Berichte des Forschungszentrums Waldökosysteme, Reihe B, Band 85, 2020

Probenvorbereitungs-, Untersuchungs- und Elementbestimmungs- und Qualitätskontrollmethoden des Umweltanalytik-Labors der Nordwestdeutschen Forstlichen Versuchsanstalt

4. Ergänzung: 2012 - 2019 Teil 2: Elementbestimmungsmethoden von A bis L

von

Nils König und Heike Fortmann

Göttingen 2020

Inhaltsübersicht Band 84-86:

Band 84:

Probenvorbereitungsmethoden, Untersuchungsmethoden und Gerätekurzanleitungen

Band 85:

Elementbestimmungsmethoden A-L

Band 86:

Elementbestimmungsmethoden M-Z und Sammelanhänge

Inhalt Band 85:

Inhaltsübersicht Band 84-86	3
Inhalt Band 85	3
Vorwort	5
Danksagung	6
Allgemeiner Aufbau der Probenvorbereitungsmethoden	7
Allgemeiner Aufbau der Untersuchungsmethoden	
Allgemeiner Aufbau der Elementbestimmungsmethoden	
Allgemeiner Aufbau der Qualitätskontrollmethoden	
Liste der Probenvorbereitungsmethoden	15
Liste der Untersuchungsmethoden	17
Liste der Qualitätskontrollmethoden	20
Liste der Elementbestimmungsmethoden	21
Elementbestimmungsmethoden von A bis L	35

Vorwort

des Labors der Niedersächsischen Bei Inbetriebnahme Forstlichen Versuchsanstalt im Jahre 1989 wurde von der Laborleitung entschieden, alle verwendeten Methoden gut zu dokumentieren und auch eventuell nötige Änderungen oder Verbesserungen stets festzuhalten. Dass dieser gute Vorsatz in der Praxis eines Routinelabors nicht immer leicht zu erfüllen ist, Kollegen die Kolleginnen und anderer Labors nachvollziehen. Fragt man nämlich bei anderen Labors einmal nach Details verwendeten Methode, liegen oft veraltete so Methodenbeschreibungen und Handaufzeichnungen beim Laborpersonal vor. Detaillierte Methoden-Veröffentlichungen sind relativ selten.

Laborproben-Informationssystems Mit des **LAPIS** wurde iedem Einzelanalysen-Wert entschieden. ein Methoden-Code zu abzuspeichern, um auch nach vielen Jahren noch nachvollziehen zu können, Methode. welchem Analysegerät und Probenvorbereitung und -Behandlung der Analysenwert ermittelt wurde. Mit Hilfe des Methoden-Codes konnten auch kleinere Änderungen an einer Methode dokumentiert werden, was sich sehr bald als sinnvoll und nötig erwies. So sind zum Beispiel innerhalb von 6 Jahren allein 9 verschiedene oder geänderte Nitrat-Bestimmungsmethoden verwendet worden, mit denen zum Teil nicht voll vergleichbare Daten gemessen wurden, wie sich später herausstellte.

1994 haben wir begonnen, zu jedem Methoden-Code eine vollständige Untersuchungs-, der Probenbehandlungs-, Analysenmethode, der Geräteparameter, der Gerätebedienung und der Datendokumentation anzufertigen Datenauswertung sowie vorhandenen Beschreibungen in eine einheitliche Form zu übertragen. Der Umfang von ca. 1.400 Seiten hat uns selbst überrascht und zu der späten Veröffentlichung 1996 (Band 46-48) bzw. 1999 (Band 49) geführt. 1999 Ergänzungsbände die ersten (Band 58-60) Methodenbeschreibungen aus den Jahren 1996 bis 1998. Leider ist es uns nicht wie geplant gelungen, alle 2 Jahre weitere Ergänzungsbände zu erstellen. Erst im Jahr 2009 erschien daher die 2. Ergänzung (Bände 75-78) mit den Methodenbeschreibungen aus den Jahren 1999 bis 2008 und im Jahr 2012 die 3. Ergänzung (Bände 79-81) mit den Methodenbeschreibungen bis zum Jahr 2011.

In den vergangenen 8 Jahren sind über 120 neue Elementbestimmungsmethoden und einige Probenvorbereitungs-, und Untersuchungsmethoden sowie Gerätekurzanleitungen hinzugekommen. Wir hoffen, dass in Zukunft alle neuen Methoden von unseren Nachfolgern in der Laborleitung zeitnah veröffentlicht werden können.

Wir sind uns bewusst, dass wir mit dieser sehr detaillierten Dokumentation einen sehr weitgehenden Einblick in unsere Laborarbeit geben, die sicherlich nicht fehlerfrei ist. Wir möchten damit auch zur Diskussion über Methoden-Auswahl und -Durchführung, über Qualitätskontrolle und Datendokumentation

und nicht zuletzt über Methoden- und damit Datenvergleichbarkeit anregen. Verbesserungs- und Korrektur-Vorschläge nehmen wir dankbar entgegen.

Nils König

Heike Fortmann

Abteilung Umweltkontrolle, Sachgebiet Umweltanalytik Nordwestdeutsche Forstliche Versuchsanstalt

Danksagung

Diese Veröffentlichung wäre nicht möglich gewesen ohne die vielfältige Arbeit aller Mitarbeiterinnen und Mitarbeiter des Labors, die bei der Einarbeitung, Durchführung und Verbesserung sowie bei der Fort- und Neuentwicklung der Methoden mitgewirkt haben.

Folgende Mitarbeiterinnen und Mitarbeiter haben sich um die Weiterentwicklung, Verbesserung und Dokumentation von Methoden sowie deren Tests und Einführung in die Routine verdient gemacht: Frau Clarissa Cassar, Frau Claudia Günther, Frau Sandra Gries, Frau Heike Koopmann, Herr Michael Krinninger, Herr Karl-Ludwig Lüter, Frau Loan Mai, Frau Barbara Seewald, Frau Susanne Weinrich und Frau Ellen Wolff.

Für die Entwicklung und den Bau von verschiedenen Labor-Anlagen, Labor-Geräten und Arbeitshilfen gebührt unser Dank Herrn **Rolf Würriehausen** und Herrn **Frank Heun**.

In allen Fragen der Daten-Kontrolle, -Verarbeitung, -Sicherung und - Dokumentationen wurden wir von Herrn **Eberhart Bockhorst** und Herrn **Andreas Schulze** stets beraten und durch Programmierungsarbeiten unterstützt, wofür wir herzlich danken.

Allgemeiner Aufbau der Probenvorbereitungsmethoden

Der Text aller Lagerungs- und Probenvorbereitungsmethoden ist gleich aufgebaut.

Jede Seite hat eine **Kopfzeile**, in der die Matrix (Probenart), die Methodenbezeichnung, das Methodenkürzel und die Seitenzahl eingetragen sind.

Auf der Titelseite ist direkt unter der Kopfzeile das **Einführungsdatum der Methode** angegeben. Es folgt die genaue **Bezeichnung** der Methode.

Es folgt eine Tabelle, in der **Methodenverweise** gegeben werden. Wenn die Probenvorbereitungsmethode normgerecht ist oder in Anlehnung an eine **Norm** (DIN, EN, ISO) entwickelt wurde, so ist die entsprechende Norm in der 1. Zeile der Tabelle angegeben. In der 2. Zeile ist angegeben, welcher Methode des **Handbuchs Forstliche Analytik (HFA)** die Elementbestimmungsmethode entspricht. In Zeile 3 ist der aus dem HFA, Teil E ableitbare **Methoden-Code** angegeben.

Danach sind unter der Überschrift **Geräte und Zubehör** alle benötigten Geräte und Materialien aufgelistet. Die gegebenenfalls zu verwendenden **Chemikalien** bzw. **Lösungen** sind unter gleich lautenden Überschriften im Anschluss zusammengestellt. Es folgen bei manchen Methoden in einem Kasten **wichtige Hinweise** zur Methodendurchführung.

In einem Kasten am unteren Ende der Seite sind die zur Methode gehörigen Anhänge und Literaturangaben angegeben. Die durchnummerierten Anhänge findet man direkt im Anschluss an die Methodenbeschreibung. Eventuell genannte Gerätekurzanleitungen finden sich im Band 84, Reihe B. Auf der 2. und den folgenden Seiten der Methodenbeschreibung ist die Durchführung der Methode ausführlich beschrieben. Bei einigen Methoden wird hier auf die jeweilige Gerätekurzanleitung verwiesen. Gibt es keine eigene Gerätekurzanleitung für das zu benutzende Gerät, so findet man die Angaben zur Gerätebedienung im Abschnitt Durchführung. Besonders wichtige Durchführungshinweise sind mit "Achtung" hervorgehoben. Zum Schluss finden sich manchmal Hinweise zur Gerätewartung.

In den Anhängen am Ende der Methode sind unterschiedliche Detailinformationen zur Methode angegeben. Auf die Anhänge ist im Methodentext an der jeweiligen Stelle verwiesen.

Allgemeiner Aufbau der Untersuchungsmethoden

Der Text aller Untersuchungsmethoden ist gleich aufgebaut.

Jede Seite hat eine **Kopfzeile**, in der die Matrix, die Methodenbezeichnung, der Methoden-Code, der Chemie-Archiv-Code (Lapis alt) und die Seitenzahl eingetragen sind.

Auf der **Titelseite** ist direkt unter der Kopfzeile das **Einführungsdatum der Methode** angegeben. Es folgt die genaue Bezeichnung der Methode.

Da für jede Untersuchungsmethode die Proben auf eine ganz bestimmte Weise vorbereitet und gelagert werden müssen, werden in einer **Tabelle** diejenigen **Lagerungs- und Probenvorbereitungsmethoden** aufgelistet, mit denen die Proben vorbehandelt sein dürfen, um die beschriebene Untersuchungsmethode anwenden zu können. (So müssen z.B. Pflanzenproben, an denen Schwermetall-Gehalte bestimmt werden sollen, mit metallabriebfreien Mühlen gemahlen worden sein.)

Es folgt eine Tabelle, in der **Methodenverweise** gegeben werden. Wenn die Probenvorbereitungsmethode normgerecht ist oder in Anlehnung an eine **Norm** (DIN, EN, ISO) entwickelt wurde, so ist die entsprechende Norm in der 1. Zeile der Tabelle angegeben. In der 2. Zeile ist angegeben, welcher Methode des **Handbuchs Forstliche Analytik (HFA)** die Elementbestimmungsmethode entspricht. In Zeile 3 ist der aus dem HFA, Teil E, ableitbare **Methoden-Code** angegeben.

Weiterhin sind auf der Titelseite eine kurze **Beschreibung des Prinzips bzw.** der chemischen Reaktionen der Methode und eine Zusammenstellung möglicher **Störungen** bei der Methode dargestellt.

In einem Kasten am unteren Ende der Seite sind die zur Methode gehörigen Anhänge und Literaturangaben zur Methode angegeben. Die durchnummerierten Anhänge findet man direkt im Anschluss an die Methodenbeschreibung. Eventuell genannte Gerätekurzanleitungen finden sich im Band 84, Reihe B.

Auf den folgenden Seiten der Methodenbeschreibung sind in stets gleicher Reihenfolge die nachfolgenden Unterabschnitte zu finden:

- Analysengeräte und Zubehör
- Chemikalien
- Lösungen
- Durchführung
- Qualitätskontrolle
- Auswertung/Datendokumentation

Im Abschnitt **Analysengeräte und Zubehör** sind alle für die Durchführung der Methode benötigten Geräte und das Zubehör aufgleistet.

Im Abschnitt **Chemikalien** sind alle für die Durchführung der Methode wie auch für Spül- oder Reinigungsarbeiten benötigte Chemikalien in der handelsüblichen Form aufgelistet.

Die daraus anzusetzenden Lösungen und Gemische sind im Abschnitt **Lösungen** mit genauen Herstellungsvorschriften aufgeführt.

Die genaue Durchführung der Untersuchungsmethode ist im Abschnitt **Durchführung** beschrieben. Bei einigen Methoden wird hier auf die jeweilige Gerätekurzanleitung verwiesen. Besonders wichtige Durchführungshinweise sind mit "**Achtung**" hervorgehoben.

In dem Abschnitt **Qualitätskontrolle** sind in einer Tabelle alle durchzuführenden Qualitätskontrollen mit Verweis auf die Methodenvorschriften aufgelistet. Über die Methodenvorschrift hinausgehende Detailfestlegungen wie verwendete Kontrollstandards, erlaubt prozentuale Abweichungen u.s.w. sind in der Spalte "Durchführung" zusammengestellt.

Der letzte Abschnitt **Auswertung/Datendokumentation** beschreibt, welche Daten oder Messergebnisse wo und wie festzuhalten sind. Werden die Daten mit Hilfe irgendwelcher Formeln verrechnet, so ist auch der genaue Berechnungsweg beschrieben.

In den **Anhängen** am Ende der Methode sind unterschiedliche Detailinformationen zur Methode angegeben. Auf die Anhänge ist im Methodentext an der jeweiligen Stelle verwiesen.

Allgemeiner Aufbau der Qualitätskontrollmethoden

Um die Qualität der Analytik sicherzustellen, gibt es zahlreiche Kontrollmöglichkeiten, die Fehlerquellen aufdecken oder methodische Fehler erkennen lassen.

Die Qualitätskontrollenmethoden haben einen einheitlichen Aufbau. In der Kopfzeile sind die Probenart, der Methodenname, das Methoden-Kürzel und die Seitenzahl eingetragen. Auf der Titelseite ist direkt unter der Kopfzeile das Einführungsdatum der Methode angegeben. Es folgt die genaue Bezeichnung der Methode. Danach ist jeweils das Prinzip der Qualitätskontrolle beschrieben gefolgt von der Durchführung.

In einem Kasten am unteren Ende der Seite sind die zur Methode gehörigen **Anhänge** und **Literaturangaben** zur Methode angegeben. Die durchnummerierten **Anhänge** findet man direkt im Anschluss an die Methodenbeschreibung.

Allgemeiner Aufbau der Elementbestimmungsmethoden

Der Text aller Elementbestimmungsmethoden ist gleich aufgebaut.

Jede Seite hat eine **Kopfzeile**, in der das zu bestimmende Element, die chemische Form des Elementes, die bestimmt wird, das Gerät, der Methoden-Code und die Seitenzahl eingetragen sind.

Auf der **Titelseite** ist direkt unter der Kopfzeile das **Einführungsdatum der Methode** angegeben. Es folgen die zu bestimmende Elementform und der **Messbereich** der Methode. Dieser wird dargestellt durch die **Nachweisgrenze**, die **Bestimmungsgrenze** und die **obere Messgrenze**.

Da für verschiedene Probenmatrices (z.B. Wasser, Aufschlusslösung, Salzextrakt) oft unterschiedliche Elementbestimmungsmethoden nötig sind, werden in einer nach **Boden, Humus, Pflanze und Wasser** unterteilten Tabelle diejenigen **Untersuchungsmethoden** aufgelistet, für die die beschriebene Elementbestimmungsmethode geeignet ist. (So müssen z.B. Pflanzenproben, an denen Schwermetall-Gehalte bestimmt werden sollen, mit metallabriebfreien Mühlen gemahlen und mit einem für Schwermetalle geeigneten Aufschlussverfahren in Lösung gebracht worden sein.)

Es folgt eine Tabelle, in der **Methodenverweise** gegeben werden. Wenn die Elementbestimmungsmethode normgerecht ist oder in Anlehnung an eine **Norm** (DIN, EN, ISO) entwickelt wurde, so ist die entsprechende Norm in der 1. Zeile der Tabelle angegeben. In der 2. Zeile ist angegeben, welcher Methode des **Handbuchs Forstliche Analytik** (**HFA**) die Elementbestimmungsmethode entspricht. In Zeile 3 ist der aus dem HFA, Teil E, ableitbare **Methoden-Code** angegeben.

Weiterhin ist auf der Titelseite eine kurze Beschreibung des physikalischen Prinzips bzw. der chemischen Reaktionen der Methode und eine Darstellung möglicher Störungen bei der Methode dargestellt.

In einem Kasten am unteren Ende der Seite sind die zur Methode gehörigen Anhänge und Literaturangaben zur Methode angegeben. durchnummerierten Anhänge findet man direkt im Anschluss an die Methodenbeschreibung und die Sammelanhänge im Band 86 hinter den Methodenbeschreibungen. Die Kurzanleitungen sind im Band veröffentlicht.

Auf den folgenden Seiten der Methodenbeschreibung sind in stets gleicher Reihenfolge die nachfolgenden Unterabschnitte zu finden:

- Analysengeräte und Zubehör
- Chemikalien
- Lösungen
- Eichung/Standards
- Durchführung
- Qualitätskontrolle
- Auswertung/Datendokumentation

Im Abschnitt **Analysengeräte und Zubehör** ist jeweils der genaue Gerätetyp mit allen Zusatzgeräten wie Probenehmer oder Dilutoren sowie die zugehörige Geräte-Software

beschrieben. Des Weiteren sind hier wichtige, methodenspezifische Detail-Angaben wie Art des Brenners, Graphitrohrtyp, Zerstäubertyp usw. zu finden. Im Abschnitt **Chemikalien** sind alle für die Durchführung der Methode wie auch für Spül- oder Reinigungsarbeiten benötigte Chemikalien in der handelsüblichen Form aufgelistet.

Die daraus anzusetzenden Lösungen und Gemische sind im Abschnitt **Lösungen** mit genauen Herstellungsvorschriften aufgeführt.

Im Abschnitt Eichung/Standards sind im Unterabschnitt Stammlösungen die Herstellungsvorschriften für die Lösungen angegeben, aus denen die Standards hergestellt werden. Bei manchen Methoden (z.B. ICP-Methoden) gibt es den Abschnitt Standardlösungen, in dem die genaue Herstellung der Standards beschrieben ist. Es folgen Tabellen für die zu verwendende Standardreihe und die Kontrollstandards, mit denen die Eichung und die Messungen im Laufe des Arbeitstages überprüft werden. Werden an einem Gerät mehrere Elemente gleichzeitig oder direkt nacheinander bestimmt, so ist die Verwendung von Mehrelement-Standards sinnvoll. In diesem Fall sind in einer eigenen Tabelle die Standardzusammensetzungen für die Mehrelementbestimmung aufgelistet. Nach den Tabellen folgen Angaben zum Extinktions-Sollwert eines ausgewählten Standards. Hiermit Geräteeinstellung überprüft werden. Schließlich sind noch Hinweise zur Matrix-Anpassung von Standards und Proben sowie Lagerungshinweise aufgeführt.

Die genaue Durchführung der Analysen ist im Abschnitt Durchführung jeweilige beschrieben. Bei vielen Methoden wird hier auf die Gerätekurzanleitung verwiesen. Da diese jedoch meist für mehrere Methoden methodenspezifischen Angaben ailt. die als Ergänzung

Gerätekurzanleitung in diesem Abschnitt dargestellt. Gibt es keine eigene Gerätekurzanleitung für das zu benutzende Gerät, so findet man die Angaben zur Gerätebedienung im Abschnitt Durchführung. Besonders wichtige Durchführungshinweise sind mit "**Achtung**" hervorgehoben.

Im Abschnitt **Qualitätskontrolle** sind in einer Tabelle alle durchzuführenden Qualitätskontrollen mit Verweis auf die Methodenvorschriften aufgelistet. Über die Methodenvorschrift hinausgehende Detailfestlegungen wie verwendete Kontrollstandards, erlaubt prozentuale Abweichungen u.s.w. sind in der Spalte "Durchführung" zusammengestellt.

Der letzte Abschnitt **Auswertung/Datendokumentation** beschreibt, welche Messergebnisse wo und wie festzuhalten sind bzw. welches Datenverarbeitungsprogramm für die Datenkontrolle, -Übertragung und - Sicherung verwendet werden muss. Bei Verwendung solcher Programme wird auf die jeweilige Gerätekurzanleitung Datenverarbeitung verwiesen. Diese Anleitungen werden im gleichen Band wie die Gerätekurzanleitungen veröffentlicht.

In den Anhängen am Ende der Methode sind unterschiedliche Detailinformationen zur Methode angegeben. Dies können Chromatogramme, Geräteparameter, Spektren, Fließschemata bei Cont.-Flow-Methoden u. ä. sein. Auf die Anhänge ist im Methodentext an der jeweiligen Stelle verwiesen.

In den folgenden Tabellen sind die **verwendeten Abkürzungen** für Analysengeräte (Tabelle 1), für die Untersuchungsverfahren (Tabelle 2), für die Probenvorbereitungs- und Lagerungsverfahren (Tabelle 3) und die Qualitätskontrollen (Tabelle 4) aufgelistet.

Tabelle 1: verwendete Abkürzungen für Analysengeräte

Abkürzung	Gerät	
AAS	Atomabsorptionsspektrophotometer	
	AAS(G): mit Graphitrohrofen-Atomisierung	
	AAS(FI): mit Flammen-Atomisierung	
AFS	Atomfluoreszenzspektrometer	
С	Elementaranalysator für C, Corg und Carbonat	
CFC	Continuous-Flow-Colorimeter	
CFE	Continuous-Flow-Elektrochemie	
CNS	Elementaranalysator für C, N und S	
GC	Gaschromatograph	
IC	Ionenchromatograph	
ICP	Induktiv-gekoppeltes Plasma-Spektrophotometer	
ICP-MS	Induktiv-gekoppeltes Plasma-Massenspektrometer	
LFM	Leitfähigkeitsmessgerät	
PHM	pH-Meter	
SCH	Scheibler-Apparatur zur CO ₂ -Bestimmung	
TIT	Titrator für pH- und Leitfähigkeitstitrationen	

TOC	Total-Organic-Carbon-Analysator	
TN	Total-Nitrogen-Analysator	
WG	Waage	

Tabelle 2: Abkürzungen für Untersuchungsmethoden

Abkürzung	Untersuchungsverfahren		
ANULL	ohne Anwendung eines Untersuchungsverfahrens (Flüssige		
	Proben)		
ATNULL	ohne Anwendung eines Untersuchungsverfahrens		
	(Festproben)		
ATNULLCO3	ohne Anwendung eines Untersuchungsverfahrens		
	(Festproben) mit CO3		
AKNULL	Korngrößenbestimmung		
APNULL	pF-Kurven		
AKE	effektive Austauschkapazitäts-Bestimmung		
AKEG	Europäische Methode zur Austauschkapazitätsbestimmung		
AKH	Austauschkapazitätsbestimmung an Humusproben		
AKKA H/S	Austauschkapazität nach Kappen-Adrian		
AKT	totale (potentielle) Austauschkapazitäts-Bestimmung		
BGW	Blattgewicht		
BNK	Basen-Neutralisierungs-Kapazitäts-Bestimmung		
Clges	Gesamt-Chlor-Bestimmung		
CNMIK(F)	C- und N-Bestimmung der mikrobiellen Biomasse		
CO2ATM	CO ₂ -Atmung		
CO3ges	Carbonat-Bestimmung		
DAN	Druckaufschluss mit Salpetersäure		
DANF	Druckaufschluss mit Salpeter- und Flussssäure		
EXT1:2H2O	wässriger 1:2-Extrakt		
EXT1:2ALKP	Bestimmung der komplexierten Al-Fraktion im wässrigen 1:2- Extrakt		
EXTCIT	Zitronensäure-Extrakt		
EXTEDTA	EDTA-Extrakt		
EXTOX	Oxalat-Extrakt		
FBA	Feinbodenanteil-Bestimmung		
GBL	Gleichgewichts-Bodenlösung		
GBLALKP	Bestimmung der komplexierten Al-Fraktion in der GBL		
Nmin	Bestimmung der mineralischen Stickstoff-Fraktion		
NGW	Nadelgewicht		
KOMPAL	Bestimmung der komplexierten Al-Fraktion		
OAKW	offener Aufschluss mit Königswasser		
OAKWEG	Europäische Variante des offenen Aufschlusses mit		
	Königswasser		

PHH2O	pH-Bestimmung in wässriger Suspension
PHKCI	pH-Bestimmung in KCI-Suspension
PHCACI2	pH-Bestimmung in CaCl ₂ -Suspension
PMIK(F)	P-Bestimmung der mikrobiellen Biomasse
TRD	Trockenraumdichte-Bestimmung
TRDF	Trockenrohdichte des Feinbodens
TRDFBA	Trockenrohdichte und Feinbodenanteil (BDF-Flächen)
WGH	Wassergehalts-Bestimmung

Tabelle 3: Abkürzungen für Probenvorbereitungs- und Lagerungsverfahren

Abkürzung	Probenvorbereitungs- oder Lagerungsverfahren	
F	Filtration	
L	Lagerung	
М	Mahlen mit verschiedenen Mühlen	
S	Sieben	
SM	Probenvorbehandlung von Wasserproben, in denen Schwermetalle (SM) gemessen werden	
T	Trocknung/Homogenisieren/Sortieren	
M/S B	Mühle/Sieb für Bodenproben geeignet	
M/S P	Mühle/Sieb für Pflanzen(Humus)proben geeignet	
M/S BP	Mühle/Sieb für Boden-und Pflanzenproben geeignet	

Tabelle 4: Abkürzungen für Qualitätskontrollen

Abkürzungen	Qualitätskontrolle
BL	Basislinienkontrolle
BW	Blindwerte
CB	Kohlenstoff-Bilanz
DK	Driftkontrolle
EK	Eichkurvenkontrolle
EK	Eichkurvenkontrolle
IB	Ionenbilanz/Leitfähigkeitsbilanz
IBEU	Ionenbilanz/Leitfähigkeitsbilanz, Europäische Variante
KSt	Kontroll-Standard
KstNit	Kontroll-Standard Nitrit
LFEU	Leitfähigkeitsbilanz, Europäische Variante
MA	Mehrfachaufschluss
MM	Mehrfachmessung
NaCIV	NaCl-Verhältnis-Prüfung
NB	Stickstoff-Bilanz
NPK	Nullpunktkontrolle
PH	pH-Prüfung
StM	Standard-Material
VK	Verschleppungskontrolle

WG	Wassergehalt-Prüfung
WM	Wiederholungsmessungen
WP	Wiederholungsproben

Hinweis:

Die Methoden-Bände sind so gedruckt, dass jede neue Methode mit einer ungeraden Seitenzahl beginnt. Bei Entfernung der Verleimung kann die Methodensammlung auch als Loseblatt-Sammlung verwendet werden. Daher sind bei neuen Methoden-Versionen nicht nur die Änderungen, sondern der vollständige Methodentext abgedruckt. Die neuen Methoden bzw. – Methodenversionen der Ergänzungsbände können in die Loseblatt-Sammlung eingeordnet werden.

<u>Liste der alten und der zwischen dem 1.1.2012 und dem 31.12.19 neu</u> <u>hinzugekommenen Probenvorbereitungsmethoden</u> (neue Methoden im Fettdruck; mit Angaben zum Verwendungszeitraum der jeweiligen Methoden)

	für SM		
Kürzel	geeignet	Von	Bis
F1.1	<u> </u>	01.01.1989	
F2.1		01.01.1989	31.06.2016
F2.2		01.07.2016	
F3.1		01.01.1989	
F4.1		01.01.1990	
F5.1		01.10.2005	
F6.1		01.05.2006	
F7.1		01.01.2020	
L0	X	01.01.1989	
L1.1	X	01.01.1989	
L1.1L2.1	X	01.01.1989	
L2.1	X	01.01.1989	
L3.1	X	01.01.1989	
MB1.1		01.01.1989	
MBP1.1	X	01.01.1989	
MBP2.1	X	01.01.1995	
MBP3.1	X	01.10.1994	30.09.2004
MBP4.1		01.06.2004	
MBP5.1	X	01.10.2004	
MBP6.1	X	01.11.2010	
MBPT1.1	X	01.07.2016	
MBPT2.1	X	01.07.2016	
MBPT6.1	Х	01.07.2016	
MP1.1		01.01.1994	31.12.2004
MP1.2	X	01.01.2005	
MP2.1		01.01.1989	31.12.2010
MP2.2		01.07.1997	
MP2.3		15.01.2011	
MP3.1	X	01.07.1991	31.12.2010
MP3.2	X	01.07.1997	
MP3.3	X	15.01.2011	
MP4.1	X	01.01.1992	31.12.2010
MP4.2	X	01.07.1997	
MP5.1		01.11.2010	
SB1.1		01.04.1991	
SBP1.1		01.01.1989	
SBP2.1	X	01.01.1989	
SBP2.2	X	01.04.2004	
SBP3.1	X	01.01.1989	31.12.2011
SHBZE1.1	X	01.08.2006	
SM1.1	X	01.01.1989	01.02.1994
SM1.2	X	01.02.1994	01.11.1994

SM1.3	X	01.11.1991	30.06.2016
SM1.4	X	01.06.2016	
SM2.1	X	01.01.1989	01.11.1994
SM2.2	X	01.11.1994	01.08.2016
SM2.3	X	01.07.2016	
T1.1	X	01.01.1989	
T2.1	X	01.01.1989	
T3.1	X	01.01.1989	
T3.1T1.1	X	01.01.1989	
T4.1	X	01.01.1989	
T4.1T1.1	X	01.01.1989	
T5.1	X	01.01.1989	
T6.1	X	01.12.1992	30.11.2000
T6.2	X	01.12.2000	30.11.2002
T6.3	X	01.12.2002	28.02.2004
T6.4	X	01.03.2004	28.02.2006
T6.5	X	01.03.2006	28.02.2007
T6.6	X	01.03.2007	28.02.2009
T7.1	X	01.12.1992	30.11.2000
T7.2	X	01.12.2000	30.11.2002
T7.3	X	01.12.2002	28.02.2004
T7.4	X	01.03.2004	28.02.2006
T7.5	X	01.03.2006	28.02.2007
T7.6	X	01.03.2007	28.02.2008
T7.7	X	01.03.2008	28.02.2009
T7.8	X	01.03.2009	28.02.2010
T7.9	X	01.03.2010	28.02.2012
T7.10	X	01.03.2012	31.03.2018
T7.11	X	01.04.2018	
T8.1	X	01.01.1992	

Liste der alten und der zwischen dem 1.1.2012 und dem 31.12.19 neu hinzugekommenen Untersuchungsmethoden (neue Methoden im Fettdruck, mit Angaben zum Verwendungszeitraum

der jeweiligen Methoden)

Boden:

Kürzel	Probenart	Gültig von	Gültig bis
AKE1.1	Boden	01.03.1990	J
AKEG1.1	Boden	01.01.1996	
AKEG2.1	Boden	01.06.2002	
AKT1.1	Boden	01.01.1989	31.12.1999
AKT2.1	Boden	01.01.1991	
ATNULL	Boden	01.01.1989	
CNMIK1.1	Boden	01.01.1996	
CNMIKF1.1	Boden	01.01.1996	
CO2ATM1.1	Boden	01.06.1996	31.12.2017
CO2ATM2.1	Boden	01.01.2018	
CO3ges1.1	Boden	01.01.1997	
CO3ges2.1	Boden	01.01.2004	
DAN1.1	Boden	01.01.1989	
DANF1.1	Boden	01.11.1998	
EXT12ALKP1.1	Boden	01.01.1989	
EXT12H2O1.1	Boden	01.01.1989	
EXTCIT1.1	Boden	01.12.2019	
EXTEDTA1.1	Boden	01.01.1993	
EXTOX1.1	Boden	01.07.2002	
FBA1.1	Boden	01.01.1989	
GBL1.1	Boden	01.01.1989	
GBLALKP1.1	Boden	01.01.1992	
Nmin1.1	Boden	01.01.1992	
OAKW1.1	Boden	01.06.1995	31.06.2015
OAKW1.2	Boden	01.07.2015	
OAKW2.1	Boden	15.03.2014	
OAKWEG1.1	Boden	01.12.1996	31.12.1999
OAKWEG2.1	Boden	01.01.2007	31.06.2015
OAKWEG2.2	Boden	01.07.2015	
OAKWEG3.1	Boden	01.04.2016	
pHCaCl2/1.1	Boden	01.01.1989	31.03.1991
pHCaCl2/1.2	Boden	01.04.1991	31.01.1995
pHCaCl2/1.3	Boden	01.02.1995	09.12.2000
pHCaCl2/3.1	Boden	01.01.2000	09.12.2000
pHCaCl2_5.1	Boden	10.12.2000	
pHCaCl2_6.1	Boden	01.12.2004	
pHH2O1.1	Boden	01.01.1989	31.03.1991
pHH2O1.2	Boden	01.04.1991	31.01.1995
pHH2O1.3	Boden	01.02.1995	09.12.2000
pHH2O3.1	Boden	01.01.2000	09.12.2000
pHH2O5.1	Boden	10.12.2000	
pHH2O6.1	Boden	01.12.2004	

pHKCl1.1	Boden	01.01.1989	31.03.1991
pHKCl1.2	Boden	01.04.1991	31.01.1995
pHKCl1.3	Boden	01.02.1995	09.12.2000
pHKCl3.1	Boden	01.01.2000	09.12.2000
pHKCl4.1	Boden	01.01.2000	09.12.2000
pHKCl5.1	Boden	10.12.2000	
pHKCl6.1	Boden	01.12.2004	
PMIK1.1	Boden	01.01.2018	
PMIKF1.1	Boden	01.01.2018	
PMIKS1.1	Boden	01.01.2018	
TRD1.1	Boden	01.01.1989	
TRDF2.1	Boden	01.06.2009	
TRDFBA1.1	Boden	01.06.2006	
WGH1.1	Boden	01.01.1989	
WGH2.1	Boden	01.01.1989	

Humus:

Humus:			
Kürzel	Probenart	Gültig von	Gültig bis
AKEG1.1	Humus	01.01.2006	
AKEG2.1	Humus	01.01.2006	
AKH1.1	Humus	01.03.1990	31.05.1997
AKH1.2	Humus	01.06.1997	30.11.1997
AKH1.3	Humus	01.12.1997	28.02.1998
AKH1.4	Humus	01.03.1998	
AKH2.1	Humus	01.03.1990	31.05.1997
AKH2.2	Humus	01.06.1997	30.11.1997
AKH2.3	Humus	01.12.1997	28.02.1998
AKH2.4	Humus	01.03.1998	
AKH3.1	Humus	01.01.2006	
ATNULL	Humus	01.01.1989	
CNMIK1.1	Humus	01.01.1996	
CNMIKF1.1	Humus	01.01.1996	
CO2ATM1.1	Humus	01.06.1996	31.12.2017
CO2ATM2.1	Humus	01.01.2018	
CO3ges1.1	Humus	01.01.1989	
CO3ges2.1	Humus	01.01.2004	
DAN1.1	Humus	01.01.1989	
DAN2.1	Humus	01.01.1989	30.06.1996
DAN2.2	Humus	01.07.1996	
DANF1.1	Humus	01.11.1998	
EXTCIT1.1	Humus	01.12.2019	
HV1.1	Humus	01.01.1989	
HV2.1	Humus	01.01.2003	
HV3.1	Humus	29.11.2005	
HV4.1	Humus	01.06.2006	
HV5.1	Humus	15.09.2019	
Nmin1.1	Humus	01.01.1992	
OAKW1.1	Humus	01.06.1995	31.06.2015
OAKW1.2	Humus	01.07.2015	

OAKW2.1	Humus	01.08.2014	
OAKWEG1.1	Humus	01.12.1996	31.12.1999
pHCaCl2/2.1	Humus	01.01.1989	31.01.1995
pHCaCl2/2.2	Humus	01.02.1995	09.12.2000
pHCaCl2/3.1	Humus	01.01.2000	09.12.2000
pHCaCl2_5.1	Humus	10.12.2000	
pHCaCl2_6.1	Humus	01.12.2004	
pHH2O2.1	Humus	01.01.1989	31.01.1995
pHH2O2.2	Humus	01.02.1995	09.12.2000
pHH2O3.1	Humus	01.01.2000	09.12.2000
pHH2O5.1	Humus	10.12.2000	
pHH2O6.1	Humus	01.12.2004	
pHKCl2.1	Humus	01.01.1989	31.01.1995
pHKCl2.2	Humus	01.02.1995	09.12.2000
pHKCl3.1	Humus	01.01.2000	09.12.2000
pHKCl4.1	Humus	01.01.2000	09.12.2000
pHKCl5.1	Humus	10.12.2000	
pHKCl6.1	Humus	01.12.2004	
PMIK1.1	Humus	15.12.2017	
PMIKF1.1	Humus	01.02.2018	
WGH1.1	Humus	01.01.1989	
WGH2.1	Humus	01.01.1989	

Pflanze:

Kürzel	Probenart	Gültig von	Gültig bis
ATNULL	Pflanze	01.01.1989	
BGW1.1	Pflanze	01.01.1989	
Clges1.1	Pflanze	15.07.1991	
Clges1.2	Pflanze	01.01.1997	
DAN1.1	Pflanze	01.01.1989	
DAN2.1	Pflanze	01.01.1989	30.06.1996
DAN2.2	Pflanze	01.07.1996	
NGW1.1	Pflanze	01.01.1989	31.03.2000
NGW1.2	Pflanze	01.04.2000	
WGH1.1	Pflanze	01.01.1989	
WGH2.1	Pflanze	01.01.1989	

Wasser:

Kürzel	Probenart	Gültig von	Gültig bis
ALK1.1	Wasser	02.02.2000	
ANULL	Wasser	01.01.1989	
KOMPAI1.1	Wasser	01.01.1989	

<u>Liste der alten und der zwischen dem 1.1.2012 und dem 31.12.19 neu hinzugekommenen Qualitätskontrollmethoden</u>

(neue Methoden im Fettdruck; mit Angaben zum Verwendungszeitraum der jeweiligen Methoden)

Matrix Festproben:

Qualitäts-	Probenart	Eingeführt	Beendet
kontrolle		Datum	Datum
QBC1.1	Festproben	01.02.2000	
QBW1.1	Festproben	01.01.1989	01.01.2001
QBW1.2	Festproben	01.01.2001	
QMA1.1	Festproben	01.01.1989	
QEK1.1	Festproben	01.01.1989	01.01.2005
QEK1.2	Festproben	01.01.2005	
QPH1.1	Festproben	01.01.2000	
QStM1.1	Festproben	01.01.1989	01.01.2001
QStM1.2	Festproben	01.01.2001	
QWG1.1	Festproben	01.10.1990	
QWP1.1	Festproben	01.01.1989	01.02.1996
QWP1.2	Festproben	01.02.1996	

Matrix Lösungen:

Qualitäts-	Probenart	Eingeführt	Beendet
kontrolle		Datum	Datum
QALK1.1	Lösungen	01.01.2000	
QBL1.1	Lösungen	01.01.1989	
QBL2.1	Lösungen	01.01.2000	
QCB1.1	Lösungen	01.02.2000	
QDK1.1	Lösungen	01.01.1989	
QDK2.1	Lösungen	01.01.2000	
QMM1.1	Lösungen	01.01.1989	
QEK1.1	Lösungen	01.01.1989	01.01.1999
QEK1.2	Lösungen	01.01.1999	
QIB1.1	Lösungen	01.10.1990	01.06.2004
QIB1.2	Lösungen	01.06.2004	
QIB2.1	Lösungen	01.01.2005	
QIB3.1	Lösungen	01.07.2007	
QIBEU1.1	Lösungen	01.01.2004	
QKSt1.1	Lösungen	01.01.1989	
QKStNit1.1	Lösungen	01.01.1989	
QLFEU1.1	Lösungen	01.01.2004	
QNaClV1.1	Lösungen	01.01.2005	
QNB1.1	Lösungen	01.03.1995	01.02.2000
QNB1.2	Lösungen	01.02.2000	
QNPK1.1	Lösungen	01.01.1989	
QStM1.1	Lösungen	01.01.2001	
QVK1.1	Lösungen	01.01.1989	
QWM1.1	Lösungen	01.01.1989	01.02.1996
QWM1.2	Lösungen	01.06.1996	

<u>Liste der alten und der zwischen dem 1.1.2012 und dem 31.12.19 neu</u> <u>hinzugekommenen Elementbestimmungsmethoden</u> (neue Methoden im Fettdruck; mit Angaben zum Verwendungszeitraum der jeweiligen Methoden)

Element	Prüfmethodenname	gültig von	gültig bis
Al	AlAlgesAAS1.1	01.01.1989	31.12.2002
Al	AlAlgesAAS2.1	01.01.1989	01.04.1998
Al	AlAlgesAAS6.1	01.11.2001	01.02.2005
Al	AlAlgesAAS7.1	15.11.2001	01.03.2005
Al	AlAlgesICP1.1	01.10.1990	01.07.1993
Al	AlAlgesICP1.2	01.05.1994	01.11.1998
Al	AlAlgesICP1.3	01.08.1998	31.12.2002
Al	AlAlgesICP2.1	01.01.1997	01.11.1998
Al	AlAlgesICP2.2	01.11.1998	01.03.2000
Al	AlAlgesICP3.1	01.08.1997	01.07.1998
Al	AlAlgesICP3.2P	01.11.1998	31.12.2003
Al	AlAlgesICP4.1	01.04.1998	01.07.1998
Al	AlAlgesICP4.2	01.11.1998	01.12.2003
Al	AlAlgesICP5.1	01.11.1998	01.12.1999
Al	AlAlgesICP7.1	15.02.2003	01.02.2004
Al	AlAlgesICP7.2	01.03.2006	01.02.2012
Al	AlAlgesICP7.3	01.03.2008	31.12.2013
Al	AlAlgesICP8.1	10.03.2003	01.07.2005
Al	AlAlgesICP8.2	01.05.2005	31.12.2006
Al	AlAlgesICP10.1	01.01.2004	30.04.2014
Al	AlAlgesICP15.1	01.10.2006	
Al	AlAlgesICP16.1	01.02.2007	01.05.2019
Al	AlAlgesICP18.1	01.10.2006	01.10.2015
Al	AlAlgesICP19.1	01.10.2009	01.08.2019
Al	AlAlgesICP19.2	01.01.2019	
Al	AlAlgesICP20.1	01.05.2014	
Al	AlAlgesICP21.1	01.05.2014	
Al	AlAlgesICP22.1	01.08.2014	
Al	AlAlgesICP23.1	01.03.2015	
Alk	ALK37TIT1.1	01.01.2000	01.02.2010
Alk	ALK37TIT2.1	29.10.2009	31.12.2013
Alk	ALK37TIT3.1	01.03.2013	
Alk	ALK40TIT1.1	01.01.2000	01.02.2010
Alk	ALK40TIT2.1	29.10.2009	31.12.2013
Alk	ALK40TIT3.1	01.03.2013	
Alk	ALK43TIT1.1	01.01.2000	01.02.2010
Alk	ALK43TIT2.1	29.10.2009	31.12.2013
Alk	ALK43TIT3.1	01.03.2013	
Alk	ALK45TIT1.1	01.01.2000	01.02.2010
Alk	ALK45TIT2.1	29.10.2009	31.12.2013
Alk	ALK45TIT3.1	01.03.2013	
As	AsAsgesICP2.1	01.01.1997	01.06.1997

