Humus	Glas	HE	OAKW-1	1:20	KWHE1-5	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Boden	Teflon	SM+Hg	OAKWSMHg-1	1:20	KWSM1-6	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Boden	Glas	SM+Hg	OAKWSMHg-1	1:20	KWSM1-6	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG3.1	Boden	Teflon	SM+Hg	OAKWEGSMHg-1	1:50	KWSM1-6	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG2.2	Boden	Glas	SM+Hg	OAKWEGSMHg-1	1:50	KWSM1-6	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Humus	Teflon	SM+Hg	OAKWSMHg-1	1:20	KWSM1-6	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Humus	Glas	SM+Hg	OAKWSMHg-1	1:20	KWSM1-6	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1

Wasserproben-SM

LIMS-Methode	Probenart	BrCl	SM/HE/Hg	Template-Name	Probenverd.	Eich-Std.	Kontroll-Std	Standardmaterial	Interne StdLösung	ICP-MS-Methoden
ANULL	Wasser	x	SM	WasserSM-1	1:1	WasserSM1-7	K25MS	WasserSM1	WasserSM-IS	XXgesICPMS2.1
								WasserSM1(Hg),		
ANULL-Hg	Wasser	BrCl	SM+Hg	WasserSMHg-1	1:1	Hg 1-5; WasserSMHg1-7	K25MSHg	NIST(Hg)	WasserSMHg-IS	XXgesICPMS3.1

Druckaufschluss

LIMS-Methode	Probenart		SM/HE/Hg	Template-Name	Probenverd.	Eich-Std.	Kontroll-Std	Standardmaterial	Interne StdLösung	ICP-MS-Methoden
DAN2.2	Pflanze	х	SM	DANSM-1	1:2	WasserSM1-7	K26MS	NHarz	WasserSM-IS	XXgesICPMS2.1
DAN2.2	Pflanze	х	SM+Hg	DANSMHg-1	1:2	WasserSM1-7		NHarz	WasserSM-IS	XXgesICPMS2.1
DAN2.2	Humus	х	SM	DANSM-1	1:2	WasserSM1-7	K26MS	NFVH	WasserSM-IS	XXgesICPMS2.1
DAN2.2	Humus	х	SM+Hg	DANSMHg-1	1:2	WasserSM1-7		NFVH	WasserSM-IS	XXgesICPMS2.1

Sammelanhang	
33.1	

Element	Form	Gerät	Methoden-Nr.	Seite			
M	Mges	ICP(sim)	MMgesICP19.2	1			
MMgesICP19.2 = Al, Ba, Ca, Fe, K, Mg, Mn, Na, P, S, Ti							

Datum: 01. 01. 2019

Geräteparameter für ICP iCAP 6500 (Thermo Fisher) für die Methoden OAKW2.1Boden, OAKW2.1Humus, OAKWEG3.1Boden

ANALYSEN-VOREINSTELLUNGEN

View Direction	Radial	Axial
UV Exposure Time	10	10
UV RF Power	1300	1300
UV Neb Gas Flow:	0.55	0.55
VIS Exposure Time	15	15
VIS RF Power	1300	1300
VIS Neb Gas Flow:	0.55	0.55
Cool Gas Flow Rate	12	12
Aux Gas Flow Rate	0.5	0.5

AQUISITIONSPARAMATER

Symbol	Wavelength (nm) / Order	Measure Mode	Internal Standard
Al	237.312 {142}	Radial	Y 360.073 {94} (Radial)
Al	308.215 {109}	Axial	Y 319.562 {105} (Axial)
Al	308.215 {109}	Radial	Y 360.073 {94} (Radial)
Ba	455.403 {74}	Radial	Y 360.073 {94} (Radial)
Ca	315.887 {107}	Axial	Y 319.562 {105} (Axial)
Ca	315.887 {107}	Radial	Y 360.073 {94} (Radial)
Fe	238.204 {141}	Axial	Y 319.562 {105} (Axial)
Fe	238.204 {141}	Radial	Y 360.073 {94} (Radial)
Fe	271.441 {124}	Radial	Y 360.073 {94} (Radial)
K	766.490 {44}	Radial	Y 360.073 {94} (Radial)
Mg	280.270 {120}	Radial	Y 360.073 {94} (Radial)
Mg	285.213 {118}	Radial	Y 360.073 {94} (Radial)
Mn	260.569 {129}	Axial	Y 319.562 {105} (Axial)
Mn	293.930 {115}	Radial	Y 360.073 {94} (Radial)
Na	589.592 {57}	Radial	Y 360.073 {94} (Radial)
Р	178.284 {489}	Axial	Y 224.306 {450} (Axial)
S	182.034 {485}	Axial	Y 224.306 {450} (Axial)
Ti	337.280 {100}	Axial	Y 319.562 {105} (Axial)
Y	224.306 {450}	Axial	
Υ	319.562 {105}	Axial	
Υ	360.073 {94}	Radial	