	AsAsgesICP2.2	01.11.1998	31.12.2006
	AsAsgesICP2.2 AsAsgesICP3.1	01.11.1998	01.08.2008
	AsAsgesICP8.1	10.03.2003	31.12.2005
	AsAsgesICP15.1	01.10.2006	31.12.2003
	BaBagesICP1.1	01.04.1992	01.11.1998
Ва	BaBagesICP1.2	01.11.1998	01.03.2004
	BaBagesICP2.1	01.11.1998	31.12.2004
Ва	BaBagesICP8.1	01.01.2004	31.12.2004
	BaBagesICP8.2	01.05.2005	31.12.2004
	BaBagesICP10.1	01.03.2003	30.09.2014
	BaBagesICP16.1	01.02.2007	01.05.2019
	BaBagesICP19.1	01.10.2009	31.12.2019
Ba	BaBagesICP19.2	01.01.2019	31.12.2019
Ва	BaBagesICP21.1	01.06.2014	
Ва	BaBagesICP22.1	01.08.2014	
	CCanorgTOC1.1	01.03.2014	01.10.1997
C	,	01.10.1991	01.10.1997
C	CCanorgTOC2.1 CCanorgTOC2.2	01.04.1994	15.11.1997
C		01.04.1994	30.09.1999
	CCanorgTOC2.3	01.00.1997	01.03.2008
-	CCanorgTOC3.1	15.12.2007	01.03.2000
C	CCanorgTOC3.2	01.10.2017	
C	CCanorgTOC5.1 CCO2GC1.1	01.06.1996	31.07.2001
Č	CCO2GC1.1	01.06.2015	31.07.2001
	CCO3C1.1	01.12.2006	01.05.2016
	CCO3C1.1	01.01.2016	01.05.2010
	CCO3C3.1	01.01.2016	
C	CCD3CA 1	04 42 2046	
C	CCO3C4.1	01.12.2016	01 07 2014
С	CCO3CNS1.1	20.08.2004	01.07.2014
C C	CCO3CNS1.1 CCO3DRU1.1	20.08.2004 01.01.2004	31.12.2004
C C	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1	20.08.2004 01.01.2004 01.01.1993	31.12.2004 01.08.2007
C C C	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2	20.08.2004 01.01.2004 01.01.1993 01.01.1997	31.12.2004 01.08.2007 01.06.2003
C C C C	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2 CCgesCNS1.1	20.08.2004 01.01.2004 01.01.1993 01.01.1997 01.01.1989	31.12.2004 01.08.2007 01.06.2003 01.10.1995
C C C C	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2 CCgesCNS1.1 CCgesCNS1.2	20.08.2004 01.01.2004 01.01.1993 01.01.1997 01.01.1989 01.10.1995	31.12.2004 01.08.2007 01.06.2003 01.10.1995 01.03.1996
C C C C	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2 CCgesCNS1.1 CCgesCNS1.2 CCgesCNS2.1	20.08.2004 01.01.2004 01.01.1993 01.01.1997 01.01.1989 01.10.1995 01.02.1996	31.12.2004 01.08.2007 01.06.2003 01.10.1995 01.03.1996 01.09.1996
C C C C	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2 CCgesCNS1.1 CCgesCNS1.2 CCgesCNS2.1 CCgesCNS2.1	20.08.2004 01.01.2004 01.01.1993 01.01.1997 01.01.1989 01.10.1995 01.02.1996 01.10.1997	31.12.2004 01.08.2007 01.06.2003 01.10.1995 01.03.1996 01.09.1996 30.06.2005
C C C C	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2 CCgesCNS1.1 CCgesCNS1.2 CCgesCNS2.1 CCgesCNS2.1 CCgesCNS2.2 CCgesCNS3.1	20.08.2004 01.01.2004 01.01.1993 01.01.1997 01.01.1989 01.10.1995 01.02.1996 01.10.1997 01.10.1997	31.12.2004 01.08.2007 01.06.2003 01.10.1995 01.03.1996 01.09.1996 30.06.2005 31.12.2004
C C C C	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2 CCgesCNS1.1 CCgesCNS1.2 CCgesCNS2.1 CCgesCNS2.1 CCgesCNS2.1 CCgesCNS3.1 CCgesCNS4.1	20.08.2004 01.01.2004 01.01.1993 01.01.1997 01.01.1989 01.10.1995 01.02.1996 01.10.1997 01.10.1997 01.11.2001	31.12.2004 01.08.2007 01.06.2003 01.10.1995 01.03.1996 01.09.1996 30.06.2005 31.12.2004 01.04.2005
C C C C	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2 CCgesCNS1.1 CCgesCNS1.2 CCgesCNS2.1 CCgesCNS2.2 CCgesCNS3.1 CCgesCNS4.1 CCgesCNS5.1	20.08.2004 01.01.2004 01.01.1993 01.01.1997 01.01.1989 01.10.1995 01.02.1996 01.10.1997 01.10.1997 01.11.2001 20.08.2004	31.12.2004 01.08.2007 01.06.2003 01.10.1995 01.03.1996 01.09.1996 30.06.2005 31.12.2004
C C C C	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2 CCgesCNS1.1 CCgesCNS1.2 CCgesCNS2.1 CCgesCNS2.1 CCgesCNS3.1 CCgesCNS4.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.1	20.08.2004 01.01.2004 01.01.1993 01.01.1997 01.01.1989 01.10.1995 01.02.1996 01.10.1997 01.10.1997 01.11.2001 20.08.2004 25.10.2010	31.12.2004 01.08.2007 01.06.2003 01.10.1995 01.03.1996 01.09.1996 30.06.2005 31.12.2004 01.04.2005 01.03.2008
C C C C	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2 CCgesCNS1.1 CCgesCNS1.2 CCgesCNS2.1 CCgesCNS2.2 CCgesCNS3.1 CCgesCNS4.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.1	20.08.2004 01.01.2004 01.01.1993 01.01.1997 01.01.1989 01.10.1995 01.02.1996 01.10.1997 01.10.1997 01.11.2001 20.08.2004 25.10.2010 01.01.1989	31.12.2004 01.08.2007 01.06.2003 01.10.1995 01.03.1996 01.09.1996 30.06.2005 31.12.2004 01.04.2005 01.03.2008
C C C C	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2 CCgesCNS1.1 CCgesCNS1.2 CCgesCNS2.1 CCgesCNS2.2 CCgesCNS3.1 CCgesCNS4.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.2 CCgesCNS5.2	20.08.2004 01.01.2004 01.01.1993 01.01.1997 01.01.1989 01.10.1995 01.02.1996 01.10.1997 01.10.1997 01.11.2001 20.08.2004 25.10.2010 01.01.1989 01.10.1991	31.12.2004 01.08.2007 01.06.2003 01.10.1995 01.03.1996 01.09.1996 30.06.2005 31.12.2004 01.04.2005 01.03.2008
	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2 CCgesCNS1.1 CCgesCNS1.2 CCgesCNS2.1 CCgesCNS2.1 CCgesCNS3.1 CCgesCNS4.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.2 CCgesTOC1.1 CCgesTOC2.1	20.08.2004 01.01.2004 01.01.1993 01.01.1997 01.01.1989 01.10.1995 01.02.1996 01.10.1997 01.10.1997 01.11.2001 20.08.2004 25.10.2010 01.01.1989 01.10.1991 01.04.1994	31.12.2004 01.08.2007 01.06.2003 01.10.1995 01.03.1996 01.09.1996 30.06.2005 31.12.2004 01.04.2005 01.03.2008 30.12.2011 01.07.1993 01.02.1997
	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2 CCgesCNS1.1 CCgesCNS1.2 CCgesCNS2.1 CCgesCNS2.2 CCgesCNS3.1 CCgesCNS4.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.2 CCgesTOC1.1 CCgesTOC2.1 CCgesTOC2.2 CCgesTOC2.3	20.08.2004 01.01.2004 01.01.1993 01.01.1997 01.01.1989 01.10.1995 01.02.1996 01.10.1997 01.10.1997 01.11.2001 20.08.2004 25.10.2010 01.01.1989 01.10.1991 01.04.1994 01.06.1997	31.12.2004 01.08.2007 01.06.2003 01.10.1995 01.03.1996 01.09.1996 30.06.2005 31.12.2004 01.04.2005 01.03.2008 30.12.2011 01.07.1993 01.02.1997 01.10.1999
	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2 CCgesCNS1.1 CCgesCNS1.2 CCgesCNS2.1 CCgesCNS2.1 CCgesCNS3.1 CCgesCNS4.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.2 CCgesTOC1.1 CCgesTOC2.1 CCgesTOC2.2 CCgesTOC2.3 CCgesTOC3.1	20.08.2004 01.01.2004 01.01.1993 01.01.1997 01.01.1989 01.10.1995 01.02.1996 01.10.1997 01.10.1997 01.11.2001 20.08.2004 25.10.2010 01.01.1989 01.10.1991 01.04.1994 01.06.1997 01.01.1999	31.12.2004 01.08.2007 01.06.2003 01.10.1995 01.03.1996 01.09.1996 30.06.2005 31.12.2004 01.04.2005 01.03.2008 30.12.2011 01.07.1993 01.02.1997 01.10.1999 03.05.2000
	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2 CCgesCNS1.1 CCgesCNS1.2 CCgesCNS2.1 CCgesCNS2.1 CCgesCNS3.1 CCgesCNS4.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.2 CCgesTOC1.1 CCgesTOC2.1 CCgesTOC2.2 CCgesTOC2.3 CCgesTOC3.1 CCgesTOC3.1	20.08.2004 01.01.2004 01.01.1993 01.01.1997 01.01.1989 01.10.1995 01.02.1996 01.10.1997 01.10.1997 01.11.2001 20.08.2004 25.10.2010 01.01.1989 01.10.1991 01.04.1994 01.06.1997 01.01.1999 01.11.1999	31.12.2004 01.08.2007 01.06.2003 01.10.1995 01.03.1996 01.09.1996 30.06.2005 31.12.2004 01.04.2005 01.03.2008 30.12.2011 01.07.1993 01.02.1997 01.10.1999
	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2 CCgesCNS1.1 CCgesCNS1.2 CCgesCNS2.1 CCgesCNS2.2 CCgesCNS3.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.2 CCgesTOC1.1 CCgesTOC2.1 CCgesTOC2.3 CCgesTOC3.1 CCgesTOC3.2 CCgesTOC3.3	20.08.2004 01.01.2004 01.01.1993 01.01.1997 01.01.1989 01.10.1995 01.02.1996 01.10.1997 01.10.1997 01.11.2001 20.08.2004 25.10.2010 01.01.1989 01.10.1991 01.04.1994 01.06.1997 01.01.1999 01.11.1999 15.12.2007	31.12.2004 01.08.2007 01.06.2003 01.10.1995 01.03.1996 01.09.1996 30.06.2005 31.12.2004 01.04.2005 01.03.2008 30.12.2011 01.07.1993 01.02.1997 01.10.1999 03.05.2000
	CCO3CNS1.1 CCO3DRU1.1 CCO3SCH1.1 CCO3SCH1.2 CCgesCNS1.1 CCgesCNS1.2 CCgesCNS2.1 CCgesCNS2.1 CCgesCNS3.1 CCgesCNS4.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.1 CCgesCNS5.2 CCgesTOC1.1 CCgesTOC2.1 CCgesTOC2.2 CCgesTOC2.3 CCgesTOC3.1 CCgesTOC3.1	20.08.2004 01.01.2004 01.01.1993 01.01.1997 01.01.1989 01.10.1995 01.02.1996 01.10.1997 01.10.1997 01.11.2001 20.08.2004 25.10.2010 01.01.1989 01.10.1991 01.04.1994 01.06.1997 01.01.1999 01.11.1999	31.12.2004 01.08.2007 01.06.2003 01.10.1995 01.03.1996 01.09.1996 30.06.2005 31.12.2004 01.04.2005 01.03.2008 30.12.2011 01.07.1993 01.02.1997 01.10.1999 03.05.2000

С	CCgesTOC7.1	15.04.2017	
С	CCorgC1.1	01.12.2006	01.03.2015
С	CCorgCNS1.1	01.01.2000	01.06.2003
C	CCorgCNS2.1	20.08.2004	31.12.2004
С	CCorgTOC2.1	01.01.1999	20.11.2000
С	CCorgTOC2.2	15.12.2007	
Ca	CaCagesAAS1.1	01.01.1989	01.07.1993
Ca	CaCagesAAS2.1	01.01.1989	01.10.1994
Ca	CaCagesAAS6.1	01.11.2001	01.03.2006
	CaCagesAAS7.1	15.11.2001	28.02.2005
Ca	CaCagesIC2.1	15.12.2007	01.08.2012
Ca	CaCagesIC2.2	15.07.2012	01.03.2014
Ca	CaCagesIC3.1	20.12.2015	
Ca	CaCagesICP1.1	01.10.1990	29.06.1993
Ca	CaCagesICP1.2	01.05.1994	14.10.1998
Ca	CaCagesICP1.3	01.08.1998	31.12.2002
Ca	CaCagesICP2.1	01.01.1997	01.11.1998
Ca	CaCagesICP2.2	01.11.1998	17.02.2000
Ca	CaCagesICP3.1	01.08.1997	28.05.1999
Ca	CaCagesICP3.2P	01.11.1998	31.12.2003
Ca	CaCagesICP4.1	01.04.1998	29.06.1998
Ca	CaCagesICP4.2	15.06.1998	01.03.2004
Ca	CaCagesICP5.1	01.11.1998	01.09.2000
Ca	CaCagesICP6.1	01.07.2000	31.12.2004
Ca	CaCagesICP7.1	15.02.2003	31.12.2005
Ca	CaCagesICP7.2	01.03.2006	15.01.2012
Ca	CaCagesICP7.3	01.03.2008	31.12.2014
Ca	CaCagesICP8.1	10.03.2003	01.07.2005
Ca	CaCagesICP8.2	01.05.2005	31.12.2006
Ca	CaCagesICP10.1	01.01.2004	30.04.2014
Ca	CaCagesICP13.1	01.03.2004	01.07.2014
Ca	CaCagesICP15.1	01.10.2006	
Са	CaCagesICP16.1	01.02.2007	01.05.2019
Ca	CaCagesICP19.1	01.10.2009	01.08.2019
Ca	CaCagesICP19.2	01.01.2019	
Ca	CaCagesICP20.1	01.05.2014	
Ca	CaCagesICP21.1	01.05.2014	
Ca	CaCagesICP22.1	01.08.2014	21271221
Cd	CdCdgesAAS1.1	01.01.1989	01.05.1994
Cd	CdCdgesAAS1.2	01.11.1996	01.12.1996
Cd	CdCdgesAAS2.1	01.01.1993	01.11.1998
Cd	CdCdgesAAS2.2	01.11.1996	01.09.1999
Cd	CdCdgesAAS3.1	01.01.1989	20.02.1995
Cd	CdCdgesAAS3.2	01.01.1993	20.02.1995
Cd	CdCdgesAAS4.1	01.07.1994	21.01.1998
Cd	CdCdgesAAS4.2	01.11.1996	01.11.1998
Cd	CdCdgesAAS5.1	01.01.1997	01.11.1998
Cd	CdCdgesAAS8.1	01.02.2005	01.05.2019
Cd	CdCdgesICP1.1	01.05.1994	15.10.1998

Cd CdCdgesICP2.1 01.01.1997 01.11.19 Cd CdCdgesICP2.2 01.11.1998 20.11.20 Cd CdCdgesICP2.3 01.07.2000 01.04.20 Cd CdCdgesICP3.1 01.11.1998 20.11.20 Cd CdCdgesICP3.2 01.07.2000 31.12.20 Cd CdCdgesICP4.1 01.01.2001 31.12.20 Cd CdCdgesICP8.1 10.03.2003 31.12.20 Cd CdCdgesICP8.1 01.09.2006 01.09.2006 Cd CdCdgesICP15.1 01.10.2006 01.04.20 Cd CdCdgesICP15.1 01.10.2006 01.04.20 Cd CdCdgesICP17.1 01.10.2009 01.04.20 Cd CdCdgesICP19.1 01.01.02009 01.09.20 Cd CdCdgesICP22.1 01.08.2014 01.01.2009 01.09.20 Cd CdCdgesICPMS1.1 01.01.2018 01.01.2018 01.01.2018 01.01.2018 01.01.2018 01.01.2018 01.01.2018 01.01.2018 01.01.2018 01.01.2018 01.01.2018 01.01.2018 <th>000 006 000 004 005 006</th>	000 006 000 004 005 006
Cd CdCdgesICP2.3 01.07.2000 01.04.20 Cd CdCdgesICP3.1 01.11.1998 20.11.20 Cd CdCdgesICP3.2 01.07.2000 31.12.20 Cd CdCdgesICP4.1 01.01.2001 31.12.20 Cd CdCdgesICP8.1 10.03.2003 31.12.20 Cd CdCdgesICP14.1 01.09.2006 0 Cd CdCdgesICP15.1 01.10.2006 0 Cd CdCdgesICP16.1 01.02.2007 31.12.20 Cd CdCdgesICP16.1 01.02.2007 31.12.20 Cd CdCdgesICP19.1 01.10.2009 01.04.20 Cd CdCdgesICP19.1 01.10.2009 01.09.20 Cd CdCdgesICP22.1 01.08.2014 Cd CdCdgesICPMS1.1 01.07.2016 Cd CdCdgesICPMS2.1 01.11.2018 Cd CdCdgesICPMS2.1 01.01.1989 01.07.19 Cl CICICFC1.1 01.03.1991 01.07.19 Cl CICICFC1.2 01.03.1994 01.04.19	006 000 004 005 006 018
Cd CdCdgesICP3.1 01.11.1998 20.11.20 Cd CdCdgesICP3.2 01.07.2000 31.12.20 Cd CdCdgesICP4.1 01.01.2001 31.12.20 Cd CdCdgesICP8.1 10.03.2003 31.12.20 Cd CdCdgesICP14.1 01.09.2006 Cd CdCdgesICP15.1 01.10.2006 Cd CdCdgesICP16.1 01.02.2007 31.12.20 Cd CdCdgesICP17.1 01.10.2006 01.04.20 Cd CdCdgesICP19.1 01.10.2009 01.09.20 Cd CdCdgesICP22.1 01.08.2014 Cd CdCdgesICP22.1 01.07.2016 Cd CdCdgesICPMS1.1 01.11.2018 Cd CdCdgesICPMS2.1 01.11.2018 Cd CdCdgesICPMS2.1 01.06.2019 Cl CICICFC1.1 01.01.1989 01.07.19 Cl CICICFC1.2 01.03.1991 01.07.19 Cl CICICFC1.3 01.03.1994 01.08.19 Cl CICICFC1.4 01.02.1995 01.04.19	000 004 005 006 018
Cd CdCdgesICP3.2 01.07.2000 31.12.20 Cd CdCdgesICP4.1 01.01.2001 31.12.20 Cd CdCdgesICP8.1 10.03.2003 31.12.20 Cd CdCdgesICP14.1 01.09.2006 Cd CdCdgesICP15.1 01.10.2006 Cd CdCdgesICP16.1 01.02.2007 31.12.20 Cd CdCdgesICP17.1 01.10.2006 01.04.20 Cd CdCdgesICP19.1 01.10.2009 01.09.20 Cd CdCdgesICP22.1 01.08.2014 Cd CdCdgesICPMS1.1 01.07.2016 Cd CdCdgesICPMS1.1 01.11.2018 Cd CdCdgesICPMS2.1 01.01.1989 Cl ClCICFC1.1 01.06.2019 Cl ClCICFC1.2 01.03.1991 01.07.19 Cl ClCICFC1.3 01.03.1994 01.08.19 Cl ClCICFC1.4 01.02.1995 01.04.19 Cl ClCICFC1.5 15.05.1996 01.09.19	004 005 006 018 008
Cd CdCdgesICP4.1 01.01.2001 31.12.20 Cd CdCdgesICP8.1 10.03.2003 31.12.20 Cd CdCdgesICP14.1 01.09.2006 Cd CdCdgesICP15.1 01.10.2006 Cd CdCdgesICP16.1 01.02.2007 31.12.20 Cd CdCdgesICP17.1 01.10.2006 01.04.20 Cd CdCdgesICP19.1 01.10.2009 01.09.20 Cd CdCdgesICP22.1 01.08.2014 Cd CdCdgesICP22.1 01.07.2016 Cd CdCdgesICPMS1.1 01.11.2018 Cd CdCdgesICPMS2.1 01.11.2018 Cd CdCdgesICPMS4.1 01.06.2019 Cl CICICFC1.1 01.01.1989 01.07.19 Cl CICICFC1.2 01.03.1991 01.07.19 Cl CICICFC1.3 01.03.1994 01.08.19 Cl CICICFC1.4 01.02.1995 01.04.19 Cl CICICFC1.5 15.05.1996 01.09.19	005
Cd CdCdgesICP8.1 10.03.2003 31.12.20 Cd CdCdgesICP14.1 01.09.2006 Cd CdCdgesICP15.1 01.10.2006 Cd CdCdgesICP16.1 01.02.2007 31.12.20 Cd CdCdgesICP17.1 01.10.2006 01.04.20 Cd CdCdgesICP19.1 01.10.2009 01.09.20 Cd CdCdgesICP22.1 01.08.2014 Cd CdCdgesICP24.1 01.07.2016 Cd CdCdgesICPMS1.1 01.11.2018 Cd CdCdgesICPMS2.1 01.11.2018 Cd CdCdgesICPMS4.1 01.06.2019 Cl CICICFC1.1 01.03.1991 01.07.19 Cl CICICFC1.2 01.03.1991 01.07.19 Cl CICICFC1.3 01.03.1994 01.08.19 Cl CICICFC1.4 01.02.1995 01.04.19 Cl CICICFC1.5 15.05.1996 01.09.19	006
Cd CdCdgesICP14.1 01.09.2006 Cd CdCdgesICP15.1 01.10.2006 Cd CdCdgesICP16.1 01.02.2007 31.12.20 Cd CdCdgesICP17.1 01.10.2006 01.04.20 Cd CdCdgesICP19.1 01.10.2009 01.09.20 Cd CdCdgesICP22.1 01.08.2014 Cd CdCdgesICPMS1.1 01.07.2016 Cd CdCdgesICPMS1.1 01.11.2018 Cd CdCdgesICPMS2.1 01.01.12018 Cd CdCdgesICPMS4.1 01.06.2019 Cl CICICFC1.1 01.01.1989 01.07.19 Cl CICICFC1.2 01.03.1991 01.07.19 Cl CICICFC1.3 01.03.1994 01.08.19 Cl CICICFC1.4 01.02.1995 01.04.19 Cl CICICFC1.5 15.05.1996 01.09.19)18)08
Cd CdCdgesICP15.1 01.10.2006 Cd CdCdgesICP16.1 01.02.2007 31.12.20 Cd CdCdgesICP17.1 01.10.2006 01.04.20 Cd CdCdgesICP19.1 01.10.2009 01.09.20 Cd CdCdgesICP22.1 01.08.2014 Cd CdCdgesICP24.1 01.07.2016 Cd CdCdgesICPMS1.1 01.11.2018 Cd CdCdgesICPMS2.1 01.01.2018 Cd CdCdgesICPMS4.1 01.06.2019 Cl CICICFC1.1 01.01.1989 01.07.19 Cl CICICFC1.2 01.03.1991 01.07.19 Cl CICICFC1.3 01.03.1994 01.08.19 Cl CICICFC1.4 01.02.1995 01.04.19 Cl CICICFC1.5 15.05.1996 01.09.19	800
Cd CdCdgesICP16.1 01.02.2007 31.12.20 Cd CdCdgesICP17.1 01.10.2006 01.04.20 Cd CdCdgesICP19.1 01.10.2009 01.09.20 Cd CdCdgesICP22.1 01.08.2014 Cd CdCdgesICP24.1 01.07.2016 Cd CdCdgesICPMS1.1 01.11.2018 Cd CdCdgesICPMS2.1 01.01.12018 Cd CdCdgesICPMS4.1 01.06.2019 Cl CICICFC1.1 01.01.1989 01.07.19 Cl CICICFC1.2 01.03.1991 01.07.19 Cl CICICFC1.3 01.03.1994 01.08.19 Cl CICICFC1.4 01.02.1995 01.04.19 Cl CICICFC1.5 15.05.1996 01.09.19	800
Cd CdCdgesICP17.1 01.10.2006 01.04.20 Cd CdCdgesICP19.1 01.10.2009 01.09.20 Cd CdCdgesICP22.1 01.08.2014 Cd CdCdgesICP24.1 01.07.2016 Cd CdCdgesICPMS1.1 01.11.2018 Cd CdCdgesICPMS2.1 01.06.2019 Cl ClClCFC1.1 01.01.1989 01.07.19 Cl ClClCFC1.2 01.03.1991 01.07.19 Cl ClClCFC1.3 01.03.1994 01.08.19 Cl ClClCFC1.4 01.02.1995 01.04.19 Cl ClClCFC1.5 15.05.1996 01.09.19	800
Cd CdCdgesICP19.1 01.10.2009 01.09.20 Cd CdCdgesICP22.1 01.08.2014 Cd CdCdgesICP24.1 01.07.2016 Cd CdCdgesICPMS1.1 01.11.2018 Cd CdCdgesICPMS2.1 01.01.2018 Cl ClCICICFC1.1 01.06.2019 Cl ClCICICFC1.1 01.01.1989 01.07.19 Cl ClCICICFC1.2 01.03.1991 01.07.19 Cl ClCICICFC1.3 01.03.1994 01.08.19 Cl ClCICICFC1.4 01.02.1995 01.04.19 Cl ClCICICFC1.5 15.05.1996 01.09.19	
Cd CdCdgesICP22.1 01.08.2014 Cd CdCdgesICP24.1 01.07.2016 Cd CdCdgesICPMS1.1 01.11.2018 Cd CdCdgesICPMS2.1 01.06.2019 Cl ClCICICFC1.1 01.01.1989 01.07.19 Cl ClCICICFC1.2 01.03.1991 01.07.19 Cl ClCICICFC1.3 01.03.1994 01.08.19 Cl ClCICICFC1.4 01.02.1995 01.04.19 Cl ClCICICFC1.5 15.05.1996 01.09.19	
Cd CdCdgesICP24.1 01.07.2016 Cd CdCdgesICPMS1.1 01.11.2018 Cd CdCdgesICPMS2.1 01.11.2018 Cd CdCdgesICPMS4.1 01.06.2019 Cl ClCICFC1.1 01.01.1989 01.07.19 Cl ClCICFC1.2 01.03.1991 01.07.19 Cl ClCICFC1.3 01.03.1994 01.08.19 Cl ClCICFC1.4 01.02.1995 01.04.19 Cl ClCICFC1.5 15.05.1996 01.09.19	
Cd CdCdgesICPMS1.1 01.11.2018 Cd CdCdgesICPMS2.1 01.11.2018 Cd CdCdgesICPMS4.1 01.06.2019 Cl CICICFC1.1 01.01.1989 01.07.19 Cl CICICFC1.2 01.03.1991 01.07.19 Cl CICICFC1.3 01.03.1994 01.08.19 Cl CICICFC1.4 01.02.1995 01.04.19 Cl CICICFC1.5 15.05.1996 01.09.19	
Cd CdCdgesICPMS2.1 01.11.2018 Cd CdCdgesICPMS4.1 01.06.2019 CI CICICFC1.1 01.01.1989 01.07.19 CI CICICFC1.2 01.03.1991 01.07.19 CI CICICFC1.3 01.03.1994 01.08.19 CI CICICFC1.4 01.02.1995 01.04.19 CI CICICFC1.5 15.05.1996 01.09.19	
Cd CdCdgesICPMS4.1 01.06.2019 Cl ClClCFC1.1 01.01.1989 01.07.19 Cl ClClCFC1.2 01.03.1991 01.07.19 Cl ClClCFC1.3 01.03.1994 01.08.19 Cl ClClCFC1.4 01.02.1995 01.04.19 Cl ClClCFC1.5 15.05.1996 01.09.19	
CI CICICFC1.1 01.01.1989 01.07.19 CI CICICFC1.2 01.03.1991 01.07.19 CI CICICFC1.3 01.03.1994 01.08.19 CI CICICFC1.4 01.02.1995 01.04.19 CI CICICFC1.5 15.05.1996 01.09.19	
CI CICICFC1.2 01.03.1991 01.07.19 CI CICICFC1.3 01.03.1994 01.08.19 CI CICICFC1.4 01.02.1995 01.04.19 CI CICICFC1.5 15.05.1996 01.09.19	04
CI CICICFC1.3 01.03.1994 01.08.19 CI CICICFC1.4 01.02.1995 01.04.19 CI CICICFC1.5 15.05.1996 01.09.19	
CI CICICFC1.4 01.02.1995 01.04.19 CI CICICFC1.5 15.05.1996 01.09.19	
CI CICICFC1.5 15.05.1996 01.09.19	
CI CICICFE1.1 15.05.1996 01.08.19	
CI CICICFE2.1 01.07.1997 30.09.19	
CI CICICFE2.2 01.12.1999 31.12.19	
CI CICICFE3.1 01.06.1999 01.10.19	
CI CICICFE3.2 01.12.1999 15.01.20	
CI CICIIC1.1 01.08.1992 01.08.19	
CI CICIIC2.1 15.12.2007 01.02.20	
CI CICIIC2.2 01.08.2009 31.12.20	114
CI CICIIC2.3 01.06.2014	
CI CICIIC3.1 20.12.2015	
Co CoCogesAAS1.1 01.11.1996 31.12.19	
Co CoCogesAAS2.1 01.01.1993 01.11.19	
Co CoCogesAAS2.2 01.01.1996 01.09.19	
Co CoCogesAAS3.1 01.01.1989 01.09.19	
Co CoCogesAAS4.1 01.07.1994 01.11.19	
Co CoCogesAAS4.2 01.11.1996 15.10.19	
Co CoCogesICP2.1 01.01.1997 01.11.19	
Co CoCogesICP2.2 01.11.1998 01.12.20	
Co CoCogesICP2.3 01.07.2000 01.10.20	
Co CoCogesICP3.1 01.11.1998 01.12.20	
Co CoCogesICP3.2 01.07.2000 31.12.20	
Co CoCogesICP4.1 01.01.2001 01.01.20	
Co CoCogesICP8.1 10.03.2003 31.12.20	06
Co CoCogesICP14.1 01.09.2006	
Co CoCogesICP15.1 01.10.2006	
,	
Co CoCogesICP16.1 01.02.2007 01.05.20 Co CoCogesICP17.1 01.10.2006 01.06.20	

Со	CoCogesICP19.1	01.10.2009	01.09.2018
Co	CoCogesICP22.1	01.08.2014	
Со	CoCogesICP24.1	01.07.2016	
Со	CoCogesICPMS1.1	01.11.2018	
Со	CoCogesICPMS2.1	01.11.2018	
Со	CoCogesICPMS4.1	01.06.2019	
Cr	CrCrgesAAS1.1	01.11.1996	31.12.1996
Cr	CrCrgesAAS2.1	01.01.1993	01.11.1998
Cr	CrCrgesAAS2.2	01.01.1996	01.09.1999
Cr	CrCrgesAAS3.1	01.01.1989	01.09.1993
Cr	CrCrgesAAS4.1	01.07.1994	15.10.1998
Cr	CrCrgesICP2.1	01.01.1997	01.11.1998
Cr	CrCrgesICP2.2	01.11.1998	31.12.2006
Cr	CrCrgesICP3.1	01.11.1998	31.12.2004
Cr	CrCrgesICP4.1	01.01.2001	31.12.2005
Cr	CrCrgesICP8.1	10.03.2003	31.12.2006
Cr	CrCrgesICP14.1	01.09.2006	
Cr	CrCrgesICP15.1	01.10.2006	
Cr	CrCrgesICP16.1	01.02.2007	01.05.2019
Cr	CrCrgesICP17.1	01.10.2006	01.06.2011
Cr	CrCrgesICP19.1	01.10.2009	01.09.2018
Cr	CrCrgesICP22.1	01.08.2014	
Cr	CrCrgesICP24.1	01.07.2016	
Cr	CrCrgesICPMS1.1	01.10.2018	
Cr	CrCrgesICPMS2.1	01.11.2018	
Cr	CrCrgesICPMS4.1	01.06.2019	
Cu	CuCugesAAS1.1	01.01.1989	01.07.1993
Cu	CuCugesAAS1.2	01.11.1996	31.12.1996
Cu	CuCugesAAS2.1	01.01.1993	31.10.1998
Cu	CuCugesAAS2.2	01.11.1996	15.09.1999
Cu	CuCugesAAS3.1	01.01.1989	01.09.1991
Cu	CuCugesAAS4.1	01.11.1992	31.05.1996
Cu	CuCugesAAS5.1	01.07.1994	01.02.1998
Cu	CuCugesAAS5.2	01.11.1996	01.02.1998
Cu	CuCugesAAS8.1	01.02.2005	15.09.2005
Cu	CuCugesICP1.1	01.10.1990	01.05.1994
Cu	CuCugesICP1.2	01.05.1994	15.10.1998
Cu	CuCugesICP2.1	01.01.1997	01.11.1998
Cu	CuCugesICP2.2	01.11.1998	31.03.2006
Cu	CuCugesICP3.1	01.11.1998	30.11.2000
Cu	CuCugesICP3.2	01.07.2000	31.12.2004
Cu	CuCugesICP4.1	01.01.2001	31.12.2005
Cu	CuCugesICP8.1	10.03.2003	31.12.2006
Cu	CuCugesICP14.1	01.09.2006	
Cu	CuCugesICP15.1	01.10.2006	04.05.0040
Cu	CuCugesICP16.1	01.02.2007	01.05.2019
C	CuCumpalOD47.4	04 40 0000	
Cu	CuCugesICP17.1	01.10.2006	01.06.2011
Cu Cu	CuCugesICP17.1 CuCugesICP19.1 CuCugesICP22.1	01.10.2006 01.10.2009 01.08.2014	01.06.2011 01.09.2018

Cu	CuCugesICP24.1	01.07.2016	
Cu	CuCugesICPMS1.1	01.11.2018	
Cu	CuCugesICPMS2.1	01.11.2018	
Cu	CuCugesICPMS4.1	01.06.2019	
F	FFIC2.1	15.12.2007	01.05.2009
F	FFIC2.2	01.08.2009	31.12.2014
F	FFIC2.3	01.06.2014	
F	FFIC3.1	20.12.2015	
Fe	FeFegesAAS1.1	01.01.1989	31.01.1999
Fe	FeFegesAAS2.1	01.01.1989	01.04.1998
Fe	FeFegesAAS6.1	01.11.2001	31.12.2006
Fe	FeFegesAAS7.1	15.11.2001	01.03.2005
Fe	FeFegesICP1.1	01.10.1990	01.07.1993
Fe	FeFegesICP1.2	01.05.1994	15.10.1998
Fe	FeFegesICP1.3	01.08.1998	31.12.2002
Fe	FeFegesICP2.1	01.01.1997	01.11.1998
Fe	FeFegesICP2.2	01.11.1998	01.03.2000
Fe	FeFegesICP3.1	01.08.1997	01.07.1998
Fe	FeFegesICP3.2P	01.11.1998	31.12.2003
Fe	FeFegesICP4.1	01.04.1998	01.07.1998
Fe	FeFegesICP4.2	01.11.1998	15.09.2005
Fe	FeFegesICP5.1	01.11.1998	01.09.2000
Fe	FeFegesICP7.1	15.02.2003	31.12.2005
Fe	FeFegesICP7.2	01.03.2006	15.01.2012
Fe	FeFegesICP7.3	01.03.2008	31.12.2013
Fe	FeFegesICP8.1	10.03.2003	01.07.2005
Fe	FeFegesICP8.2	01.05.2005	31.12.2006
Fe	FeFegesICP10.1	01.01.2004	30.04.2014
Fe	FeFegesICP15.1	01.10.2006	
Fe	FeFegesICP16.1	01.02.2007	01.05.2019
Fe	FeFegesICP18.1	01.10.2006	01.10.2015
Fe	FeFegesICP19.1	01.10.2009	01.08.2019
Fe	FeFegesICP19.2	01.01.2019	
Fe	FeFegesICP20.1	01.05.2014	
Fe	FeFegesICP21.1	01.05.2014	
Fe	FeFegesICP22.1	01.08.2014	
Fe	FeFegesICP23.1	01.03.2015	
Н	HH+1PHM1.1	01.01.1989	
Н	HH+1PHM4.1	01.01.2001	01.03.2008
Н	HH+1PHM6.1	01.03.2009	
Н	HH+2PHM1.1	01.01.1989	
Н	HH+2PHM4.1	01.01.2001	01.03.2008
Н	HH+2PHM6.1	01.03.2009	
Н	HH+PHM1.1	01.01.1989	01.06.1995
Н	HH+PHM1.2	01.03.1996	01.09.1996
Н	HH+PHM1.3	01.03.1997	01.12.1998
Н	HH+PHM1.4	01.02.2000	
Н	HH+PHM1.5	01.03.2015	
Н	HH+PHM2.1	01.11.1995	01.01.1996

Н	HH+PHM3.1	01.03.1996	01.01.2000
H	HH+PHM4.1	01.01.2000	01.09.2011
Н	HH+PHM5.1	01.01.2000	01.04.2010
Н	HH+PHM6.1	01.06.2006	31.12.2013
Н	HH+PHM7.1	01.06.2006	31.01.2019
Н	HH+PHM8.1	01.03.2013	
Н	HH+PHM10.1	01.03.2019	
Н	HH+TIT1.1	01.05.1989	31.08.1993
НА	HAHKTIT2.1	01.04.2011	
Hg	HgHggesAFS1.1	01.08.2018	
Hg	HgHggesICPMS1.1	01.11.2018	
Hg	HgHggesICPMS3.1	01.11.2018	
Hg	HgHggesICPMS4.1	01.01.2019	
K	KKgesAAS1.1	01.01.1989	31.03.2002
K	KKgesAAS2.1	01.01.1989	01.08.2001
K	KKgesAAS6.1	01.11.2001	31.03.2003
K	KKgesAAS7.1	15.11.2001	01.03.2005
K	KKgesAAS7.2	01.03.2003	01.03.2004
K	KKgesIC2.1	15.12.2007	
K	KKgesIC2.2	15.07.2012	31.12.2013
K	KKgesIC3.1	20.12.2015	
K	KKgesICP1.1	01.10.1990	01.07.1993
K	KKgesICP1.2	01.05.1994	01.08.1998
K	KKgesICP1.3	01.08.1998	31.12.2002
K	KKgesICP2.1	01.01.1997	01.07.1998
K	KKgesICP3.1	01.08.1997	01.06.1999
K	KKgesICP3.2P	01.11.1998	31.12.2003
K	KKgesICP4.1	01.04.1998	01.11.1998
K	KKgesICP4.2	01.11.1998	01.06.2001
K	KKgesICP5.1	01.07.2000	31.12.2004
K	KKgesICP7.1	15.02.2003	31.12.2005
K	KKgesICP7.2	01.03.2006	01.02.2012
K	KKgesICP7.3	01.03.2008	31.12.2013
K	KKgeslCP8.1	10.03.2003	01.07.2005
K	KKgesICP8.2	01.05.2005	31.12.2006
K	KKgesICP10.1	01.01.2004	30.04.2014
K	KKgesICP13.1	01.03.2004	01.07.2014
K	KKgesICP15.1	01.10.2006	04.05.0040
K	KKgesICP16.1	01.02.2007	01.05.2019
K	KKgesICP19.1	01.10.2009	01.08.2019
K	KKgesICP19.2	04.05.204.4	
K	KKgesICP20.1	01.05.2014	
K	KKgesICP21.1 KKgesICP22.1	01.05.2014 01.08.2014	
LF	LFLFCFC1.1	01.03.2014	31.12.2003
LF	LFLFLFM1.1	01.03.2000	31.12.2003
LF	LFLFLFM1.2	01.06.1997	01.03.2018
LF	LFLFLFM1.3	01.00.1997	01.03.2010
LF	LFLFLFM1.3	01.01.2018	31.12.2017
LL	LLLLLLINIZ. I	01.00.2000	31.12.2017

LF	LFLFLFM3.1	01.03.2013	
Mg	MgMggesAAS1.1	01.01.1989	01.07.1993
Mg	MgMggesAAS2.1	01.01.1989	01.10.1994
Mg	MgMggesAAS2.2	01.08.1993	01.11.1998
Mg	MgMggesAAS6.1	01.11.2001	01.08.2002
Mg	MgMggesAAS7.1	15.11.2001	01.03.2005
Mg	MgMggesIC2.1	15.12.2007	
Mg	MgMggesIC2.2	15.07.2012	01.03.2014
Mg	MgMggesIC3.1	20.12.2015	
Mg	MgMggesICP1.1	01.10.1990	01.07.1993
Mg	MgMggesICP1.2	01.05.1994	01.11.1998
Mg	MgMggesICP1.3	01.08.1998	31.12.2002
Mg	MgMggesICP2.1	01.01.1997	01.11.1998
Mg	MgMggesICP2.2	01.11.1998	01.03.2000
Mg	MgMggesICP3.1	01.08.1997	01.06.1999
Mg	MgMggesICP3.2P	01.11.1998	31.12.2003
Mg	MgMggesICP4.1	01.04.1998	01.07.1998
Mg	MgMggesICP4.2	01.11.1998	01.03.2004
Mg	MgMggesICP5.1	01.11.1998	01.12.1999
Mg	MgMggesICP6.1	01.07.2000	31.12.2004
Mg	MgMggesICP7.1	15.02.2003	31.12.2005
Mg	MgMggesICP7.2	01.03.2006	15.01.2012
Mg	MgMggesICP7.3	01.03.2008	31.12.2014
Mg	MgMggesICP8.1	10.03.2003	01.07.2005
Mg	MgMggesICP8.2	01.05.2005	31.12.2006
Mg	MgMggesICP10.1	01.01.2004	30.04.2014
Mg	MgMggesICP13.1	01.03.2004	01.07.2014
Mg	MgMggesICP15.1	01.10.2006	
Mg	MgMggesICP16.1	01.02.2007	01.05.2019
Mg	MgMggesICP19.1	01.10.2009	01.08.2019
Mg	MgMggesICP19.2	01.01.2019	
Mg	MgMggesICP20.1	01.05.2014	
Mg	MgMggesICP21.1	01.05.2014	
Mg	MgMggesICP22.1	01.08.2014	
Mn	MnMngesAAS1.1	01.01.1989	01.07.1993
Mn	MnMngesAAS2.1	01.01.1989	01.10.1994
Mn	MnMngesAAS6.1	01.11.2001	01.08.2002
Mn	MnMngesAAS7.1	15.11.2001	01.03.2005
Mn	MnMngesICP1.1	01.10.1990	01.07.1993
Mn	MnMngesICP1.2	01.05.1994	31.10.1998
Mn	MnMngesICP1.3	01.08.1998	31.12.2002
Mn	MnMngesICP2.1	01.01.1997	01.11.1998
Mn	MnMngesICP2.2	01.11.1998	01.11.1999
Mn	MnMngesICP2.3	01.07.2000	01.08.2000
Mn	MnMngesICP3.1	01.08.1997	01.07.1998
Mn	MnMngesICP3.2P	01.11.1998	31.12.2003
Mn	MnMngesICP4.1	01.04.1998	01.11.1998
Mn	MnMngesICP4.2	01.11.1998	01.03.2004
Mn	MnMngesICP5.1	01.11.1998	01.12.1999

Mn	MnMngesICP5.2	01.07.2000	01.08.2000
Mn	MnMngesICP7.1	15.02.2003	31.12.2005
Mn	MnMngesICP7.2	01.03.2006	15.01.2012
Mn	MnMngesICP7.3	01.03.2008	31.12.2013
Mn	MnMngesICP8.1	10.03.2003	01.07.2005
Mn	MnMngesICP8.2	01.05.2005	31.12.2006
Mn	MnMngesICP10.1	01.01.2004	30.04.2014
Mn	MnMngesICP15.1	01.10.2006	0010112011
Mn	MnMngesICP16.1	01.02.2007	01.05.2019
Mn	MnMngesICP19.1	01.10.2009	01.08.2019
Mn	MnMngesICP19.2	01.01.2019	0110012010
Mn	MnMngesICP20.1	01.05.2014	
Mn	MnMngesICP21.1	01.05.2014	
Mn	MnMngesICP22.1	01.08.2014	
N	NNH4CFC1.1	01.01.1989	01.07.1991
N	NNH4CFC1.2	01.03.1991	01.07.1993
N	NNH4CFC1.3	01.12.1993	01.12.1994
N	NNH4CFC1.4	01.11.1994	31.12.2004
N	NNH4CFC2.1	01.02.1995	31.08.1995
N	NNH4CFC3.1	01.07.1997	01.12.1999
N	NNH4CFC3.2	01.12.1999	01.01.2000
N	NNH4CFC4.1	01.06.1999	01.10.1999
N	NNH4CFC4.2	01.12.1999	01.03.2007
N	NNH4CFC4.3	15.01.2006	15.03.2007
N	NNH4CFC5.1	01.11.2004	31.10.2006
N	NNH4CFC6.1	01.03.2007	01.02.2012
N	NNH4CFC7.1	01.03.2007	01.04.2007
N	NNH4IC1.1	01.08.1992	01.12.1993
N	NNH4IC2.1	15.12.2007	
N	NNH4IC2.2	15.07.2012	31.12.2013
N	NNH4IC3.1	20.12.2015	
N	NNO2+3CFC1.1	01.01.1989	01.05.1994
N	NNO2+3CFC2.1	01.10.1989	01.07.1991
N	NNO2+3CFC2.2	01.03.1991	01.07.1993
N	NNO2+3CFC2.3	01.11.1994	01.07.1995
N	NNO2+3CFC2.4	01.09.1995	30.11.2004
N	NNO2+3CFC3.1	01.02.1995	01.08.1995
N	NNO2+3CFC3.2	01.09.1995	01.09.1995
N	NNO2+3CFC4.1	01.07.1997	30.09.1999
N	NNO2+3CFC4.2	01.12.1999	01,01.2000
N	NNO2+3CFC5.1	01.06.1999	30.10.1999
N	NNO2+3CFC5.2	01.12.1999	01.03.2007
N	NNO2+3CFC5.3	15.01.2006	31.12.2007
N	NNO2+3CFC5.4	01.03.2007	01.02.2011
N	NNO2+3CFC6.1	01.11.2004	31.10.2006
N			
1 1	NNO2+3CFC6.2	01.03.2007	01.04.2007
N		01.03.2007 01.03.2010	01.04.2007 01.02.2012
	NNO2+3CFC6.2		

N	NNO2IC2.3	01.06.2014	
N	NNO2IC3.1	20.12.2015	
N	NNO3IC1.1	01.08.1992	31.12.1998
N	NNO3IC2.1	15.12.2007	01.02.2010
N	NNO3IC2.2	01.08.2009	31.12.2014
N	NNO3IC2.3	01.06.2014	
N	NNO3IC3.1	20.12.2015	
N	NNgesCFC1.1	01.01.1989	01.02.1994
N	NNgesCFC1.2	01.12.1994	31.03.1995
N	NNgesCFC2.1	01.02.1995	01.09.1995
N	NNgesCFC3.1	01.04.1996	01.11.1997
N	NNgesCFC4.1	01.07.1997	01.09.1999
N	NNgesCFC4.2	01.12.1999	31.12.2003
N	NNgesCFC5.1	01.06.1999	01.11.1999
N	NNgesCNS1.1	01.01.1989	01.10.1995
N	NNgesCNS1.2	01.10.1995	01.03.1996
N	NNgesCNS2.1	01.02.1996	31.01.1998
N	NNgesCNS2.2	01.10.1997	30.06.2005
N	NNgesCNS3.1	01.09.1997	31.12.2004
N	NNgesCNS4.1	01.11.2001	01.04.2005
N	NNgesCNS5.1	20.08.2004	25.10.2010
N	NNgesCNS5.2	25.10.2010	
N	NNgesTOC1.1	01.11.1999	01.11.1999
N	NNgesTOC2.1	01.12.1999	31.12.2011
N	NNgesTOC2.2	15.12.2007	
N	NNgesTOC3.1	28.08.2008	
N	NNgesTOC5.1	01.10.2017	
N	NNgesTOC7.1	15.04.2017	
Na	NaNagesAAS1.1	01.01.1989	31.03.2002
Na	NaNagesAAS2.1	01.01.1989	01.08.2001
Na	NaNagesAAS6.1	01.11.2001	31.03.2003
Na	NaNagesAAS7.1	15.11.2001	01.10.2005
Na	NaNagesAAS7.2	01.03.2003	01.10.2005
Na	NaNagesIC2.1	15.12.2007	
Na	NaNagesIC2.2	15.07.2012	01.09.2013
Na	NaNagesIC3.1	20.12.2015	
Na	NaNagesICP1.1	01.10.1990	01.07.1993
Na	NaNagesICP1.2	01.05.1994	01.11.1998
Na	NaNagesICP1.3	01.08.1998	31.12.2002
Na	NaNagesICP2.1	01.01.1997	01.071998
Na	NaNagesICP3.1	01.08.1997	01.06.1999
Na	NaNagesICP3.2P	01.11.1998	31.12.2003
Na	NaNagesICP4.2	01.11.1998	01.06.2001
Na	NaNagesICP5.1	01.07.2000	01.01.2005
Na	NaNagesICP7.1	15.02.2003	01.01.2006
Na	NaNagesICP7.2	01.03.2006	01.02.2012
Na	NaNagesICP7.3	01.03.2008	01.01.2014
Na	NaNagesICP8.1	10.03.2003	01.07.2005
Na	NaNagesICP8.2	01.05.2005	31.12.2006

Na	NaNagesICP10.1	01.01.2004	30.04.2014
Na	NaNagesICP13.1	01.03.2004	01.07.2014
Na	NaNagesICP15.1	01.10.2006	01.07.2011
Na	NaNagesICP16.1	01.02.2007	01.05.2019
Na	NaNagesICP19.1	01.10.2009	01.08.2019
Na	NaNagesICP19.2	01.01.2019	01:00:2010
Na	NaNagesICP20.1	01.05.2014	
Na	NaNagesICP21.1	01.05.2014	
Na	NaNagesICP22.1	01.08.2014	
Ni	NiNigesAAS1.1	01.11.1996	31.12.1996
Ni	NiNigesAAS2.1	01.01.1993	01.10.1995
Ni	NiNigesAAS2.2	01.11.1996	01.09.1999
Ni	NiNigesAAS3.1	01.01.1989	01.09.1993
Ni	NiNigesAAS4.1	01.07.1994	31.10.1997
Ni	NiNigesAAS4.2	01.11.1996	01.11.1998
Ni	NiNigesICP2.1	01.01.1997	01.11.1998
Ni	NiNigesICP2.2	01.11.1998	31.12.2006
Ni	NiNigesICP3.1	01.11.1998	30.11.2000
Ni	NiNigesICP3.2	01.07.2000	31.12.2004
Ni	NiNigesICP4.1	01.01.2001	31.12.2005
Ni	NiNigesICP8.1	10.03.2003	31.12.2006
Ni	NiNigesICP14.1	01.09.2006	01.12.2000
Ni	NiNigesICP15.1	01.10.2006	
Ni	NiNigesICP16.1	01.02.2007	01.05.2019
Ni	NiNigesICP17.1	01.10.2006	01.06.2011
Ni	NiNigesICP19.1	01.10.2009	01.09.2019
Ni	NiNigesICP22.1	01.08.2014	0110012010
Ni	NiNigesICP24.1	01.07.2016	
Ni	NiNigesICPMS1.1	01.11.2018	
Ni	NiNigesICPMS2.1	01.11.2018	
Ni	NiNigesICPMS4.1	01.06.2019	
Р	PPgesICP1.1	01.10.1990	31.121992
P	PPgesICP1.2	01.05.1994	01.11.1998
P	PPgesICP1.3	01.08.1998	31.12.2002
P	PPgesICP2.1	01.01.1997	01.11.1998
P	PPgesICP2.2	01.11.1998	01.02.1999
P	PPgesICP3.1	01.11.1998	01.12.1999
Р	PPgesICP7.1	15.02.2003	01.01.2006
Р	PPgesICP7.2	01.03.2006	01.02.2012
Р	PPgesICP7.3	01.03.2008	01.04.2014
P	PPgesICP8.1	10.03.2003	01.07.2005
P	PPgesICP8.2	01.05.2005	31.12.2006
P	PPgesICP9.1	01.09.2003	31.12.2012
P	PPgesICP15.1	01.10.2006	<u> </u>
P	PPgesICP16.1	01.02.2007	01.05.2019
P	PPgesICP19.1	01.10.2009	01.08.2019
P	PPgesICP19.2	01.01.2019	<u> </u>
P	PPgesICP20.1	01.05.2014	
P	PPgesICP22.1	01.08.2014	

Р	PPO4CFC1.1	01.01.1989	01.04.1994
Р	PPO4CFC1.2	01.03.1991	01.04.1994
Р	PPO4CFC2.1	01.01.1989	01.09.1994
Р	PPO4CFC2.2	01.10.1990	01.02.1995
P	PPO4CFC3.1	01.11.2012	
Р	PPO4IC2.1	15.12.2007	01.02.2010
Р	PPO4IC2.2	01.08.2009	31.12.2014
P	PPO4IC2.3	01.06.2014	
P	PPO4IC3.1	20.12.2015	
Pb	PbPbgesAAS1.1	01.01.1989	01.10.1996
Pb	PbPbgesAAS1.2	01.12.1996	01.11.1996
Pb	PbPbgesAAS2.1	01.01.1993	01.11.1998
Pb	PbPbgesAAS2.2	01.11.1996	01.09.1999
Pb	PbPbgesAAS3.1	01.01.1989	01.03.1995
Pb	PbPbgesAAS3.2	01.11.1993	01.03.1995
Pb	PbPbgesAAS4.1	01.07.1994	01.02.1998
Pb	PbPbgesAAS4.2	01.11.1996	01.02.1998
Pb	PbPbgesAAS8.1	01.02.2005	31.12.2006
Pb	PbPbgesICP1.2	01.05.1994	01.12.1994
Pb	PbPbgesICP1.3	15.03.1995	01.11.1998
Pb	PbPbgesICP2.1	01.01.1997	01.09.1998
Pb	PbPbgesICP2.2	01.11.1998	01.12.2000
Pb	PbPbgesICP2.3	01.07.2000	31.12.2006
Pb	PbPbgesICP3.1	01.11.1998	01.12.2000
Pb	PbPbgesICP3.2	01.07.2000	31.12.2004
Pb	PbPbgesICP4.1	01.01.2001	31.12.2005
Pb	PbPbgesICP8.1	10.03.2004	01.07.2012
Pb	PbPbgesICP14.1	01.09.2006	
Pb	PbPbgesICP15.1	01.10.2006	24.25.2242
Pb	PbPbgesICP16.1	01.02.2007	01.05.2019
Pb	PbPbgesICP17.1	01.10.2006	01.06.2011
Pb	PbPbgesICP19.1	01.10.2009	01.09.2019
Pb	PbPbgesICP22.1	01.08.2014	
Pb	PbPbgesICP24.1	01.07.2016	
Pb Pb	PbPbgesICPMS1.1 PbPbgesICPMS2.1	01.11.2018 01.11.2018	
Pb	PbPbgesICPMS4.1	01.06.2019	
S	SSgesCNS1.1	01.00.2019	01.09.1991
S	SSgesICP1.1	01.10.1990	01.07.1993
S	SSgesICP1.2	01.05.1994	01.11.1998
S	SSgesICP1.3	01.08.1998	31.12.2002
S	SSgesICP2.1	01.01.1997	01.11.1998
S	SSgesICP2.2	01.11.1998	01.03.2000
S	SSgesICP3.1	01.11.1998	31.12.2003
S	SSgesICP7.1	15.02.2003	31.01.2004
S	SSgesICP7.2	01.09.2003	01.03.2004
S	SSgesICP8.1	10.03.2003	31.12.2002
S	SSgesICP8.2	01.09.2003	31.12.2002
S	SSgesICP9.1	01.09.2003	31.12.2003
, -	100900101 0.1	51.00.2000	01.12.2000

S	SSgesICP10.1	01.01.2004	31.12.2005
S	SSgesICP10.2	01.03.2006	01.02.2012
S	SSgesICP10.3	01.03.2008	01.04.2014
S	SSgesICP11.1	01.01.2004	01.07.2005
S	SSgesICP11.2	01.05.2005	31.12.2006
S	SSgesICP12.1	01.01.2004	01.01.2012
S	SSgesICP15.1	01.10.2006	01.01.2012
S	SSgesICP16.1	01.02.2007	01.05.2019
S	SSgesICP19.1	01.10.2009	01.08.2019
S	SSgesICP19.2	01.01.2019	01.00.2013
S	SSgesICP20.1	01.05.2014	
S	SSgesICP22.1	01.08.2014	
S	SSO4CFC1.1	01.01.1989	01.07.1993
S	SSO4CFC1.2	01.03.1991	01.09.1998
S	SSO4IC1.1	01.08.1991	01.08.1995
S	SSO4IC2.1	15.12.2007	01.02.2010
S	SSO4IC2.1	01.08.2009	31.12.2014
S	SSO4IC2.3	01.06.2014	31.12.2014
S	SSO4IC2.3	20.12.2015	
SA	SASKTIT2.1	01.04.2011	
Si	SiSiO2WG1.1	01.01.1989	
Si	SiSigesAAS1.1	01.01.1989	01.12.1992
Si	SiSigesICP1.1	01.01.1989	01.06.1993
Si	SiSigesICP1.2	01.05.1994	01.06.1996
Si	SiSigesICP1.3	01.08.1998	01.00.1990
Ti	TiTigesICP1.1	01.11.1998	01.11.1999
Ti	TiTigesICP2.1	01.11.1998	30.06.2000
Ti	TiTigesICP2.2	01.07.2000	30.04.2007
Ti	TiTigesICP8.1	01.05.2005	31.12.2006
Ti	TiTigesICP15.1	01.10.2006	01.11.2006
Ti	TiTigesICP16.1	01.02.2007	01.05.2019
Ti	TiTigesICP19.1	01.10.2009	31.12.2019
Ti	TiTigesICP19.2	01.01.2019	31.12.2013
Ti	TiTigesICP22.1	01.08.2014	
Zn	ZnZngesAAS1.1	01.01.1989	01.08.1996
Zn	ZnZngesAAS1.2	01.11.1996	01.12.1996
Zn	ZnZngesAAS2.1	01.01.1993	01.11.1998
Zn	ZnZngesAAS2.2	01.11.1996	01.09.1999
Zn	ZnZngesICP1.1	01.10.1990	01.10.2007
Zn	ZnZngesICP1.2	01.05.1994	01.11.1998
Zn	ZnZngesICP2.1	01.01.1997	01.11.1998
Zn	ZnZngesICP2.2	01.11.1998	01.12.2000
Zn	ZnZngesICP2.3	01.07.2000	31.12.2006
Zn	ZnZngesICP3.1	01.11.1998	01.08.2000
Zn	ZnZngesICP3.2	01.07.2000	31.12.2004
Zn	ZnZngesICP4.1	01.01.2001	31.12.2005
Zn	ZnZngesICP8.1	10.03.2003	31.12.2006
Zn	ZnZngesICP14.1	01.09.2006	31.12.2000
Zn	ZnZngeslCP15.1	01.10.2006	
		51.10.2000	

Zn	ZnZngesICP16.1	01.02.2007	01.05.2019
Zn	ZnZngesICP17.1	01.10.2006	01.06.2011
Zn	ZnZngesICP19.1	01.10.2009	01.09.2019
Zn	ZnZngesICP22.1	01.08.2014	
Zn	ZnZngesICP24.1	01.07.2016	
Zn Zn	ZnZngesICP24.1 ZnZngesICPMS1.1	01.07.2016 01.11.2018	

Elementbestimmungsmethoden von A bis L

Element	Form	Gerät	Methoden-Nr.	Seite	
Al	Alges	ICP(sim)	AlAlgesICP19.2	1	ΑI

Datum:

01.01.2019

Elementbestimmungsmethode:

ALUMINIUM

Untersuchungsmethode	NG	BG	OMG
OAKW2.1, OAKWEG3.1	0,0009	0,003	300

geeignet für:

Boden	OAKW2.1, OAKWEG3.1
Humus	OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D1.1.6.2
HFA-Code	D;4;2;2;1;-1;0 (308.215 nm, axial), D;4;1;2;1;-1;0 (308.215 nm, radial), D;4;1;2;1;-1;4 (237,312 nm, radial)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Zur Vermeidung von Driften, zur Verbesserung der Präzision der Messung, sowie zur Eliminierung von Störungen bei der Zerstäubung der Proben durch unterschiedliche Viskosität, unterschiedliche Salz- und Säurekonzentrationen sowie durch Plasmaladungseffekte, wird bei der Messung ein Interner Standards verwendet.

Anhang:	<u>Lit.:</u>
Sammelanhang S33.1: Geräteparameter und Standardzusammensetzung	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas
Kurzanleitung ICP6.1	in Analytical Atomic Spectrometry; Weinheim, 1987

Analysengeräte und Zubehör:

Form

Alges

Element

Αl

iCAP 6500 der Fa. Thermo Fisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 2 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac mit Probenrack für 60 Positionen für Hauptelemente, bzw. 21 Positionen für Schwermetalle

PP-Röhrchen Natur, 12 ml, Fa. Greiner bio-one

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Laminar Flow Box FBS der Fa. Spetec, für Probengeber (zur Verhinderung von Staubeintrag in die Probengefäße)

Rechner mit Software OTEGRA

5000 ml Varipette, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Mischfitting (Fa. Thermo Fisher) zur gleichmässigen Vermischung von Probelösung und internem Standard

Dilutor der Fa. Hamilton

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a.

Y, AAS-Standard Yttrium 1 g/l Y (Fa B. Kraft)

Lösungen:

30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt. Spülsäure:

Interner Standard: 10 ml Yttriumlösung werden in einen 1 l Glaskolben gegeben, mit 30 ml

65 %. HNO₃ p.a. versetzt und mit H₂O demin. bis zur Eichmarke

aufgefüllt.

Eichung/Standards:

Stammlösungen:

Al: ICP-Konzentrat (Fa B. Kraft) => 10 g/l Al

Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Ca, Fe, K, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Im folgenden wird nur die Herstellung der Al-Standardlösungen beschrieben. Die Zugaben aller anderen Elemente, die sich auch in den beschriebenen Lösungen befinden, werden im Sammelanhang S33.1 beschrieben.

Standardlösung KW 1: In einen 250 ml PFA-Kolben werden 5 ml des 10 g/l Al enthaltenden

Element	Form	Gerät	Methoden-Nr.	Seite	
Al	Alges	ICP(sim)	AlAlgesICP19.2	3	
		Elemente gegeben (siehe Sa %igen HNO ₃ p.a. versetzt und => 50 μg/l Cd, Co, Cr, Cu und	e entsprechenden Mengen der mmelanhang S33.1), mit 7,5 ml mit H ₂ O bidemin. aufgefüllt. d Ni, 200 μg/l Pb und Zn, 2 mg/l M 10 mg/l P, 20 mg/l Ca und 200 mg/	der 65 n, Na, S	
Standardlös	ung KW 2:	ICP-Konzentrates, sowie di	werden 2,5 ml des 10 g/l Al enthalte e entsprechenden Mengen der ammelanhang S33.1), mit 7,5 ml mit H ₂ O bidemin. aufgefüllt.	anderen	
		=> 100 μ g/l Cd, Co, Cr, Cu und Ni, 500 μ g/l Pb und Zn, 1 mg/l Ti, 2 mg/l Ba und Mg, 8 mg/l P, 10 mg/l Fe, Mn und Na, 50 mg/l Ca und K und 100 mg/l Al.			
Standardlösung KW 3:		In einen 250 ml PFA-Kolben werden 0,0125 ml des 10 g/l Al enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang S33.1), mit 7,5 ml der 65 %igen HNO ₃ p.a. versetzt und mit H ₂ O bidemin. aufgefüllt.			
		. •	und Ni, 1000 μg/l Pb und Zn, 0,5 i, 6 mg/l P, 8 mg/l Na, 10 mg/l K ι	_	
Standardlösung KW 4:		In einen 250 ml PFA-Kolben werden 1,25 ml des 10 g/l Al enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang S33.1), mit 7,5 ml der 65 %igen HNO ₃ p.a. versetzt und mit H ₂ O bidemin. aufgefüllt.			
		. •	Ti, 2000 μg/l Pb und Zn, 4 mg/l Na mg/l K, Mg und Mn, 50 mg/l Al, 1		
Standardlös	ung KW 5:		werden 0,25 ml des 10 g/l Al entha e entsprechenden Mengen der		

In einen 250 ml PFA-Kolben werden 0,25 ml des 10 g/l Al enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang S33.1), mit 7,5 ml der 65 %igen HNO₃ p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> $1000~\mu g/l$ Cu und Ni, $4000~\mu g/l$ Pb und Zn, 2~mg/l K und P, 5~mg/l Mn, 6~mg/l Na, 10~mg/l Al und S, 50~mg/l Fe und Mg, 100~mg/l Ca.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Al auch andere Elemente enthalten (siehe Sammelanhang S33.1), verwendet:

Element	Form	Gerät	Methoden-Nr.	Seite
Al	Alges	ICP(sim)	AlAlgesICP19.2	4

	<u>Standards</u>
Blank	0,0 mg/l Al
KW 1	200,0 mg/l Al
KW 2	100,0 mg/l Al
KW 3	0,5 mg/l Al
KW 4	50,0 mg/l Al
KW 5	10,0 mg/l Al

	Kontrollstandard
K24	10,0 mg/l Al

Methode:	OAKW2.1Boden	OAKW2.1Boden	OAKW2.1Boden	
	OAKW2.1Humus	OAKW2.1Humus	OAKW2.1Humus	
	OAKWEG3.1Boden	OAKWEG3.1Boden	OAKWEG3.1Boden	
Element:	Al	Al	Al	
Wellenlänge:	308.215	308.215	237.312	
Plasma-	axial	radial	radial	
beobachtung:				
Messbereich	BG - 10	10 - 50	50 - OMG	
[mg/l]:				
Standards:	Blank	Blank	Blank	
	KW 3	KW 2	KW 1	
	KW 5	KW 3	KW 2	
		KW 4	KW 4	
		KW 5	KW 5	
Bemerkungen:	Fensterweite: 20	Fensterweite: 20	Fensterweite: 20	
	Pixelbreite: 3	Pixelbreite: 3	Pixelbreite: 3	
	Pixelhöhe: 3	Pixelhöhe: 3	Pixelhöhe: 5	
	Spaltposition: vis	Spaltposition: vis	Spaltposition: vis	
	Untergrund-	Untergrund-	<u>Untergrund-</u>	
	Korrektur:	Korrektur:	Korrektur:	
	Pos. links: fixed	Pos. links: fixed	Pos. links: fixed	
	Pos. rechts: fixed	Pos. rechts: fixed	Pos. rechts: fixed	

Zur Herstellung der Blank-Lösung werden 7,5 ml der 65 %igen HNO_3 p.a. in einen 250 ml PFA-Kolben gegeben und mit H_2O bidemin. aufgefüllt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP6.1 beschrieben. Die Geräteparameter sind im Sammelanhang S33.1 zusammengestellt. Für die Bestimmung der Hauptelemente werden alle Proben mit dem Dilutor in PP-Röhrchen, (12 ml, Fa. Greiner Bio-One) 1:5 vorverdünnt. Proben die mit der Untersuchungsmethode OAKWEG3.1 aufgeschlossen wurden, werden mit dem Dilutor 1:10 vorverdünnt. Für der Bestimmung von Schwermetallen werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Element	Form	Gerät	Methoden-Nr.	Seite	_ ,
Al	Alges	ICP(sim)	AlAlgesICP19.2	5	Al

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 24 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %.

Auswertung/Datendokumentation:

Die gemessenen Al-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite	
Al	Alges	ICP(sim)	AlAlgesICP19.2	6	Al

Element	Form	Gerät	Methoden-Nr.	Seite	
Al	Alges	ICP(sim)	AlAlgesICP20.1	1	Al

Datum:

01.05.2014

Elementbestimmungsmethode:

ALUMINIUM

Untersuchungsmethode	NG	BG	OMG
ANULL, ANULLIC, EXT1:2H2O1.1, GBL1.1, DAN1.1, DAN2.2	0,003	0,0098	50

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1
Humus	DAN1.1, DAN2.2
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL, ANULLIC

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D1.1.4.2, D1.1.5.2 und D1.1.6.2
HFA-Code	D;4;1;2;-1;-1;1 (396.152 nm), D;4;1;2;-1;-1;0 (308.215 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich iCAP 7400 mit Iris	Nölte: ICP Emissionsspektroskopie für Praktiker;
Advantage	Weinheim, 2002
Sammelanhang S24.1: Geräteparameter und	Montaser, Golightly: Inductively Coupled Plasmas
Standardzusammen-	in Analytical Atomic Spectrometry;
setzung	Weinheim, 1987
Kurzanleitung ICP5.1	

Element	Form	Gerät	Methoden-Nr.	Seite	_
Al	Alges	ICP(sim)	AlAlgesICP20.1	2	ΑI

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 μl, Varipette 100-1000 μl, Varipette 500-5000 μl sowie 250 μl, 500 μl und

1000 µl Pipetten der Fa. Eppendorf

1000 ml und 2000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 150 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 5 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Al: Standard (Fa B. Kraft) \Rightarrow 5 g/l Al

Ca, Fe, K, Mg, Mn, Na, P, S:

Standard (Fa B. Kraft) => jeweils 5 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S24.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Al auch andere Elemente enthalten (siehe Sammelanhang S24.1), verwendet:

<u>Standards</u>			
Blank	0,0 mg/l Al		
HE 1	0,5 mg/l Al		
HE 2	2,5 mg/l Al		
HE 3	20,0 mg/l Al		
HE 4	5,0 mg/l Al		
HE 5	10,0 mg/l Al		
HE 6	1,0 mg/l Al		

Eleme	ent Form	Gerät	Methoden-Nr.	Seite
Al	Alges	ICP(sim)	AlAlgesICP20.1	3

	Kontrollstandard
K1	10,0 mg/l Al

	T	1
Methode:	ANULL	ANULL
	ANULLIC	ANULLIC
	EXT1:2H2O1.1	EXT1:2H2O1.1
	GBL1.1	GBL1.1
	DAN1.1Pflanze	DAN1.1Pflanze
	DAN2.2Pflanze	DAN2.2Pflanze
	DAN1.1Humus	DAN1.1Humus
	DAN2.2Humus	DAN2.2Humus
Element:	Al	Al
Wellenlänge:	396.152	308.215
Messbereich [mg/l]:	BG - 0.5	0,5 - OMG
Standards:	Blank	Blank
	HE 1	HE 1
		HE 2
		HE 3
		HE 4
		HE 5
		HE 6
Bemerkungen:	Fensterweite: 21	Fensterweite: 14
	Pixelbreite: 2	Pixelbreite: 2
	Pixelhöhe: 3	Pixelhöhe: 3
	Untergrund-	Untergrund-
	Korrektur:	Korrektur:
	Pos. links: 4	Pos. links: 3
	Pixelanzahl: 2	Pixelanzahl: 2
	Pos. rechts: 17	Pos. rechts: 14
	Pixelanzahl: 2	Pixelanzahl: 2

Der Blank, die Standards und der Kontrollstandard werden in 2 %-iger HNO₃ (30 ml HNO₃ 65 %, p.a. in 1000 ml) in 1 Liter Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S24.1 zusammengestellt.

Wässrige Proben werden vor dem Messen mit 180 µl HNO₃ konz. pro 6 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

Werden Proben verdünnt, müssen die durch die zusätzliche Säurezugabe veränderten

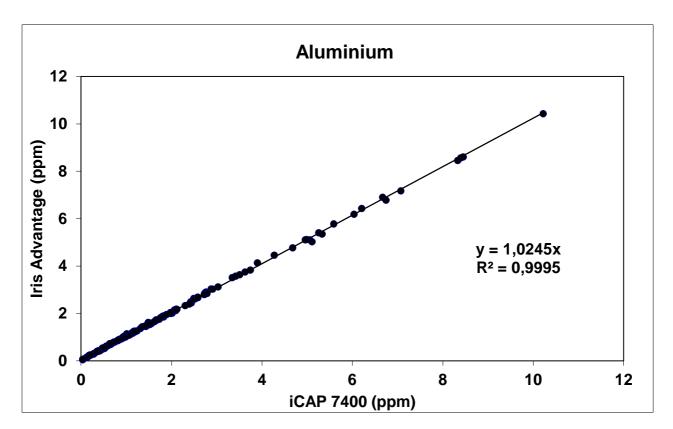
Verdünnungsfaktoren beachtet werden.

Element	Form	Gerät	Methoden-Nr.	Seite	-
Al	Alges	ICP(sim)	AlAlgesICP20.1	4	Al

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 24
		Proben und nach jeder Eichungswiederholung;
		erlaubte Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Al-Bilanz	QAlB1.1	Siehe Methodenbeschreibung
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1
		mitgemessen; erlaubte Abweichung 5 %
		Bei Pflanzenproben: Standard NHARZ, erlaubte
		Abweichung 10 %
		Bei Humusproben: Standard NFVH, erlaubte
		Abweichung 10 %


Auswertung/Datendokumentation:

Die gemessenen Al-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Al Alges ICP(sim) AlAlgesICP20.1	ΑI	\
---	----	---

Methodenvergleich ICP Iris Advantage mit iCAP 7400

Darstellung einer Vergleichsmessung der Methode AlAlgesICP7.3 und der hier beschriebenen Methode an der Wasserserie 2013W078 (151 Proben):

Anhang Nr. 1 für Al Alges ICP(sim) AlAlgesICP20.1 Al

Element	Form	Gerät	Methoden-Nr.	Seite	. 1
Al	Alges	ICP(sim)	AlAlgesICP21.1	1	Al

Datum:

01.05.2014

Elementbestimmungsmethode:

ALUMINIUM

Untersuchungsmethode	NG	BG	OMG
AKE1.1, AKEG1.1, AKH3.1	0,002	0,008	75

geeignet für:

Boden	AKE1.1, AKEG1.1
Humus	AKEG1.1, AKH3.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D1.1.5.2
HFA-Code	D;4;1;2;-1;-1;1 (396.152 nm), D;4;1;2;-1;-1;0 (308.215 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich iCAP 7400 mit Iris	Nölte: ICP Emissionsspektroskopie für Praktiker;
Advantage	Weinheim, 2002
Sammelanhang S25.1: Geräteparameter und	Montaser, Golightly: Inductively Coupled Plasmas
Standardzusammen-	in Analytical Atomic Spectrometry;
setzung	Weinheim, 1987
Kurzanleitung ICP5.1	

Element	Form	Gerät	Gerät Methoden-Nr. S		-
Al	Alges	ICP(sim)	AlAlgesICP21.1	2	Al

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 2 mm, für stark salzhaltige Lösungen

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 μ l, Varipette 100-1000 μ l, Varipette 500-5000 μ l sowie 250 μ l, 500 μ l und

1000 µl Pipetten der Fa. Eppendorf

250 ml-Messkolben aus Glas

Chemikalien:

keine

Lösungen:

keine

Eichung/Standards:

Stammlösungen:

Al: Standard (Fa B. Kraft) \Rightarrow 5 g/l Al

Ca, Fe, K, Mg, Mn, Na: Standard (Fa B. Kraft) => jeweils 5 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S25.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Al auch andere Elemente enthalten (siehe Sammelanhang S25.1), verwendet:

<u>Standards</u>		
Blank	0,0 mg/l Al	
AKE 1	20,0 mg/l Al	
AKE 2	10,0 mg/l Al	
AKE 3	5,0 mg/l Al	
AKE 4	50,0 mg/l Al	

	Kontrollstandard
K5	20,0 mg/l Al

Element	Form	Gerät	Methoden-Nr.	Seite
Al	Alges	ICP(sim)	AlAlgesICP21.1	3

Methode:	AKE1.1		AKE1.1	
<u>Methode.</u>	AKEG1.1		AKEG1.1	
	AKH3.1		AKH3.1	
Element:	Al		Al	
Wellenlänge:	396.152		308.215	
Messbereich[mg/l]:	BG - 20		20 - OMG	
Standards:	Blank		Blank	
	AKE 1		AKE 1	
			AKE 2	
			AKE 3	
			AKE 4	
Bemerkungen:	Fensterweite:	21	Fensterweite:	15
	Pixelbreite:	2	Pixelbreite:	2
	Pixelhöhe:	2	Pixelhöhe:	2
	Untergrund- Korrektur:		Untergrund- Korrektur:	
	Pos. links:	4	Pos. links:	3
	Pixelanzahl:	2	Pixelanzahl:	1
	Pos. rechts:	17	Pos. rechts:	14
	Pixelanzahl:	2	Pixelanzahl:	2

Der Blank, die Standards und der Kontrollstandard werden mit der jeweils verwendeten Perkolationslösung in 250 ml Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S25.1 zusammengestellt.

AKEG-Perkolate werden mit $180 \,\mu l$ 65 % iger HNO₃ p.a. pro 6 ml Probe versetzt und 1:5 verdünnt. Die Standards werden mit 1:5 verdünnter Perkolationslösung angesetzt und ebenfalls angesäuert (3 ml 65 % iger HNO₃ p.a. auf $100 \,\mathrm{ml}$).

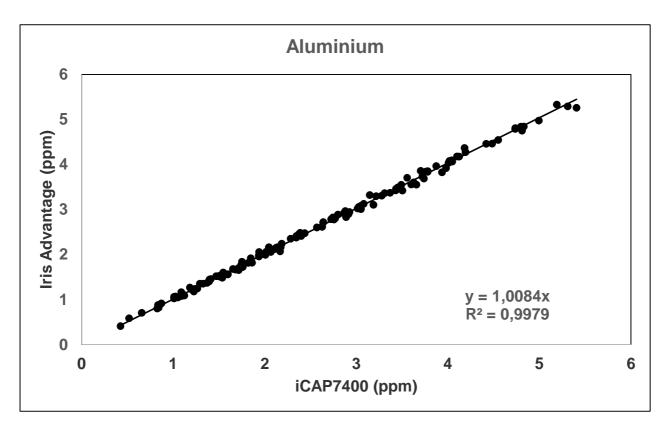
AKH-Perkolate werden vor dem Messen 1:2 verdünnt. Die Standards werden mit 1:2 verdünnter Perkolationslösung angesetzt.

Element	Form	Gerät	Methoden-Nr.	Seite	-
Al	Alges	ICP(sim)	AlAlgesICP21.1	4	ΑI

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K5; Messung nach der Eichung, alle 24
		Proben und nach jeder Eichungswiederholung;
		erlaubte Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards Harste 30-50, BZE-THUE Solling 0-10,
		Solling0-10neu, BioSoil und BZE-HUM; erlaubte
		Abweichung 10 % - 15 %


Auswertung/Datendokumentation:

Die gemessenen Al-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr.	1	für	Al	Alges	ICP(sim)	AlAlgesICP21.1	ΑI
------------	---	-----	----	-------	----------	----------------	----

Methodenvergleich ICP Iris Advantage mit iCAP 7400

Darstellung einer Vergleichsmessung der Methode AlAlgesICP10.1 und der hier beschriebenen Methode an den Bodenserien 2013B057 und 2013B059 (140 Proben):

Anhang Nr. 1 für Al Alges ICP(sim) AlAlgesICP21.1 Al

Element	Form	Gerät	Methoden-Nr.	Seite	
Al	Alges	ICP(sim)	AlAlgesICP22.1	1	Al

Datum:

01.08.2014

Elementbestimmungsmethode:

ALUMINIUM

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1	0,0011	0,0037	300

geeignet für:

Boden	OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1
Humus	OAKW1.1, OAKW1.2, OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D1.1.6.2
HFA-Code	D;4;1;2;-1;-1;2; (167.079 nm) D;4;1;2;-1;-1;0; (308.215 nm), D;4;1;2;-1;-1;4; (237,312 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Das Element Eisen stört bei der Linie Al 167.079 durch Linienüberlagerung nur bei sehr hohen Konzentration. Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Linienstörungen und ihre Korrektur	Nölte: ICP Emissionsspektroskopie für Praktiker;
Sammelanhang S26.1: Geräteparameter und	Weinheim, 2002
Standardzusammen-	Montaser, Golightly: Inductively Coupled Plasmas
setzung	in Analytical Atomic Spectrometry;
Kurzanleitung ICP5.1	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite	_
Al	Alges	ICP(sim)	AlAlgesICP22.1	2	Al

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Al: ICP-Konzentrat (Fa B. Kraft) => 10 g/l Al

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Ca, Fe, K, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Al auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

Element	Form	Gerät	Methoden-Nr.	Seite	
Al	Alges	ICP(sim)	AlAlgesICP22.1	3	Α

	<u>Standards</u>				
KW 0	0,0 mg/l Al				
KW 1	10,0 mg/l Al				
KW 2	20,0 mg/l Al				
KW 3	50,0 mg/l Al				
KW 4	100,0 mg/l Al				
KW 5	200,0 mg/l Al				
KW 6	300,0 mg/l Al				
KW 7	5,0 mg/l Al				
KW 8	1,0 mg/l Al				

	Kontrollstandard
K24	10,0 mg/l Al

Methode:	OAKW2.1Boden	OAKW2.1Boden	OAKW2.1Boden
	OAKWEG2.1Boden	OAKWEG2.1Boden	OAKWEG2.1Boden
	OAKWEG2.2Boden	OAKWEG2.2Boden	OAKWEG2.2Boden
	OAKWEG3.1Boden	OAKWEG3.1Boden	OAKWEG3.1Boden
	OAKW1.1Humus	OAKW1.1Humus	OAKW1.1Humus
	OAKW1.2Humus	OAKW1.2Humus	OAKW1.2Humus
	OAKW2.1Humus	OAKW2.1Humus	OAKW2.1Humus
Element:	Al	Al	Al
Wellenlänge:	167.079	308.215	237.312
Messbereich	BG – 1	1 - 50	50 - OMG
[mg/l]:			
Standards:	Blank	KW 1	KW 2
	KW 8	KW 2	KW 3
		KW 3	KW 4
		KW 7	KW 5
		KW 8	KW 6
Bemerkungen:	Fensterweite: 21	Fensterweite: 21	Fensterweite: 18
	Pixelbreite: 3	Pixelbreite: 3	Pixelbreite: 3
	Pixelhöhe: 5	Pixelhöhe: 2	Pixelhöhe: 3
	<u>Untergrund-</u>	<u>Untergrund-</u>	<u>Untergrund-</u>
	Korrektur:	Korrektur:	Korrektur:
	Pos. links: 2	Pos. links: 5	Pos. links: 2
	Pixelanzahl: 2	Pixelanzahl: 2	Pixelanzahl: 2
	Pos. rechts: 20	Pos. rechts: 20	Pos. rechts: 18
	Pixelanzahl: 2	Pixelanzahl: 2	Pixelanzahl: 1

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit $_2$ O bidemin. aufgefüllt.

_	Element	Form	Gerät	Methoden-Nr.	Seite	_
	Al	Alges	ICP(sim)	AlAlgesICP22.1	4	Al

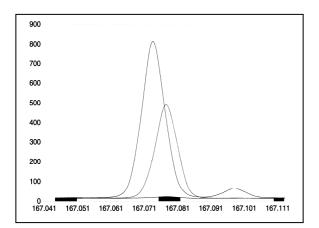
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %.


Auswertung/Datendokumentation:

Die gemessenen Al-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr.	1	für	Al	Alges	ICP(sim)	AlAlgesICP22.1
------------	---	-----	----	-------	----------	----------------

Linienstörungen und ihre Korrektur:

Fe (90 ppm) Störung bei Al167.079 (100 ppb)

Ein Interelementkorrekturfaktor ist für die untersuchten Proben nicht nötig, da Al und Fe immer im ähnlichen Konzentrationsbereich liegen.

Anhang Nr. 1 für Al Alges ICP(sim) AlAlgesICP22.1

Element	Form	Gerät	Methoden-Nr.	Seite	. 1
Al	Alges	ICP(sim)	AlAlgesICP23.1	1	Al

Datum:

01.03.2015

Elementbestimmungsmethode:

ALUMINIUM

Untersuchungsmethode	NG	BG	OMG
EXTOX1.1	0,003	0,01	100

geeignet für:

Boden	EXTOX1.1
Humus	
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D1.1.5.2
HFA-Code	D;4;1;2;-1;-1;1 (396.152 nm), D;4;1;2;-1;-1;4; (237.312 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S27.1: Geräteparameter und Standardzusammen-	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002
setzung Kurzanleitung ICP5.1	Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite	_
Al	Alges	ICP(sim)	AlAlgesICP23.1	2	ΑI

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

100 und 250 ml-Messkolben aus Glas

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 µl, Varipette 100-1000 µl, Varipette 500-5000 µl sowie 250 µl, 500 µl und

1000 µl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Glas

Chemikalien:

Ammoniumoxalat: (NH₄)₂C₂O_{4*}H₂O

Oxalsäure: H₂C₂O_{4*}H₂O

Lösungen:

0,2 M Ammoniumoxalat-Lösung

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Al: ICP-Konzentrat (Fa B. Kraft) \Rightarrow 10 g/l Al

Fe: ICP-Konzentrat (Fa B. Kraft) => 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S27.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Al auch Fe enthalten (siehe Sammelanhang S27.1), verwendet:

	<u>Standards</u>
Ox 0	0,0 mg/l Al
Ox 1	100,0 mg/l Al
Ox 2	50,0 mg/l Al
Ox 3	20,0 mg/l Al
Ox 4	5,0 mg/l Al

	Kontrollstandard
K5	20,0 mg/l Al

Form

Alges

Element

Al

Methode:	EXTOX1.1Boden	EXTOX1.1Boden	
Element:	Al	Al	
Wellenlänge:	396.152	237.312	
Messbereich	BG – 20	20 - OMG	
[mg/l]:			
Standards:	Ox 0	Ox 0	
	Ox 3	Ox 1	
	Ox 4	Ox 2	
		Ox 3	
		Ox 4	
Bemerkungen:	Fensterweite: 21	Fensterweite: 21	
	Pixelbreite: 3	Pixelbreite: 3	
	Pixelhöhe: 2	Pixelhöhe: 2	
	<u>Untergrund-</u>	<u>Untergrund-</u>	
	Korrektur:	Korrektur:	
	Pos. links: 1	Pos. links: 5	
	Pixelanzahl: 2	Pixelanzahl: 2	
	Pos. rechts: 18	Pos. rechts: 20	
	Pixelanzahl: 2	Pixelanzahl: 2	

Gerät

ICP(sim)

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 20 ml der für die Perkolation verwendeten Oxalat-Lösung in 100 ml Glaskolben gegeben, mit 3 ml 65 %iger HNO_3 p.a. versetzt und anschließend mit H_2O bidemin. aufgefüllt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S27.1 zusammengestellt. Alle Proben werden vor dem Messen 1:5 verdünnt und mit 180 μ l HNO $_3$ p.a pro 6 ml verdünnter Probe versetzt.

Element	Form	Gerät	Methoden-Nr.	Seite	- 1
Al	Alges	ICP(sim)	AlAlgesICP23.1	4	Al

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung		
Kontrollstandard	QKSt.1.1	K5; Messung nach der Eichung, alle 15 Proben und		
		nach jeder Eichungswiederholung; erlaubte		
		Abweichung 5 %		
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie		
Standardmaterial	QStM1.1	Für Standards BZE-RLP und BioSoil; erlaubte		
		Abweichung 10 %.		

Auswertung/Datendokumentation:

Die gemessenen Al-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
Alk	ALK37	TITRATOR	ALK37TIT3.1	-	1	Alk

1.03.2013

Datum:

Elementbestimmungsmethode:

ALKALINITÄT PH 3.7

Untersuchungsmethode	NG	BG	OMG
ALK1.1	(20 μmol/l)		
gaaignat für			

geeignet für:

Boden	
Humus	
Pflanze	
Wasser	ALK1.1

Methodenverweise:

Norm	
HFA	C2.1.3 und D76.1.4.1-3
HFA-Code	Untersuchungsmethode: 82;-3;-3; Elementbestimmungsmethode: D;10;2;2;9;6;3

Prinzip der Methode/chem. Reaktionen:

Bei der Bestimmung der Säureneutralisierungskapazität (Alkalinität, Säurekapazität, m-Wert) wird der Säure-Base-Status der Probe erfasst. Für die Bestimmung der Säureneutralisierungskapazität gibt es verschiedene Methoden. Alle basieren jedoch auf der Titration der Probe mit einer schwachen Säure (0.01 M, 0.02 M HCl) zu einem definierten pH-Wert (4.5 oder 4.3), oder das Verfahren nach Gran, bei dem auf vier verschiedene pH-Werte titriert wird. In der Regel sind dies die pH-Werte 4.5,

4.3, 4.0, und 3.7. Die H⁺- Konzentrationen (mol) dieser pH-Werte werden gegen die verbrauchten Säureäquivalente aufgetragen und aus der Steigung und dem Achsenabschnitt die Alkalinität berechnet (s. AKALKGRANTIT1.1).

In dieser Methode wird die Titration der Probe zum Endpunkt pH 3.7 beschrieben. Der Säureverbrauch bis zu diesem pH-Wert wird in die Berechnung der Alkalinität nach Gran einbezogen. Die Säurekapazität oder Alkalinität ist bei 1/3 aller Proben (natürliche Wässer) ausschließlich durch die Kohlensäurespezies bestimmt:

Säurekapazität =
$$2CO_3^{2-} + HCO_3^{-} + OH^{-} - H^{+}$$
 [mmol/l]

Bei den verbleibenden 2/3 der Proben sind andere puffernde Substanzen (schwache organische (Huminsäuren), anorganische Säuren und Basen) vorhanden.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenparameter	Meesenburg, H. Untersuchungen zum Säure-
Kurzanleitung TIT5.1	Base-Status eines episodisch sauren Fliess-
	gewässers im Schwarzwald. Freiburger Geogra-
	phische Hefte 51, 1997
Deutsche Einheitsverfahren zur W	
	wasser-, u. Schlammuntersuchung, 2000, H7
	Höll k.: Wasser, 7. Aufl., 1986, S. 125ff
Standard Methods for the Examination	
	and Wastewater, 16.Ed., 1985, S. 269ff

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
Alk	ALK37	TITRATOR	ALK37TIT3.1	-	2	Alk

Störungen:

Durch Lagerung der Probe kann die Alkalinität/Säurekapazität durch mikrobielle und chemische Umsetzungen, sowie durch Aufnahme bzw. Abgabe von Kohlendioxid aus der Umgebungsluft verändert werden. Diese Prozesse werden durch höhere Temperaturen und Licht beschleunigt. Die Temperatur der Probe bei der Messung und die Ionenstärke der Probe haben ebenfalls einen Einfluss auf die Alkalinität.

Analysengeräte und Zubehör:

Automatisches pH/LF/Titrations-Messsystem der Fa. Metrohm, bestehend aus:

Titrator: 888 Titrando

Probengeber: 815 Robotic USB Sample Processor XL

pH-Meter: 888 Titrando, kombinierte pH Elektrode LL Aquatrode plus mit integriertem Pt1000

Temperaturfühler Flüssigelektrolyt: 3 M KCl, Keramikstiftdiaphragma, Fa. Metrohm

800 Dosino

Probengefäß: Sample Vial, LDPE 75ml

Software tiamo 2.3

Chemikalien:

Eichpufferlösungen

pH 4.01 Merck 1.99001, 7.00 Merck 1.99002, Einzelportionen in Beuteln, zertifiziert

Kontrollpufferlösungen

pH 4.00 Merck 1.09435, 7.00 Merck 1.09439 Fertiglösung 11 Gebinde, (Kontrollstandards)

Elektrodenaufbewahrungslösung, Fa. Metrohm Best.-Nr. 6.2323.000

Elektrolytlösung 3M KCl-Lösung, oder gesättigte KCl-Lösung

Salzsäure: 0.01 M, Titrisolampulle, Fa. Merck

Natriumcarbonat: Na₂CO₃ (p.a.)

Lösungen:

I 0.01 M Salzsäure: Die Titrisolampulle in einen 1 l Kolben geben und mit H₂O demin. auf 1 l

auffüllen.

II 0.05 M Na₂CO₃ 2,65 g Na₂CO₃ wasserfrei in einen 500 ml Kolben geben und mit H₂O

demin. auf 500 ml auffüllen.

III 0,001 M Na₂CO₃ 2 ml von Lösung II mit H₂O demin. auf 100 ml auffüllen

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltb	Bemerkungen	
	offen	Geschlossen	
	(am Gerät)	im Kühlschrank	
I	1 Woche	2 Monate	/
II	1 Tag	8 Wochen	/
III	1 Tag	/	/

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
Alk	ALK37	TITRATOR	ALK37TIT3.1	•	3	Alk

Eichung/Standards:

Einzelbestimmung:

Mehrelementbestimmung:

<u>Eichstandards</u>				
Puffer	PH 7,00			
Puffer PH 4,01				

ALK40	ALK43	ALK45
7,00	7,00	7,00
4,01	4,01	4,01

Kontrollstandards:			
Puffer	PH 4,0		
Puffer	PH 7,0		

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung TIT5.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Asymetriepotential/Nullpunkt und Steilheit
		/Empfindlichkeit) der Elektrode nach jeder Eichung
		kontrollieren. Empfindlichkeit: 90-103%, Nullpunkt
		5,8-7,5
Bilanz NFV	QIB2.1	s. Methodenbeschreibung
Bilanz NFV mit ALK	QIBEU1.1	s. Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	s. Methodenbeschreibung
Kontrollstandard	QKSt1.1	Puffer pH 4.0, 7.0; Messung der Puffer 7,0 und 4,0
		nach der Eichung und am Ende der Messungen,
		erlaubte Abweichung +/- 0.02 s.o., bei höherer
		Abweichung wird die Eichung wiederholt, dann die
		Messung der 2 Kontrollpuffer wiederholt, und bei
		Messwerten der Kontrollpuffer innerhalb der Grenze
		+/- 0.02, die Proben vor der fehlerhaften Kontrolle bis
		zur letzten korrekten Kontrolle wiederholt.
		Na ₂ CO ₃ -Kontrollstandard 0,0001 M: zweimal nach der
		Eichung und einmal am Ende der Messung der Proben
		messen, bei 20 ml Lösung und Titration mit 0,01 M
		HCl sollte der Säureverbrauch 4.0 ± 0.1 ml betragen,
		bei fehlerhafter Kontrolle muss die Eichung bzw.
		müssen die Messungen der Proben wiederholt werden.
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Daten wie in TIT5.1 beschrieben abspeichern. Die Messwerte werden mit dem Datenverarbeitungsund Übertragungsprogramm Relaqs bearbeitet und ins LIMS-System übertragen. Anhang Nr. 1 für ALK ALK37 TITRATOR ALK37TIT3.1 Alk

Methodenparameter Titrator

Methodenparamete Methode: Min. Bürettengeschv Maximalvolumen: Richtung:	Alkalinität	Max. Bürettengeschw.: keine Vordosierung Autoskalierung	10,0%
Anzahl EPs: Probemenge in:	4 Volumen	Ergebniseinheit: Ergebnis als:	ml Sum.
Endpunkt 1: Wartezeit 1:	4,50 pH 10 Sekunden	Proportionalbande 1:	1,000 pH
Endpunkt 2: Wartezeit 2:	4,30 pH 5 Sekunden	Proportionalbande 2:	0,500 pH
Endpunkt 3: Wartezeit 3:	4,00 pH 5 Sekunden	Proportionalbande 3:	0,500 pH
Endpunkt 4: Wartezeit 4:	3,70 pH 5 Sekunden	Proportionalbande 4:	0,5000 pH
Faktor 1: Ergebnisname 1:	1,0000 pH 4,50	Molekulargewicht: Ergebniseinheit 1:	100,000 ml
Faktor 2: Ergebnisname 2:	1,0000 pH 4,30	Molekulargewicht: Ergebniseinheit 2:	100,000 ml
Faktor 3: Ergebnisname 3:	1,0000 pH 4,00	Molekulargewicht: Ergebniseinheit 3:	100,000 ml
Faktor 4: Ergebnisname 4: Titrant Konzentration:	1,0000 pH 3,70 Salzsäure 0,0100 mol/l	Molekulargewicht: Ergebniseinheit 4: Letzte Standardisierung: Benutzer: Methode: (Manuell ein	100,000 ml 16.4.2018 Supervisor gegeben)
Elektrode Temperatur: Nullpunkt: Empfindlichkeit:	LL Aquatrode plus Pt1000 25 °C 7,00 +/- 0,25	letzte Kalibrierung: Benutzer: Puffer 1: Puffer 2:	16.4.2018 Supervisor 7,010 pH 4,000 pH
Reagenzzugabe:	(keine)	Rührzeit	10 sec
Blank: Rührgeschwindigkei	t am Rührer selbst: 6	Blankvolumen:	0,0000 ml

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
Alk	ALK40	TITRATOR	ALK40TIT3.1	-	1	Alk

1.03.2013

Datum:

Elementbestimmungsmethode:

ALKALINITÄT PH 4.0

Untersuchungsmethode	NG	BG	OMG
ALK1.1	(20 µmol/l)		

geeignet für:

Boden	
Humus	
Pflanze	
Wasser	ALK1.1

Methodenverweise:

Norm	
HFA	C2.1.3 und D76.1.4.1-3
HFA-Code	Untersuchungsmethode: 82;-3;-3; Elementbestimmungsmethode: D;10;2;2;9;6;3

Prinzip der Methode/chem. Reaktionen:

Bei der Bestimmung der Säureneutralisierungskapazität (Alkalinität, Säurekapazität, m-Wert) wird der Säure-Base-Status der Probe erfasst. Für die Bestimmung der Säureneutralisierungskapazität gibt es verschiedene Methoden. Alle basieren jedoch auf der Titration der Probe mit einer schwachen Säure (0.01 M, 0.02 M HCl) zu einem definierten pH-Wert (4.5 oder 4.3), oder das Verfahren nach Gran, bei dem auf vier verschiedene pH-Werte titriert wird. In der Regel sind dies die pH-Werte 4.5,

4.3, 4.0, und 3.7. Die H⁺- Konzentrationen (mol) dieser pH-Werte werden gegen die verbrauchten Säureäquivalente aufgetragen und aus der Steigung und dem Achsenabschnitt die Alkalinität berechnet (s. AKALKGRANTIT1.1).