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite	
33.1	für	M	Mges	ICP(sim)	MMgesICP19.2	2	
		MMgesICP19.2 = Al, Ba, Ca, Fe, K, Mg, Mn, Na, P, S, Ti					

SUBARRAY ELEMENTREPORT

Symbol	Wavelength	Peak X	Peak Y	Width	Height	Center	Center
	(nm) / Order	Location	Location			region	region
						position	width
Al	237.312 {142}	261.558	317.998	20	5	10	3
Al	308.215 {109}	115.162	174.431	20	3	10	3
Al	308.215 {109}	115.162	174.431	20	3	11	2
Ва	455.403 {74}	264.78	75.074	20	3	10	3
Ca	315.887 {107}	408.803	165.205	20	4	10	3
Ca	315.887 {107}	408.803	165.205	20	4	10	3
Fe	238.204 {141}	102.471	315.405	20	3	10	3
Fe	238.204 {141}	102.471	315.405	20	3	10	3
Fe	271.441 {124}	204.667	232.01	20	3	10	3
K	766.490 {44}	302.647	20.642	20	1	10	3
Mg	280.270 {120}	167.319	215.749	20	4	10	2
Mg	285.213 {118}	199.543	207.285	20	4	10	3
Mn	260.569 {129}	139.962	255.033	20	4	10	3
Mn	293.930 {115}	411.696	193.838	20	4	10	3
Na	589.592 {57}	132.624	42.208	21	2	10	3
Р	178.284 {489}	238.801	359.561	20	6	10	3
S	182.034 {485}	212.295	318.587	20	6	10	2
Ti	337.280 {100}	304.452	143.139	20	4	10	3
Υ	224.306 {450}	191.398	44.525	20	6	10	2
Υ	319.562 {105}	56.782	161.189	20	4	10	3
Υ	360.073 {94}	477.939	124.509	20	3	10	3

Sammelanhang	
33.1	

Element	Form	Gerät	Methoden-Nr.	Seite	
M	Mges	ICP(sim)	MMgesICP19.2	3	
MMgesICP19.2 = Al, Ba, Ca, Fe, K, Mg, Mn, Na, P, S, Ti					

Symbol	Wavelength	Left	Location	Width	Right	Location	Width
	(nm) / Order	Bkg			Bkg		
Al	237.312 {142}	Fixed	1	1	Fixed	20	1
Al	308.215 {109}	Auto	7	1	Fixed	20	1
Al	308.215 {109}	Auto	5	1	Auto	19	1
Ba	455.403 {74}	Fixed	1	1	Fixed	20	1
Ca	315.887 {107}	Fixed	1	1	Fixed	20	1
Ca	315.887 {107}	Fixed	1	1	Fixed	20	1
Fe	238.204 {141}	Fixed	1	1	Fixed	20	1
Fe	238.204 {141}	Fixed	1	1	Fixed	20	1
Fe	271.441 {124}	Fixed	1	1	Fixed	20	1
K	766.490 {44}	Fixed	1	1	Fixed	20	1
Mg	280.270 {120}	Auto	3	1	Fixed	20	1
Mg	285.213 {118}	Fixed	1	1	Fixed	20	1
Mn	260.569 {129}	Fixed	1	1	Fixed	20	1
Mn	293.930 {115}	Fixed	1	1	Fixed	20	1
Na	589.592 {57}	Auto	4	1	Auto	17	1
P	178.284 {489}	Auto	3	1	Auto	17	1
S	182.034 {485}	Auto	4	1	Auto	18	1
Ti	337.280 {100}	Auto	5	1	Auto	18	1
Υ	224.306 {450}	Fixed	1	1	Fixed	20	1
Υ	319.562 {105}	Fixed	1	1	Fixed	20	1
Υ	360.073 {94}	Fixed	1	1	Fixed	20	1

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite
33.1	für	M	Mges	ICP(sim)	MMgesICP19.2	4
	-	MMgesICP19.2 = Al, Ba, Ca, Fe, K, Mg, Mn, Na, P, S, Ti				