In dieser Methode wird die Titration der Probe zum Endpunkt pH 4.0 beschrieben. Der Säureverbrauch bis zu diesem pH-Wert wird in die Berechnung der Alkalinität nach Gran einbezogen. Die Säurekapazität oder Alkalinität ist bei 1/3 aller Proben (natürliche Wässer) ausschließlich durch die Kohlensäurespezies bestimmt:

Säurekapazität =
$$2CO_3^{2-} + HCO_3^{-} + OH^{-} - H^{+}$$
 [mmol/l]

Bei den verbleibenden 2/3 der Proben sind andere puffernde Substanzen (schwache organische (Huminsäuren), anorganische Säuren und Basen) vorhanden.

Anhang:	<u>Lit.:</u>			
Anhang 1: Methodenparameter	Meesenburg, H. Untersuchungen zum Säure-			
Kurzanleitung TIT5.1	Base-Status eines episodisch sauren Fliess-			
	gewässers im Schwarzwald. Freiburger Geogra-			
	phische Hefte 51, 1997			
	Deutsche Einheitsverfahren zur Wasser-, Ab-			
	wasser-, u. Schlammuntersuchung, 2000, H7			
	Höll k.: Wasser, 7. Aufl., 1986, S. 125ff			
	Standard Methods for the Examination of Water			
	and Wastewater, 16.Ed., 1985, S. 269ff			

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
Alk	ALK40	TITRATOR	ALK40TIT3.1	-	2	Alk

Störungen:

Durch Lagerung der Probe kann die Alkalinität/Säurekapazität durch mikrobielle und chemische Umsetzungen, sowie durch Aufnahme bzw. Abgabe von Kohlendioxid aus der Umgebungsluft verändert werden. Diese Prozesse werden durch höhere Temperaturen und Licht beschleunigt. Die Temperatur der Probe bei der Messung und die Ionenstärke der Probe haben ebenfalls einen Einfluss auf die Alkalinität.

Analysengeräte und Zubehör:

Automatisches pH/LF/Titrations-Messsystem der Fa. Metrohm, bestehend aus:

Titrator: 888 Titrando

Probengeber: 815 Robotic USB Sample Processor XL

pH-Meter: 888 Titrando, kombinierte pH Elektrode LL Aquatrode plus mit integriertem Pt1000

Temperaturfühler Flüssigelektrolyt: 3 M KCl, Keramikstiftdiaphragma, Fa. Metrohm

800 Dosino

Probengefäß: Sample Vial, LDPE 75ml

Software tiamo 2.3

Chemikalien:

Eichpufferlösungen

pH 4.01 Merck 1.99001, 7.00 Merck 1.99002, Einzelportionen in Beuteln, zertifiziert

Kontrollpufferlösungen

pH 4.00 Merck 1.09435, 7.00 Merck 1.09439 Fertiglösung 1 l Gebinde, (Kontrollstandards)

Elektrodenaufbewahrungslösung, Fa. Metrohm Best.-Nr. 6.2323.000

Elektrolytlösung 3M KCl-Lösung, oder gesättigte KCl-Lösung

Salzsäure: 0.01 M, Titrisolampulle, Fa. Merck

Natriumcarbonat: Na₂CO₃ (p.a.)

Lösungen:

I 0.01 M Salzsäure: Die Titrisolampulle in einen 1 l Kolben geben und mit H₂O demin. auf 1 l

auffüllen.

II 0.05 M Na₂CO₃ 2,65 g Na₂CO₃ wasserfrei in einen 500 ml Kolben geben und mit H₂O

demin. auf 500 ml auffüllen.

III 0,001 M Na₂CO₃ 2 ml von Lösung II mit H₂O demin. auf 100 ml auffüllen

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen
	offen	Geschlossen	
	(am Gerät)	im Kühlschrank	
I	1 Woche	2 Monate	/
II	1 Tag	8 Wochen	/
III	1 Tag	/	/

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
Alk	ALK40	TITRATOR	ALK40TIT3.1	-	3	Alk

Eichung/Standards:

Einzelbestimmung:

$\underline{Mehrelement bestimmung:}$

<u>Eichstandards</u>			
Puffer	PH 7,00		
Puffer	PH 4,01		

ALK45	
7,00 4,01	

Kont	rollstandards:
Puffer	PH 4,0
Puffer	PH 7,0

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung TIT5.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Asymetriepotential/Nullpunkt und Steilheit /Empfindlichkeit) der Elektrode nach jeder Eichung kontrollieren. Empfindlichkeit: 90-103%, Nullpunkt 5,8-7,5
Bilanz NFV	QIB2.1	s. Methodenbeschreibung
Bilanz NFV mit ALK	QIBEU1.1	s. Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	s. Methodenbeschreibung
Kontrollstandard	QKSt1.1	Puffer pH 4.0, 7.0; Messung der Puffer 7,0 und 4,0 nach der Eichung und am Ende der Messungen, erlaubte Abweichung +/- 0.02 s.o., bei höherer Abweichung wird die Eichung wiederholt, dann die Messung der 2 Kontrollpuffer wiederholt, und bei Messwerten der Kontrollpuffer innerhalb der Grenze +/- 0.02, die Proben vor der fehlerhaften Kontrolle bis zur letzten korrekten Kontrolle wiederholt. Na ₂ CO ₃ -Kontrollstandard 0,0001 M: zweimal nach der Eichung und einmal am Ende der Messung der Proben messen, bei 20 ml Lösung und Titration mit 0,01 M HCl sollte der Säureverbrauch 4,0 ± 0,1 ml betragen, bei fehlerhafter Kontrolle muss die Eichung bzw. müssen die Messungen der Proben wiederholt werden.
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Daten wie in TIT5.1 beschrieben abspeichern. Die Messwerte werden mit dem Datenverarbeitungsund Übertragungsprogramm Relaqs bearbeitet und ins LIMS-System übertragen. Anhang Nr. 1 für ALK ALK37 TITRATOR ALK40TIT3.1 Alk

Methodenparameter Titrator

Methodenparamete Methode: Min. Bürettengeschv Maximalvolumen: Richtung:	Alkalinität	Max. Bürettengeschw.: keine Vordosierung Autoskalierung	10,0%
Anzahl EPs: Probemenge in:	4 Volumen	Ergebniseinheit: Ergebnis als:	ml Sum.
Endpunkt 1: Wartezeit 1:	4,50 pH 10 Sekunden	Proportionalbande 1:	1,000 pH
Endpunkt 2: Wartezeit 2:	4,30 pH 5 Sekunden	Proportionalbande 2:	0,500 pH
Endpunkt 3: Wartezeit 3:	4,00 pH 5 Sekunden	Proportionalbande 3:	0,500 pH
Endpunkt 4: Wartezeit 4:	3,70 pH 5 Sekunden	Proportionalbande 4:	0,5000 pH
Faktor 1: Ergebnisname 1:	1,0000 pH 4,50	Molekulargewicht: Ergebniseinheit 1:	100,000 ml
Faktor 2: Ergebnisname 2:	1,0000 pH 4,30	Molekulargewicht: Ergebniseinheit 2:	100,000 ml
Faktor 3: Ergebnisname 3:	1,0000 pH 4,00	Molekulargewicht: Ergebniseinheit 3:	100,000 ml
Faktor 4: Ergebnisname 4: Titrant Konzentration:	1,0000 pH 3,70 Salzsäure 0,0100 mol/l	Molekulargewicht: Ergebniseinheit 4: Letzte Standardisierung: Benutzer: Methode: (Manuell eir	100,000 ml 16.4.2018 Supervisor agegeben)
Elektrode Temperatur: Nullpunkt: Empfindlichkeit:	LL Aquatrode plus Pt1000 25 °C 7,00 +/- 0,25	letzte Kalibrierung: Benutzer: Puffer 1: Puffer 2:	16.4.2018 Supervisor 7,010 pH 4,000 pH
Reagenzzugabe:	(keine)	Rührzeit	10 sec
Blank: Rührgeschwindigkei	t am Rührer selbst: 6	Blankvolumen:	0,0000 ml

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
Alk	ALK43	TITRATOR	ALK43TIT3.1	-	1	Alk

1.03.2013

Datum:

Elementbestimmungsmethode:

ALKALINITÄT PH 4.3

Untersuchungsmethode	NG	BG	OMG
ALK1.1	(20 µmol/l)		

geeignet für:

Boden	
Humus	
Pflanze	
Wasser	ALK1.1

Methodenverweise:

Norm	
HFA	C2.1.3 und D76.1.4.1-3
HFA-Code	Untersuchungsmethode: 82;-3;-3; Elementbestimmungsmethode: D;10;2;2;9;6;3

Prinzip der Methode/chem. Reaktionen:

Bei der Bestimmung der Säureneutralisierungskapazität (Alkalinität, Säurekapazität, m-Wert) wird der Säure-Base-Status der Probe erfasst. Für die Bestimmung der Säureneutralisierungskapazität gibt es verschiedene Methoden. Alle basieren jedoch auf der Titration der Probe mit einer schwachen Säure (0.01 M, 0.02 M HCl) zu einem definierten pH-Wert (4.5 oder 4.3), oder das Verfahren nach Gran, bei dem auf vier verschiedene pH-Werte titriert wird. In der Regel sind dies die pH-Werte 4.5,

4.3, 4.0, und 3.7. Die H⁺- Konzentrationen (mol) dieser pH-Werte werden gegen die verbrauchten Säureäquivalente aufgetragen und aus der Steigung und dem Achsenabschnitt die Alkalinität berechnet (s. AKALKGRANTIT1.1).

In dieser Methode wird die Titration der Probe zum Endpunkt pH 4.3 beschrieben. Der Säureverbrauch bis zu diesem pH-Wert wird in die Berechnung der Alkalinität nach Gran einbezogen. Die Säurekapazität oder Alkalinität ist bei 1/3 aller Proben (natürliche Wässer) ausschließlich durch die Kohlensäurespezies bestimmt:

Säurekapazität =
$$2CO_3^{2-} + HCO_3^{-} + OH^{-} - H^{+}$$
 [mmol/l]

Bei den verbleibenden 2/3 der Proben sind andere puffernde Substanzen (schwache organische (Huminsäuren), anorganische Säuren und Basen) vorhanden.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenparameter	Meesenburg, H. Untersuchungen zum Säure-
Kurzanleitung TIT5.1	Base-Status eines episodisch sauren Fliess-
	gewässers im Schwarzwald. Freiburger Geogra-
	phische Hefte 51, 1997
	Deutsche Einheitsverfahren zur Wasser-, Ab-
	wasser-, u. Schlammuntersuchung, 2000, H7
	Höll k.: Wasser, 7. Aufl., 1986, S. 125ff
	Standard Methods for the Examination of Water
	and Wastewater, 16.Ed., 1985, S. 269ff

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
Alk	ALK43	TITRATOR	ALK43TIT3.1	-	2	Alk

Störungen:

Durch Lagerung der Probe kann die Alkalinität/Säurekapazität durch mikrobielle und chemische Umsetzungen, sowie durch Aufnahme bzw. Abgabe von Kohlendioxid aus der Umgebungsluft verändert werden. Diese Prozesse werden durch höhere Temperaturen und Licht beschleunigt. Die Temperatur der Probe bei der Messung und die Ionenstärke der Probe haben ebenfalls einen Einfluss auf die Alkalinität.

Analysengeräte und Zubehör:

Automatisches pH/LF/Titrations-Messsystem der Fa. Metrohm, bestehend aus:

Titrator: 888 Titrando

Probengeber: 815 Robotic USB Sample Processor XL

pH-Meter: 888 Titrando, kombinierte pH Elektrode LL Aquatrode plus mit integriertem Pt1000

Temperaturfühler Flüssigelektrolyt: 3 M KCl, Keramikstiftdiaphragma, Fa. Metrohm

800 Dosino

Probengefäß: Sample Vial, LDPE 75ml

Software tiamo 2.3

Chemikalien:

Eichpufferlösungen

pH 4.01 Merck 1.99001, 7.00 Merck 1.99002, Einzelportionen in Beuteln, zertifiziert

Kontrollpufferlösungen

pH 4.00 Merck 1.09435, 7.00 Merck 1.09439 Fertiglösung 11 Gebinde, (Kontrollstandards)

Elektrodenaufbewahrungslösung, Fa. Metrohm Best.-Nr. 6.2323.000

Elektrolytlösung 3M KCl-Lösung, oder gesättigte KCl-Lösung

Salzsäure: 0.01 M, Titrisolampulle, Fa. Merck

Natriumcarbonat: Na₂CO₃ (p.a.)

Lösungen:

I 0.01 M Salzsäure: Die Titrisolampulle in einen 1 l Kolben geben und mit H₂O demin. auf 1 l

auffüllen.

II 0.05 M Na₂CO₃ 2,65 g Na₂CO₃ wasserfrei in einen 500 ml Kolben geben und mit H₂O

demin. auf 500 ml auffüllen.

III 0,001 M Na₂CO₃ 2 ml von Lösung II mit H₂O demin. auf 100 ml auffüllen

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltb	Bemerkungen	
	offen	Geschlossen	
	(am Gerät)	im Kühlschrank	
I	1 Woche	2 Monate	/
II	1 Tag	8 Wochen	/
III	1 Tag	/	/

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
Alk	ALK43	TITRATOR	ALK43TIT3.1	-	3	Alk

Eichung/Standards:

Einzelbestimmung:

Mehrelementbestimmung:

<u>Eichstandards</u>		
Puffer	PH 7,00	
Puffer	PH 4,01	

ALK40	ALK43	ALK45
7,00	7,00	7,00
4,01	4,01	4,01

Kontrollstandards:		
Puffer	PH 4,0	
Puffer	PH 7,0	

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung TIT5.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Asymetriepotential/Nullpunkt und Steilheit
		/Empfindlichkeit) der Elektrode nach jeder Eichung
		kontrollieren. Empfindlichkeit: 90-103%, Nullpunkt
		5,8-7,5
Bilanz NFV	QIB2.1	s. Methodenbeschreibung
Bilanz NFV mit ALK	QIBEU1.1	s. Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	s. Methodenbeschreibung
Kontrollstandard	QKSt1.1	Puffer pH 4.0, 7.0; Messung der Puffer 7,0 und 4,0
		nach der Eichung und am Ende der Messungen,
		erlaubte Abweichung +/- 0.02 s.o., bei höherer
		Abweichung wird die Eichung wiederholt, dann die
		Messung der 2 Kontrollpuffer wiederholt, und bei
		Messwerten der Kontrollpuffer innerhalb der Grenze
		+/- 0.02, die Proben vor der fehlerhaften Kontrolle bis
		zur letzten korrekten Kontrolle wiederholt.
		Na ₂ CO ₃ -Kontrollstandard 0,0001 M: zweimal nach der
		Eichung und einmal am Ende der Messung der Proben
		messen, bei 20 ml Lösung und Titration mit 0,01 M
		HCl sollte der Säureverbrauch 4.0 ± 0.1 ml betragen,
		bei fehlerhafter Kontrolle muss die Eichung bzw.
		müssen die Messungen der Proben wiederholt werden.
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Daten wie in TIT5.1 beschrieben abspeichern. Die Messwerte werden mit dem Datenverarbeitungsund Übertragungsprogramm Relaqs bearbeitet und ins LIMS-System übertragen. Anhang Nr. 1 für ALK ALK37 TITRATOR ALK43TIT3.1 Alk

Methodenparameter Titrator

Methodenparamete Methode: Min. Bürettengeschv Maximalvolumen: Richtung:	Alkalinität	Max. Bürettengeschw.: keine Vordosierung Autoskalierung	10,0%
Anzahl EPs: Probemenge in:	4 Volumen	Ergebniseinheit: Ergebnis als:	ml Sum.
Endpunkt 1: Wartezeit 1:	4,50 pH 10 Sekunden	Proportionalbande 1:	1,000 pH
Endpunkt 2: Wartezeit 2:	4,30 pH 5 Sekunden	Proportionalbande 2:	0,500 pH
Endpunkt 3: Wartezeit 3:	4,00 pH 5 Sekunden	Proportionalbande 3:	0,500 pH
Endpunkt 4: Wartezeit 4:	3,70 pH 5 Sekunden	Proportionalbande 4:	0,5000 pH
Faktor 1: Ergebnisname 1:	1,0000 pH 4,50	Molekulargewicht: Ergebniseinheit 1:	100,000 ml
Faktor 2: Ergebnisname 2:	1,0000 pH 4,30	Molekulargewicht: Ergebniseinheit 2:	100,000 ml
Faktor 3: Ergebnisname 3:	1,0000 pH 4,00	Molekulargewicht: Ergebniseinheit 3:	100,000 ml
Faktor 4: Ergebnisname 4: Titrant Konzentration:	1,0000 pH 3,70 Salzsäure 0,0100 mol/l	Molekulargewicht: Ergebniseinheit 4: Letzte Standardisierung: Benutzer: Methode: (Manuell ein	100,000 ml 16.4.2018 Supervisor gegeben)
Elektrode Temperatur: Nullpunkt: Empfindlichkeit:	LL Aquatrode plus Pt1000 25 °C 7,00 +/- 0,25	letzte Kalibrierung: Benutzer: Puffer 1: Puffer 2:	16.4.2018 Supervisor 7,010 pH 4,000 pH
Reagenzzugabe:	(keine)	Rührzeit	10 sec
Blank: Rührgeschwindigkei	t am Rührer selbst: 6	Blankvolumen:	0,0000 ml

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
Alk	ALK45	TITRATOR	ALK45TIT3.1	-	1	Alk

1.03.2013

Datum:

Elementbestimmungsmethode:

ALKALINITÄT PH 4.5

Untersuchungsmethode	NG	BG	OMG
ALK1.1	(20 μmol/l)		
geeignet für:			

Boden	
Humus	
Pflanze	
Wasser	ALK1.1

Methodenverweise:

Norm	
HFA	C2.1.3 und D76.1.4.1-3
HFA-Code	Untersuchungsmethode: 82;-3;-3; Elementbestimmungsmethode: D;10;2;2;9;6;3

Prinzip der Methode/chem. Reaktionen:

Bei der Bestimmung der Säureneutralisierungskapazität (Alkalinität, Säurekapazität, m-Wert) wird der Säure-Base-Status der Probe erfasst. Für die Bestimmung der Säureneutralisierungskapazität gibt es verschiedene Methoden. Alle basieren jedoch auf der Titration der Probe mit einer schwachen Säure (0.01 M, 0.02 M HCl) zu einem definierten pH-Wert (4.5 oder 4.3), oder das Verfahren nach Gran, bei dem auf vier verschiedene pH-Werte titriert wird. In der Regel sind dies die pH-Werte 4.5,

4.3, 4.0, und 3.7. Die H⁺- Konzentrationen (mol) dieser pH-Werte werden gegen die verbrauchten Säureäquivalente aufgetragen und aus der Steigung und dem Achsenabschnitt die Alkalinität berechnet (s. AKALKGRANTIT1.1).

In dieser Methode wird die Titration der Probe zum Endpunkt pH 4.5 beschrieben. Der Säureverbrauch bis zu diesem pH-Wert wird in die Berechnung der Alkalinität nach Gran einbezogen. Die Säurekapazität oder Alkalinität ist bei 1/3 aller Proben (natürliche Wässer) ausschließlich durch die Kohlensäurespezies bestimmt:

Säurekapazität =
$$2CO_3^{2-} + HCO_3^{-} + OH^{-} - H^{+}$$
 [mmol/l]

Bei den verbleibenden 2/3 der Proben sind andere puffernde Substanzen (schwache organische (Huminsäuren), anorganische Säuren und Basen) vorhanden.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenparameter	Meesenburg, H. Untersuchungen zum Säure-
Kurzanleitung TIT5.1	Base-Status eines episodisch sauren Fliess-
	gewässers im Schwarzwald. Freiburger Geogra-
	phische Hefte 51, 1997
	Deutsche Einheitsverfahren zur Wasser-, Ab-
wasser-, u. Schlammuntersuchung, 2	
Höll k.: Wasser, 7. Aufl., 1986, S. 125	
	Standard Methods for the Examination of Water
	and Wastewater, 16.Ed., 1985, S. 269ff

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
Alk	ALK45	TITRATOR	ALK45TIT3.1	-	2	Alk

Störungen:

Durch Lagerung der Probe kann die Alkalinität/Säurekapazität durch mikrobielle und chemische Umsetzungen, sowie durch Aufnahme bzw. Abgabe von Kohlendioxid aus der Umgebungsluft verändert werden. Diese Prozesse werden durch höhere Temperaturen und Licht beschleunigt. Die Temperatur der Probe bei der Messung und die Ionenstärke der Probe haben ebenfalls einen Einfluss auf die Alkalinität.

Analysengeräte und Zubehör:

Automatisches pH/LF/Titrations-Messsystem der Fa. Metrohm, bestehend aus:

Titrator: 888 Titrando

Probengeber: 815 Robotic USB Sample Processor XL

pH-Meter: 888 Titrando, kombinierte pH Elektrode LL Aquatrode plus mit integriertem Pt1000

Temperaturfühler Flüssigelektrolyt: 3 M KCl, Keramikstiftdiaphragma, Fa. Metrohm

800 Dosino

Probengefäß: Sample Vial, LDPE 75ml

Software tiamo 2.3

Chemikalien:

Eichpufferlösungen

pH 4.01 Merck 1.99001, 7.00 Merck 1.99002, Einzelportionen in Beuteln, zertifiziert

Kontrollpufferlösungen

pH 4.00 Merck 1.09435, 7.00 Merck 1.09439 Fertiglösung 1 l Gebinde, (Kontrollstandards)

Elektrodenaufbewahrungslösung, Fa. Metrohm Best.-Nr. 6.2323.000

Elektrolytlösung 3M KCl-Lösung, oder gesättigte KCl-Lösung

Salzsäure: 0.01 M, Titrisolampulle, Fa. Merck

Natriumcarbonat: Na₂CO₃ (p.a.)

Lösungen:

I 0.01 M Salzsäure: Die Titrisolampulle in einen 1 l Kolben geben und mit H₂O demin. auf 1 l

auffüllen.

II 0.05 M Na₂CO₃ 2,65 g Na₂CO₃ wasserfrei in einen 500 ml Kolben geben und mit H₂O

demin. auf 500 ml auffüllen.

III 0,001 M Na₂CO₃ 2 ml von Lösung II mit H₂O demin. auf 100 ml auffüllen

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen
	offen	Geschlossen	
	(am Gerät)	im Kühlschrank	
I	1 Woche	2 Monate	/
II	1 Tag	8 Wochen	/
III	1 Tag	/	/

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
Alk	ALK45	TITRATOR	ALK45TIT3.1	•	3	Alk

Eichung/Standards:

Einzelbestimmung:

ALK40	ALK43	ALK45
7,00	7,00	7,00

4,01 | 4,01 | 4,01 |

Mehrelementbestimmung:

<u>Eichstandards</u>		
Puffer	PH 7,00	
Puffer	PH 4,01	

Kontrollstandards:		
Puffer	PH 4,0	
Puffer	PH 7,0	

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung TIT5.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Asymetriepotential/Nullpunkt und Steilheit
		/Empfindlichkeit) der Elektrode nach jeder Eichung
		kontrollieren. Empfindlichkeit: 90-103%, Nullpunkt
DU MENT	OTD 2.1	5,8-7,5
Bilanz NFV	QIB2.1	s. Methodenbeschreibung
Bilanz NFV mit ALK	QIBEU1.1	s. Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	s. Methodenbeschreibung
Kontrollstandard	QKSt1.1	Puffer pH 4.0, 7.0; Messung der Puffer 7,0 und 4,0
		nach der Eichung und am Ende der Messungen,
		erlaubte Abweichung +/- 0.02 s.o., bei höherer
		Abweichung wird die Eichung wiederholt, dann die
		Messung der 2 Kontrollpuffer wiederholt, und bei
		Messwerten der Kontrollpuffer innerhalb der Grenze
		+/- 0.02, die Proben vor der fehlerhaften Kontrolle bis
		zur letzten korrekten Kontrolle wiederholt.
		Na ₂ CO ₃ -Kontrollstandard 0,0001 M: zweimal nach der
		Eichung und einmal am Ende der Messung der Proben
		messen, bei 20 ml Lösung und Titration mit 0,01 M
		HCl sollte der Säureverbrauch 4.0 ± 0.1 ml betragen,
		bei fehlerhafter Kontrolle muss die Eichung bzw.
		müssen die Messungen der Proben wiederholt werden.
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Daten wie in TIT5.1 beschrieben abspeichern. Die Messwerte werden mit dem Datenverarbeitungsund Übertragungsprogramm Relaqs bearbeitet und ins LIMS-System übertragen. Anhang Nr. 1 für ALK ALK37 TITRATOR ALK45TIT3.1 Alk

Methodenparameter Titrator

Methodenparamete Methode: Min. Bürettengeschv Maximalvolumen: Richtung:	Alkalinität	Max. Bürettengeschw.: keine Vordosierung Autoskalierung	10,0%
Anzahl EPs: Probemenge in:	4 Volumen	Ergebniseinheit: Ergebnis als:	ml Sum.
Endpunkt 1: Wartezeit 1:	4,50 pH 10 Sekunden	Proportionalbande 1:	1,000 pH
Endpunkt 2: Wartezeit 2:	4,30 pH 5 Sekunden	Proportionalbande 2:	0,500 pH
Endpunkt 3: Wartezeit 3:	4,00 pH 5 Sekunden	Proportionalbande 3:	0,500 pH
Endpunkt 4: Wartezeit 4:	3,70 pH 5 Sekunden	Proportionalbande 4:	0,5000 pH
Faktor 1: Ergebnisname 1:	1,0000 pH 4,50	Molekulargewicht: Ergebniseinheit 1:	100,000 ml
Faktor 2: Ergebnisname 2:	1,0000 pH 4,30	Molekulargewicht: Ergebniseinheit 2:	100,000 ml
Faktor 3: Ergebnisname 3:	1,0000 pH 4,00	Molekulargewicht: Ergebniseinheit 3:	100,000 ml
Faktor 4: Ergebnisname 4: Titrant Konzentration:	1,0000 pH 3,70 Salzsäure 0,0100 mol/l	Molekulargewicht: Ergebniseinheit 4: Letzte Standardisierung: Benutzer: Methode: (Manuell ein	100,000 ml 16.4.2018 Supervisor (gegeben)
Elektrode Temperatur: Nullpunkt: Empfindlichkeit:	LL Aquatrode plus Pt1000 25 °C 7,00 +/- 0,25	letzte Kalibrierung: Benutzer: Puffer 1: Puffer 2:	16.4.2018 Supervisor 7,010 pH 4,000 pH
Reagenzzugabe:	(keine)	Rührzeit	10 sec
Blank: Rührgeschwindigkei	t am Rührer selbst: 6	Blankvolumen:	0,0000 ml

Element	Form	Gerät	Methoden-Nr.	Seite
Ba	Bages	ICP(sim)	BaBagesICP19.2	1

Elementbestimmungsmethode:

Datum: 01.01.2019 **Ba**

BARIUM

Untersuchungsmethode	NG	BG	OMG
OAKW2.1, OAKWE3.1	0,0002	0,0006	6

geeignet für:

Boden	OAKW2.1, OAKWEG3.1
Humus	OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D4.1.6.2
HFA-Code	D;4;1;2;1;-1;1 (455.403 nm radial)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen auf die Elementkonzentrationen in der Probelösung geschlossen werden. Plasmabetrachtung erfolgt radial. Um eine möglichst hohe Messempfindlichkeit zu erreichen, wird für den Konzentrationsbereich bis 20 mg/l eine axiale Plasmabetrachtung gewählt. Oberhalb dieses Bereichs wird das Plasma radial betrachtet.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Zur Vermeidung von Driften, zur Verbesserung der Präzision der Messung, sowie zur Eliminierung von Störungen bei der Zerstäubung der Proben durch unterschiedliche Viskosität, unterschiedliche Salz- und Säurekonzentrationen sowie durch Plasmaladungseffekte, wird bei der Messung ein Interner Standards verwendet.

Anhang:	<u>Lit.:</u>
Sammelanhang S33.1: Geräteparameter und Standardzusammensetzung	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP6.1	Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987

Analysengeräte und Zubehör:

iCAP 6500 der Fa. Thermo Fisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 2 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac mit Probenrack für 60 Positionen für Hauptelemente, bzw. 21

Positionen für Schwermetalle

PP-Röhrchen Natur, 12 ml, Fa. Greiner bio-one

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Laminar Flow Box FBS der Fa. Spetec, für Probengeber (zur Verhinderung von Staubeintrag in die Probengefäße)

Rechner mit Software OTEGRA

5000 ml Varipette, sowie 250 µl, 500 µl und 1000 µl Pipetten der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Mischfitting (Fa. Thermo Fisher) zur zur gleichmässigen Vermischung von Probelösung und internem Standard

Dilutor der Fa. Hamilton

Chemikalien:

Salzsäure (HCl), 25 %, p.a.

Salpetersäure (HNO₃), 65 %, p.a.

Y, AAS-Standard Yttrium 1 g/l Y (Fa B. Kraft)

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Interner Standard: 10 ml Yttriumlösung werden in einen 1 l Glaskolben gegeben, mit 30 ml

65 %. HNO3 p.a. versetzt und mit H2O demin. bis zur Eichmarke

aufgefüllt.

Eichung/Standards:

Stammlösungen:

Ba: ICP-Standard (Fa B. Kraft) => 1 g/l Ba

As, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Im folgenden wird nur die Herstellung der Ba-Standardlösungen beschrieben. Die Zugaben aller anderen Elemente, die sich auch in den beschriebenen Lösungen befinden, werden im Sammelanhang S33.1 beschrieben

Standardlösung KW 2: In einen 250 ml PFA-Kolben werden 1 ml des 1 g/l Ba enthaltenden

Ba

Element	Form	Gerät	Methoden-Nr.	Seite
Ba	Bages	ICP(sim)	BaBagesICP19.2	3

ICP-Standards, sowie die entsprechenden Mengen der anderen Elemente Ba gegeben (siehe Sammelanhang S33.1),), mit 7,5 ml der 65 %igen HNO3 p.a. versetzt und mit H2O bidemin. aufgefüllt.

=> 100 μg/l Cd, 200 μg/l Co, Cr, Cu und Ni, 800 μg/l Zn, 2000 μg/l Pb, 1 mg/l K, 2 mg/l Mg, 4 mg/l Ba, 10 mg/l Mn, Na und P, 20 mg/l Al und Fe, 50 mg/l Ca.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ba auch andere Elemente enthalten (siehe Sammelanhang S33.1), verwendet:

<u>Standards</u>		
Blank	0,0 mg/l Ba	
KW 1	0,0 mg/l Ba	
KW 2	4,0 mg/l Ba	
KW 3	0,0 mg/l Ba	
KW 4	0,0 mg/l Ba	
KW 5	0,0 mg/l Ba	

	Kontrollstandard
K24	0,0 mg/l Ba

-	
Methode:	OAKW2.1Boden
	OAKW2.1Humus
	OAKWEG3.1Boden
Element:	Ba
Wellenlänge:	455.403
Plasma-	radial
beobachtung:	
Messbereich	BG – OMG
[mg/l]:	
Standards:	Blank
	KW 2
Bemerkungen:	Fensterweite: 20
	Pixelbreite: 3
	Pixelhöhe: 2
	Untergrund-
	Korrektur:
	Pos. links: fixed
	Pos. rechts: fixed

Element	Form	Gerät	Methoden-Nr.	Seite
Ba	Bages	ICP(sim)	BaBagesICP19.2	4

Zur Herstellung der Blank-Lösung werden 7,5 ml der 65 %igen HNO3 p.a. in einen 250 ml PFA- **Ba** Kolben gegeben und mit H2O bidemin. aufgefüllt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP6.1 beschrieben. Die Geräteparameter sind im Sammelanhang S33.1 zusammengestellt. Für die Bestimmung der Hauptelemente werden alle Proben mit dem Dilutor in PP-Röhrchen, (12 ml, Fa. Greiner Bio-One) 1:5 vorverdünnt. Proben die mit der Untersuchungsmethode OAKWEG3.1 aufgeschlossen wurden, werden mit dem Dilutor 1:10 vorverdünnt. Für der Bestimmung von Schwermetallen werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 24 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %.
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		erlaubte Abweichung 10 %

Auswertung/Datendokumentation:

Die gemessenen Ba-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Ba	Bages	ICP(sim)	BaBagesICP21.1	1

lementbestimmungsmethode:

01.05.2014 **Ba** Datum:

BARIUM

Untersuchungsmethode NG BG				
AKT2.1		0,03	0,100	100
geeignet für				
Boden	AKT2.1			
Humus		•	•	

Methodenverweise:

Pflanze Wasser

Norm	n Anlehnung an DIN EN ISO 11885		
HFA	D4.1.5.2		
HFA-Code	D;4;1;2;-1;-1;7		

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Geräteparameter Kurzanleitung ICP5.1	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Ba	Bages	ICP(sim)	BaBagesICP21.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber In den Zerstäubergasstrom eingebauter Argonbefeuchter Standard-Injektorrohr 2 mm, für stark salzhaltige Lösungen Probengeber ASX-520 der Fa. Cetac Rechner mit Software iTeva Dilutor der Fa. Hamilton Varipette 100-1000 μ l, 50 ml Messzylinder 250 ml-Messkolben aus Glas

Chemikalien:

keine

Lösungen:

keine

Eichung/Standards:

Stammlösungen:

Ba: Standard (Fa B. Kraft) \Rightarrow 5 g/l Ba

Standardlösungen:

Standardlösung Ba 20: In einen 250 ml-Glaskolben werden 1 ml der Ba-Stammlösung und 25 ml

der für die Perkolation verwendeten 0,1 molaren MgCl₂-Lösung gegeben.

Der Kolben wird mit H₂O bidemin. bis zur Eichmarke aufgefüllt.

=>20 mg/l Ba

Standardlösung Ba 50: In einen 250 ml-Glaskolben werden 2,5 ml der Ba-Stammlösung und 25

ml der für die Perkolation verwendeten 0,1 molaren MgCl₂-Lösung gegeben. Der Kolben wird mit H₂O bidemin. bis zur Eichmarke

aufgefüllt.

=>50 mg/l Ba

Standardlösung Ba 100: In einen 250 ml-Glaskolben werden 5 ml der Ba-Stammlösung und 25 ml

der für die Perkolation verwendeten 0,1 molaren MgCl₂-Lösung gegeben.

Der Kolben wird mit H₂O bidemin. bis zur Eichmarke aufgefüllt.

=> 100 mg/l Ba

Element	Form	Gerät	Methoden-Nr.	Seite
Ba	Bages	ICP(sim)	BaBagesICP21.1	3

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen verwendet:

	<u>Standards</u>
Ba 0	0,0 mg/l Ba
Ba 20	20,0 mg/l Ba
Ba 50	50,0 mg/l Ba
Ba 100	100,0 mg/l Ba

	Kontrollstandard
K6	40,0 mg/l Ba

Methode:	AKT2.1
Element:	Ba
Wellenlänge:	234.758
Messbereich[mg/l]:	BG – OMG
Standards:	Ba 0
	Ba 20
	Ba 50
	Ba 100
Bemerkungen:	Fensterweite: 19
	Pixelbreite: 3
	Pixelhöhe: 2
	Untergrund-
	Korrektur:
	Pos. links: 1
	Pixelanzahl: 2
	Pos. rechts: 18
	Pixelanzahl: 2

Der Blank, die Standards und der Kontrollstandard werden mit der 1:10 verdünnten 0,1 molaren MgCl₂-Lösung in 100 ml Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S25.1 zusammengestellt.

Alle Proben werden vor dem Messen 1:10 verdünnt.

Element	Form	Gerät	Methoden-Nr.	Seite
Ba	Bages	ICP(sim)	BaBagesICP21.1	4

Qualitätskontrolle:

Ba

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K6; Messung nach der Eichung, alle 24
		Proben und nach jeder Eichungswiederholung; erlaubte Abweichung 5 %
**** 1 1 1	07777.61.0	E
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standard BZE-THUE; erlaubte Abweichung 10 %
		- 15 %

Auswertung/Datendokumentation:

Die gemessenen Ba-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Ba Bages ICP(sim) BaBagesICP21.1

Datum:

01. 05. 2014

Ba

Geräteparameter für ICP iCAP 7400 Radial (Thermo Fisher) für die Methoden AKT2.1Boden

ANALYSEN-VOREINSTELLUNGEN

Analysen-Voreinstellungen

4

#Mess.: 4
Verzögerungszeit: 0

0,0 Sekunden 75 Sekunden

Probenspülzeit: Analysenmodus

Normal

Analysenmodus Probenzufuhr Normai Zerstäuber

Quelle Proben: Analyse Maximale Niedrige

Niedriger WL-Bereich 5

15

Integrationszeit (Sek)
Kalibrationsmodus

Probeoptionen

Konzentration

atelli Eramo:

Hoher WL-Bereich:

Ja

Aufnahmeoptionen für Full Intelli-Frame:
Frames Max Integration

Max Integrationszeit (Sek):

30

WL-Bereich:

Vis

Auto-Inkrement der Probenamen:

Ja

Nutze Eingabe der Probenmasse:

Nein

L/min

Plasmaeinstellungen

Zerstäuberpumpe Spülpumprate (U/min): 70

Analysenpumprate (U/min): 70

Pumpenrelaxationszeit (Sek): 0
Pumpenschlauch-Typ: Tygon Orange/White

HF-Leistung: 1200 w

Zerstäubergasstrom: 0,50

Hilfsgas: 0,5 L/min

0

für

Ba Bages

ICP(sim)

REPORT SEQUENZAUTOMATION

Ba

Report Sequenzautomation

Initialisierungsaktionen

Operation Fehleraktionen

Kalibrieren Keine K6 Keine

Am Ende der 'Initialisierungsaktionen' Sequenz bei jedem QC-Fehler anhalten? Nein

Kontinuierliche Aktionen

Operation Fehleraktionen Frequenz

K6 Kalibrieren, Re-Check QC 18

Abschlußaktionen

Operation Fehleraktionen

Max Versuche Neumess, Interner Std.

K6 Keine

Am Ende der 'Abschlußaktionen' Daten bei jedem QC-Fehler ungültig erklären. Nein

Globale QC-Eigenschaften

Zahl mißlungener Linien für QC-Versagen: 1 Maximale QC/Std-Zugriffe je Probenposition: 8 Nur Linien mit QC-Fehler neumessen?: Ja Alarmton beim ersten QC-Fehler?: Nein Alarmton beim zweiten QC-Fehler?: Nein Extra Spülung vor dem QC-Check Ja Max Versuche Rekalibr.-Wiederh. 1 Max Versuche QC-Wiederh. 1 Max Versuche Kalibr.-Wiederh.

Spülaktionen

Spülzeit: 1 Sekunden

Anhang Nr. 1 für Ba Bages ICP(sim) BaBagesICP21.1

SUBARRAY ELEMENTREPORT

Element, Wellenlänge und Ordnung	Cubarrau	Cubomov	Linterauchun	Untersuchun	l	Jntergrund -	Links	Unt		echts
		Höhe	Jubunuy : Ontoloudium	Untersuchun gsbreite	?	Position	Breite	?	Position	Breit e
Ba 234,758 {143}	19	2	9/10	2	M	1	2	M	18	2

STANDARDS-ELEMENTREPORT

Element,		matture *4 - 2 10 / = (00000 * 7 4 0 000 \$50 000		Kalibratio	nsstand	dards	PARTICULAR CAN CARAC	
Wellenlänge und	Blank		Ba 20		Ba 50		Ba 100	
Ordnung	?	Konz.	?	Konz.	?	Konz.	?	Konz.
Ba 234,758 {143}	N ()	XI 2	20	N:	50	X	100

Ba

Anhang Nr. 1 für Ba Bages ICP(sim) BaBagesICP21.1

Ba

Element	Form	Gerät	Methoden-Nr.	Seite
Ba	Bages	ICP(sim)	BaBagesICP22.1	1

Elementbestimmungsmethode:

01.08.2014 **Ba** Datum:

BARIUM

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1	0,0009	0,0028	6

geeignet für:

Boden	OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1
Humus	OAKW1.1, OAKW1.2, OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D4.1.6.2
HFA-Code	D;4;1;2;-1;-1;0;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S26.1: Geräteparameter und Standardzusammen-	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002
setzung Kurzanleitung ICP5.1	Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987

Analysengeräte und Zubehör:

Ba

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Ba: ICP-Standard (Fa B. Kraft) => 1 g/l Ba

As, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ba auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

Ba

Element	Form	Gerät	Methoden-Nr.	Seite
Ba	Bages	ICP(sim)	BaBagesICP22.1	3

	<u>Standards</u>
KW 0	0,0 mg/l Ba
KW 1	0,0 mg/l Ba
KW 2	4,0 mg/l Ba
KW 3	0,0 mg/l Ba
KW 4	0,0 mg/l Ba
KW 5	0,0 mg/l Ba
KW 6	0,0 mg/l Ba
KW 7	0,0 mg/l Ba
KW 8	0,0 mg/l Ba

	Kontrollstandard
K24	0,0 mg/l Ba

	7
Methode:	OAKW2.1Boden
	OAKWEG2.1Boden
	OAKWEG2.2Boden
	OAKWEG3.1Boden
	OAKW1.1Humus
	OAKW1.2Humus
	OAKW2.1Humus
Element:	Ba
Wellenlänge:	233.312
Messbereich	BG – OMG
[mg/l]:	
Standards:	Blank
	KW 2
Bemerkungen:	Fensterweite: 20
_	Pixelbreite: 3
	Pixelhöhe: 5
	Untergrund-
	Korrektur:
	Pos. links: 1
	Pixelanzahl: 2
	Pos. rechts: 19
	Pixelanzahl: 2
	Pixelanzahl: 2

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit $\rm H_2O$ bidemin. aufgefüllt.

Element	Form	Gerät	Methoden-Nr.	Seite
Ba	Bages	ICP(sim)	BaBagesICP22.1	4

<u>Durchführung:</u>

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle Methode Durch		Durchführung
Kontrollstandard	QKSt.1.1	keine
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	keine

Auswertung/Datendokumentation:

Die gemessenen Ba-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Elementbestimmungsmethode:

KOHLENSTOFF anorganisch

UntersuchungsmethodeNGBGOMGANULLIC, EXT1:2H2O1.1, GBL 1.10,0620,205100

geeignet für:

Boden	GBL 1.1, EXT1:2H2O1.1
Humus	
Pflanze	
Wasser	ANULLIC

Methodenverweise:

Norm	
HFA	D31.3.4.3
HFA-Code	D:8;2;1;2;-1;-3

Prinzip der Methode/chem. Reaktionen:

Der anorganische Kohlenstoffanteil einer Probe wird durch Zusatz von Säure (Phosphorsäure) in Kohlendioxid umgewandelt. Das Kohlendioxid wird durch den Trägergasstrom (synthetische Luft: 20 % Sauerstoff, 80 %Stickstoff) aus der Probe ausgetrieben. Die Kohlendioxidkonzentration wird durch Messung der IR-Absorption ermittelt.

$$CO_3^{2-} + 2H^+ \rightarrow CO_2 \uparrow + H_2O$$

 $HCO_3^- + H^+ \rightarrow CO_2 \uparrow + H_2O$

Die Probe wird in das mit Phosphorsäure gefüllte Reaktionsgefäß injiziert, aus dem das entstehende Kohlendioxid durch den Trägergasstrom ausgetrieben wird. Anschließend wird durch Temperaturabsenkung das Wasser entfernt, und Halogene im mit einem Cu-Gitter gefüllten Absorbergefäss gebunden, da sie die Goldbeschichtung der Messzelle zerstören können. Danach durchströmt das Messgas die Messzelle.

Das Messprinzip beruht auf der Absorption von Infrarotlicht durch Moleküle, die aus verschiedenen Atomen bestehen; einatomige Gase absorbieren Infrarotstrahlung nicht. Aus diesem Grund wird Wasser vor der Messung durch Ausfrieren entfernt. Die im Trägergas enthaltenen Sauerstoff- und Stickstoffmoleküle absorbieren als einatomige Gase keine IR-Strahlung. Durch die Absorption von Infrarotstrahlung kommt es zu einer Erwärmung des Messgases und dadurch zu einem Druckanstieg in der Messkammer gegenüber der Referenzkammer, in der sich nur Trägergas befindet.

In Messkammer und Referenzkammer befindet sich eine Membran, die durch den Druckanstieg verformt wird. Hieraus resultiert ein elektrisches Signal, das proportional zur Kohlendioxidkonzentration ist.

Gemessen wird die Peakfläche, wie bei der Bestimmung von organischem Kohlenstoff.

Anhang:	<u>Lit.:</u>
Kurzanleitung TOC5.1	Bedienungsanleitung für Formacs HT, Fa. Skalar, 2018

C

01.07.2017

Datum:

Element	Form	Gerät	Methoden-Nr.	Seite
C	Canorg	TOC-Skalar	CCanorgTOC5.1	2

Störungen:

Leichtflüchtige organische Verbindungen täuschen eine höhere Kohlendioxidkonzentration und damit eine höhere Konzentration an anorganischem Kohlenstoff vor. Halogene zerstören die Messzelle und werden deshalb im Halogenabsorbergefäss gebunden.

Analysengeräte und Zubehör:

TOC-Analysator Formacs HT mit Probengeber, Fa. Skalar Probenteller mit 80 Positionen, Fa. Skalar Reagenzgläser 8 ml aus Glas

Chemikalien:

Halogenabsorber (Quarzwolle (Fa. Skalar, Best.Nr. 2CA10080) Phosphorsäure (85 %) (p.a.) Quarzwolle (Fa. Skalar, Best.Nr. 2CA10359) Synthetische Luft

Lösungen:

- 1. Konzentrierte Lösungen: -
- 2. Reagenzlösungen:

Phosphorsäure 4 %: 47 ml 85 %ige Phosphorsäure wird mit H₂O demin. auf 1000 ml aufgefüllt.

Eichung/Standards:

Stammlösungen:

TIC-Stammlösung (Fa. Seraltec): 1000 mg/l C, Na₂CO₃/NaHCO₃ (stabilisiert)

Haltbarkeit:

Die Stammlösung ist ca. 6 Wochen geschlossen im Kühlschrank haltbar.

Die Standards müssen täglich frisch angesetzt werden!

Einzelbestimmung:

Mehrelementbestimmung:

1. Standardreihe	Einspritzvol.
IC	[µl]
1,0 mg/l C	200
2,0 mg/l C	200
3,0 mg/l C	200
4,0 mg/l C	200
5,0 mg/l C	200
6,0 mg/l C	200
7,0 mg/l C	200
8,0 mg/l C	200
9,0 mg/l C	200
10,0 mg/l C	200

2. Standardreihe	Einspritzvol.
IC	[µl]
10,0 mg/l C	200
20,0 mg/l C	200
30,0 mg/l C	200
40,0 mg/l C	200
50,0 mg/l C	200
60,0 mg/l C	200
70,0 mg/l C	200
80,0 mg/l C	200
90,0 mg/l C	200
100,0 mg/l C	200

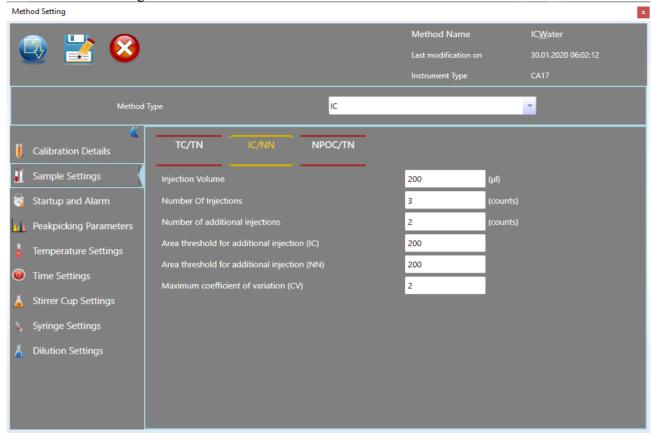
<u>Kontrollstandards</u>				
IC1 5,0 mg/l C				
IC2	50,0 mg/l C			

<u>Durchführung:</u> siehe Gerätekurzanleitung TOC5.1

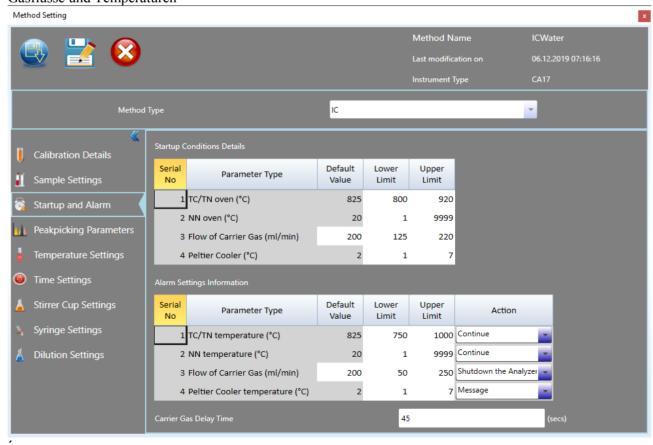
Element	Form	Gerät	Methoden-Nr.	Seite
C	Canorg	TOC-Skalar	CCanorgTOC5.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

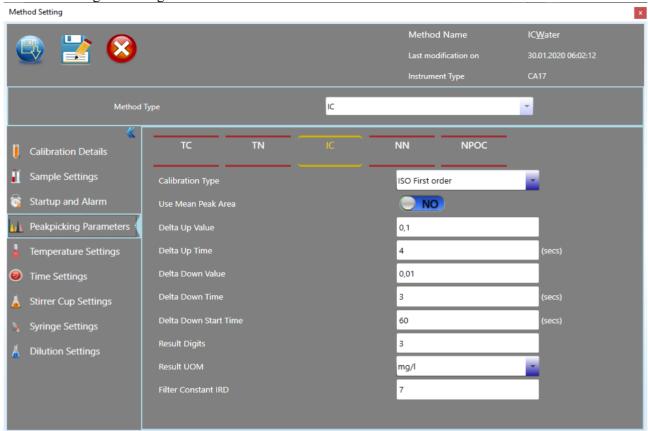

Qualitätskontrolle	Methode	Durchführung	
Eichkurvenkontrolle	QEK1.2	Die Gerätesoftware passt den Eichkurvenverlauf opti-	
		mal an, indem sie ab 3 Eichpunkten ein Polynom 1ter	
		(linear) oder 2ter (quadratisch) Ordnung durch die	
		Eichpunkte legt. Berechnet werden Verfahrens-	
		standardabweichung, Sollwert: ≤ 3 % bei Standardrei-	
		he 1, ≤ 1% bei Standardreihe 2. Die Eichkurve sollte	
		linear sein.	
Kontrollstandard	QKSt.1.1	Vor jedem Probenblock und nach jedem Probenblock	
		von maximal 20 Proben werden ein IC1 und ein IC2-	
		Standard gemessen. Die erlaubte Abweichung beträgt	
		bei IC1 1 und bei IC2 5 %. Liegt der Messwert eines	
		Standards außerhalb des erlaubten Bereichs, so wird	
		die Messung aller Proben die sich zwischen dem	
		falschen Standard und dem nächsten richtigen Standard	
		befinden erneut gemessen. Es werden nur die Proben	
		für die Nachmessung markiert deren Messwert im	
		Gültigkeitsbereich des fehlerhaften Standards liegen.	
		Dieser ist für IC1 0-10 mg/l C und für IC2 10-100 mg/l	
		C.	
Mehrfachmessung	QMM1.1	3-fach-Messung; das Gerät führt einen Test zur	
		Ermittlung von Ausreißern durch. Wurde kein	
		Ausreißer gefunden, wird die prozentuale Abweichung	
		vom Mittelwert berechnet, die maximal 2 % sein darf.	
		Wurde ein Ausreißer gefunden, werden bis zu 2	
		zusätzliche Messungen durchgeführt. Nach	
		Eliminierung der Ausreißer wird der Mittelwert und	
		der Variationskoeffizient berechnet, der ≤2 % sein	
Windows along care again	OWM1 2	sollte.	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Ionen/Leitfähigkeitsbilanz NFV	QIB2.1	Siehe Methodenbeschreibung	
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung	
Leitfähigkeitsbilanz EU	QLFEU	Siehe Methodenbeschreibung	
	_ `		
Kohlenstoff-Bilanz	QCB1.1	Siehe Methodenbeschreibung	

Auswertung/Datendokumentation:

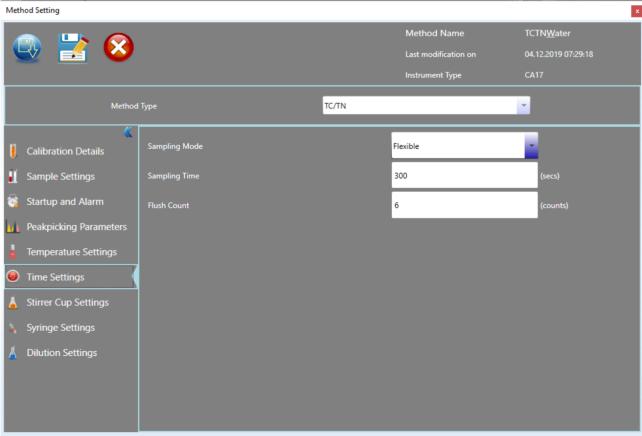

Die gemessenen IC-Konzentrationen werden in die entsprechenden Datenlisten eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm Relaqs bearbeitet.

Geräteeinstellungen:

Probenahmeeinstellungen

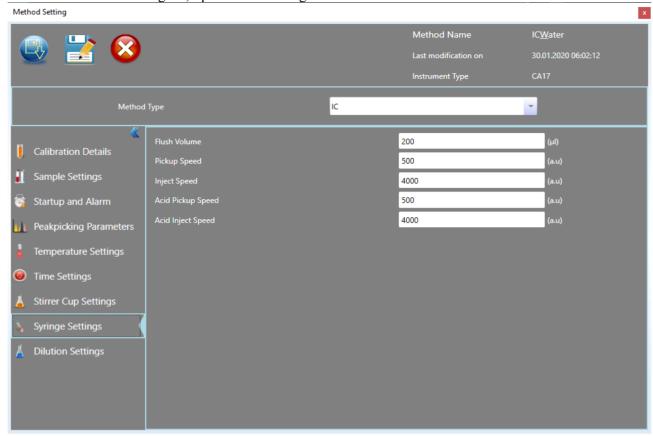


Gasflüsse und Temperaturen

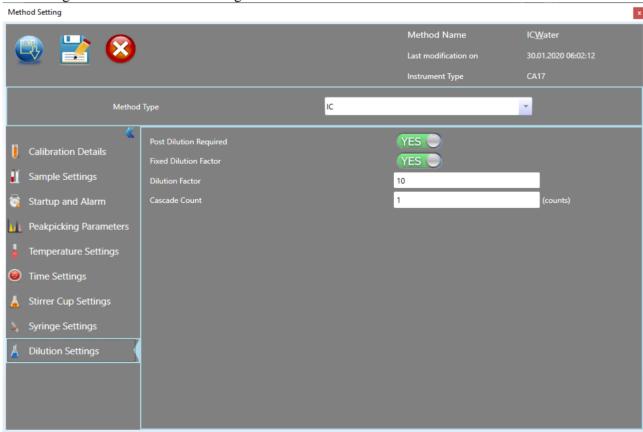


Anhang Nr. 1 für C Canorg TOC-Skalar CCanorgTOC5.1

Peakauswertungseintellungen



Zeiteinstellungen für die Probenaufnahme



Anhang Nr. 1 für C Canorg TOC-Skalar CCanorgTOC5.1

Probenaufnahme und -abgabe, Spritzeneinstellungen

Einstellungen für die Probenverdünnung

Anhang Nr. 1 für C Canorg TOC-Skalar CCanorgTOC5.1

_	Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Ī	C	CO ₂	GC	CCO2GC2.1	-	1

Elementbestimmungsmethode:

KOHLENDIOXID

Datum: 01.06.2015

Untersuchungsmethode			BG	OMG		
CO2ATM1.	1, CO2ATM2.1			4000		
geeignet für:						
Boden	CO2ATM1.1, CO2ATM2.1					
Humus	CO2ATM1.1, CO2ATM2.1					
Pflanze						
Wasser						
Methodenvery	Methodenverweise:					
Norm	-					
HFA	-					
HFA-Code	D;17;-3;-3;-3;-3					

Prinzip der Methode/chem. Reaktionen:

Bei der Gaschromatographie werden die zu analysierenden Gemische gasförmiger Substanzen auf eine Trennsäule aufgebracht, dort getrennt und nach dem Verlassen der Säule einzeln detektiert. Die Trennung der Gase erfolgt durch die unterschiedlich starke Adsorption der Gase an eine stationäre Phase, die in diesem Fall aus quervernetztem porösem organischem Polymer (HayeSep) besteht. Als mobile Phase zum Transport der Gase über die Säule dient hier Helium. Da die Adsorption stark temperaturabhängig ist, muss die Trennsäule gut thermostatisiert sein. Zur Detektion am Ende der Säule wird ein Wärmeleitfähigkeitsdetektor (WLD, engl. TCD) verwendet. Der WLD besteht aus einer Wheastonschen Brückenschaltung, in der die erhitzten Wiederstände je nach Wärmeleitfähigkeit der durchlaufenden Gase mehr oder weniger stark abkühlen. Die Stofferkennung geschieht über die Retentionszeit (Zeit von der Einspritzung bis zum Retentionsmaximum) der Gase; die quantitative Erfassung erfolgt über die Flächenermittlung des Meßpeaks.

Störungen:

Bei wasserdampfhaltigen Proben kann es zu sehr breiten, verschleppten Wasserpeaks kommen, die die Integration der Meßpeaks stören.

Anhang:	<u>Lit.:</u>
Anhang1: Methodenparameter	Mikes: Laboratory Handbook of Chomato-
Anhang 2: Chromatogramm	graphic and allied Methods, Chichester, 1979
Kurzanleitung GC2.1	Schomburg: Gaschromatographie, Weinheim,
	1986

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
C	CO ₂	GC	CCO2GC2.1	-	2

Analysengeräte und Zubehör:

Gaschromatograph GC Trace 1310 der Fa. Thermo Scientific mit Wärmeleitfähigkeitsdetektor Chromatographie-Software Chromeleon 7

GC-Säule HayeSep Q der Firma Restek (Bestell-Nummer 19017) bis 275 Grad, 2 m Länge und 1.00mm ID

Probenschleife 1 ml

Probenspritze 10 ml

Chemikalien:

Lösungen:

Eichung/Standards:

Fa. Westfalen in Gasflaschen mit 4 unterschiedlichen CO₂-Konzentrationen. (Lieferzeit mind. 5 Wochen!)

Haltbarkeit:

Einzelbestimmung:

	<u>Standardreihe</u>
S1:	ca. 500 ppm CO2
S2:	ca. 1000 ppm CO2
S3:	ca. 2000 ppm CO2
S4:	ca. 4000 ppm CO2

Kontrollstandards

K2: ca. 500 ppm CO2

Ele	ment	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
	C	CO ₂	GC	CCO2GC2.1	-	3

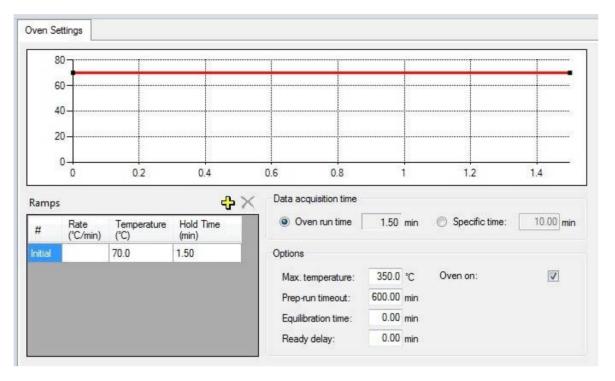
Durchführung:

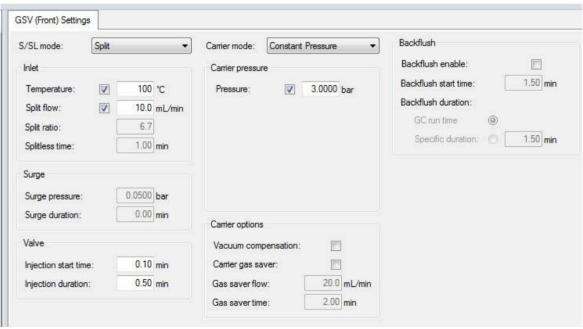
Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung GC2.1 beschrieben. Es werden 10 ml Probe zur Füllung der Probenschleife eingespritzt.

Die Methodenparameter des Gaschromatographen und des Integrationsprogramms sind im Anhang 1 zusammengestellt. Ein Beispiel für ein Chromatogramm ist im Anhang 2 dargestellt.

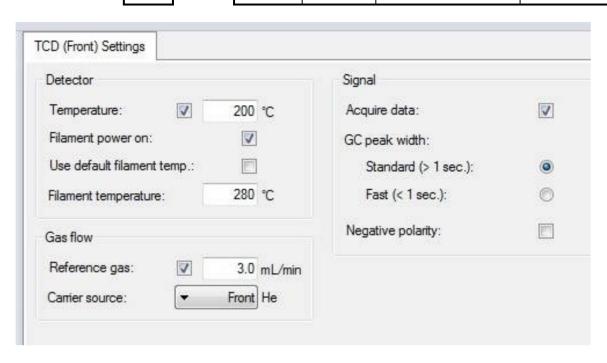
Qualitätskontrolle:

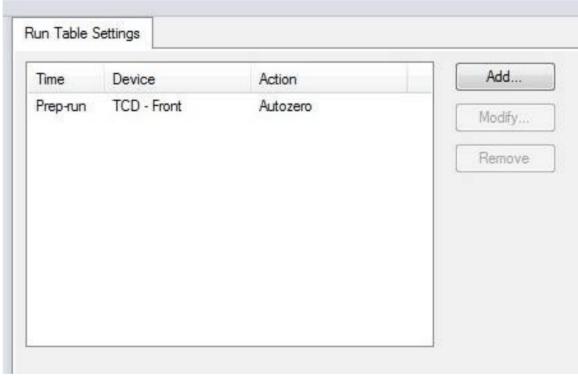
Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

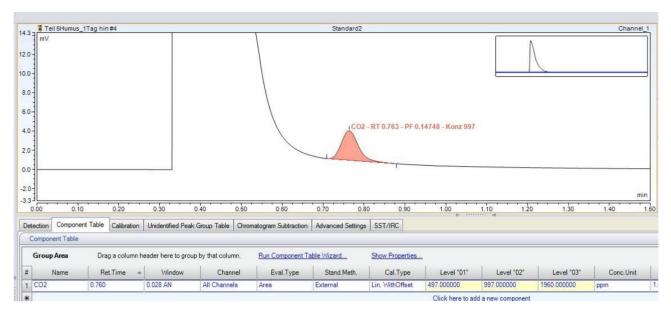

Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.1	lineare Eichkurve; Bestimmtheitsmaß (r² [%] mind.
		99,990
Kontrollstandard	QKSt.1.1	K2; Messung nach der Eichung und alle 15 Proben;
		erlaubte Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

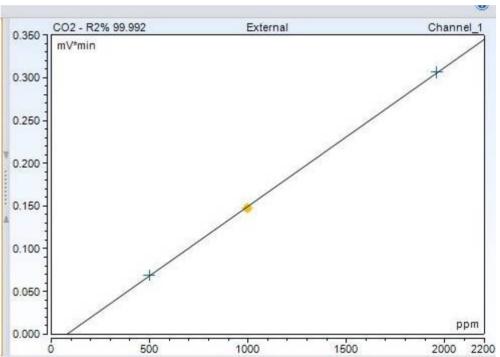

Auswertung/Datendokumentation:

Die gemessenen CO₂-Konzentrationen werden in die entsprechenden Datenlisten eingetragen.


Anhang Nr. 1 für C CO₂ GC CCO₂GC2.1


Methodenparameter


Anhang Nr. 1 für C CO₂ GC CCO₂GC2.1



Anhang Nr. 2 für C CO₂ GC CCO₂GC2.1

Chromatogramm und Standardreihe

Element	Form	Gerät	Methoden-Nr.	Seite
C	CO3	Eltra C-Analysator	CCO3C2.1	1

Elementbestimmungsmethode:

CARBONAT

UntersuchungsmethodeNG BG OMGATNULLCO30,003 0,010

geeignet für:

<u> </u>	
Boden	ATNULLCO3
Humus	
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN ISO 10694
HFA	D31.3.1.3
HFA-Code	D;8;1;1;1;-1;-1;

Prinzip der Methode/chem. Reaktionen:

Zur Bestimmung des karbonatisch gebundenen Kohlenstoffs wird die Probe in Porzellanschiffchen eingewogen und im Sauerstoffstrom verbrannt. Dabei wird beginnend mit 400 °C und dann nach weiterer Aufheizung auf 570 °C der organische Kohlenstoffanteil zu Kohlendioxid umgesetzt:

$$C_a H_b N_c O_d + y O_2 \rightarrow a CO_2 + \frac{1}{2} b H_2 O + \frac{1}{2} e N_2 + f NO_x$$

Der verbleibende karbonatische Kohlenstoffanteil wird durch Erhöhung der Temperatur auf 950 °C zersetzt:

$$CaCO_3 \rightarrow CO_2 + CaO$$

Diese Zersetzung erfolgt unter Stickstoff, damit während der Zersetzung kein weiterer, evtl. unverbrannt gebliebener organischer Kohlenstoff verbrannt wird. Zur nachträglichen Verbrennung des organischen Restkohlenstoffs wird zum Schluss noch mal Sauerstoff zu geführt.

Das bei der Verbrennung und der Zersetzung entstehende Kohlendioxid wird je nach Konzentration in zwei unterschiedlich langen hintereinander geschalteten nichtdispersiven für Kohlendioxid spezifischen Infrarotmeßzellen detektiert.

Da organische Substanz neben C auch H, O, N, S und Halogene enthält, entstehen neben Kohlendioxid auch Stickoxide, Wasser, flüchtige Halogen- und Schwefelverbindungen. Hinter dem Quarzglas-Verbrennungsrohr befinden sich mit MgClO₄ gefüllte Glasrohre, die das Wasser aus dem Gasstrom entfernen. Da Kohlendioxid Infrarotlicht spezifisch absorbiert, werden andere sich im Gasstrom befindende Gase nicht mitgemessen.

Störungen:

Bei Bodenproben mit hohen C_{org}-Gehalten kann es wie bei Humusproben vermutlich zur Bildung teerartiger Substanzen kommen, die bei Temperaturen von 590 °C noch nicht vollständig verbrannt sind. Dadurch läuft der Peak für org. C teilweise in den Peak für Carbonat-C hinein. Der aufsitzende Carbonat-Peak muss daann mittels einer Handintegrationssoftware wie in der Methode CCO3C3.1 beschrieben ausgewertet werden.

Anhang:	<u>Lit.:</u>
Gerätekurzanleitung C2.1	Bedienungsanleitung Eltra CW Multiphase

C

01.1.2016

Datum:

Element	Form	Gerät	Methoden-Nr.	Seite	
C	CO3	Eltra C-Analysator	CCO3C2.1	2	

Analysengeräte und Zubehör:

C-Analysator CW Multiphase, Fa. Eltra Porzellanschiffchen von Eltra Analysenwaage Sartorius Typ Practum 124 1S Tiegelzange

Chemikalien:

Stickstoff 4.0 Sauerstoff 4.5 Magnesiumperchlorat MgClO_{4,} granuliert (p.a.) Natriumhydroxid NaOH, granuliert Quarzwolle

Lösungen:

keine

Eichung/Standards:

Eichsubstanz:

CaCO₃ C-Gehalt: 12 %

Eichung:

Das Gerät hat eine Grundeichung, die täglich über einen Tageskorrekturfaktor angepasst werden muss. Die Bestimmung des Tageskorrekturfaktors wird wie in der Gerätekurzanleitung C2.1 unter Punkt 2 beschrieben durchgeführt.

Durchführung:

s. Gerätekurzanleitung C2.1

Ele	ment	Form	Gerät	Methoden-Nr.	Seite
	C	CO3	Eltra C-Analysator	CCO3C2.1	3

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Standard-Material	QStM.1.2	CaCO ₃ erlaubte Abweichung 5 % vom rechnerischen
		Wert
		BCO3 (Boden) 0,95 % C, erlaubte Abweichung 10 %
Kohlenstoff-Bilanz	QCB1.2	Siehe Methodenbeschreibung
Festproben		
Wiederholungsproben	QWP1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die gemessenen C-CO3-Gehalte in % werden in die entsprechenden Datenlisten eingetragen und ins LIMS übertragen.

Element	Form	Gerät	Methoden-Nr.	Seite
C	CO3	Eltra C-Analysator	CCO3C2.1	4

<u>C</u>

Ele	ment	Form	Gerät	Methoden-Nr.	Seite
	C	CO3	Eltra C-Analysator	CCO3C3.1	1

Elementbestimmungsmethode:

CARBONAT

UntersuchungsmethodeNG BG OMGATNULLCO30,003 0,010

geeignet für:

Boden	
Humus	ATNULLCO3
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN ISO 10694
HFA	D31.3.2.3
HFA-Code	D;8;1;1;1;-1;-1;

Prinzip der Methode/chem. Reaktionen:

Zur Bestimmung des karbonatisch gebundenen Kohlenstoffs wird die Probe in Porzellanschiffchen eingewogen und im Sauerstoffstrom verbrannt. Dabei wird beginnend mit 400 °C und dann nach weiterer Aufheizung auf 590 °C der organische Kohlenstoffanteil zu Kohlendioxid umgesetzt:

$$C_a H_b N_c O_d + y O_2 \rightarrow a CO_2 + \frac{1}{2} b H_2 O + \frac{1}{2} e N_2 + f NO_x$$

Der verbleibende karbonatische Kohlenstoffanteil wird durch Erhöhung der Temperatur auf 950 °C zersetzt:

$$CaCO_3 \rightarrow CO_2 + CaO$$

Das bei der Verbrennung und der Zersetzung entstehende Kohlendioxid wird je nach Konzentration in zwei unterschiedlich langen hintereinander geschalteten nichtdispersiven für Kohlendioxid spezifischen Infrarotmeßzellen detektiert.

Da organische Substanz neben C auch H, O, N, S und Halogene enthält, entstehen neben Kohlendioxid auch Stickoxide, Wasser, flüchtige Halogen- und Schwefelverbindungen. Hinter dem Quarzglas-Verbrennungsrohr befinden sich mit MgClO₄ gefüllte Glasrohre, die das Wasser aus dem Gasstrom entfernen. Da Kohlendioxid Infrarotlicht spezifisch absorbiert, werden andere sich im Gasstrom befindende Gase nicht mitgemessen.

Störungen:

Wegen des hohen C-Gehalts der Humusproben kommt es vermutlich zur Bildung teerartiger Substanzen, die erst bei 570 °C noch nicht vollständig verbrannt sind. Dadurch läuft der Peak für org. C teilweise in den Peak für Carbonat-C hinein. Der aufsitzende Carbonat-Peak muss daher mittels einer Handintegrationssoftware speziell ausgewertet werden.

Anhang:	<u>Lit.:</u>
Gerätekurzanleitung C2.1	Bedienungsanleitung Eltra RW C-Analysator

C

01.1.2016

Datum:

Element	Form	Gerät	Methoden-Nr.	Seite	
C	CO3	Eltra C-Analysator	CCO3C3.1	2	ì

Analysengeräte und Zubehör:

C-Analysator CW Multiphase, Fa. Eltra Porzellanschiffchen von Eltra Analysenwaage Sartorius Typ Practum 124 1S Tiegelzange

Chemikalien:

Stickstoff 4.0 Sauerstoff 4.5 Magnesiumperchlorat MgClO_{4,} granuliert (p.a.) Natriumhydroxid NaOH, granuliert Quarzwolle

Lösungen:

keine

Eichung/Standards:

Eichsubstanz:

CaCO₃ C-Gehalt: 12 %

Eichung:

Das Gerät hat eine Grundeichung, die täglich über einen Tageskorrekturfaktor angepasst werden muss. Die Bestimmung des Tageskorrekturfaktors wird wie in der Gerätekurzanleitung C2.1 unter Punkt 2 beschrieben durchgeführt.

Durchführung:

s. Gerätekurzanleitung C2.1

Element		Form	Gerät	Methoden-Nr.	Seite
	C	CO3	Eltra C-Analysator	CCO3C3.1	3

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Standard-Material	QStM.1.2	CaCO ₃ erlaubte Abweichung 5 % vom rechnerischen
		Wert
		BCO3 (Boden) 0,95 % C, erlaubte Abweichung 10 %
Kohlenstoff-Bilanz	QCB1.2	Siehe Methodenbeschreibung
Festproben		
Wiederholungsproben	QWP1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die gemessenen CCO3-Gehalte in % werden in die entsprechenden Datenlisten und dann ins LIMS eingetragen.

Element	Form	Gerät	Methoden-Nr.	Seite
C	CO3	Eltra C-Analysator	CCO3C3.1	4

<u>C</u>

Element		Form	Gerät	Methoden-Nr.	Seite
	C	CO3	Eltra C-Analysator	CCO3C4.1	1

Elementbestimmungsmethode:

CARBONAT

UntersuchungsmethodeNGBGOMGATNULLCO30,0110,037

geeignet für:

Boden	ATNULLCO3
Humus	ATNULLCO3
Pflanze	
Wasser	

Methodenverweise:

Norm	
HFA	D31.3.1.8 / D31.3.2.7
HFA-Code	D;8;1;1;1;-1;-1;

Prinzip der Methode/chem. Reaktionen:

Zur Bestimmung des karbonatisch gebundenen Kohlenstoffs wird die Probe in einen Erlenmeyerkolben mit Schliff eingewogen und der Kolben in eine Säurezersetzungseinheit eingespannt. Dann wird durch Säurezusatz (15 % HCl) und unter Rühren und Erhitzen das Carbonat zu Kohlendioxid umgesetzt:

$$CaCO_3 + 2 HCl \rightarrow CO_2 + CaCl_2 + H_2O$$

Das bei der Zersetzung entstehende Kohlendioxid wird je nach Konzentration in zwei unterschiedlich langen hintereinander geschalteten nichtdispersiven für Kohlendioxid spezifischen Infrarotmeßzellen detektiert.

Störungen:

Schwerlösliche Carbonate werden ggf. nicht in der kurzen Säure-Einwirkzeit zersetzt. Dies kann evtl. durch erhöhte Temperatur, erhöhte Säurekonzentration und längere Einwirkzeit verbessert werden. Bei sehr schwer löslichen Carbonaten wird für Bodenproben Methode CCO3C2.1 empfohlen.

Anhang:	<u>Lit.:</u>
Gerätekurzanleitung C3.1	Bedienungsanleitung C-Analysator Eltra

C

1.12.2016

Datum:

Element	Form	Gerät	Methoden-Nr.	Seite	
C	CO3	Eltra C-Analysator	CCO3C4.1	2	

Analysengeräte und Zubehör:

C-Analysator CW Multiphase, Fa. Eltra TIC-Modul Fa. Eltra Analysenwaage Sartorius Typ Practum 124 1S Erlenmeyerkolben, 50 ml mit Schliff Magnetrührstäbchen groß

Chemikalien:

Stickstoff 4.0 Magnesiumperchlorat MgClO₄ granuliert Natriumhydroxid NaOH granuliert Quarzwolle

Lösungen:

HCl, p.a. 15 %

Eichung/Standards:

Eichsubstanz:

CaCO₃ C-Gehalt: 12 %

Eichung:

Das Gerät hat eine Grundeichung, die täglich über einen Tageskorrekturfaktor angepasst werden muss. Die Bestimmung des Tageskorrekturfaktors wird wie in der Gerätekurzanleitung C3.1 unter Punkt 2 beschrieben durchgeführt.

Durchführung:

s. Gerätekurzanleitung C3.1

Element	Form	Gerät	Methoden-Nr.	Seite
C	CO3	Eltra C-Analysator	CCO3C4.1	3

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Standard-Material	QStM.1.2	CaCO ₃ erlaubte Abweichung 5 % vom rechnerischen
		Wert
		BCO3 (Boden) 0,95 % C, erlaubte Abweichung 10 %
Kohlenstoff-Bilanz	QCB1.2	Siehe Methodenbeschreibung
Festproben		
Wiederholungsproben	QWP1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die gemessenen C-Gehalte werden in die entsprechenden Datenlisten und dann ins LIMS eingetragen.

Element	Form	Gerät	Methoden-Nr.	Seite
C	CO3	Eltra C-Analysator	CCO3C4.1	4

<u>C</u>

	Element	Form	Gerät	Methoden-Nr.	Seite
I	C	Cges	TOC-Skalar	CCgesTOC5.1	1

Elementbestimmungsmethode:

KOHLENSTOFF gesamt

 Untersuchungsmethode
 NG
 BG
 OMG

 ANULLIC, EXT1:2H2O1.1, GBL1.1
 0,105
 0,342
 100

geeignet für:

<u> </u>	
Boden	GBL 1.1, EXT1:2H2O1.1
Humus	
Pflanze	
Wasser	ANULLIC

Methodenverweise:

Norm	
HFA	D31.1.4.1
HFA-Code	D:8;2;1;4;2;-3

Prinzip der Methode/chem. Reaktionen:

Der organische und der anorganische Kohlenstoffanteil einer Probe werden durch katalytische Verbrennung bei 850 °C in Kohlendioxid umgesetzt.

Das Kohlendioxid wird durch einen Trägergasstrom (synthetische Luft: 20 % Sauerstoff, 80 % Stickstoff) zur Messzelle transportiert, in der die Absorption von IR-Strahlung durch das Kohlendioxid gemessen wird.

Die Probe wird in das mit Katalysator (Platin auf einem Trägermaterial und Ceroxid) gefüllte und auf 850 °C aufgeheiztes Verbrennungsrohr injiziert. Hier wird der organisch gebundene Kohlenstoff zu Kohlendioxid oxidiert, der anorganisch gebundene Kohlenstoff zu Kohlendioxid umgesetzt:

z.B.
$$C_6H_{12}O_6 + 6O_2 \xrightarrow{Pt/CeO_2\text{-Kat}, 850 \,^{\circ}\text{C}} \rightarrow 6H_2O + 6CO_2 \uparrow 2HCO_3^-, CO_3^{2-}, CO_2 \,_{\text{gelöst}} + 4H^+ \rightarrow 3H_2O + 4CO_2 \uparrow$$

Das Messprinzip beruht auf der Absorption von Infrarotlicht durch Moleküle, die aus verschiedenen Atomen bestehen; einatomige Moleküle absorbieren Infrarotstrahlung nicht. Aus diesem Grund muss Wasser vor der Messung durch Ausfrieren entfernt werden. Halogene müssen ebenfalls aus dem Gasstrom durch Absorption an einem Cu-Gitter entfernt werden, da sie die Goldbeschichtung der IR-Messzelle zerstören können. Danach durchströmt das Messgas die Messzelle. Die im Trägergas synthetische Luft enthaltenen Sauerstoff- und Stickstoffmoleküle absorbieren als einatomige Verbindungen keine IR-Strahlung. Durch die Absorption von Infrarotstrahlung durch die CO₂-Moleküle kommt es zu einer Erwärmung des Messgases, und dadurch zu einem Druckanstieg in der Messkammer gegenüber der Referenzkammer, in der sich nur synthetische Luft befindet.

Die sich in der Messkammer und Referenzkammer befindende Membran, wird durch den Druckanstieg in der Messkammer verformt. Hieraus resultiert ein elektrisches Signal, das proportional zur Kohlendioxidkonzentration ist.

Anhang:	<u>Lit.:</u>
Kurzanleitung TOC5.1	Bedienungsanleitung für Formacs HT, Fa. Skalar, 2018

C

01.07.2017

Datum:

_]	Element	Form	Gerät	Methoden-Nr.	Seite
	C	Cges	TOC-Skalar	CCgesTOC5.1	2

Gemessen wird die Peakfläche, da unterschiedliche organische Verbindungen ein unterschiedliches Verbrennungsverhalten haben und dadurch zwar die Fläche der Peaks, nicht jedoch die Höhe der Peaks gleich ist.

Störungen:

Halogene zerstören die Messzelle und werden deshalb im Halogen-Absorber gebunden.

Analysengeräte und Zubehör:

TOC-Analysator Formacs HT mit Probengeber, Fa. Skalar Probenteller mit 80 Positionen, Fa. Skalar Reagenzgläser 8 ml aus Glas Keramikverbrennungsrohr Fa. Skalar

Chemikalien:

Pt-Katalysator (Fa. Skalar, Best.Nr. 2CA10316) CeO₂ (Fa. Skalar, Best.Nr. 2CA10305) Al-Support (Fa. Skalar, Best.Nr. 2CA16353) Quarzwolle (Fa. Skalar, Best.Nr. 2CA10359) Halogenabsorber (Fa. Skalar, Best.Nr. 2CA10080) Synthetische Luft

Lösungen:

Keine

Eichung/Standards:

Stammlösung:

TOC-Stammlösung (Fa. Seraltec): 1000 mg/l C, Kaliumhydrogenphthalat C₈H₅KO₄ (stabilisiert)

Haltbarkeit:

Die Stammlösung ist ca. 6 Wochen geschlossen im Kühlschrank haltbar.

Die Standards aus der Stammlösung müssen für jede Eichung frisch angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Die Kontrollstandards müssen alle 2 Tage frisch angesetzt werden!

Element	Form	Gerät	Methoden-Nr.	Seite	
C	Cges	TOC-Skalar	CCgesTOC5.1	3	

Einzelbestimmung:

Mehrelementbestimmung:

1. Standardreihe	Einspritzvol.
TC	[µ1]
1,0 mg/l C	200
2,0 mg/l C	200
3,0 mg/l C	200
4,0 mg/l C	200
5,0 mg/l C	200
6,0 mg/l C	200
7,0 mg/l C	200
8,0 mg/l C	200
9,0 mg/l C	200
10,0 mg/l C	200

2. Standardreihe	Einspritzvol.
TC	[µ1]
10,0 mg/l C	200
20,0 mg/l C	200
30,0 mg/l C	200
40,0 mg/l C	200
50,0 mg/l C	200
60,0 mg/l C	200
70,0 mg/l C	200
80,0 mg/l C	200
90,0 mg/l C	200
100,0 mg/l C	200

Kontr	<u>ollstandards</u>
TCN1	5,0 mg/l C
TCN2	50,0 mg/l C

Durchführung:

siehe Gerätekurzanleitung TOC5.1

Element	Form	Gerät	Methoden-Nr.	Seite
C	Cges	TOC-Skalar	CCgesTOC5.1	4

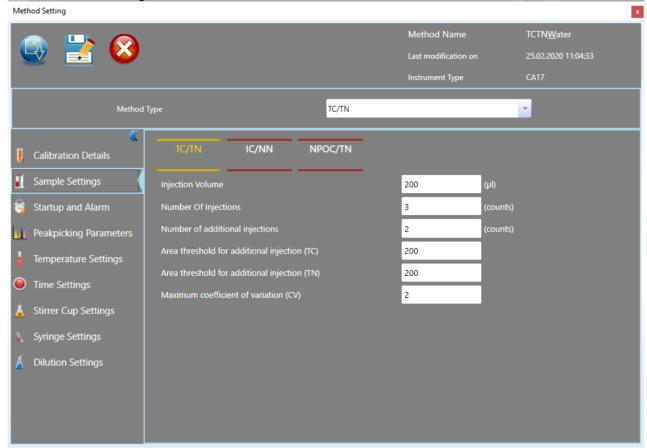
Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

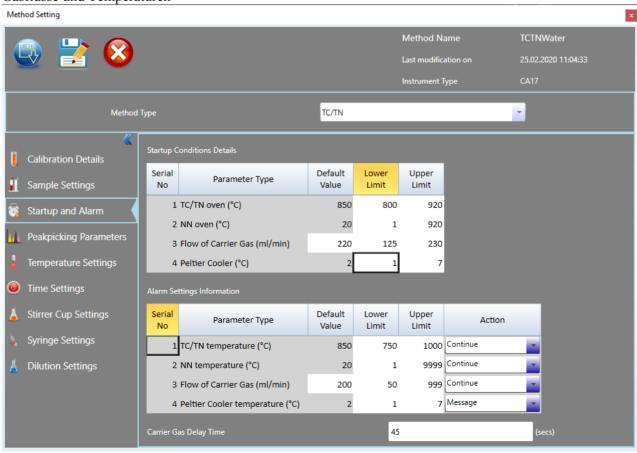
Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Die Gerätesoftware passt den Eichkurvenverlauf optimal an, indem sie ab 3 Eichpunkten ein Polynom 1ter (linear) oder 2ter (quadratisch) Ordnung durch die Eichpunkte legt. Berechnet werden Verfahrensstandardabweichung, Sollwert: ≤3 % bei Standardreihe 1, ≤ 2% bei Standardreihe 2. Die Eichkurve sollte linear sein.
Kontrollstandard	QKSt1.1	Vor jedem Probenblock und nach jedem Probenblock von maximal 20 Proben werden ein TCN1 und ein TCN2-Standard gemessen. Die erlaubte Abweichung beträgt bei TCN1 und bei TCN2 5 %. Liegt der Messwert eines Standards außerhalb des erlaubten Bereichs, so wird die Messung aller Proben die sich zwischen dem falschen Standard und dem nächsten richtigen Standard befinden erneut gemessen. Es werden nur die Proben für die Nachmessung markiert deren Messwert im Gültigkeitsbereich des fehlerhaften Standards liegen. Dieser ist für TCN1 0-10 mg/l C und für TCN2 10-100 mg/l C.
Mehrfachmessung	QMM1.1	3-fach-Messung; das Gerät führt einen Test zur Ermittlung von Ausreißern durch. Wurde kein Ausreißer gefunden, wird die prozentuale Abweichung vom Mittelwert berechnet, die maximal 2 % sein darf. Wurde ein Ausreißer gefunden, werden bis zu 2 zusätzliche Messungen durchgeführt. Nach Eliminierung der Ausreißer wird der Mittelwert und der Variationskoeffizient berechnet, der ≤2 % sein sollte.
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Ionen/Leitfähigkeitsbilanz NFV	QIB2.1	Siehe Methodenbeschreibung
Kohlenstoff-Bilanz	QCB1.1	Siehe Methodenbeschreibung
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard WasserHE3IC mit-
		gemessen; erlaubte Abweichung 5 %

Auswertung/Datendokumentation:

Die gemessenen TC-Konzentrationen werden in die entsprechenden Datenlisten eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm Relaqs bearbeitet.


Cges

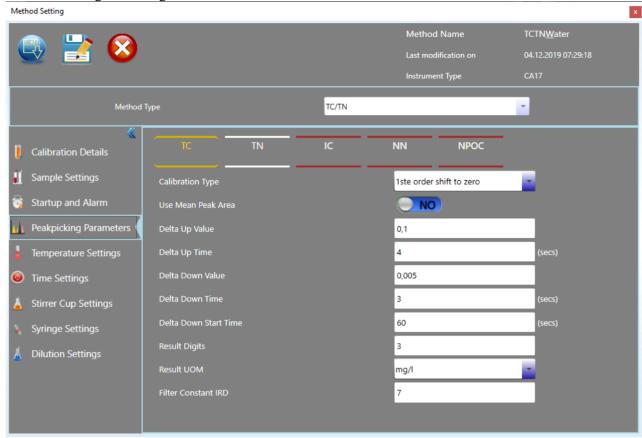
TOC-Skalar


CCgesTOC5.1

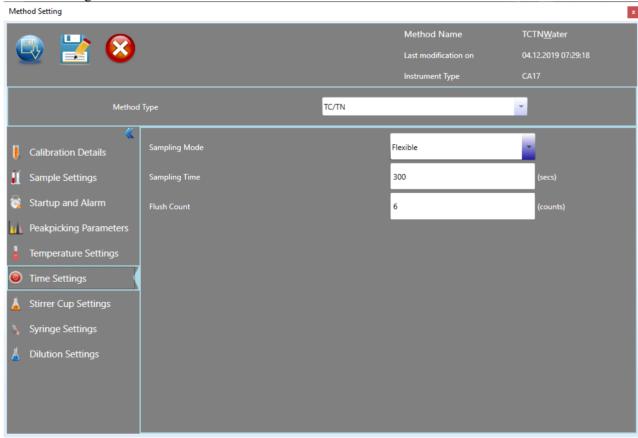
Geräteeinstellungen:

Probenahmeeinstellungen

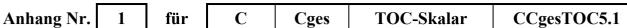
Gasflüsse und Temperaturen

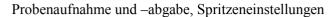

für

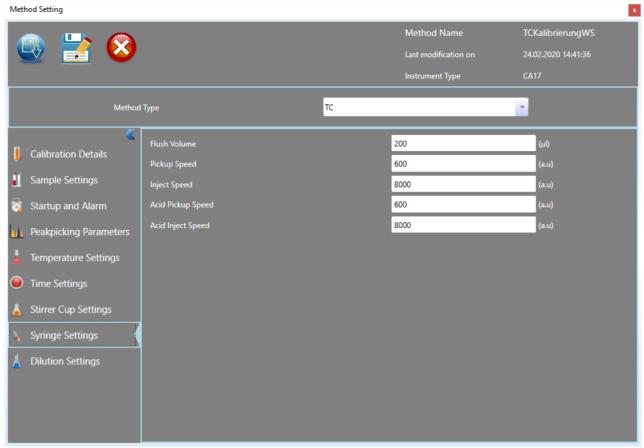
 \mathbf{C}

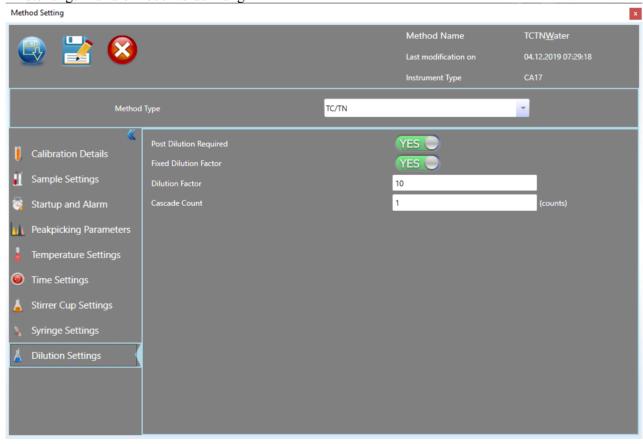

Cges

TOC-Skalar


Peakauswertungseintellungen




Zeiteinstellungen für die Probenaufnahme



Einstellungen für die Probenverdünnung

Anhang Nr. 1 für C Cges TOC-Skalar CCgesTOC5.1

Element	Form	Gerät	Methoden-Nr.	Seite
C	Cges	TOC-Skalar	CCgesTOC7.1	1

Elementbestimmungsmethode:

KOHLENSTOFF gesamt

 Untersuchungsmethode
 NG
 BG
 OMG

 CNMIK1.1, CNMIKF1.1
 0,177
 0,552
 100

geeignet für:

Boden	CNMIK1.1, CNMIKF1.1
Humus	CNMIK1.1, CNMIKF1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	
HFA	D31.1.5.1
HFA-Code	D:8;2;1;4;2;-3

Prinzip der Methode/chem. Reaktionen:

Der organische und der anorganische Kohlenstoffanteil einer Probe werden durch katalytische Verbrennung bei 825 °C in Kohlendioxid umgesetzt.

Das Kohlendioxid wird durch einen Trägergasstrom (synthetische Luft: 20 % Sauerstoff, 80 % Stickstoff) zur Messzelle transportiert, in der die Absorption von IR-Strahlung durch das Kohlendioxid gemessen wird.

Die Probe wird in das mit Katalysator (Platin auf einem Trägermaterial und Ceroxid) gefüllte und auf 825 °C aufgeheiztes Verbrennungsrohr injiziert. Hier wird der organisch gebundene Kohlenstoff zu Kohlendioxid oxidiert, der anorganisch gebundene Kohlenstoff zu Kohlendioxid umgesetzt:

Das Messprinzip beruht auf der Absorption von Infrarotlicht durch Moleküle, die aus verschiedenen Atomen bestehen; einatomige Moleküle absorbieren Infrarotstrahlung nicht. Aus diesem Grund muss Wasser vor der Messung durch Ausfrieren entfernt werden. Halogene müssen ebenfalls aus dem Gasstrom durch Absorption an einem Cu-Gitter entfernt werden, da sie die Goldbeschichtung der Messzelle zerstören können. Danach durchströmt das Messgas die Messzelle. Die im Trägergas synthetische Luft enthaltenen Sauerstoff- und Stickstoffmoleküle absorbieren als einatomige Verbindungen keine IR-Strahlung. Durch die Absorption von Infrarotstrahlung durch die CO₂-Moleküle kommt es zu einer Erwärmung des Messgases, und dadurch zu einem Druckanstieg in der Messkammer gegenüber der Referenzkammer, in der sich nur synthetische Luft befindet.