STANDARD ELEMENTREPORT

	KWHE1	KWHE2	KWHE3	KWHE4	KWHE5
K 766.490 {44} (Radial)	5.000 ppm	N/A	10.000 ppm	N/A	2.000 ppm
Ba 455.403 {74} (Radial)	N/A	2.000 ppm	N/A	N/A	N/A
S 182.034 {485} (Axial)	2.000 ppm	N/A	N/A	5.000 ppm	10.000 ppm
Mg 280.270 {120} (Radial)	5.000 ppm	2.000 ppm	10.000 ppm	20.000 ppm	N/A
Ca 315.887 {107} (Axial)	N/A	N/A	0.500 ppm	10.000 ppm	N/A
Ti 337.280 {100} (Axial)	2.000 ppm	1.000 ppm	5.000 ppm	10.000 ppm	N/A
Mn 260.569 {129} (Axial)	2.000 ppm	N/A	1.000 ppm	N/A	5.000 ppm
Mn 293.930 {115} (Radial)	N/A	10.000 ppm	N/A	20.000 ppm	5.000 ppm
Fe 238.204 {141} (Radial)	5.000 ppm	10.000 ppm	N/A	N/A	50.000 ppm
Fe 271.441 {124} (Radial)	N/A	N/A	200.000 ppm	100.000 ppm	50.000 ppm
Al 308.215 {109} (Axial)	N/A	N/A	0.500 ppm	N/A	10.000 ppm
Al 237.312 {142} (Radial)	240.00 ppm	100.000 ppm	N/A	50.000 ppm	N/A
P 178.284 {489} (Axial)	10.000 ppm	8.000 ppm	6.000 ppm	4.000 ppm	2.000 ppm
Ca 315.887 {107} (Radial)	20.000 ppm	50.000 ppm	N/A	10.000 ppm	100.000 ppm
Al 308.215 {109} (Radial)	N/A	N/A	N/A	50.000 ppm	10.000 ppm
Fe 238.204 {141} (Axial)	5.000 ppm	N/A	N/A	N/A	N/A
Mg 285.213 {118} (Radial)	N/A	N/A	N/A	20.000 ppm	50.000 ppm
Na 589.592 {57} (Radial)	2.000 ppm	10.000 ppm	8.000 ppm	4.000 ppm	6.000 ppm
K 766.490 {44} (Radial) (1)	N/A	50.000 ppm	10.000 ppm	20.000 ppm	N/A

Sammelanhang	_	Element	Form	Gerät	Methoden-Nr.	Seite
33.1	für	M	Mges	ICP(sim)	MMgesICP19.2	5
		MMgesICP19.2 = Al, Ba, Ca, Fe, K, Mg, Mn, Na, P, S, Ti				

HERSTELLUNG DER STANDARDLÖSUNGEN

OAKW-Standards für ICP19.2 für 1:5 und 1:10 Verdünnung

in 250 ml plus 7,5 ml HNO3 65%ig p. a.

in 250 ml plus 7,5 ml HNO3 65%ig p. a.							
	KW1	KW 2	KW3	KW4	KW 5		
Element	Konz / Vol	Konz / Vol	Konz / Vol	Konz / Vol	Konz / Vol		
Al	200 ppm	100 ppm	0,5 ppm	50 ppm	10 ppm		
AI	5 ml	2,5 ml	0,0125 ml	1,25 ml	0,25 ml		
Ca	20 ppm	50 ppm	0,5 ppm	10 ppm	100 ppm		
Ca	0,5 ml	1,25 ml	0,0125 ml	0,25 ml	2,5 ml		
Fe	5 ppm	10 ppm	200 ppm	100 ppm	50 ppm		
I e	0,125 ml	0,25 ml	5 ml	2,5 ml	1,25 ml		
K	5 ppm	50 ppm	10 ppm	20 ppm	2 ppm		
K	0,125 ml	1,25 ml	0,25 ml	0,5 ml	0,05 ml		
Ma	5 ppm	2 ppm	10 ppm	20 ppm	50 ppm		
Mg	0,125 ml	0,05 ml	0,25 ml	0,5 ml	1,25		
Mn	2 ppm	10 ppm	1 ppm	20 ppm	5 ppm		
IVIII	0,05 ml	0,25 ml	0,025 ml	0,5 ml	0,125 ml		
Na	2 ppm	10 ppm	8 ppm	4 ppm	6 ppm		
ING	0,05 ml	0,25 ml	0,2 ml	0,1 ml	0,15 ppm		
Р	10 ppm	8 ppm	6 ppm	4 ppm	2 ppm		
Г	0,25 ml	0,2 ml	0,15 ml	0,1 ml	0,05 ml		
S	2 ppm			5 ppm	10 ppm		
3	0,05 ml			0,125 ml	0,25 ml		
Ва		2 ppm					
Ба		0,5 ml					
Ti	2 ppm	1 ppm	5 ppm	10 ppm			
- 11	0,05 ml	0,025 ml	0,125 ml	0,25 ml			
		1 g/l	10 g/l				

Sa	mmelanhang
	33.1

Element	Form	Gerät	Methoden-Nr.	Seite			
M	Mges	ICP(sim)	MMgesICP19.2	6			
MMgesI	MMgesICP19.2 = Al, Ba, Ca, Fe, K, Mg, Mn, Na, P, S, Ti						