Die sich in der Messkammer und Referenzkammer befindende Membran, wird durch den Druckanstieg in der Messkammer verformt. Hieraus resultiert ein elektrisches Signal, das proportional zur Kohlendioxidkonzentration ist.

Anhang:	<u>Lit.:</u>
Kurzanleitung TOC6.1	Bedienungsanleitung für Formacs HT, Fa. Skalar, 2018

C

15.04.2017

Datum:

Element	Form	Gerät	Methoden-Nr.	Seite	
C	Cges	TOC-Skalar	CCgesTOC7.1	2	

Gemessen wird die Peakfläche, da unterschiedliche organische Verbindungen ein unterschiedliches Verbrennungsverhalten haben und dadurch zwar die Fläche der Peaks, nicht jedoch die Höhe der Peaks gleich ist.

Störungen:

Halogene zerstören die Messzelle und werden deshalb im Halogen-Scrubber gebunden. Das Auskristallisieren des Kaliumsulfats im Katalysatorrohr kann zu Verstopfungen führen. Deshalb sollten die Proben so weit wie möglich verdünnt werden.

Analysengeräte und Zubehör:

TOC-Analysator Formacs HT mit Probengeber, Fa. Skalar Probenteller mit 80 Positionen, Fa. Skalar Reagenzgläser 8 ml aus Glas Keramikverbrennungsrohr Fa. Skalar

Chemikalien:

Pt-Katalysator (Fa. Skalar, Best.Nr. 2CA10316) CeO₂ (Fa. Skalar, Best.Nr. 2CA10305) Al-Support (Fa. Skalar, Best.Nr. 2CA16353) Quarzwolle (Fa. Skalar, Best.Nr. 2CA10359) Halogenabsorber (Fa. Skalar, Best.Nr. 2CA10080) Synthetische Luft K₂SO₄ p.a.

Lösungen:

0,1 M $\rm K_2SO_4\text{-}L\ddot{o}sung$: 17,43 g $\rm K_2SO_4$ in 800 ml $\rm H_2O$ demin. lösen und auf 1 l auffüllen. oder

0,25 M K₂SO₄-Lösung: 43,57 g K₂SO₄ in 800 ml H₂O demin. lösen und auf 1 l auffüllen.

Eichung/Standards:

Stammlösung:

TOC-Stammlösung (Fa. Seraltec): 1000 mg/l C, Kaliumhydrogenphthalat C₈H₅KO₄ (stabilisiert)

Haltbarkeit:

Die Stammlösung ist ca. 6 Wochen geschlossen im Kühlschrank haltbar.

Die Standards aus der Stammlösung müssen für jede Eichung frisch angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Die Kontrollstandards müssen alle 2 Tage frisch angesetzt werden!

Eichstandards:

Die Standards für die Eichung werden mit demin. Wasser angesetzt.

Element	Form	Gerät	Methoden-Nr.	Seite	
C	Cges	TOC-Skalar	CCgesTOC7.1	3	

Kontrollstandards:

Die Kontrollstandards werden mit 0,1 M oder 0,25 M K₂SO₄-Lösung angesetzt. Die Konzentration der K₂SO₄-Lösung muss in Kontrollstandards und Proben gleich hoch sein.

Die Kontrollstandards müssen täglich frisch angesetzt werden!

Einzelbestimmung:

Mehrelementbestimmung: ?

1. Standardreihe	Einspritzvol.
TC	[μl]
1,0 mg/l C	100
2,0 mg/l C	100
3,0 mg/l C	100
4,0 mg/l C	100
5,0 mg/l C	100
6,0 mg/l C	100
7,0 mg/l C	100
8,0 mg/l C	100
9,0 mg/l C	100
10,0 mg/l C	100

2. Standardreihe	Einspritzvol.
TC	[µl]
10,0 mg/l C	100
20,0 mg/l C	100
30,0 mg/l C	100
40,0 mg/l C	100
50,0 mg/l C	100
60,0 mg/l C	100
70,0 mg/l C	100
80,0 mg/l C	100
90,0 mg/l C	100
100,0 mg/l C	100

<u>Kontrollstandards</u>				
TCN1	5,0 mg/l C			
TCN2	50,0 mg/l C			

Durchführung:

siehe Gerätekurzanleitung TOC7.1

Element	Form	Gerät	Methoden-Nr.	Seite
C	Cges	TOC-Skalar	CCgesTOC7.1	4

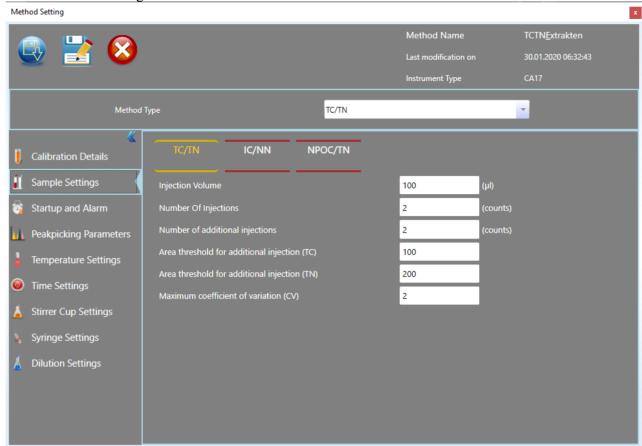
Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

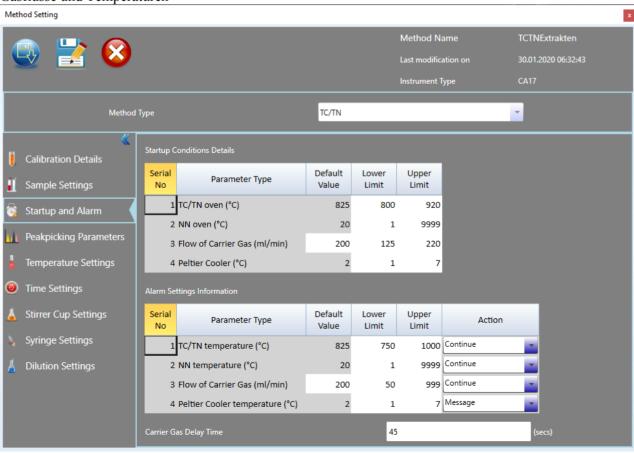
Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Die Gerätesoftware passt den Eichkurvenverlauf optimal an, indem sie ab 3 Eichpunkten ein Polynom 1ter (linear) oder 2ter (quadratisch) Ordnung durch die Eichpunkte legt. Berechnet werden Verfahrensstandardabweichung, Sollwert: ≤3 % bei Standardreihe 1, ≤ 2% bei Standardreihe 2. Die Eichkurve sollte linear sein.
Kontrollstandard	QKSt1.1	Vor jedem Probenblock und nach jedem Probenblock von maximal 20 Proben werden ein TCN1 und ein TCN2-Standard gemessen. Die erlaubte Abweichung beträgt bei TCN1 und bei TCN2 5 %. Liegt der Messwert eines Standards außerhalb des erlaubten Bereichs, so wird die Messung aller Proben die sich zwischen dem falschen Standard und dem nächsten richtigen Standard befinden erneut gemessen. Es werden nur die Proben für die Nachmessung markiert deren Messwert im Gültigkeitsbereich des fehlerhaften Standards liegen. Dieser ist für TCN1 0-10 mg/l C und für TCN2 10-100 mg/l C.
Mehrfachmessung	QMM1.1	3-fach-Messung; das Gerät führt einen Test zur Ermittlung von Ausreißern durch. Wurde kein Ausreißer gefunden, wird die prozentuale Abweichung vom Mittelwert berechnet, die maximal 2 % sein darf. Wurde ein Ausreißer gefunden, werden bis zu 2 zusätzliche Messungen durchgeführt. Nach Eliminierung der Ausreißer wird der Mittelwert und der Variationskoeffizient berechnet, der ≤2 % sein sollte.
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

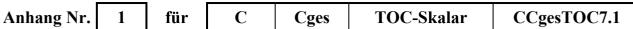
Auswertung/Datendokumentation:

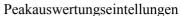
Die gemessenen TC-Konzentrationen werden in die entsprechenden Datenlisten eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm Relaqs bearbeitet.

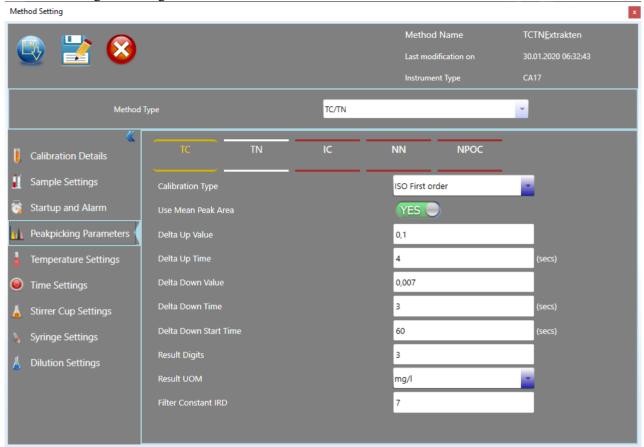

Cges

TOC-Skalar

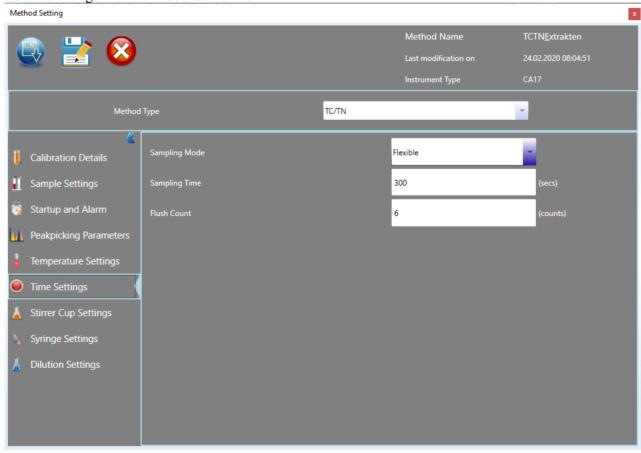

CCgesTOC7.1

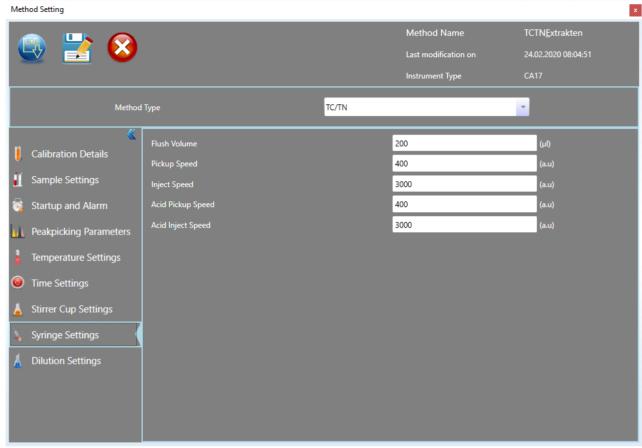

Geräteeinstellungen:

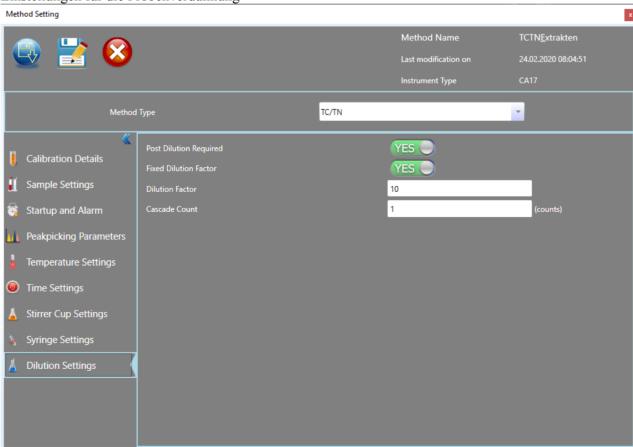

Probenahmeeinstellungen



Gasflüsse und Temperaturen






Zeiteinstellungen für die Probenaufnahme

Probenaufnahme und -abgabe, Spritzeneinstellungen

Einstellungen für die Probenverdünnung

Anhang Nr. 1 für C Cges TOC-Skalar CCgesTOC7.1

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Ca	Cages	IC	CaCagesIC2.2	•	1

Elementbestimmungsmethode:

CALCIUM

Ca

15.7.2012

Datum:

Untersuchun	ngsmethode	NG	BG	OMG
ANULLIC		0,005	0,015	15,0
geeignet für:				
Boden				
Humus				
Pflanze				
Wasser	ANULLIC			
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 14911			
HFA	D11.1.4.6			
HFA-Code	0713401		,	

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Kationen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Kationen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit Carboxylgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine verdünnte Salpetersäurelösung verwendet. Diese hat eine außerordentlich hohe Ionenäquivalentleitfähigkeit. Daher nimmt auf Grund der geringeren Ionenäquivalentleitfähigkeit der getrennten Kationen die Leitfähigkeit ab, wenn die Kationen die Trennsäule mit dem Eluenten verlassen und in die Leitfähigkeitsdetektorzelle gelangen. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Kations geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 0,25 ppm) wird das Kationen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich (= linear durch Null) und den niedrigen Messbereich (= linear) ausgewertet. In dem 2-Kanal-System werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Säule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC2.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S17.3: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC2.1	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
Ca	Cages	IC	CaCagesIC2.2	-	2	

Analysengeräte und Zubehör:

2-Kanal-IC-Anlage Fa. Metrohm, bestehend aus:

Ca

- 2 IC-Pumpen 818
- 2 Leitfähigkeitsdetektoren 819

IC-Separation-Center 820 mit Säulenofen

IC-Liquid-Handling-Einheit 833

2 Pulsationsdämpfer

IC-Eluent-Degaser 837

IC-Probengeber 838

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5

b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen:

a. Anionen: 20 µl

b. Kationen: 50 μl

Software:

a. zur Anlagensteuerung: IC-Net

b. zur Chromatogrammauswertung: MagIC-Net

Chemikalien:

Salpetersäure, HNO₃, 1 M

Lösungen:

Eluent-Kationen: In einen 2 l-Messkolben werden 12 ml 1 M Salpetersäure gegeben und mit

H₂O demin. reinst auf 2 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

1 g/l Ca: 1 g/l Calcium als Calciumnitrat => 1 g/l Ca

Stammlösung II: Je 1 ml K-, NH₄-, Na-, Ca-, und Mg-Stammlösung werden in einen 100 ml-

Messkolben mit H₂O demin. reinst auf 100 ml aufgefüllt.

 $=> 0.01 \text{ g/l K}, NH_4, Na, Ca, Mg.$

Haltbarkeit:

Die Stammlösung II ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

	Kontrollstandard
K1IC:	2,0 mg/l Ca
K2IC:	0,1 mg/l Ca

Methoden-Nr.	Lapis alt	Seite	
CaCagesIC2.2	-	3	

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S17.3) mit insgesamt 19 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung II und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

Ca

Durchführung:

Element

Ca

Form

Cages

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC2.1 beschrieben.

Gerät

IC

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (2,0 mg/l Ca), K2IC (0,1 mg/l Ca), Messung
		nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC) bzw. 10 % (K2IC)
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE31IC
		mitgemessen; erlaubte Abweichung 5 %.

Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Calcium-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Chromatogramm der Kationenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Ca

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Ca	Cages	IC	CaCagesIC3.1	-	1

Elementbestimmungsmethode:

CALCIUM

Ca

20.12.2015

Datum:

Untersuchungsmethode			BG	OMG
ANULLIC		0,007	0,025	15,0
geeignet für:				
Boden				
Humus				
Pflanze				
Wasser ANULLIC				
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 14911			
HFA	D11.1.4.6			
HFA-Code	D:7:1:3:2:-1:1:			

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Kationen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Kationen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit Carboxylgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine verdünnte Salpetersäurelösung verwendet. Diese hat eine außerordentlich hohe Ionenäquivalentleitfähigkeit. Daher nimmt auf Grund der geringeren Ionenäguivalentleitfähigkeit der getrennten Kationen die Leitfähigkeit ab. wenn die Kationen die Trennsäule mit dem Eluenten verlassen und in die Leitfähigkeitsdetektorzelle gelangen. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Kations geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 0,25 ppm) wird das Kationen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich (Kurventyp: linear durch 0, Gewichtung 1) und den niedrigen Messbereich (Kurventyp: linear, Gewichtung 1) ausgewertet. Mit Flex 1 (Anionen) und Flex 2 (Kationen) werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Säule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC3.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S29.1: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC3.1	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
Ca	Cages	IC	CaCagesIC3.1	-	2	ĺ

Analysengeräte und Zubehör:

2 Compact IC Flex- Anlagen Fa. Metrohm, bestehend aus:

Compact IC Flex 1 Anionen mit MSM Suppressor und MCS-Suppressor

Compact IC Flex 2 Kationen

IC-Probengeber 858 Professional Sample Processor

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5 b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen: a. Anionen: 20 µl b. Kationen: 50 µl

Software: MagIC-Net3.1

Chemikalien:

Salpetersäure, HNO₃, 1 M

Lösungen:

Eluent-Kationen: In einen 2 l-Messkolben werden 10 ml 1 M Salpetersäure gegeben und mit

H₂O demin. reinst auf 2 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

1 g/l Ca: 1 g/l Calcium als Calciumnitrat \Rightarrow 1 g/l Ca

Stammlösung II: Je 1 ml K-, NH₄-, Na-, Ca-, und Mg-Stammlösung werden in einen 100 ml-

Messkolben mit H₂O demin. reinst auf 100 ml aufgefüllt.

 $=> 0.01 \text{ g/l K}, NH_4, Na, Ca, Mg.$

Haltbarkeit:

Die Stammlösung II ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

	Kontrollstandard
K1IC:	2,0 mg/l Ca
K2IC:	0,1 mg/l Ca

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S29.1) mit insgesamt 18 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung II und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

Ca

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Ca	Cages	IC	CaCagesIC3.1	-	3

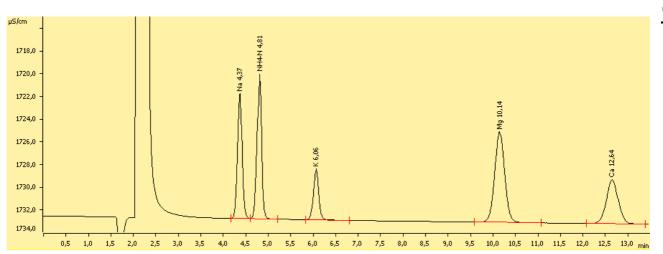
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC3.1 beschrieben.

Ca

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):


Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (2,0 mg/l Ca), K2IC (0,1 mg/l Ca), Messung
		nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC) bzw. 10 % (K2IC)
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE3IC mit-
		gemessen; erlaubte Abweichung 5 %.

Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Calcium-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Chromatogramm der Kationenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Seite
Ca	Cages	ICP(sim)	CaCagesICP19.2	1

Elementbestimmungsmethode:

CALCIUM

Datum: 01.01.2019

Untersuchungsmethode	NG	BG	OMG
OAKW2.1, OAKWEG3.1	0,0003	0,0011	300

geeignet für:

Boden	OAKW2.1, OAKWEG3.1
Humus	OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885	
HFA	D11.1.6.2, D11.1.6.3	
HFA-Code	D;4;2;2;1;-1;0 (315.887 nm axial), D;4;1;2;1;-1;0 (315,887 nm radial)	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden. Die Plasmabetrachtung erfolgt radial. Um eine möglichst hohe Messempfindlichkeit zu erreichen, wird für den Konzentrationsbereich bis 20 mg/l eine axiale Plasmabetrachtung gewählt. Oberhalb dieses Bereichs wird das Plasma radial betrachtet.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Zur Vermeidung von Driften, zur Verbesserung der Präzision der Messung, sowie zur Eliminierung von Störungen bei der Zerstäubung der Proben durch unterschiedliche Viskosität, unterschiedliche Salz- und Säurekonzentrationen sowie durch Plasmaladungseffekte, wird bei der Messung ein Interner Standards verwendet.

Anhang:	<u>Lit.:</u>
Sammelanhang S33.1: Geräteparameter und	Nölte: ICP Emissionsspektroskopie für
Kurzanleitung ICP6.1	Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled
	Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Ca	Cages	ICP(sim)	CaCagesICP19.2	2

Analysengeräte und Zubehör:

iCAP 6500 der Fa. Thermo Fisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 2 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac mit Probenrack für 60 Positionen für Hauptelemente, bzw. 21 Positionen für Schwermetalle

PP-Röhrchen Natur, 12 ml, Fa. Greiner bio-one

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Laminar Flow Box FBS der Fa. Spetec, für Probengeber (zur Verhinderung von Staubeintrag in die Probengefäße)

Rechner mit Software QTEGRA

5000 ml Varipette, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Mischfitting (Fa. Thermo Fisher) zur zur gleichmässigen Vermischung von Probelösung und internem Standard

Dilutor der Fa. Hamilton

Chemikalien:

Salpetersäure (HNO3), 65 %, p.a.

Y, AAS-Standard Yttrium 1 g/l Y (Fa B. Kraft)

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Interner Standard: 10 ml Yttriumlösung werden in einen 1 l Glaskolben gegeben, mit 30 ml

65 %. HNO3 p.a. versetzt und mit H2O demin. bis zur Eichmarke

aufgefüllt.

Eichung/Standards:

Stammlösungen:

Ca: ICP-Konzentrat (Fa B. Kraft) => 10 g/l Ca

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Fe, K, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Im folgenden wird nur die Herstellung der Ca-Standardlösungen beschrieben. Die Zugaben aller anderen Elemente, die sich auch in den beschriebenen Lösungen befinden, werden im Sammelanhang S33.1 beschrieben.

Standardlösung KW 1: In einen 250 ml PFA-Kolben werden 0,5 ml des 10 g/l Ca enthaltenden

-	~
	a

Ca	Cages	ICP(sim)	CaCagesICP19.2	3	
			e entsprechenden Mengen der mmelanhang S33.1), mit 7,5 ml mit H_2O bidemin. aufgefüllt.		
			d Ni, 200 μg/l Pb und Zn, 2 mg/l M 10 mg/l P, 200 mg/l Al und 20 mg/		
Standardlös	sung KW 2	ICP-Konzentrates, sowie di	werden 1,25 ml des 10 g/l Ca enthal e entsprechenden Mengen der ammelanhang S33.1), mit 7,5 ml mit H ₂ O bidemin. aufgefüllt.	anderen	
		. •	und Ni, 500 µg/l Pb und Zn, 1 1 10 mg/l Fe, Mn und Na, 100 mg/	-	
Standardlös	sung KW 3	enthaltenden ICP-Konzentrate anderen Elemente gegeben (s	ben werden 0,0125 ml des 10 es, sowie die entsprechenden Men iehe Sammelanhang S33.1), mit 7,3 and mit H_2O bidemin. aufgefüllt.	igen der	
		· =	und Ni, 1000 μg/l Pb und Zn, 0,5 i, 6 mg/l P, 8 mg/l Na, 10 mg/l K ι	_	
Standardlös	sung KW 4	ICP-Konzentrates, sowie di	werden 0,25 ml des 10 g/l Ca enthate entsprechenden Mengen der ammelanhang S33.1), mit 7,5 ml mit H_2O bidemin. aufgefüllt.	anderen	
		. •	Ti, 2000 μg/l Pb und Zn, 4 mg/l Na mg/l K, Mg und Mn, 50 mg/l Al, 1		
Standardlös	sung KW 5	ICP-Konzentrates, sowie di	werden 2,5 ml des 10 g/l Ca enthate entsprechenden Mengen der ummelanhang S33.1), mit 7,5 ml mit H_2O bidemin. aufgefüllt.	anderen	
		=> 1000 μg/l Cu und Ni, 400	00 μg/l Pb und Zn, 2 mg/l K und P	, 5 mg/l	

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ca auch andere Elemente enthalten (siehe Sammelanhang S33.1), verwendet:

Mn, 6 mg/l Na, 10 mg/l Al und S, 50 mg/l Fe und Mg, 100 mg/l Ca.

	<u>Standards</u>
Blank	0,0 mg/l Ca
KW 1	20,0 mg/l Ca
KW 2	50,0 mg/l Ca
KW 3	0,5 mg/l Ca
KW 4	10,0 mg/l Ca
KW 5	100,0 mg/l Ca

Kontrollstandard		Kontrollstandard
K	24	10,0 mg/l Ca

Methode:	OAKW2.1Boden	OAKW2.1Boden	
	OAKW2.1Humus	OAKW2.1Humus	
	OAKWEG3.1Boden	OAKWEG3.1Boden	
Element:	Ca	Ca	
Wellenlänge:	315.887	315.887	
Plasma-	axial	radial	
beobachtung:			
Messbereich	0 - 20	20 - 100	
[mg/l]:			
Standards:	Blank	KW 1	
	KW 1	KW 2 KW 4	
	KW 3		
	KW 4	KW 5	
Bemerkungen:	Fensterweite: 20	Fensterweite: 20	
	Pixelbreite: 3	Pixelbreite: 3	
	Pixelhöhe: 3	Pixelhöhe: 3	
	Untergrund-	<u>Untergrund-</u>	
	Korrektur:	Korrektur:	
	Pos. links: fixed	Pos. links: fixed	
	Pos. rechts: fixed	Pos. rechts: fixed	

Zur Herstellung der Blank-Lösung werden 7,5 ml der 65 %igen HNO3 p.a. in einen 250 ml PFA-Kolben gegeben und mit H2O bidemin. aufgefüllt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP6.1 beschrieben. Die Geräteparameter sind im Sammelanhang S33.1 zusammengestellt. Für die Bestimmung der Hauptelemente werden alle Proben mit dem Dilutor in PP-Röhrchen, (12 ml, Fa. Greiner Bio-One) 1:5 vorverdünnt. Proben die mit der Untersuchungsmethode OAKWEG3.1 aufgeschlossen wurden, werden mit dem Dilutor 1:10 vorverdünnt. Für der Bestimmung von Schwermetallen werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Element	Form	Gerät	Methoden-Nr.	Seite
Ca	Cages	ICP(sim)	CaCagesICP19.2	5

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) Ca durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 24 Proben und nach jeder Eichungswiederholung; erlaubte Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,

NFVH; erlaubte Abweichung 10 %

Auswertung/Datendokumentation:

Die gemessenen Ca-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS.

Element	Form	Gerät	Methoden-Nr.	Seite
Ca	Cages	ICP(sim)	CaCagesICP19.2	6

Element	Form	Gerät	Methoden-Nr.	Seite
Ca	Cages	ICP(sim)	CaCagesICP20.1	1

Elementbestimmungsmethode:

CALCIUM

Datum: 01.05.2014

Untersuchungsmethode	NG	BG	OMG
ANULL, ANULLIC, EXT1:2H2O1.1, GBL1.1, DAN1.1, DAN2.2	0,0005	0,0017	100

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1
Humus	DAN1.1, DAN2.2
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL, ANULLIC

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D11.1.4.2, D11.1.5.2 und D11.1.6.2
HFA-Code	D;4;1;2;-1;-1;2 (393.366 nm), D;4;1;2;-1;-1;0 (315.887 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich iCAP 7400 mit Iris	Nölte: ICP Emissionsspektroskopie für Praktiker;
Advantage	Weinheim, 2002
Sammelanhang S24.1: Geräteparameter und	Montaser, Golightly: Inductively Coupled Plasmas
Standardzusammen-	in Analytical Atomic Spectrometry;
setzung	Weinheim, 1987
Kurzanleitung ICP5.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Ca	Cages	ICP(sim)	CaCagesICP20.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 μl, Varipette 100-1000 μl, Varipette 500-5000 μl sowie 250 μl, 500 μl und

1000 µl Pipetten der Fa. Eppendorf

1000 ml und 2000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 150 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 5 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Ca: Standard (Fa B. Kraft) => 5 g/l Ca

Al, Fe, K, Mg, Mn, Na, P, S:

Standard (Fa B. Kraft) => jeweils 5 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S24.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ca auch andere Elemente enthalten (siehe Sammelanhang S24.1), verwendet:

<u>Standards</u>		
Blank	0,0 mg/l Ca	
HE 1	20,0 mg/l Ca	
HE 2	2,5 mg/l Ca	
HE 3	0,5 mg/l Ca	
HE 4	10,0 mg/l Ca	
HE 5	60,0 mg/l Ca	
HE 6	5,0 mg/l Ca	

Element	Form	Gerät	Methoden-Nr.	Seite
Ca	Cages	ICP(sim)	CaCagesICP20.1	3

	<u>Kontrollstandard</u>
K1	10,0 mg/l Ca

Ca

Methode:	ANULL		ANULL		ANULL	
	ANULLIC		ANULLIC		ANULLIC	
	EXT1:2H2O1.	1	EXT1:2H2O1	.1	EXT1:2H2O1	1
	GBL1.1		GBL1.1		GBL1.1	
	DAN1.1Pflanz	e	DAN1.1Pflan	ze	DAN1.1Pflan	ze
	DAN2.2Pflanz	e	DAN2.2Pflan	ze	DAN2.2Pflan	ze
	DAN1.1Humus	S	DAN1.1Hum	us	DAN1.1Hum	us
	DAN2.2Humus	S	DAN2.2Hum	us	DAN2.2Hum	us
Element:	Ca		Ca		Ca	
Wellenlänge:	393,366		315.887		315.887	
Messbereich [mg/l]:	BG - 0.5		0,5 - 10		10 – OMC	j
Standards:	Blank		Blank		HE 1	
	HE 3		HE 1		HE 2	
			HE 2		HE 4	
			HE 3		HE 5	
			HE 4		HE 6	
			HE 6			
Bemerkungen:	Fensterweite:	21	Fensterweite:	21	Fensterweite:	21
	Pixelbreite:	3	Pixelbreite:	2	Pixelbreite:	2
	Pixelhöhe:	2	Pixelhöhe:	2	Pixelhöhe:	2
	<u>Untergrund-</u>		<u>Untergrund-</u>		<u>Untergrund-</u>	
	Korrektur:		Korrektur:		Korrektur:	
		2	Pos. links:	1	Pos. links:	1
	Pixelanzahl:	2	Pixelanzahl:	1	Pixelanzahl:	1
		19	Pos. rechts:	20	Pos. rechts:	20
	Pixelanzahl:	2	Pixelanzahl:	2	Pixelanzahl:	2

Der Blank, die Standards und der Kontrollstandard werden in 2 %-iger HNO₃ (30 ml HNO₃ 65 %, p.a. in 1000 ml) in 1 Liter Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S24.1 zusammengestellt.

Wässrige Proben werden vor dem Messen mit 180 µl HNO₃ konz. pro 6 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

Werden Proben verdünnt, müssen die durch die zusätzliche Säurezugabe veränderten

Verdünnungsfaktoren beachtet werden.

Element	Form	Gerät	ät Methoden-Nr.	
Ca	Cages	ICP(sim)	CaCagesICP20.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) Ca durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 24
		Proben und nach jeder Eichungswiederholung;
		erlaubte Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Al-Bilanz	QAlB1.1	Siehe Methodenbeschreibung
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1
		mitgemessen; erlaubte Abweichung 5 %
		Bei Pflanzenproben: Standard NHARZ, erlaubte
		Abweichung 10 %
		Bei Humusproben: Standard NFVH, erlaubte
		Abweichung 10 %


Auswertung/Datendokumentation:

Die gemessenen Ca-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr.	1	für	Ca	Cages	ICP(sim)	CaCagesICP20.1
------------	---	-----	----	-------	----------	----------------

Methodenvergleich ICP Iris Advantage mit iCAP 7400

Darstellung einer Vergleichsmessung der Methode CaCagesICP7.3 und der hier beschriebenen Ca Methode an der Wasserserie 2013W078 (151 Proben):

Anhang Nr. 1 für Ca Cages ICP(sim) CaCagesICP20.1

Element	Form	Gerät	erät Methoden-Nr.	
Ca	Cages	ICP(sim)	CaCagesICP21.1	1

Elementbestimmungsmethode:

Untersuchungsmethode

CALCIUM

AKE1.1, AKEG1.1, AKH3.1, AKT2.1

Datum: 01.05.2014

OMG

BG

0,001 | 0,005 |

NG

. ,		- ,	- ,	_
geeignet für:				
Boden	AKE1.1, AKEG1.1, AKT2.1			
Humus	AKEG1.1, AKH3.1			

Methodenverweise:

Pflanze Wasser

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D11.1.5.2
HFA-Code	D;4;1;2;-1;-1;0 (315.887 nm), D;4;1;2;-1;-1;3; (318.128 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich iCAP 7400 mit Iris	Nölte: ICP Emissionsspektroskopie für Praktiker;
Advantage	Weinheim, 2002
Sammelanhang S25.1: Geräteparameter und	Montaser, Golightly: Inductively Coupled Plasmas
Standardzusammen-	in Analytical Atomic Spectrometry;
setzung	Weinheim, 1987
Kurzanleitung ICP5.1	

Element	Form	Gerät	Methoden-Nr.	
Ca	Cages	ICP(sim)	CaCagesICP21.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 2 mm, für stark salzhaltige Lösungen

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 μ l, Varipette 100-1000 μ l, Varipette 500-5000 μ l sowie 250 μ l, 500 μ l und 1000 μ l Pipetten der Fa. Eppendorf

250 ml-Messkolben aus Glas

Chemikalien:

keine

Lösungen:

keine

Eichung/Standards:

Stammlösungen:

Ca: Standard (Fa B. Kraft) => 5 g/l Ca

Al, Fe, K, Mg, Mn, Na: Standard (Fa B. Kraft) => jeweils 5 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S25.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ca auch andere Elemente enthalten (siehe Sammelanhang S25.1), verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Ca
AKE 1	
AKE 2	2 50,0 mg/l Ca
AKE 3	3 100,0 mg/l Ca
AKE 4	10,0 mg/l Ca

	Kontrollstandard
K5	20,0 mg/l Ca

Element	Form	Gerät	Methoden-Nr.	Seite
Ca	Cages	ICP(sim)	CaCagesICP21.1	3

Methode:	AKE1.1	AKE1.1
	AKEG1.1	AKEG1.1
	AKH3.1	AKH3.1
	AKT2.1	AKT2.1
Element:	Ca	Ca
Wellenlänge:	315.887	318.128
Messbereich[mg/l]:	BG - 20	20 - OMG
Standards:	Blank	Blank
	AKE 1	AKE 1
	AKE 4	AKE 2
		AKE 3
		AKE 4
Bemerkungen:	Fensterweite: 21	Fensterweite: 21
	Pixelbreite: 2	Pixelbreite: 3
	Pixelhöhe: 2	Pixelhöhe: 2
	<u>Untergrund-</u>	<u>Untergrund-</u>
	Korrektur:	Korrektur:
	Pos. links: 1	Pos. links: 1
	Pixelanzahl: 1	Pixelanzahl: 2
	Pos. rechts: 17	Pos. rechts: 20
	Pixelanzahl: 1	Pixelanzahl: 2

Der Blank, die Standards und der Kontrollstandard werden mit der jeweils verwendeten Perkolationslösung in 250 ml Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S25.1 zusammengestellt.

AKEG-Perkolate werden mit $180 \,\mu l$ 65 % iger HNO₃ p.a. pro 6 ml Probe versetzt und 1:5 verdünnt. Die Standards werden mit 1:5 verdünnter Perkolationslösung angesetzt und ebenfalls angesäuert (3 ml 65 % iger HNO₃ p.a. auf $100 \,\mathrm{ml}$).

AKT- und AKH-Perkolate werden vor dem Messen 1:2 verdünnt. Die Standards werden mit 1:2 verdünnter Perkolationslösung angesetzt.

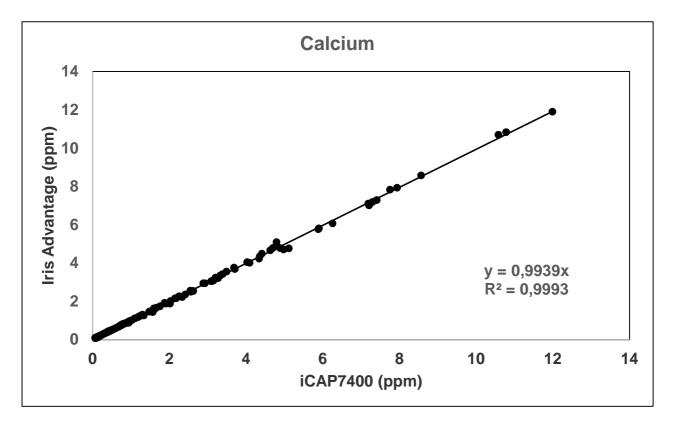
Element	Form	Gerät	Methoden-Nr.	Seite
Ca	Cages	ICP(sim)	CaCagesICP21.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Ca

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K5; Messung nach der Eichung, alle 24
		Proben und nach jeder Eichungswiederholung;
		erlaubte Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial QStM1		Für Standards Harste 30-50, BZE-THUE, Solling 0-10,
		Solling0-10neu, BioSoil und BZE-HUM; erlaubte
		Abweichung 10 % - 15 %


Auswertung/Datendokumentation:

Die gemessenen Ca-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr.	1	für	Ca	Cages	ICP(sim)	CaCagesICP21.1
------------	---	-----	----	-------	----------	----------------

Methodenvergleich ICP Iris Advantage mit iCAP 7400

Darstellung einer Vergleichsmessung der Methode CaCagesICP10.1 und der hier beschriebenen Ca Methode an den Bodenserien 2013B057 und 2013B059 (140 Proben):

Anhang Nr. 1 für Ca Cages ICP(sim) CaCagesICP21.1

Element	Form	Gerät	Methoden-Nr.	Seite
Ca	Cages	ICP(sim)	CaCagesICP22.1	1

Elementbestimmungsmethode:

CALCIUM

Ca

01.08.2014

Datum:

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2,	0,0003	0,001	200
OAKWEG3.1	<u> </u>	,	

geeignet für:

Boden	OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1
Humus OAKW1.1, OAKW1.2, OAKW2.1	
Pflanze	
Wasser	

Methodenverweise:

Norm In Anlehnung an DIN EN ISO 11885	
HFA D11.1.6.2	
HFA-Code	D;4;1;2;-1;-1;5; (396.847 nm), D;4;1;2;-1;-1;0; (315.887 nm), D;4;1;2;-1;-1;3; (318.128 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S26.1: Geräteparameter und Standardzusammensetzung	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas
Kurzanleitung ICP5.1	in Analytical Atomic Spectrometry; Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Ca	Cages	ICP(sim)	CaCagesICP22.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Ca: ICP-Konzentrat (Fa B. Kraft) => 10 g/l Ca

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Fe, K, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ca auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

	<u>Standards</u>
KW 0	0,0 mg/l Ca
KW 1	20,0 mg/l Ca
KW 2	200,0 mg/l Ca
KW 3	1,0 mg/l Ca
KW 4	10,0 mg/l Ca
KW 5	5,0 mg/l Ca
KW 6	100,0 mg/l Ca
KW 7	50,0 mg/l Ca
KW 8	2,5 mg/l Ca

	Kontrollstandard
K24	10,0 mg/l Ca

			,	
Methode:	OAKW2.1Boden	OAKW2.1Boden	OAKW2.1Boden	
	OAKWEG2.1Boden	OAKWEG2.1Boden	OAKWEG2.1Boden	
	OAKWEG2.2Boden	OAKWEG2.2Boden	OAKWEG2.2Boden	
	OAKWEG3.1Boden	OAKWEG3.1Boden	OAKWEG3.1Boden	
	OAKW1.1Humus	OAKW1.1Humus	OAKW1.1Humus	
	OAKW1.2Humus	OAKW1.2Humus	OAKW1.2Humus	
	OAKW2.1Humus	OAKW2.1Humus	OAKW2.1Humus	
Element:	Ca	Ca	Ca	
Wellenlänge:	396.847	315.887	318.128	
Messbereich	BG – 1	1 - 50	50 - OMG	
[mg/l]:				
Standards:	Blank	KW 1	KW 2	
	KW 8	KW 2	KW 3	
		KW 3	KW 4	
		KW 7	KW 5	
		KW 8	KW 6	
Bemerkungen:	Fensterweite: 21	Fensterweite: 21	Fensterweite: 18	
	Pixelbreite: 3	Pixelbreite: 2	Pixelbreite: 2	
	Pixelhöhe: 2	Pixelhöhe: 2	Pixelhöhe: 3	
	Untergrund-	Untergrund-	Untergrund-	
	Korrektur:	Korrektur:	Korrektur:	
	Pos. links: 1	Pos. links: 1	Pos. links: 5	
	Pixelanzahl: 2	Pixelanzahl: 1	Pixelanzahl: 1	
	Pos. rechts: 18	Pos. rechts: 20	Pos. rechts: 20	
	Pixelanzahl: 1	Pixelanzahl: 2	Pixelanzahl: 2	
L	1	l .	l	

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit $_2$ O bidemin. aufgefüllt.

Element	Form	Gerät	Methoden-Nr.	Seite
Ca	Cages	ICP(sim)	CaCagesICP22.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %.

Auswertung/Datendokumentation:

Die gemessenen Ca-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Cd	Cdges	ICP(sim)	CdCdgesICP22.1	1

Elementbestimmungsmethode:

CADMIUM

Cd

01.08.2014

Datum:

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1	0,23	0,76	150

geeignet für:

<u> </u>	
Boden	OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1
Humus	OAKW1.1, OAKW1.2, OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885	
HFA	D9.1.6.4	
HFA-Code	D;4;1;2;-1;-1;0;	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S26.1: Geräteparameter und Standardzusammen-	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002
setzung Kurzanleitung ICP5.1	Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Cd	Cdges	ICP(sim)	CdCdgesICP22.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μ l, 1000 μ l und 5000 μ l Varipetten, sowie 250 μ l, 500 μ l und 1000 μ l Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Cd: ICP-Standard (Fa B. Kraft) \Rightarrow 1 g/l Cd

As, Ba, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Cd auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

	<u>Standards</u>
KW 0	0 μg/l Cd
KW 1	50 μg/l Cd
KW 2	100 μg/l Cd
KW 3	150 µg/l Cd
KW 4	0 μg/l Cd
KW 5	0 μg/l Cd
KW 6	0 μg/l Cd
KW 7	0 μg/l Cd
KW 8	0 μg/l Cd

	Kontrollstandard
K24	100 μg/l Cd

Methode:	OAKW2.1Boden
	OAKWEG2.1Boden
	OAKWEG2.2Boden
	OAKWEG3.1Boden
	OAKW1.1Humus
	OAKW1.2Humus
	OAKW2.1Humus
Element:	Cd
Wellenlänge:	214.438
Messbereich	BG – OMG
[µg/l]:	
Standards:	Blank
	KW 1
	KW 2
	KW 3
Bemerkungen:	Fensterweite: 20
<u>Bemerkungen.</u>	Pixelbreite: 2
	Pixelhöhe: 5
	Tracinone.
	Untanamand
	Untergrund-
	Korrektur:
	Pos. links: 3
	Pixelanzahl: 2
	Pos. rechts: 19
	Pixelanzahl: 2

Zur Herstellung der Blindlösung der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit H_2O bidemin. aufgefüllt.

Element	Form	Gerät	Methoden-Nr.	Seite
Cd	Cdges	ICP(sim)	CdCdgesICP22.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %.

Auswertung/Datendokumentation:

Die gemessenen Cd-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Cd	Cdges	ICP(sim)	CdCdgesICP24.1	1

Elementbestimmungsmethode:

CADMIUM

Cd

01.07.2016

Datum:

Untersuchungsmethode		BG	OMG
EXTEDTA1.1	0,42	1,4	500

geeignet für:

Boden	EXTEDTA1.1
Humus	
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D9.1.5.1
HFA-Code	D:4;1;2;-1;-1;0;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S28.1: Geräteparameter und Standardzusammen-	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002
setzung Kurzanleitung ICP5.1	Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Cd	Cdges	ICP(sim)	CdCdgesICP24.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μ l, 1000 μ l und 5000 μ l Varipetten, sowie 250 μ l, 500 μ l und 1000 μ l Pipetten der Fa.

Eppendorf

100 und 250 ml-Messkolben aus Glas

Chemikalien:

Na-EDTA (Titriplex III) $(C_{10}H_{14}N_2Na_2O_8 * 2H_2O)$

Lösungen:

0,1 m EDTA-Lösung: in einen 1 l-Kolben wird eine Ampulle 0,1 molare Titriplex III Lösung

gegeben und mit H₂O demin. bis zur Eichmarke aufgefüllt.

Eichung/Standards:

Stammlösungen:

Cd: ICP-Standard (Fa B. Kraft) \Rightarrow 1 g/l Cd

Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S28.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Cd auch andere Elemente enthalten (siehe Sammelanhang S28.1), verwendet:

	<u>Standards</u>
EDTA 0	0 μg/l Cd
EDTA 1	100 µg/l Cd
EDTA 2	400 μg/l Cd
EDTA 3	200 μg/l Cd
EDTA 4	300 μg/l Cd
EDTA 5	500 μg/l Cd

	Kontrollstandard
K23	200 μg/l Cd

Cd

Methode:	EXTEDTA1.1
Element:	Cd
Wellenlänge:	214.438
Messbereich	BG – OMG
[µg/l]:	
Standards:	EDTA 0
	EDTA 1
	EDTA 2
	EDTA 3
	EDTA 4
	EDTA 5
Bemerkungen:	Fensterweite: 20
	Pixelbreite: 2
	Pixelhöhe: 5
	<u>Untergrund-</u>
	Korrektur:
	Pos. links: 4
	Pixelanzahl: 2
	Pos. rechts: 19
	Pixelanzahl: 2

Der Blank, die Standards und die Kontrollstandards werden mit der verwendeten Extraktionslösung in 100 ml Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S28.1 zusammengestellt. Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K23; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Solling0-10; erlaubte Abweichung 10 %.

Element	Form	Gerät	Methoden-Nr.	Seite
Cd	Cdges	ICP(sim)	CdCdgesICP24.1	4

Auswertung/Datendokumentation:

Die gemessenen Cd-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite	
Cd	Cdges	ICP-MS	CdCdgesICPMS1.1	1	

Elementbestimmungsmethode:

CADMIUM

Datum: 01.11.2018

Untersuchungsmethode	NG	BG	OMG
OAKW2.1, OAKWEG3.1	0,002	0,007	150
			-

geeignet für:

Boden	OAKW2.1, OAKWEG3.1
Humus	OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 17294-2		
HFA	D9.1.6.7		
HFA-Code	D;5;3;1;2;-1;0;		

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhana	I:4.
Anhang:	<u>Lit.:</u>
Anhang 1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S30.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Cd	Cdges	ICP-MS	CdCdgesICPMS1.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

1000, 2000 und 5000ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Y, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Mg, Fe, K: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100~ml HNO $_3~\text{und}$ 25~ml HCl im 5~l-Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40ml Salpetersäure (HNO₃) im 2 l-Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10~ml Salpetersäure (HNO3) im 2~l-Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 10 ppm, Ge 1 ppm, Y 10 ppm, Re 5 ppb, Rh 100 ppb) = 10 ml Sc, 1 ml Ge, 10 ml Y, 0,1 ml Rh jeweils aus 1 g/l und 1 ml Re aus 5 mg/l plus 20 ml HNO₃ im 1000 ml Glas-Messkolben mit bidemin. Wasser auffüllen.

Aus dieser Stammlösung eine 1:10 Verdünnung (mit bi-demin H₂O aufgefüllt) zum Messen herstellen (mindestens 100 ml).

Basislösung für Standards und Kontrollstandard:

Ansatz der Lösung (Al 50 ppm, Mg 50 ppm, Fe 20 ppm, K 10 ppm) =

Element	Form	Gerät	Methoden-Nr.	Seite
Cd	Cdges	ICP-MS	CdCdgesICPMS1.1	3

Jeweils 5 ml Al und Mg, 2 ml Fe und 1 ml K mit 60 ml HCl und 20 ml HNO3 in einem 1000 ml Messkolben mit bi-demin H2O auffüllen.

Eichung/Standards:

Stammlösungen:

Cd: ICP-Standard (Fa B. Kraft) => 1 g/l Cd

Co, Cr, Cu, Ni, Pb, Zn, Hg, W: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg, Al, Fe, K: ICP-Standard (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S30.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in einer dem Königswasserextrakt entsprechenden Mischung aus HCl und HNO₃ mit Zusatz von 50 ppm Al, 50 ppm Mg, 20 ppm Fe und 10 ppm K, die neben Cd auch andere Elemente enthalten (siehe Sammelanhang S30.1), verwendet:

<u>Standards</u>	
Blank	0 μg/l Cd
KWSM1	0,1 μg/l Cd
KWSM2	0,2 μg/l Cd
KWSM3	0,5 μg/l Cd
KWSM4	1 μg/l Cd
KWSM5	2 μg/l Cd

Kontrollstandard	
K24MS	
5 μg/l Cd	

Methode:	OAKWSM	OAKWEGSM	
Element:	Cd	Cd	
Masse:	110,9042	110,9042	
Messbereich	BG - OMG	BG – OMG	
[µg/l]:	0,14 - 3000	0,35 - 7500	
Standards:	Blank	Blank	
	KWSM1	KWSM1	
	KWSM2	KWSM2	
	KWSM3	KWSM3	
	KWSM4	KWSM4	
	KWSM5	KWSM5	

Element	Form	Gerät	Methoden-Nr.	Seite
Cd	Cdges	ICP-MS	CdCdgesICPMS1.1	4

Bemerkungen:	Kollisions/Reaktions-	Kollisions/Reaktions-	
	<u>zelle:</u>	<u>zelle:</u>	
	Gasfluss H ₂ : 0,5 ml	Gasfluss H ₂ : 0,5 ml	
	Gasfluss He: 4,5 ml	Gasfluss He: 4,5 ml	

Cd

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. OAKW-Aufschlusslösungen werden 1:20 vom PrepFAST-Probengeber verdünnt, OAKWEG-Aufschlusslösungen 1:50.

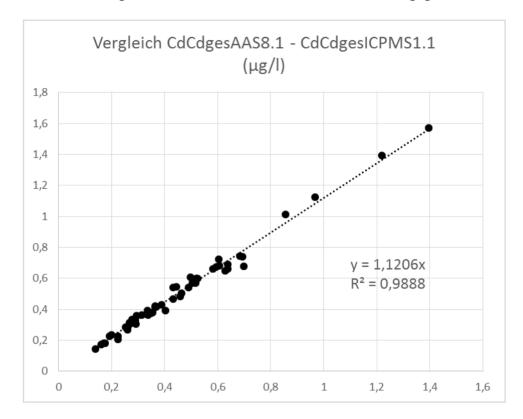
Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (OAKWSM-1, OAKWEGSM-1, OAKWSMHg-1, OAKWEGSMHg-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S30.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	ISE974, BZE-SAC, NFVH; erlaubte Abweichung 10
		\(\gamma_0\).


Auswertung/Datendokumentation:

Die gemessenen Cd-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Cd Cdges ICP-MS CdCdgesICPMS1.1

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Königswasser-Aufschluss-Serie mit den beiden angegebenen Methoden

Anhang Nr. 1 für Cd Cdges ICP-MS CdCdgesICPMS1.1

Element	Form	Gerät	Methoden-Nr.	Seite
Cd	Cdges	ICP-MS	CdCdgesICPMS2.1	1

Elementbestimmungsmethode:

CADMIUM

01.11.2018

Datum:

Untersuchungsmethode			BG	OMG
ANULL	ANULL			100
geeignet für:				
Boden				
Humus				
Pflanze				
Wasser	ANULL			
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 17294-2			
HFA	D9.1.4.6			
HFA-Code	D.5.3.1.2.1.0.		•	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	Lit.:
innung.	<u>Ditt</u>
Anhang 1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S31.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	
-	

Element	Form	Gerät	Methoden-Nr.	Seite
Cd	Cdges	ICP-MS	CdCdgesICPMS2.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

2000 und 5000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃),69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25ml HCl im 5 l- Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40 ml Salpetersäure (HNO₃) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10 ml Salpetersäure (HNO3) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 50 ppm, Ge 50 ppm, Re 5 ppm, Rh 5 ppm) =

5 ml Sc, 5 ml Ge, 0.5 ml Re, $0.5 \text{ ml Rh und } 2 \text{ ml HNO}_3 \text{ im } 100 \text{ ml PFA- Messkolben mit bidemin.}$ Wasser auffüllen.

Aus dieser Stammlösung eine 1:100 Verdünnung in 2% HNO₃-Lösung zum Messen herstellen (mindestens 100 ml).

Element	Form	Gerät	Methoden-Nr.	Seite	
Cd	Cdges	ICP-MS	CdCdgesICPMS2.1	3	

Eichung/Standards:

Stammlösungen:

Cd

Cd: ICP-Standard (Fa B. Kraft) => 1 g/l Cd

Co, Cr, Cu, Ni, Pb, Zn: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg: ICP-Standard (Fa B. Kraft) => 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S31.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in 2 % HNO3 mit Zusatz von 10 ppm Mg, die neben Cd auch andere Elemente enthalten (siehe Sammelanhang S31.1), verwendet:

<u>Standards</u>			
Blank	0 μg/l Cd		
Wasser SM1	$0.5 \mu\mathrm{g/l}$ Cd		
Wasser SM2	1 μg/l Cd		
Wasser SM3	2 μg/l Cd		
Wasser SM4	5 μg/l Cd		
Wasser SM5	10 μg/l Cd		
Wasser SM6	20 μg/l Cd		

<u>Kontrollstandard</u>
K25MS
10 μg/l Cd

Methode:	WasserSM-1
Element:	Cd
Masse:	110,9042
Messbereich	BG - OMG
$[\mu g/l]$:	0,003 - 100
Standards:	Wasser SM0
	Wasser SM1
	Wasser SM2
	Wasser SM3
	Wasser SM4
	Wasser SM5
	Wasser SM6
	Wasser SM7

Element	Form	Gerät	Methoden-Nr.	Seite
Cd	Cdges	ICP-MS	CdCdgesICPMS2.1	4

Bemerkungen:	Kollisions/Reaktions-
	<u>zelle:</u>
	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml

Cd

Durchführung:

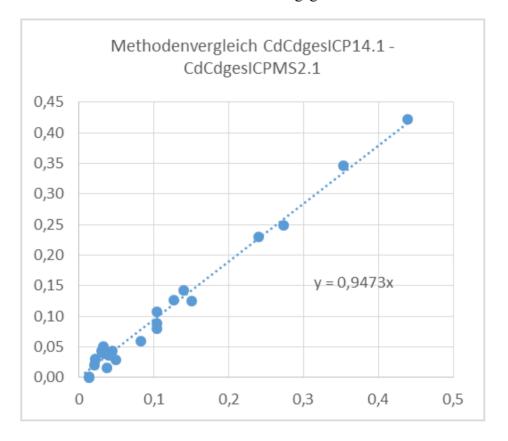
Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (WasserSM-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S31.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K25MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	WasserSM1; erlaubte Abweichung 10 %.


Auswertung/Datendokumentation:

Die gemessenen Cd-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Cd Cdges ICP-MS CdCdgesICPMS2.1

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Wasser-Serie mit den beiden angegebenen Methoden

<u>Cd</u>

Anhang Nr. 1 für Cd Cdges ICP-MS CdCdgesICPMS2.1

Element	Form	Gerät	Methoden-Nr.	Seite
Cd	Cdges	ICP-MS	CdCdgesICPMS4.1	1

Elementbestimmungsmethode:

CADMIUM

1: 01.06.2019

Datum:

Untersuchungsmethode		NG	BG	OMG
DAN2.2			0,004	100
geeignet für:				
Boden				
Humus				
Pflanze	DAN2.2			
Wasser				
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 17294-2			
HFA	D9.1.6.7			
HFA-Code	D;5;3;1;2;-1;0;			

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S32.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Cd	Cdges	ICP-MS	CdCdgesICPMS4.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

2000 und 5000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃),69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25ml HCl im 5 l- Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40 ml Salpetersäure (HNO₃) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10 ml Salpetersäure (HNO3) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 50 ppm, Ge 50 ppm, Re 5 ppm, Rh 5 ppm) =

5 ml Sc, 5 ml Ge, 0.5 ml Re, $0.5 \text{ ml Rh und } 2 \text{ ml HNO}_3 \text{ im } 100 \text{ ml PFA- Messkolben mit bidemin.}$ Wasser auffüllen.

Aus dieser Stammlösung eine 1:100 Verdünnung in 2% HNO₃-Lösung zum Messen herstellen (mindestens 100 ml).

Element	Form	Gerät	Methoden-Nr.	Seite	
Cd	Cdges	ICP-MS	CdCdgesICPMS4.1	3	

Eichung/Standards:

Stammlösungen:

Cd:

ICP-Standard (Fa B. Kraft) => 1 g/l Cd

Co, Cr, Cu, Ni, Pb, Zn: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg: ICP-Standard (Fa B. Kraft) => 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S32.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in 0,5 % HNO₃ mit Zusatz von 5 ppm Mg, die neben Cd auch andere Elemente enthalten (siehe Sammelanhang S32.1), verwendet:

Sta	<u>ndards</u>
Blank	0 μg/l Cd
DAN SM1	0,5 μg/l Cd
DAN SM2	1 μg/l Cd
DAN SM3	2 μg/l Cd
DAN SM4	5 μg/l Cd
DAN SM5	10 μg/l Cd
DAN SM6	20 μg/l Cd

<u>Kontrollstandard</u>
K26MS
2 μg/l Cd

Methode:	DANSM-1
Element:	Cd
Masse:	110,9042
	,
Messbereich	BG - OMG
[µg/1]:	0,008 - 200
Standards:	DAN SM0
	DAN SM1
	DAN SM2
	DAN SM3
	DAN SM4
	DAN SM5
	DAN SM6
	DAN SM7

Element	Form	Gerät	Methoden-Nr.	Seite
Cd	Cdges	ICP-MS	CdCdgesICPMS4.1	4

Bemerkungen:	Kollisions/Reaktions-
	<u>zelle:</u>
	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml

Cd

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben.

Die Aufschlusslösungen werden 1:2 verdünnt.

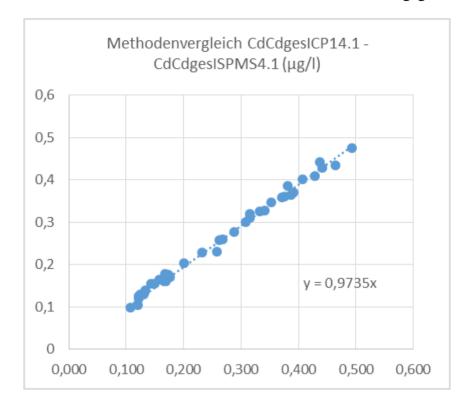
Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (DANSM-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S32.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K26MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	NHARZ; erlaubte Abweichung 10 %.


Auswertung/Datendokumentation:

Die gemessenen Cd-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Cd Cdges ICP-MS CdCdgesICPMS4.1

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Pflanzen-Druckaufschluss-Serie mit den beiden angegebenen Methoden

Anhang Nr. 1 für Cd Cdges ICP-MS CdCdgesICPMS4.1

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Cl	Cl	IC	CICIIC2.3	•	1

Elementbestimmungsmethode:

CHLORID

UntersuchungsmethodeNGBGOMGANULLIC0,0030,00916,5

geeignet für:

8001811001011	25		
Boden	GBL1.1, EXT12H2O1.1		
Humus			
Pflanze			
Wasser	ANULLIC		

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 10304-1
HFA	D13.2.4.1
HFA-Code	0714102

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Anionen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Anionen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit quartären Ammoniumgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine Natriumcarbonat/ Hydrogencarbonatlösung verwendet. Wegen der hohen Grundleitfähigkeit des Eluenten wird vor der Leitfähigkeitsdetektion ein sogenannter Supressor zwischengeschaltet, der durch Austausch der Na-Ionen gegen Protonen das stark leitende Natriumhydrogencarbonat in die wenig dissoziierte Kohlensäure, und die Natriumsalze der zu bestimmenden Anionen in deren stark leitende Mineralsäuren umwandelt. Zusätzlich wird durch einen CO₂-Suppressor der CO₂-Peak minimiert. Diese stark leitenden Mineralsäuren der zu bestimmenden Anionen werden sehr empfindlich in einer Leitfähigkeitsmesszelle detektiert. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Anions geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs wird das Anionen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich und den niedrigen Messbereich (unterschiedliche quadratische Gleichungen) ausgewertet. In dem 2-Kanal-System werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Anionensäule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC2.2

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S17.4: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC2.2	

CI

1.6.2014

Datum:

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Cl	Cl	IC	CICIIC2.3	-	2

Analysengeräte und Zubehör:

2-Kanal-IC-Anlage Fa. Metrohm, bestehend aus:

2 IC-Pumpen 818

2 Leitfähigkeitsdetektoren 819

IC-Separation-Center 820 mit Säulenofen und Suppressor

IC-Liquid-Handling-Einheit 833

2 Pulsationsdämpfer

IC-Eluent-Degaser 837

CO₂-Suppressor 853

IC-Probengeber 838

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5 b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen:

a. Anionen: 20 µ1

b. Kationen: 50 µl

Software:

a. zur Anlagensteuerung: IC-Net

b. zur Chromatogrammauswertung: MagIC-Net

Chemikalien:

Natriumhydrogencarbont, NaHCO₃

Natriumcarbonat, Na₂CO₃

Schwefelsäure, H₂SO₄ konz.

Lösungen:

Eluent Anionen: In einem 2 1-Messkolben werden 0,678 g Na₂CO₃ , sowie 0,084 g Na₂HCO₃

eingewogen und mit H₂O demin. reinst auf 2 l aufgefüllt.

Suppressor-Lösung: a. 1 Liter H₂O demin. reinst werden mit 3 ml H₂SO₄ konz. und 2,52 g

Oxalsäure versetzt. b. H₂O demin. reinst

Eichung/Standards:

Stammlösungen:

1 g/l Cl: 1 g/l Chlorid als Natriumchlorid => 1 g/l Cl

Stammlösung I: Je 1 ml SO₄-, NO₃-, NO₂-, und PO₄-Stammlösung und je 0,5 ml Cl- und F-

Stammlösung werden in einen 100 ml-Messkolben mit H₂O demin auf 100 ml

aufgefüllt.

 \Rightarrow 0,01 g/l SO₄, NO₃, NO₂, PO₄, und 0,005 g/l Cl, F

CI

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Cl	Cl	IC	CICIIC2.3	-	3

Haltbarkeit:

Die Stammlösung I ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

	Kontrollstandards
K1IC:	2,0 mg/l Cl
K2IC:	0,1 mg/l Cl

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S17.4) mit insgesamt 19 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung I, und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

Durchführung:

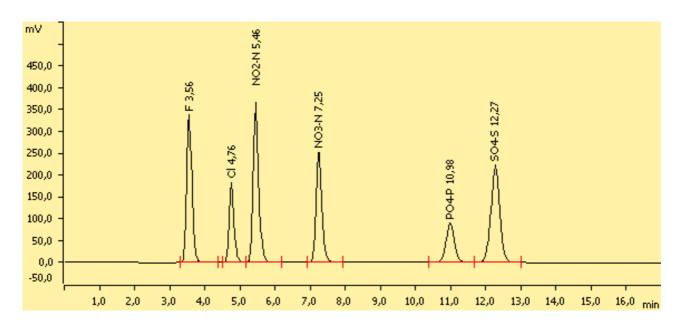
Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC2.2 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (2,0 mg/l Cl), K2IC (0,1 mg/l Cl), Messung
		nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC) bzw. 10 % (K2IC)
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1IC mit-
		gemessen; erlaubte Abweichung 5 %.

Auswertung/Datendokumentation:


Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Chlorid-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

CI

Anhang Nr.	1	für	Cl	Cl	IC	CICIIC2.3
O						

Chromatogramm der Anionenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Cl	Cl	IC	CICIIC3.1	-	1

Elementbestimmungsmethode:

CHLORID

C

20.12.2015

Datum:

Untersuchur	ngsmethode	NG	BG	OMG
ANULLIC		0,002	0,008	15,0
geeignet für:				
Boden				
Humus				
Pflanze				
Wasser	ANULLIC			
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 10304-1 u. 2			
HFA	D13.2.4.1			
HFA-Code	D:7:1:4:1:-1:2:			

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Anionen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Anionen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit quartären Ammoniumgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine Natriumcarbonat/ Hydrogencarbonatlösung verwendet. Wegen der hohen Grundleitfähigkeit des Eluenten wird vor der Leitfähigkeitsdetektion ein Supressor zwischengeschaltet, der durch Austausch der Na-Ionen gegen Protonen das stark leitende Natriumhydrogencarbonat in die wenig dissoziierte Kohlensäure, und die Natriumsalze der zu bestimmenden Anionen in deren stark leitende Mineralsäuren umwandelt. Diese stark leitenden Mineralsäuren der zu bestimmenden Anionen werden sehr empfindlich in einer Leitfähigkeitsmesszelle detektiert. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Anions geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 1,00 ppm) wird das Anionen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich (Kurventyp: Kubisch, Gewichtung 1) und den niedrigen Messbereich (Kurventyp: Kubisch Gewichtung 1/Konzentration) ausgewertet. Mit Flex 1 (Anionen) und Flex 2 (Kationen) werden Anund Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Anionensäule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC3.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S29.1: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC3.1	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Cl	Cl	IC	CICIIC3.1	-	2

Analysengeräte und Zubehör:

2 Compact IC Flex- Anlagen Fa. Metrohm, bestehend aus:

Compact IC Flex 1 Anionen mit MSM Suppressor und MCS-Suppressor

Compact IC Flex 2 Kationen

IC-Probengeber 858 Professional Sample Processor

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5 b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen: a. Anionen: 20 µl b. Kationen: 50 µl

Software: MagIC-Net3.1

Chemikalien:

Natriumhydrogencarbont, NaHCO₃ Natriumcarbonat, Na₂CO₃ Schwefelsäure, H₂SO₄ konz. Oxalsäuredihydrat, C₂H₂O₄*2H₂O

Lösungen:

Eluent Anionen: In einem 2 l-Messkolben werden 0,678 g Na₂CO₃, sowie 0,084 g Na₂HCO₃

eingewogen und mit H₂O demin. reinst auf 2 l aufgefüllt.

Suppressor-Lösung: 1 Liter H₂O demin. reinst werden mit 3 ml H₂SO₄ konz. und 0,27g Oxalsäure

versetzt.

Eichung/Standards:

Stammlösungen:

1 g/l Cl: 1 g/l Chlorid als Natriumchlorid => 1 g/l Cl

Stammlösung I: Je 1 ml SO₄-, NO₃-, NO₂-, und PO₄-Stammlösung und je 0,5 ml Cl- und F-

Stammlösung werden in einen 100 ml-Messkolben mit H₂O demin auf 100 ml

aufgefüllt.

 \Rightarrow 0,01 g/l SO₄, NO₃, NO₂, PO₄, und 0,005 g/l Cl, F

Haltbarkeit:

Die Stammlösung I ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

CI

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Cl	Cl	IC	CICIIC3.1	-	3

	<u>Kontrollstandards</u>
K1IC:	2,0 mg/l Cl
K2IC:	0,1 mg/l Cl

CI

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S29.1) mit insgesamt 18 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung I, und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

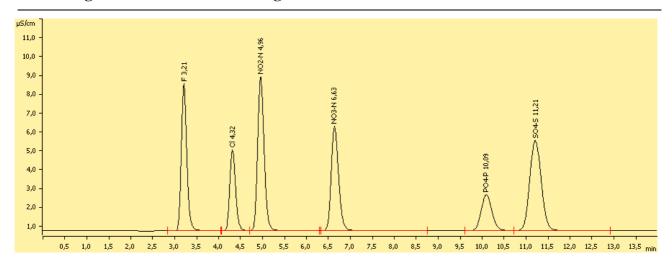
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC3.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard QKSt1.1		K1IC (2,0 mg/l Cl), K2IC (0,1 mg/l Cl), Messung
		nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC) bzw. 10 % (K2IC)
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial QStM1.1		Alle 50 Proben wird der Standard Wasser HE3IC mit-
		gemessen; erlaubte Abweichung 5 %.


Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Chlorid-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr. 1 für Cl Cl IC ClCIIC3.1

Chromatogramm der Anionenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Seite
Co	Coges	ICP(sim)	CoCogesICP22.1	1

Elementbestimmungsmethode:

KOBALT

Co

01.08.2014

Datum:

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1	0,226	0,762	150

geeignet für:

Boden	OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1
Humus	OAKW1.1, OAKW1.2, OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885	
HFA	D15.1.6.5	
HFA-Code	D;4;1;2;-1;-1;1;	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S26.1: Geräteparameter und Standardzusammen-	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002
setzung Kurzanleitung ICP5.1	Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Co	Coges	ICP(sim)	CoCogesICP22.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Co: ICP-Standardt (Fa B. Kraft) => 1 g/l Co

As, Ba, Cd, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Co auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

ElementFormGerätMethoden-Nr.SeiteCoCogesICP(sim)CoCogesICP22.13

	<u>Standards</u>
KW 0	0 μg/l Co
KW 1	100 μg/l Co
KW 2	200 μg/l Co
KW 3	500 μg/l Co
KW 4	300 μg/l Co
KW 5	400 μg/l Co
KW 6	600 μg/l Co
KW 7	800 μg/l Co
KW 8	1000 μg/l Co

	Kontrollstandard
K24	100 μg/l Co

Methode:	OAKW2.1Boden
<u>ivieulode:</u>	OAKWEG2.1Boden
	OAKWEG2.1Boden
	OAKWEG2.2Boden
	OAKWEGS.1Bodell
	OAKW1.111umus OAKW1.2Humus
F1 4	OAKW2.1Humus
Element:	Co
Wellenlänge:	230.786
	50.016
Messbereich	BG – OMG
[μg/l]:	
Standards:	Blank
	KW 1
	KW 2
	KW 3
	KW 4
	KW 5
	KW 6
	KW 7
	KW 8
Bemerkungen:	Fensterweite: 20
	Pixelbreite: 2
	Pixelhöhe: 5
	Untergrund-
	Korrektur:
	Pos. links: 4
	Pixelanzahl: 2
	Pos. rechts: 16
	Pixelanzahl: 2
	r ixcializaili. Z

Element	Form	Gerät	Methoden-Nr.	Seite
Co	Coges	ICP(sim)	CoCogesICP22.1	4

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit H_2O bidemin. aufgefüllt.

Co

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %.

Auswertung/Datendokumentation:

Die gemessenen Co-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Co	Coges	ICP(sim)	CoCogesICP24.1	1

Elementbestimmungsmethode:

KOBALT

Co

01.07.2016

Datum:

Untersuchungsmethode	NG	BG	OMG
EXTEDTA1.1	1,4	4,5	4000

geeignet für:

Boden	EXTEDTA1.1
Humus	
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885	
HFA	D15.1.5.4	
HFA-Code	D:4;1;2;-1;-1;1;	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S28.1: Geräteparameter und Standardzusammen-	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002
setzung Kurzanleitung ICP5.1	Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Co	Coges	ICP(sim)	CoCogesICP24.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa.

Eppendorf

100 und 250 ml-Messkolben aus Glas

Chemikalien:

Na-EDTA (Titriplex III) $(C_{10}H_{14}N_2Na_2O_8 * 2H_2O)$

Lösungen:

0,1 m EDTA-Lösung: in einen 1 l-Kolben wird eine Ampulle 0,1 molare Titriplex III Lösung

gegeben und mit H₂O demin. bis zur Eichmarke aufgefüllt.

Eichung/Standards:

Stammlösungen:

Co: ICP-Standard (Fa B. Kraft) => 1 g/l Co

Cd, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S28.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Co auch andere Elemente enthalten (siehe Sammelanhang S28.1), verwendet:

	<u>Standards</u>
EDTA 0	0 μg/l Co
EDTA 1	200 μg/l Co
EDTA 2	500 μg/l Co
EDTA 3	2000 μg/l Co
EDTA 4	4000 μg/l Co
EDTA 5	1000 μg/l Co

	Kontrollstandard
K23	500 μg/l Co

Co

Methode:	EXTEDTA1.1
Element:	Co
Wellenlänge:	230.786
Messbereich	BG – OMG
[µg/l]:	
Standards:	EDTA 0
	EDTA 1
	EDTA 2
	EDTA 3
	EDTA 4
	EDTA 5
Bemerkungen:	Fensterweite: 20
	Pixelbreite: 3
	Pixelhöhe: 5
	<u>Untergrund-</u>
	Korrektur:
	Pos. links: 4
	Pixelanzahl: 2
	Pos. rechts: 15
	Pixelanzahl: 2

Der Blank, die Standards und die Kontrollstandards werden mit der verwendeten Extraktionslösung in 100 ml Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S28.1 zusammengestellt. Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K23; Messung nach der Eichung, alle 15 Proben und	
		nach jeder Eichungswiederholung; erlaubte	
		Abweichung 5 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial	QStM1.1	Solling0-10; erlaubte Abweichung 10 %.	

Element	Form	Gerät	Methoden-Nr.	Seite
Co	Coges	ICP(sim)	CoCogesICP24.1	4

Auswertung/Datendokumentation:

Die gemessenen Co-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element Form		Gerät	Methoden-Nr.	Seite
Co	Coges	ICP-MS	CoCogesICPMS1.1	1

Elementbestimmungsmethode:

KOBALT

Untersuchungsmethode

OAKW2.1, OAKWEG3.1

Datum: 01.11.2018

BG

0.006

OMG

700

NG

0.002

geeignet für:			
Boden	OAKW2.1, OAKWEG3.1		
Humus	OAKW2.1		
Pflanze			
Wasser			

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 17294-2	
HFA	D15.1.6.9	
HFA-Code	D;5;3;1;2;-1;0;	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S30.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element Form		Form	Gerät	Methoden-Nr.	Seite	
	Co	Coges	ICP-MS	CoCogesICPMS1.1	2	

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

1000, 2000 und 5000ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Y, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Mg, Fe, K: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25 ml HCl im 5 l-Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40ml Salpetersäure (HNO₃) im 2 l-Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10~ml Salpetersäure (HNO3) im 2~l-Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 10 ppm, Ge 1 ppm, Y 10 ppm, Re 5 ppb, Rh 100 ppb) = 10 ml Sc, 1 ml Ge, 10 ml Y, 0,1 ml Rh jeweils aus 1 g/l und 1 ml Re aus 5 mg/l plus 20 ml HNO₃ im 1000 ml Glas-Messkolben mit bidemin. Wasser auffüllen.

Aus dieser Stammlösung eine 1:10 Verdünnung (mit bi-demin H₂O aufgefüllt) zum Messen herstellen (mindestens 100 ml).

Basislösung für Standards und Kontrollstandard:

Ansatz der Lösung (Al 50 ppm, Mg 50 ppm, Fe 20 ppm, K 10 ppm) =

Element Form		Gerät	Methoden-Nr.	Seite
Со	Coges	ICP-MS	CoCogesICPMS1.1	3

Jeweils 5 ml Al und Mg, 2 ml Fe und 1 ml K mit 60 ml HCl und 20 ml HNO3 in einem 1000 ml Messkolben mit bi-demin H2O auffüllen.

Eichung/Standards:

Stammlösungen:

Co: ICP-Standard (Fa B. Kraft) => 1 g/l Co

Cd, Cr, Cu, Ni, Pb, Zn, Hg, W: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg, Al, Fe, K: ICP-Standard (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S30.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in einer dem Königswasserextrakt entsprechenden Mischung aus HCl und HNO₃ mit Zusatz von 50 ppm Al, 50 ppm Mg, 20 ppm Fe und 10 ppm K, die neben Co auch andere Elemente enthalten (siehe Sammelanhang S30.1), verwendet:

	<u>Standards</u>
Blank	0 μg/l Co
KWSM1	20 μg/l Co
KWSM2	1 μg/l Co
KWSM3	2 μg/l Co
KWSM4	5 μg/l Co
KWSM5	10 μg/l Co

<u>Kontrollstandard</u>	
K24MS	
5 μg/l Co	

Methode:	OAKWSM	OAKWEGSM	
Element:	Co	Со	
Masse:	58,9332	58,9332	
Messbereich	BG - OMG	BG - OMG	
[µg/l]:	0,12 - 14000	0,3 - 35000	
Standards:	Blank	Blank	
	KWSM1	KWSM1	
	KWSM2	KWSM2	
	KWSM3	KWSM3	
	KWSM4	KWSM4	
	KWSM5	KWSM5	

Element Form Gerät		Gerät	Methoden-Nr.	Seite
Co	Coges	ICP-MS	CoCogesICPMS1.1	4

Bemerkungen:	Kollisions/Reaktions-	Kollisions/Reaktions-
	<u>zelle:</u>	zelle:
	Gasfluss H ₂ : 0,5 ml	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml	Gasfluss He: 4,5 ml

Co

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. OAKW-Aufschlusslösungen werden 1:20 vom PrepFAST-Probengeber verdünnt, OAKWEG-Aufschlusslösungen 1:50.

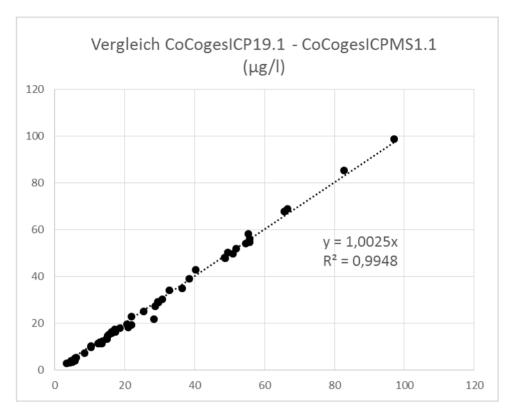
Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (OAKWSM-1, OAKWEGSM-1, OAKWSMHg-1, OAKWEGSMHg-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S30.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	ISE974, BZE-SAC, NFVH; erlaubte Abweichung 10
		\(\gamma_0\).


Auswertung/Datendokumentation:

Die gemessenen Co-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Co Coges ICP-MS CoCogesICPMS1.1

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Königswasser-Aufschluss-Serie mit den beiden angegebenen Methoden

Anhang Nr. 1 für Co Coges ICP-MS CoCogesICPMS1.1

 Element	Form	Gerät	Methoden-Nr.	Seite
Co	Coges	ICP-MS	CoCogesICPMS2.1	1

Elementbestimmungsmethode:

COBALT

Datum: 01.11.2018

Untersuchur	ngsmethode	NG	BG	OMG
ANULL		0,002	0,007	100
geeignet für:				
Boden				
Humus				
Pflanze				
Wasser	ANULL			
Methodenver	rweise:			
Norm In Anlehnung an DIN EN ISO 17294-2				
HFA	D15.1.4.5			
HFA-Code	D;5;3;1;2;-1;0;			

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

<u>Anhang:</u>	<u>Lit.:</u>
Anhang 1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S31.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Со	Coges	ICP-MS	CoCogesICPMS2.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

2000 und 5000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃),69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25ml HCl im 5 l- Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40 ml Salpetersäure (HNO₃) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10 ml Salpetersäure (HNO3) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 50 ppm, Ge 50 ppm, Re 5 ppm, Rh 5 ppm) =

5 ml Sc, 5 ml Ge, 0.5 ml Re, $0.5 \text{ ml Rh und } 2 \text{ ml HNO}_3 \text{ im } 100 \text{ ml PFA- Messkolben mit bidemin.}$ Wasser auffüllen.

Aus dieser Stammlösung eine 1:100 Verdünnung in 2% HNO₃-Lösung zum Messen herstellen (mindestens 100 ml).

Element	Form	Gerät	Methoden-Nr.	Seite	
Co	Coges	ICP-MS	CoCogesICPMS2.1	3	

Eichung/Standards:

Stammlösungen:

Co:

ICP-Standard (Fa B. Kraft) => 1 g/l Co

Cd, Cr, Cu, Ni, Pb, Zn: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg: ICP-Standard (Fa B. Kraft) => 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S30.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in 2 % HNO3 mit Zusatz von 10 ppm Mg, die neben Co auch andere Elemente enthalten (siehe Sammelanhang S31.1), verwendet:

<u>Standards</u>			
Blank	0 μg/l Co		
Wasser SM1	0,5 μg/l Co		
Wasser SM2	1 μg/l Co		
Wasser SM3	2 μg/l Co		
Wasser SM4	5 μg/l Co		
Wasser SM5	10 μg/l Co		
Wasser SM6	20 μg/l Co		

	Kontrollstandard
K25M 20 μg	

Methode:	WasserSM-1
Element:	Со
Masse:	58,9332
Messbereich	BG - OMG
[µg/l]:	0,007 - 100
Standards:	Wasser SM0
	Wasser SM1
	Wasser SM2
	Wasser SM3
	Wasser SM4
	Wasser SM5
	Wasser SM6
	Wasser SM7

Element	Form	Gerät	Methoden-Nr.	Seite
Co	Coges	ICP-MS	CoCogesICPMS2.1	4

Bemerkungen:	Kollisions/Reaktions-
	<u>zelle:</u>
	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml

Co

Durchführung:

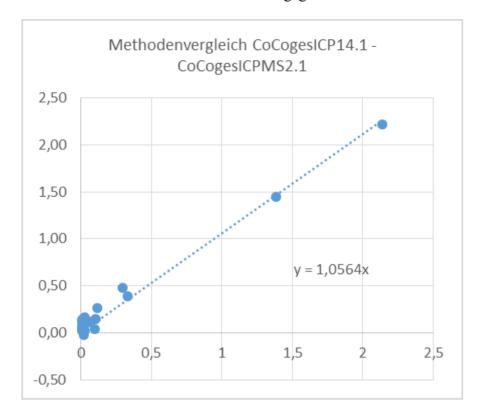
Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (WasserSM-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S31.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K25MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	WasserSM1; erlaubte Abweichung 10 %.


Auswertung/Datendokumentation:

Die gemessenen Co-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Co Coges ICP-MS CoCogesICPMS2.1

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Wasser-Serie mit den beiden angegebenen Methoden

Anhang Nr. 1 für Co Coges ICP-MS CoCogesICPMS2.1

Element	Form	Gerät	Methoden-Nr.	Seite
Co	Coges	ICP-MS	CoCogesICPMS4.1	1

Elementbestimmungsmethode:

COBALT

Datum: 01.06.2019

Untersuchur	ngsmethode	NG	BG	OMG
DAN2.2		0,003	0,008	100
geeignet für:				
Boden				
Humus				
Pflanze	DAN2.2			
Wasser				
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 17294-2			
HFA	D15.1.6.9			
HFA-Code	D;5;3;1;2;-1;0;			

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S32.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Form	Gerät	Methoden-Nr.	Seite	
Co	Coges	ICP-MS	CoCogesICPMS4.1	2	

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

2000 und 5000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃),69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25ml HCl im 5 l- Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40 ml Salpetersäure (HNO₃) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10 ml Salpetersäure (HNO3) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 50 ppm, Ge 50 ppm, Re 5 ppm, Rh 5 ppm) =

5 ml Sc, 5 ml Ge, 0.5 ml Re, $0.5 \text{ ml Rh und } 2 \text{ ml HNO}_3 \text{ im } 100 \text{ ml PFA- Messkolben mit bidemin.}$ Wasser auffüllen.

Aus dieser Stammlösung eine 1:100 Verdünnung in 2% HNO₃-Lösung zum Messen herstellen (mindestens 100 ml).

Element	Form	Gerät	Methoden-Nr.	Seite	
Co	Coges	ICP-MS	CoCogesICPMS4.1	3	

Eichung/Standards:

Stammlösungen:

Co:

ICP-Standard (Fa B. Kraft) => 1 g/l Co

Cd, Cr, Cu, Ni, Pb, Zn: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg: ICP-Standard (Fa B. Kraft) => 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S32.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in 0,5 % HNO₃ mit Zusatz von 5 ppm Mg, die neben Co auch andere Elemente enthalten (siehe Sammelanhang S32.1), verwendet:

Sta	ndards
Blank	0 μg/l Co
DAN SM1	0,5 μg/l Co
DAN SM2	1 μg/l Co
DAN SM3	2 μg/l Co
DAN SM4	5 μg/l Co
DAN SM5	10 μg/l Co
DAN SM6	20 μg/l Co

<u>Kontrollstandard</u>
K26MS
5 μg/l Co

Methode:	DANSM-1
Element:	Со
Masse:	58,9332
Messbereich	BG - OMG
[µg/l]:	0,016 - 200
Standards:	DAN SM0
	DAN SM1
	DAN SM2
	DAN SM3
	DAN SM4
	DAN SM5
	DAN SM6
	DAN SM7

Element	Form	Gerät	Methoden-Nr.	Seite
Co	Coges	ICP-MS	CoCogesICPMS4.1	4

Bemerkungen:	Kollisions/Reaktions-
	<u>zelle:</u>
	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml

Co

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben.

Die Aufschlusslösungen werden 1:2 verdünnt.

Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (DANSM-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S32.1

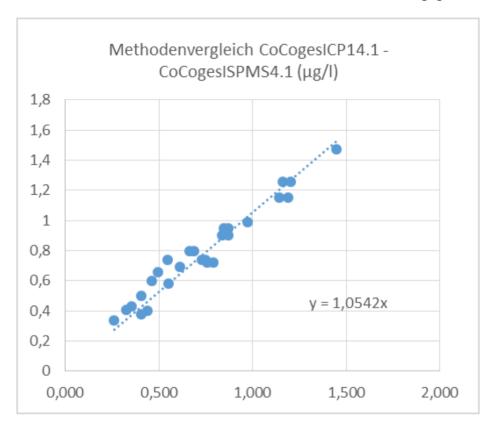
zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung		
Kontrollstandard QKSt.1.1		K26MS; Messung nach der Eichung, alle 10 Proben		
		und nach jeder Eichungswiederholung; erlaubte		
		Abweichung 5 %		
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie		
Standardmaterial	QStM1.1	NHARZ; erlaubte Abweichung 10 %.		


Auswertung/Datendokumentation:

Die gemessenen Co-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Co Coges ICP-MS CoCogesICPMS4.1

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Pflanzen-Druckaufschluss-Serie mit den beiden angegebenen Methoden

Anhang Nr. 1 für Co Coges ICP-MS CoCogesICPMS4.1

Element	Form	Gerät	Methoden-Nr.	Seite
Cr	Crges	ICP(sim)	CrCrgesICP22.1	1

Elementbestimmungsmethode:

CHROM

Datum: 01.08.2014

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2,	0,66	2,20	1500
OAKWEG3.1	0,00	2,20	1300

geeignet für:

Boden	OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1
Humus	OAKW1.1, OAKW1.2, OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D14.1.6.5
HFA-Code	D;4;1;2;-1;-1;1;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S26.1: Geräteparameter und Standardzusammensetzung	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas
Kurzanleitung ICP5.1	in Analytical Atomic Spectrometry; Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite	
Cr	Crges	ICP(sim)	CrCrgesICP22.1	2	

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Cr: ICP-Standard (Fa B. Kraft) => 1 g/l Cr

As, Ba, Cd, Co, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Cr auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

ElementFormGerätMethoden-Nr.SeiteCrCrgesICP(sim)CrCrgesICP22.13

	<u>Standards</u>
KW 0	0 μg/l Cr
KW 1	100 μg/l Cr
KW 2	200 μg/l Cr
KW 3	300 μg/l Cr
KW 4	500 μg/l Cr
KW 5	600 μg/l Cr
KW 6	800 μg/l Cr
KW 7	1000 μg/l Cr
KW 8	1500 μg/l Cr

	Kontrollstandard
K24	100 μg/l Cr

Methode:	OAKW2.1Boden
<u>wiemode.</u>	OAKWEG2.1Boden
	OAKWEG2.2Boden
	OAKWEG2.2Boden OAKWEG3.1Boden
	OAKW1.1Humus
	OAKW1.2Humus
	OAKW1.2Humus
Element:	Cr
Wellenlänge:	267.716
Messbereich	BG - OMG
[µg/l]:	
Standards:	Blank
	KW 1
	KW 2
	KW 3
	KW 4
	KW 5
	KW 6
	KW 7
	KW 8
Bemerkungen:	Fensterweite: 20
	Pixelbreite: 3
	Pixelhöhe: 3
	Untergrund-
	Korrektur:
	Pos. links: 3
	Pixelanzahl: 2
	Pos. rechts: 19
	Pixelanzahl: 2

Element	Form	Gerät	Methoden-Nr.	Seite
Cr	Crges	ICP(sim)	CrCrgesICP22.1	4

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit H_2O bidemin. aufgefüllt.

Cr

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %.

Auswertung/Datendokumentation:

Die gemessenen Cr-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Cr	Crges	ICP(sim)	CrCrgesICP24.1	1

Elementbestimmungsmethode:

CHROM

Untersuchungsmethode

EXTEDTA1.1

BG

7,2

01.07.2016

OMG

4000

Datum:

NG

2,3

geeignet für:		
Boden	EXTEDTA1.1	
Humus		
Pflanze		

Methodenverweise:

Wasser

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D14.1.5.4
HFA-Code	D:4;1;2;-1;-1;0;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S28.1: Geräteparameter und Standardzusammensetzung Kurzanleitung ICP5.1	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Cr	Crges	ICP(sim)	CrCrgesICP24.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa.

Eppendorf

100 und 250 ml-Messkolben aus Glas

Chemikalien:

Na-EDTA (Titriplex III) $(C_{10}H_{14}N_2Na_2O_8 * 2H_2O)$

Lösungen:

0,1 m EDTA-Lösung: in einen 1 l-Kolben wird eine Ampulle 0,1 molare Titriplex III Lösung

gegeben und mit H₂O demin. bis zur Eichmarke aufgefüllt.

Eichung/Standards:

Stammlösungen:

Cr: ICP-Standard (Fa B. Kraft) => 1 g/l Cr

Cd, Co, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S28.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Cr auch andere Elemente enthalten (siehe Sammelanhang S28.1), verwendet:

	<u>Standards</u>
EDTA 0	0 μg/l Cr
EDTA 1	4000 μg/l Cr
EDTA 2	1000 μg/l Cr
EDTA 3	500 μg/l Cr
EDTA 4	2000 μg/l Cr
EDTA 5	200 μg/l Cr

Element	Form	Gerät	Methoden-Nr.	Seite	
Cr	Crges	ICP(sim)	CrCrgesICP24.1	3	

	Kontrollstandard
K23	500 μg/l Cr

Cr

Methode:	EXTEDTA1.1
Element:	Cr
Wellenlänge:	205.560
Messbereich	BG - OMG
[µg/l]:	
Standards:	EDTA 0
	EDTA 1
	EDTA 2
	EDTA 3
	EDTA 4
	EDTA 5
Bemerkungen:	Fensterweite: 20
	Pixelbreite: 2
	Pixelhöhe: 5
	<u>Untergrund-</u>
	Korrektur:
	Pos. links: 7
	Pixelanzahl: 1
	Pos. rechts: 19
	Pixelanzahl: 2

Der Blank, die Standards und die Kontrollstandards werden mit der verwendeten Extraktionslösung in 100 ml Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S28.1 zusammengestellt. Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K23; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Solling0-10; erlaubte Abweichung 10 %.

Element	Form	Gerät	Methoden-Nr.	Seite
Cr	Crges	ICP(sim)	CrCrgesICP24.1	4

Auswertung/Datendokumentation:

Die gemessenen Cr-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Cr	Crges	ICP-MS	CrCrgesICPMS1.1	1

Elementbestimmungsmethode:

CHROM

Untersuchungsmethode

OAKW2.1, OAKWEG3.1

Datum: 01.11.2018

OMG

700

BG

0.027

NG

0.009

geeignet für:				
Boden	OAKW2.1, OAKWEG3.1			
Humus	OAKW2.1			
Pflanze				
Wasser				

Methodenverweise:

Norm	n Anlehnung an DIN EN ISO 17294-2		
HFA	D14.1.6.8		
HFA-Code	D;5;3;1;2;-1;0;		

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Ouadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S30.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Form	Gerät	Methoden-Nr.	Seite	
Cr	Crges	ICP-MS	CrCrgesICPMS1.1	2	Ì

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

1000, 2000 und 5000ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Y, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Mg, Fe, K: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25 ml HCl im 5 l-Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40ml Salpetersäure (HNO₃) im 2 l-Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10~ml Salpetersäure (HNO3) im 2~l-Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 10 ppm, Ge 1 ppm, Y 10 ppm, Re 5 ppb, Rh 100 ppb) = 10 ml Sc, 1 ml Ge, 10 ml Y, 0,1 ml Rh jeweils aus 1 g/l und 1 ml Re aus 5 mg/l plus 20 ml HNO₃ im 1000 ml Glas-Messkolben mit bidemin. Wasser auffüllen.

Aus dieser Stammlösung eine 1:10 Verdünnung (mit bi-demin H₂O aufgefüllt) zum Messen herstellen (mindestens 100 ml).

Basislösung für Standards und Kontrollstandard:

Ansatz der Lösung (Al 50 ppm, Mg 50 ppm, Fe 20 ppm, K 10 ppm) =

Element	Form	Gerät	Methoden-Nr.	Seite
Cr	Crges	ICP-MS	CrCrgesICPMS1.1	3

Jeweils 5 ml Al und Mg, 2 ml Fe und 1 ml K mit 60 ml HCl und 20 ml HNO3 in einem 1000 ml Messkolben mit bi-demin H2O auffüllen.

Eichung/Standards:

Stammlösungen:

Cr: ICP-Standard (Fa B. Kraft) => 1 g/l Cr

Cd, Co, Cu, Ni, Pb, Zn, Hg, W: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg, Al, Fe, K: ICP-Standard (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S30.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in einer dem Königswasserextrakt entsprechenden Mischung aus HCl und HNO₃ mit Zusatz von 50 ppm Al, 50 ppm Mg, 20 ppm Fe und 10 ppm K, in die neben Cr auch andere Elemente enthalten (siehe Sammelanhang S30.1), verwendet:

	Standards	
Blank		0 μg/l Cr
KWSM1		20 μg/l Cr
KWSM2		50 μg/l Cr
KWSM3		$2 \mu g/1 Cr$
KWSM4		5 μg/l Cr
KWSM5		10 μg/l Cr

<u>Kontrollstandard</u>
K24MS
5 μg/l Cr

Methode:	OAKWSM	OAKWEGSM
Element:	Cr	Cr
Masse:	51,9405	51,9405
Messbereich	BG - OMG	BG – OMG
[µg/l]:	0,54 - 14000	1,35 - 35000
Standards:	Blank	Blank
	KWSM1	KWSM1
	KWSM2	KWSM2
	KWSM3	KWSM3
	KWSM4	KWSM4
	KWSM5	KWSM5

Element	Form	Gerät	Methoden-Nr.	Seite
Cr	Crges	ICP-MS	CrCrgesICPMS1.1	4

Bemerkungen:	Kollisions/Reaktions-	Kollisions/Reaktions-
	<u>zelle:</u>	<u>zelle:</u>
	Gasfluss H ₂ : 0,5 ml	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml	Gasfluss He: 4,5 ml

Cr

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. OAKW-Aufschlusslösungen werden 1:20 vom PrepFAST-Probengeber verdünnt, OAKWEG-Aufschlusslösungen 1:50.

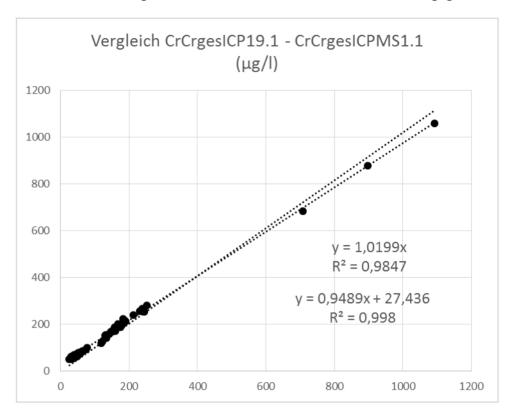
Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (OAKWSM-1, OAKWEGSM-1, OAKWSMHg-1, OAKWEGSMHg-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S30.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	ISE974, BZE-SAC, NFVH; erlaubte Abweichung 10
		%.


Auswertung/Datendokumentation:

Die gemessenen Cr-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Cr Crges ICP-MS CrCrgesICPMS1.1

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Königswasser-Aufschluss-Serie mit den beiden angegebenen Methoden

Anhang Nr. 1 für Cr Crges ICP-MS CrCrgesICPMS1.1

Element	Form	Gerät	Methoden-Nr.	Seite
Cr	Crges	ICP-MS	CrCrgesICPMS2.1	1

Elementbestimmungsmethode:

CHROM

01.11.2018

Datum:

Untersuchungsmethode			BG	OMG
ANULL		0,01	0,031	1000
geeignet für:				
Boden				
Humus				
Pflanze				
Wasser	ANULL			
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 17294-2			
HFA D14.1.4.6				
HFA-Code	D·5·3·1·2·-1·0·			

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S31.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Cr	Crges	ICP-MS	CrCrgesICPMS2.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

2000 und 5000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃),69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25ml HCl im 5 l- Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40 ml Salpetersäure (HNO₃) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10 ml Salpetersäure (HNO3) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 50 ppm, Ge 50 ppm, Re 5 ppm, Rh 5 ppm) =

 $5\ ml\ Sc,\, 5\ ml\ Ge,\, 0,5\ ml\ Re,\, 0,5\ ml\ Rh\ und\, 2\ ml\ HNO_3\ im\, 100\ ml\ PFA$ - Messkolben mit bidemin. Wasser auffüllen.

Aus dieser Stammlösung eine 1:100 Verdünnung in 2% HNO₃-Lösung zum Messen herstellen (mindestens 100 ml).

Element	Form	Gerät	Methoden-Nr.	Seite
Cr	Crges	ICP-MS	CrCrgesICPMS2.1	3

Eichung/Standards:

Stammlösungen:

Cr:

ICP-Standard (Fa B. Kraft) => 1 g/l Cr

Cd, Co, Cu, Ni, Pb, Zn: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg: ICP-Standard (Fa B. Kraft) => 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S31.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in 2 % HNO3 mit Zusatz von 10 ppm Mg, die neben Cr auch andere Elemente enthalten (siehe Sammelanhang S31.1), verwendet:

<u>Standards</u>		
Blank	0 μg/l Cr	
Wasser SM1	0,5 μg/l Cr	
Wasser SM2	1 μg/l Cr	
Wasser SM3	2 μg/l Cr	
Wasser SM4	5 μg/l Cr	
Wasser SM5	10 μg/l Cr	
Wasser SM6	20 μg/l Cr	

	Kontrollstandard
K25MS 20 μg/l	

Methode:	WasserSM-1
Element:	Cr
Masse:	51,9405
Messbereich	BG - OMG
[µg/l]:	0,031 - 100
Standards:	Wasser SM0
	Wasser SM1
	Wasser SM2
	Wasser SM3
	Wasser SM4
	Wasser SM5
	Wasser SM6
	Wasser SM7

Element	Form	Gerät	Methoden-Nr.	Seite
Cr	Crges	ICP-MS	CrCrgesICPMS2.1	4

Bemerkungen:	Kollisions/Reaktions-
	<u>zelle:</u>
	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml

Cr

Durchführung:

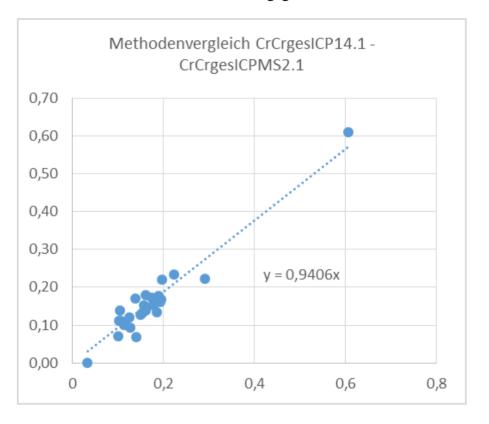
Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (WasserSM-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S31.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard QKSt.1.1		K25MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial QStM1.1		WasserSM1; erlaubte Abweichung 10 %.


Auswertung/Datendokumentation:

Die gemessenen Cr-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Cr Crges ICP-MS CrCrgesICPMS2.1

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Wasser-Serie mit den beiden angegebenen Methoden

<u>Cr</u>

Anhang Nr. 1 für Cr Crges ICP-MS CrCrgesICPMS2.1

_	Element	Form	Gerät	Methoden-Nr.	Seite
	Cr	Crges	ICP-MS	CrCrgesICPMS4.1	1

Elementbestimmungsmethode:

CHROM

C ...

Datum:

01.06.2019

Untersuchungsmethode			BG	OMG
DAN2.2	DAN2.2			100
geeignet für:				
Boden				
Humus				
Pflanze	DAN2.2			
Wasser				
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 17294-2			
HFA	D14.1.6.8			
HFA-Code	D;5;3;1;2;-1;0;	_		

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S32.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Cr	Crges	ICP-MS	CrCrgesICPMS4.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

2000 und 5000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃),69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25ml HCl im 5 l- Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40 ml Salpetersäure (HNO₃) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10 ml Salpetersäure (HNO3) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 50 ppm, Ge 50 ppm, Re 5 ppm, Rh 5 ppm) =

5 ml Sc, 5 ml Ge, 0.5 ml Re, $0.5 \text{ ml Rh und } 2 \text{ ml HNO}_3 \text{ im } 100 \text{ ml PFA- Messkolben mit bidemin.}$ Wasser auffüllen.

Aus dieser Stammlösung eine 1:100 Verdünnung in 2% HNO₃-Lösung zum Messen herstellen (mindestens 100 ml).

Element	Form	Gerät	Methoden-Nr.	Seite
Cr	Crges	ICP-MS	CrCrgesICPMS4.1	3

Eichung/Standards:

Stammlösungen:

Cr:

ICP-Standard (Fa B. Kraft) => 1 g/l Cr

Cd, Co, Cu, Ni, Pb, Zn: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg: ICP-Standard (Fa B. Kraft) => 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S32.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in 0,5 % HNO₃ mit Zusatz von 5 ppm Mg, die neben Cr auch andere Elemente enthalten (siehe Sammelanhang S32.1), verwendet:

<u>Standards</u>		
Blank	0 μg/l Cr	
DAN SM1	0,5 µg/l Cr	
DAN SM2	1 μg/l Cr	
DAN SM3	2 μg/l Cr	
DAN SM4	5 μg/l Cr	
DAN SM5	10 μg/l Cr	
DAN SM6	20 μg/l Cr	

<u>Kontrollstandard</u>	
K26MS	
5 μg/l Cr	

Methode:	DANSM-1
Element:	Cr
Masse:	51,9405
Messbereich	BG - OMG
[μ g/l]:	0,026 - 200
Standards :	DAN SM0
	DAN SM1
	DAN SM2
	DAN SM3
	DAN SM4
	DAN SM5
	DAN SM6
	DAN SM7

Element	Form	Gerät	Methoden-Nr.	Seite
Cr	Crges	ICP-MS	CrCrgesICPMS4.1	4

Bemerkungen:	Kollisions/Reaktions-
	<u>zelle:</u>
	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml

Cr

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben.

Die Aufschlusslösungen werden 1:2 verdünnt.

Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (DANSM-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S32.1 zusammengestellt.

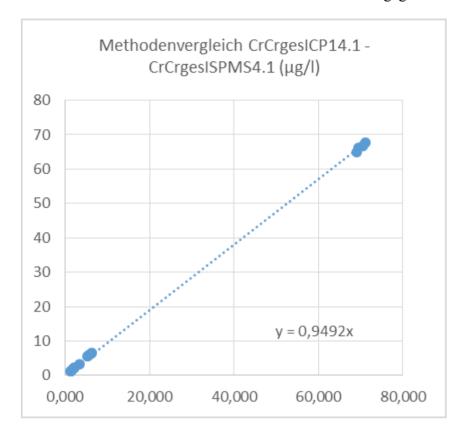
Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K26MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	NHARZ; erlaubte Abweichung 10 %.

Auswertung/Datendokumentation:


Die gemessenen Cr-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Cr Crges ICP-MS CrCrgesICPMS4.1

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Pflanzen-Druckaufschluss-Serie mit den beiden angegebenen Methoden

<u>Cr</u>

Anhang Nr. 1 für Cr Crges ICP-MS CrCrgesICPMS4.1

Cr

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP(sim)	CuCugesICP22.1	1

Elementbestimmungsmethode:

Datum: 01.08.2014

KUPFER

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2,	0,9	2,94	1500
OAKWEG3.1	0,9	2,94	1300

geeignet für:

<u> </u>	
Boden	OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1
Humus	OAKW1.1, OAKW1.2, OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D32.1.6.3
HFA-Code	D;4;1;2;-1;-1;0;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S26.1: Geräteparameter und Standardzusammensetzung Kurzanleitung ICP5.1	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP(sim)	CuCugesICP22.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Cu: ICP-Standard (Fa B. Kraft) => 1 g/l Cu

As, Ba, Cd, Co, Cr, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Cu auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP(sim)	CuCugesICP22.1	3

	<u>Standards</u>
KW 0	0 μg/l Cu
KW 1	100 μg/l Cu
KW 2	200 μg/l Cu
KW 3	300 μg/l Cu
KW 4	400 μg/l Cu
KW 5	600 μg/l Cu
KW 6	800 μg/l Cu
KW 7	1000 μg/l Cu
KW 8	1500 μg/l Cu

	Kontrollstandard
K24	100 μg/l Cu

OAKWEG2.1Boden OAKWEG2.2Boden OAKW1.1Humus OAKW1.2Humus OAKW2.1Humus OAKW7. VW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1	Methode:	OAKW2.1Boden
OAKWEG2.2Boden OAKWEG3.1Boden OAKW1.1Humus OAKW1.2Humus OAKW2.1Humus OAKW2.1Humus Element: Wellenlänge: 324.754 Messbereich [µg/l]: Standards: Blank KW 1 KW 2 KW 3 KW 4 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1	<u>wiemode.</u>	0
OAKWEG3.1Boden OAKW1.1Humus OAKW1.2Humus OAKW2.1Humus OAKW2.1Humus Element: Wellenlänge: BG – OMG [µg/l]: Standards: Blank KW 1 KW 2 KW 3 KW 4 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1		
OAKW1.1Humus OAKW2.1Humus OAKW2.1Humus OAKW2.1Humus Element: Wellenlänge: Standards: Messbereich [µg/l]: Standards: Blank KW 1 KW 2 KW 3 KW 4 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1		0
OAKW1.2Humus OAKW2.1Humus Element: Wellenlänge: 324.754 Messbereich [μg/l]: Standards: Blank KW 1 KW 2 KW 3 KW 4 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1		
Element: Wellenlänge: Messbereich [µg/l]: Standards: Blank KW 1 KW 2 KW 3 KW 4 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1		
Wellenlänge: 324.754 Messbereich [µg/l]: Standards: Blank KW 1 KW 2 KW 3 KW 4 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund-Korrektur: Pos. links: 1		
Messbereich [μg/l]: Standards: Blank KW 1 KW 2 KW 3 KW 4 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1	Element:	Cu
Messbereich [μg/l]: Standards: Blank KW 1 KW 2 KW 3 KW 4 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1	Wellenlänge:	324.754
[μg/l]: Standards: Blank KW 1 KW 2 KW 3 KW 4 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1		
Standards: Blank KW 1 KW 2 KW 3 KW 4 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1	Messbereich	BG - OMG
KW 1 KW 2 KW 3 KW 4 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1	[µg/l]:	
KW 2 KW 3 KW 4 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1	Standards:	Blank
KW 3 KW 4 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1		KW 1
KW 4 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1		KW 2
KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1		KW 3
KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1		KW 4
KW 7 KW 8 Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1		KW 5
KW 8		KW 6
Bemerkungen: Fensterweite: 20 Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1		KW 7
Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1		KW 8
Pixelbreite: 2 Pixelhöhe: 1 Untergrund- Korrektur: Pos. links: 1	Bemerkungen:	Fensterweite: 20
Pixelhöhe: 1 <u>Untergrund-</u> <u>Korrektur:</u> Pos. links: 1		Pixelbreite: 2
<u>Korrektur:</u> Pos. links: 1		
<u>Korrektur:</u> Pos. links: 1		
<u>Korrektur:</u> Pos. links: 1		Untergrund-
Pos. links: 1		
Pivalanzahl· 1		
TI IACIAIIZAIII. I		Pixelanzahl: 1
Pos. rechts: 16		Pos. rechts: 16
Pixelanzahl: 1		Pixelanzahl: 1

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP(sim)	CuCugesICP22.1	4

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit $_2$ O bidemin. aufgefüllt.

Cu

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %.

Auswertung/Datendokumentation:

Die gemessenen Cu-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP(sim)	CuCugesICP24.1	1

Elementbestimmungsmethode:

KUPFER

•

01.07.2016

Datum:

Untersuchungsmethode	NG	BG	OMG
EXTEDTA1.1	9,9	29,8	4000

geeignet für:

Boden	EXTEDTA1.1
Humus	
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885		
HFA	D32.1.5.1		
HFA-Code	D:4;1;2;-1;-1;0;		

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S28.1: Geräteparameter und	Nölte: ICP Emissionsspektroskopie für Praktiker;
Standardzusammen-	Weinheim, 2002
setzung	Montaser, Golightly: Inductively Coupled Plasmas
Kurzanleitung ICP5.1	in Analytical Atomic Spectrometry;
	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP(sim)	CuCugesICP24.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μ l, 1000 μ l und 5000 μ l Varipetten, sowie 250 μ l, 500 μ l und 1000 μ l Pipetten der Fa.

Eppendorf

100 und 250 ml-Messkolben aus Glas

Chemikalien:

Na-EDTA (Titriplex III) $(C_{10}H_{14}N_2Na_2O_8 * 2H_2O)$

Lösungen:

0,1 m EDTA-Lösung: in einen 1 l-Kolben wird eine Ampulle 0,1 molare Titriplex III Lösung

gegeben und mit H₂O demin. bis zur Eichmarke aufgefüllt.

Eichung/Standards:

Stammlösungen:

Cu: ICP-Standard (Fa B. Kraft) => 1 g/l Cu

Cd, Co, Cr, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Standardlösungen:

Die Herstellung der Standardlösungen ist im Sammelanhang S28.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Cu auch andere Elemente enthalten (siehe Sammelanhang S28.1), verwendet:

	<u>Standards</u>
EDTA 0	0 μg/l Cu
EDTA 1	200 μg/l Cu
EDTA 2	4000 μg/l Cu
EDTA 3	1000 μg/l Cu
EDTA 4	500 μg/l Cu
EDTA 5	2000 μg/l Cu

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP(sim)	CuCugesICP24.1	3

Kontrollstandard	
K23	500 μg/l Cu

Cu

Methode:	EXTEDTA1.1
Element:	Cu
Wellenlänge:	324.754
Messbereich	BG - OMG
[µg/l]:	
Standards:	EDTA 0
	EDTA 1
	EDTA 2
	EDTA 3
	EDTA 4
	EDTA 5
Bemerkungen:	Fensterweite: 19
	Pixelbreite: 2
	Pixelhöhe: 1
	<u>Untergrund-</u>
	Korrektur:
	Pos. links: 3
	Pixelanzahl: 1
	Pos. rechts: 18
	Pixelanzahl: 2

Der Blank, die Standards und die Kontrollstandards werden mit der verwendeten Extraktionslösung in 100 ml Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S28.1 zusammengestellt. Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K23; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung QWM1.2		Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial QStM1.1		Solling0-10; erlaubte Abweichung 10 %.

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP(sim)	CuCugesICP24.1	4

Auswertung/Datendokumentation:

Die gemessenen Cu-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

_	Element	Form	Gerät	Methoden-Nr.	Seite
ĺ	Cu	Cuges	ICP-MS	CuCugesICPMS1.1	1

Elementbestimmungsmethode:

KUPFER

Datum: 01.11.2018

Untersuchur	ngsmethode	NG	BG	OMG	
OAKW2.1, OAKWEG3.1			0,007	0,021	700
geeignet für:					
Dadan	OARW21 OARWEC21				

Boden	UAKW2.1, UAKWEG3.1		
Humus OAKW2.1			
Pflanze			
Wasser			

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 17294-2	
HFA	D32.1.6.10	
HFA-Code	D;5;3;1;2;-1;0;	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Ouadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenvegleich ICP – ICP-MS	
Sammelanhang S30.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP-MS	CuCugesICPMS1.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

1000, 2000 und 5000ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Y, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Mg, Fe, K: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100~ml HNO $_3~\text{und}$ 25~ml HCl im 5~l-Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40ml Salpetersäure (HNO₃) im 2 l-Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10~ml Salpetersäure (HNO3) im 2~l-Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 10 ppm, Ge 1 ppm, Y 10 ppm, Re 5 ppb, Rh 100 ppb) = 10 ml Sc, 1 ml Ge, 10 ml Y, 0,1 ml Rh jeweils aus 1 g/l und 1 ml Re aus 5 mg/l plus 20 ml HNO₃ im 1000 ml Glas-Messkolben mit bidemin. Wasser auffüllen.

Aus dieser Stammlösung eine 1:10 Verdünnung (mit bi-demin H₂O aufgefüllt) zum Messen herstellen (mindestens 100 ml).

Basislösung für Standards und Kontrollstandard:

Ansatz der Lösung (Al 50 ppm, Mg 50 ppm, Fe 20 ppm, K 10 ppm) =

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP-MS	CuCugesICPMS1.1	3

Jeweils 5 ml Al und Mg, 2 ml Fe und 1 ml K mit 60 ml HCl und 20 ml HNO3 in einem 1000 ml Messkolben mit bi-demin H2O auffüllen.

Eichung/Standards:

Stammlösungen:

Cu: ICP-Standard (Fa B. Kraft) => 1 g/l Cu

Cd, Co, Cr, Ni, Pb, Zn, Hg, W: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg, Al, Fe, K: ICP-Standard (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S30.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in einer dem Königswasserextrakt entsprechenden Mischung aus HCl und HNO₃ mit Zusatz von 50 ppm Al, 50 ppm Mg, 20 ppm Fe und 10 ppm K, die neben Cu auch andere Elemente enthalten (siehe Sammelanhang S30.1), verwendet:

	<u>Standards</u>
D1 1	0 /1 0
Blank	0 μg/l Cu
KWSM1	5 μg/l Cu
KWSM2	10 μg/l Cu
KWSM3	20 μg/l Cu
KWSM4	1 μg/l Cu
KWSM5	2 μg/l Cu

Kontrollstandard	
K24MS	
5 μg/l Cu	

Methode:	OAKWSM	OAKWEGSM
Element:	Cu	Cu
Masse:	62,9296	62,9296
Messbereich	BG - OMG	BG - OMG
[µg/l]:	0,42 - 14000	1,05 - 35000
Standards:	Blank	Blank
	KWSM1	KWSM1
	KWSM2	KWSM2
	KWSM3	KWSM3
	KWSM4	KWSM4
	KWSM5	KWSM5

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP-MS	CuCugesICPMS1.1	4

Bemerkungen:	Kollisions/Reaktions-	Kollisions/Reaktions-
	<u>zelle:</u>	<u>zelle:</u>
	Gasfluss H ₂ : 0,5 ml	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml	Gasfluss He: 4,5 ml

Cu

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. OAKW-Aufschlusslösungen werden 1:20 vom PrepFAST-Probengeber verdünnt, OAKWEG-Aufschlusslösungen 1:50.

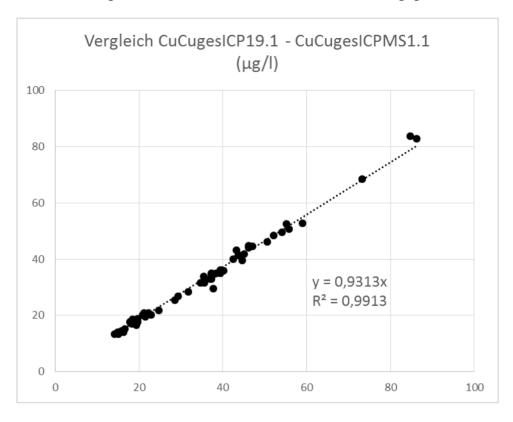
Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (OAKWSM-1, OAKWEGSM-1, OAKWSMHg-1, OAKWEGSMHg-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S30.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	ISE974, BZE-SAC, NFVH; erlaubte Abweichung 10
		\(\gamma_0\).


Auswertung/Datendokumentation:

Die gemessenen Cu-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Cu Cuges ICP-MS CuCugesICPMS1.1

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Königswasser-Aufschluss-Serie mit den beiden angegebenen Methoden

Anhang Nr. 1 für Cu Cuges ICP-MS CuCugesICPMS1.1

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP-MS	CuCugesICPMS2.1	1

Elementbestimmungsmethode:

KUPFER

: 01.11.2018

Datum:

Untersuchur	ngsmethode	NG	BG	OMG
ANULL		0,004	0,011	100
geeignet für:				
Boden				
Humus				
Pflanze				
Wasser ANULL				
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 17294-2			
HFA	D32.1.4.7			
HFA-Code	D:5:3:1:2:-1:0:			

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	Lit.:
Anhang 1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S31.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP-MS	CuCugesICPMS2.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

2000 und 5000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃),69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25ml HCl im 5 l- Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40 ml Salpetersäure (HNO₃) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10 ml Salpetersäure (HNO3) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 50 ppm, Ge 50 ppm, Re 5 ppm, Rh 5 ppm) =

5 ml Sc, 5 ml Ge, 0.5 ml Re, $0.5 \text{ ml Rh und } 2 \text{ ml HNO}_3 \text{ im } 100 \text{ ml PFA- Messkolben mit bidemin.}$ Wasser auffüllen.

Aus dieser Stammlösung eine 1:100 Verdünnung in 2% HNO₃-Lösung zum Messen herstellen (mindestens 100 ml).

Element	Form	Gerät	Methoden-Nr.	Seite	
Cu	Cuges	ICP-MS	CuCugesICPMS2.1	3	

Eichung/Standards:

Stammlösungen:

<u>Cu</u>

Cu: ICP-Standard (Fa B. Kraft) => 1 g/l Cu

Cd, Co, Cr, Ni, Pb, Zn: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg: ICP-Standard (Fa B. Kraft) => 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S31.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in 2 % HNO3 mit Zusatz von 10 ppm Mg, die neben Cu auch andere Elemente enthalten (siehe Sammelanhang S31.1), verwendet:

<u>Standards</u>		
Blank	0 μg/l Cu	
Wasser SM1	0,5 μg/l Cu	
Wasser SM2	1 μg/l Cu	
Wasser SM3	2 μg/l Cu	
Wasser SM4	5 μg/l Cu	
Wasser SM5	10 μg/l Cu	
Wasser SM6	20 μg/l Cu	

<u>Kontrollstandard</u>
K25MS
20 μg/l Cu

Methode:	WasserSM-1
Element:	Cu
Masse:	62,9296
Messbereich	BG - OMG
$[\mu g/l]$:	0,011 - 100
Standards:	Wasser SM0
	Wasser SM1
	Wasser SM2
	Wasser SM3
	Wasser SM4
	Wasser SM5
	Wasser SM6
	Wasser SM7

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP-MS	CuCugesICPMS2.1	4

Bemerkungen:	Kollisions/Reaktions-
	<u>zelle:</u>
	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml

Cu

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben.

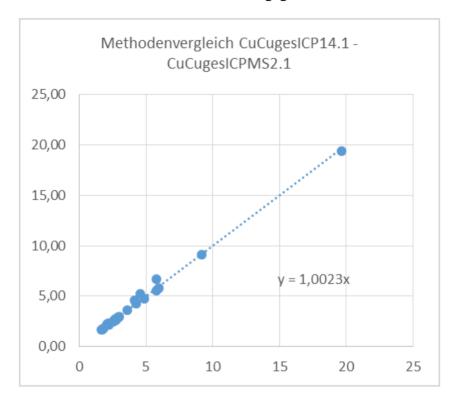
Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (WasserSM-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S31.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K25MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	WasserSM1; erlaubte Abweichung 10 %.


Auswertung/Datendokumentation:

Die gemessenen Cu-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Cu Cuges ICP-MS CuCugesICPMS2.1

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Wasser-Serie mit den beiden angegebenen Methoden

Anhang Nr. 1 für Cu Cuges ICP-MS CuCugesICPMS2.1

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP-MS	CuCugesICPMS4.1	1

Elementbestimmungsmethode:

KUPFER

Datum: 01.06.2019

Untersuch	nungsmethode	NG	BG	OMG	
DAN2.2		0,007	0,022	700	
geeignet fü	ır:				
Boden					
Humus					
Pflanze	Pflanze DAN2.2				
Wasser	Wasser				
Methodenverweise:					
Norm In Anlehnung an DIN EN ISO 17294-2					
HFA					

Prinzip der Methode/chem. Reaktionen:

HFA-Code D;5;3;1;2;-1;0;

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Ouadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang1: Methodenvergleich ICP – ICP-MS	
Sammelanhang S32.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP-MS	CuCugesICPMS4.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

2000 und 5000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃),69% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP Q/Qnova CALIBRATION solution

Sc, Ge, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25ml HCl im 5 l- Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40 ml Salpetersäure (HNO₃) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10 ml Salpetersäure (HNO3) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 50 ppm, Ge 50 ppm, Re 5 ppm, Rh 5 ppm) =

5 ml Sc, 5 ml Ge, 0,5 ml Re, 0,5 ml Rh und 2 ml HNO3 im 100 ml PFA- Messkolben mit bidemin. Wasser auffüllen.

Aus dieser Stammlösung eine 1:100 Verdünnung in 2% HNO₃-Lösung zum Messen herstellen (mindestens 100 ml).

Element	Form	Gerät	Methoden-Nr.	Seite	
Cu	Cuges	ICP-MS	CuCugesICPMS4.1	3	

Eichung/Standards:

Stammlösungen:

Cu:

ICP-Standard (Fa B. Kraft) => 1 g/l Cu

Cd, Co, Cr, Ni, Pb, Zn: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg: ICP-Standard (Fa B. Kraft) => 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S32.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in 0,5 % HNO₃ mit Zusatz von 5 ppm Mg, die neben Cu auch andere Elemente enthalten (siehe Sammelanhang S32.1), verwendet:

<u>Standards</u>				
Blank	0 μg/l Cu			
DAN SM1	0,5 μg/l Cu			
DAN SM2	1 μg/l Cu			
DAN SM3	2 μg/l Cu			
DAN SM4	5 μg/l Cu			
DAN SM5	10 μg/l Cu			
DAN SM6	20 μg/l Cu			

Kontrollst	andard
K26MS 10 μg/l Cu	

Methode:	DANSM-1
Element:	Cu
Masse:	62,9296
Messbereich	BG - OMG
[µg/l]:	0,044 - 1400
Standards:	DAN SM0
	DAN SM1
	DAN SM2
	DAN SM3
	DAN SM4
	DAN SM5
	DAN SM6
	DAN SM7

Element	Form	Gerät	Methoden-Nr.	Seite
Cu	Cuges	ICP-MS	CuCugesICPMS4.1	4

Bemerkungen:	Kollisions/Reaktions-	
	<u>zelle:</u>	
	Gasfluss H ₂ : 0,5 ml	
	Gasfluss He: 4,5 ml	

Cu

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben.

Die Aufschlusslösungen werden 1:2 verdünnt.

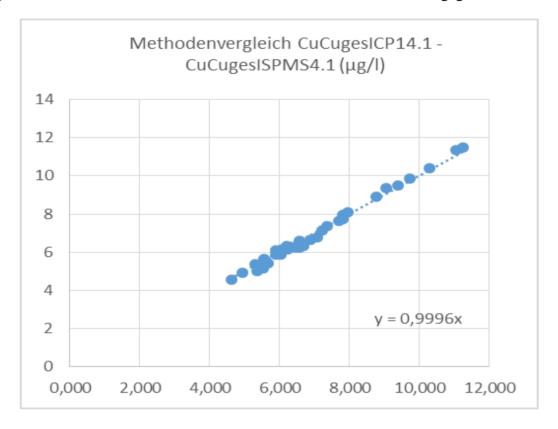
Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (DANSM-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S32.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung		
Kontrollstandard QKSt.1.1		K26MS; Messung nach der Eichung, alle 10 Proben		
		und nach jeder Eichungswiederholung; erlaubte		
		Abweichung 5 %		
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie		
Standardmaterial	QStM1.1	NHARZ; erlaubte Abweichung 10 %.		


Auswertung/Datendokumentation:

Die gemessenen Cu-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für Cu Cuges ICP-MS CuCugesICPMS4.1

Methodenvergleich zwischen ICP und ICP-MS:

Messung der Proben einer Pflanzen-Druckaufschluss-Serie mit den beiden angegebenen Methoden

Anhang Nr. 1 für Cu Cuges ICP-MS CuCugesICPMS4.1

_	Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
	\mathbf{F}	F	IC	FFIC2.3	-	1
Elementbestimmungsmethode:			Datum:	1.6.2014		

FLUORID

Unterguehungemethede

HFA-Code

Untersuch	lungsmetnode	NG	BG	OMG			
ANULLIC		0,006	0,020	11,0			
geeignet für	r:						
Boden	GBL1.1, EXT12H2O1.1						
Humus							
Pflanze							
Wasser	ANULLIC						
Methodenv	verweise:						
Norm	In Anlehnung an DIN EN ISO 10304-1						
HFA	D20.2.4.1						

Prinzip der Methode/chem. Reaktionen:

0714102

Bei der Ionenchromatographie werden zunächst die Anionen über eine Austauschersäule getrennt und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Anionen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit quartären Ammoniumgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austausch-Prozeß ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine Natriumcarbonat/ Hydrogencarbonat-Lösung verwendet. Wegen der hohen Grundleitfähigkeit des Eluenten wird vor der Leitfähigkeitsdetektion ein sogenannter Supressor zwischengeschaltet, der durch Austausch der Na-Ionen gegen Protonen das stark leitende Natriumhydrogencarbonat in die wenig dissoziierte Kohlensäure und die Natriumsalze der zu bestimmenden Anionen in deren stark leitende Mineralsäuren umwandelt. Zusätzlich wird durch einen CO₂-Suppressor der CO₂-Peak minimiert. Diese stark leitenden Mineralsäuren der zu bestimmenden Anionen werden sehr empfindlich in einer Leitfähigkeitsmesszelle detektiert. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Anions geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs wird das Anionen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich und den niedrigen Messbereich (unterschiedliche quadratische Gleichungen) ausgewertet. In dem 2-Kanal-System werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Anionensäule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC2.2

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S17.4: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC2.2	_

F

NIC

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
F	F	IC	FFIC2.3	•	2

Analysengeräte und Zubehör:

2-Kanal-IC-Anlage Fa. Metrohm, bestehend aus:

2 IC-Pumpen 818

2 Leitfähigkeitsdetektoren 819

IC-Separation-Center 820 mit Säulenofen und Suppressor

IC-Liquid-Handling Einheit 833

2 Pulsationsdämpfer

IC-Eluent-Degaser 837

CO₂-Suppressor 853

IC-Probengeber 838

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5 b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen:

a. Anionen: 20 µl

b. Kationen: 50 µl

Software:

a. zur Anlagensteuerung: IC-Net

b. zur Chromatogrammauswertung: MagIC-Net

Chemikalien:

Natriumhydrogencarbont, NaHCO₃

Natriumcarbonat, Na₂CO₃

Schwefelsäure, H₂SO₄ konz.

Lösungen:

Eluent Anionen: In einem 2 1 Messkolben werden 0,678 g Na₂CO₃ sowie 0,084 g Na₂HCO₃

eingewogen und mit H₂O demin. reinst auf 2 l aufgefüllt.

Suppressor-Lösung: a. 1 Liter H₂O demin. reinst werden mit 3 ml H₂SO₄ konz. und 2,52 g

Oxalsäure versetzt. b. H₂O demin. reinst

Eichung/Standards:

Stammlösungen:

1 g/l F: 1 g/l Fluorid als Natriumfluorid \Rightarrow 1 g/l F

Stammlösung I: je 1 ml SO₄-, NO₃-, NO₂-, und PO₄-Stammlösung und je 0,5 ml Cl- und F-

Stammlösung werden in einen 100 ml-Meßkolben mit H₂O demin auf 100 ml

aufgefüllt

=> 0,01 g/l SO₄, NO₃, NO₂, PO₄, und 0,005 g/l Cl, F

Haltbarkeit:

Die Stammlösung I ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

F

	Kontrollstandards
K1IC:	2,0 mg/l F
K2IC:	0,1 mg/l F

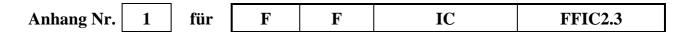
Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S17.4) mit insgesamt 19 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung I und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC) bzw. 10 % (K2IC) muss die Ursachen für die zu hohe Abweichung gefunden und abgestellt werden oder eine neue Grundeichung durchgeführt werden.

Durchführung:

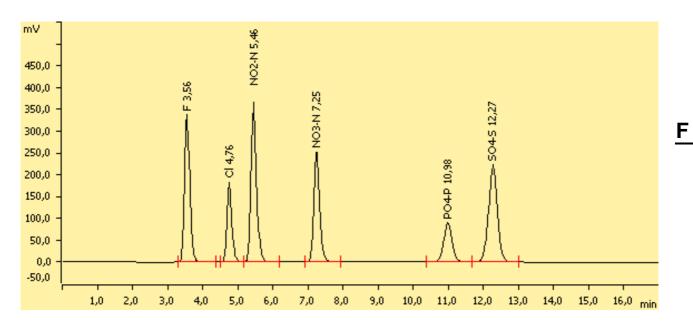
Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC2.2 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):


Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (2,0 mg/l F), K2IC (0,1 mg/l F), Messung nach
		der Eichung, alle 15 Proben; erlaubte Abweichung 5
		% (K1IC) bzw. 10 % (K2IC)
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1IC mit-
		gemessen; erlaubte Abweichung 5 %

Auswertung/Datendokumentation:


Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Fluorid-Konzentrationen sind in die entsprechenden Datenlisten einzutragen bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

F

Chromatogramm der Anionenmessung mit Retentionszeiten

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
F	F	IC	FFIC3.1	-	1

Elementbestimmungsmethode:

FLUORID

Untersuchun	gsmethode	NG	BG	OMG		
ANULLIC		0,004	0,015	10,0		
geeignet für:						
Boden						
Humus						
Pflanze						
Wasser	ANULLIC					
Methodenver	weise:					
Norm	In Anlehnung an DIN EN ISO 10304-1 u. 2					
HFA	D20.2.4.1					
HFA-Code	D;7;1;4;1;-1;2;					

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Anionen über eine Austauschersäule getrennt und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Anionen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit quartären Ammoniumgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austausch-Prozeß ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine Natriumcarbonat/ Hydrogencarbonat-Lösung verwendet. Wegen der hohen Grundleitfähigkeit des Eluenten wird vor der Leitfähigkeitsdetektion ein Supressor zwischengeschaltet, der durch Austausch der Na-Ionen gegen Protonen das stark leitende Natriumhydrogencarbonat in die wenig dissoziierte Kohlensäure und die Natriumsalze der zu bestimmenden Anionen in deren stark leitende Mineralsäuren umwandelt. Diese stark leitenden Mineralsäuren der zu bestimmenden Anionen werden sehr empfindlich in einer Leitfähigkeitsmesszelle detektiert. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Anions geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 1,00 ppm) wird das Anionen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich (Kurventyp: Kubisch, Gewichtung 1) und den niedrigen Messbereich (Kurventyp: Kubisch Gewichtung 1/Konzentration) ausgewertet. Mit Flex 1 (Anionen) und Flex 2 (Kationen) werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Anionensäule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC3.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S29.1: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC3.1	

F

Datum:

20.12.2015

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
F	F	IC	FFIC3.1	-	2

Analysengeräte und Zubehör:

2 Compact IC Flex- Anlagen Fa. Metrohm, bestehend aus:

Compact IC Flex 1 Anionen mit MSM Suppressor und MCS-Suppressor

Compact IC Flex 2 Kationen

IC-Probengeber 858 Professional Sample Processor

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5

b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen: a. Anionen: 20 µl b. Kationen: 50 µl

Software: MagIC-Net3.1

Chemikalien:

Natriumhydrogencarbont, NaHCO₃ Natriumcarbonat, Na₂CO₃ Schwefelsäure, H₂SO₄ konz. Oxalsäuredihydrat, C₂H₂O₄*2H₂O

Lösungen:

Eluent Anionen: In einem 2 1 Messkolben werden 0,678 g Na₂CO₃ sowie 0,084 g Na₂HCO₃

eingewogen und mit H₂O demin. reinst auf 2 l aufgefüllt.

Suppressor-Lösung: 1 Liter H₂O demin. reinst werden mit 3 ml H₂SO₄ konz. und 0,27g Oxalsäure

versetzt.

Eichung/Standards:

Stammlösungen:

1 g/l F: 1 g/l Fluorid als Natriumfluorid \Rightarrow 1 g/l F

Stammlösung I: je 1 ml SO₄-, NO₃-, NO₂-, und PO₄-Stammlösung und je 0,5 ml Cl- und F-

Stammlösung werden in einen 100 ml-Meßkolben mit H₂O demin auf 100 ml

aufgefüllt

=> 0,01 g/l SO₄, NO₃, NO₂, PO₄, und 0,005 g/l Cl, F

Haltbarkeit:

Die Stammlösung I ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

	Kontrollstandards
K1IC:	2,0 mg/l F
K2IC:	0,1 mg/l F

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
F	F	IC	FFIC3.1	-	3

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S29.1) mit insgesamt 18 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung I und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC) bzw. 10 % (K2IC) muss die Ursachen für die zu hohe Abweichung gefunden und abgestellt werden oder eine neue Grundeichung durchgeführt werden.

Durchführung:

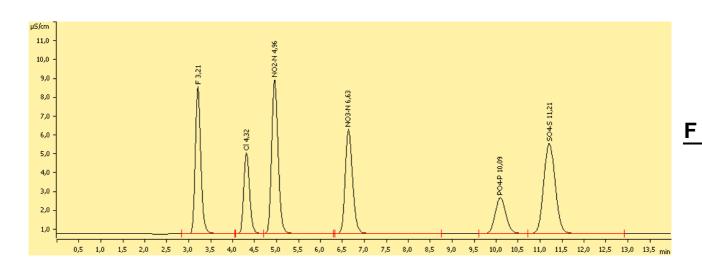
Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC3.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (2,0 mg/l F), K2IC (0,1 mg/l F), Messung nach
		der Eichung, alle 15 Proben; erlaubte Abweichung 5
		% (K1IC) bzw. 10 % (K2IC)
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE3IC mit-
		gemessen; erlaubte Abweichung 5 %

Auswertung/Datendokumentation:


Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Fluorid-Konzentrationen sind in die entsprechenden Datenlisten einzutragen bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

F

Anhang Nr. 1 für	F	F	IC	FFIC3.1
------------------	---	---	----	---------

Chromatogramm der Anionenmessung mit Retentionszeiten

Chromatogramm des Kontrollstandards K1IC

Element Form		Gerät	Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP19.2	1

Elementbestimmungsmethode:

EISEN

Untersuchungsmethode		BG	OMG
OAKW2.1, OAKWEG3.1	0,0003	0,0009	400

geeignet für:

Boden	OAKW2.1, OAKWEG3.1
Humus	OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D17.1.6.2
HFA-Code	D;4;2;2;1;-1;1 (238.204 nm, axial), D;4;1;2;1;-1;1 (238.204 nm, radial)
	D;4;2;2;1;-1;5 (271.441 nm, radial)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden. Um eine möglichst hohe Messempfindlichkeit zu erreichen, wird für den Konzentrationsbereich bis 10 mg/l eine axiale Plasmabetrachtung gewählt. Oberhalb dieses Bereichs wird das Plasma radial betrachtet. Um eine möglichst hohe Messempfindlichkeit zu erreichen, wird für den Konzentrationsbereich bis 20 mg/l eine axiale Plasmabetrachtung gewählt. Oberhalb dieses Bereichs wird das Plasma radial betrachtet.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Zur Vermeidung von Driften, zur Verbesserung der Präzision der Messung, sowie zur Eliminierung von Störungen bei der Zerstäubung der Proben durch unterschiedliche Viskosität, unterschiedliche Salz- und Säurekonzentrationen sowie durch Plasmaladungseffekte, wird bei der Messung ein Interner Standards verwendet.

Anhang:	<u>Lit.:</u>
Sammelanhang S33.1: Geräteparameter und Standardzusammensetzung	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP6.1	Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987

Fe

Datum:

01.01.2019

Element	ent Form Gerät M		Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP19.2	2

Analysengeräte und Zubehör:

iCAP 6500 der Fa. Thermo Fisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 2 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac mit Probenrack für 60 Positionen für Hauptelemente, bzw. 21

Positionen für Schwermetalle

PP-Röhrchen Natur, 12 ml, Fa. Greiner bio-one

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Laminar Flow Box FBS der Fa. Spetec, für Probengeber (zur Verhinderung von Staubeintrag in die Probengefäße)

Rechner mit Software QTEGRA

5000 ml Varipette, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Mischfitting (Fa. Thermo Fisher) zur zur gleichmässigen Vermischung von Probelösung und internem Standard

Dilutor der Fa. Hamilton

Chemikalien:

Salpetersäure (HNO3), 65 %, p.a.

Y, AAS-Standard Yttrium 1 g/l Y (Fa B. Kraft)

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Interner Standard: 10 ml Yttriumlösung werden in einen 1 l Glaskolben gegeben, mit 30 ml

65 %. HNO₃ p.a. versetzt und mit H₂O demin. bis zur Eichmarke

aufgefüllt.

Eichung/Standards:

Stammlösungen:

Fe: ICP-Konzentrat (Fa B. Kraft) => 10 g/l Fe

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, K, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Im folgenden wird nur die Herstellung der Fe-Standardlösungen beschrieben. Die Zugaben aller anderen Elemente, die sich auch in den beschriebenen Lösungen befinden, werden im Sammelanhang S33.1 beschrieben.

Standardlösung KW 1: In einen 250 ml PFA-Kolben werden 0,125 ml des 10 g/l Fe enthaltenden

F	e
	C

Element	Form	Gerät	Methoden-Nr.	Seite	
Fe	Feges	ICP(sim)	FeFegesICP19.2	3	
		Elemente gegeben (siehe Sa %igen HNO ₃ p.a. versetzt und => 50 μg/l Cd, Co, Cr, Cu und	e entsprechenden Mengen der mmelanhang <i>S33.1</i>), mit 7,5 ml mit H ₂ O bidemin. aufgefüllt. d Ni, 200 µg/l Pb und Zn, 2 mg/l M 10 mg/l P, 20 mg/l Ca und 200 mg/	der 65 In, Na, S	
Standardlösung KW 2:		In einen 250 ml PFA-Kolben werden 0,25 ml des 10 g/l Fe enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang <i>S33.1</i>), mit 7,5 ml der 65 %igen HNO ₃ p.a. versetzt und mit H ₂ O bidemin. aufgefüllt.			
			und Ni, 500 µg/l Pb und Zn, 1 : 10 mg/l Fe, Mn und Na, 50 mg/l C		
Standardlö	sung KW 3:	ICP-Konzentrates, sowie di	n werden 5 ml des 10 g/l Fe enthate entsprechenden Mengen der melanhang <i>S33.1</i>), mit 7,5 ml der 6 O bidemin. aufgefüllt.	anderen	
			und Ni, 1000 μg/l Pb und Zn, 0,5 i, 6 mg/l P, 8 mg/l Na, 10 mg/l K	_	
Standardlösung KW 4:		In einen 250 ml PFA-Kolben werden 2,5 ml des 10 g/l Fe enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang <i>S33.1</i>), mit 7,5 ml der 65 %igen HNO ₃ p.a. versetzt und mit H ₂ O bidemin. aufgefüllt.			
		, —	Ni, 2000 μg/l Pb und Zn, 4 mg/l Na mg/l K, Mg und Mn, 50 mg/l Al, 1		
Standardlösung KW 5:		ICP-Konzentrates, sowie di	werden 1,25 ml des 10 g/l Fe enthate entsprechenden Mengen der melanhang <i>S33.1</i>), mit 7,5 ml der 6 O bidemin. aufgefüllt.	anderen	

=> 1000 $\mu g/l$ Cu und Ni, 4000 $\mu g/l$ Pb und Zn, 2 mg/l K und P, 5 mg/l Mn, 6 mg/l Na, 10 mg/l Al und S, 50 mg/l Fe und Mg, 100 mg/l Ca.

Element	Form	Gerät Methoden-Nr		Seite
Fe	Feges	ICP(sim)	FeFegesICP19.2	4

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Fe auch andere Elemente enthalten (siehe Sammelanhang S33.1), verwendet:

	<u>Standards</u>		
Blank	0,0 mg/l Fe		
KW 1	5,0 mg/l Fe		
KW 2	10,0 mg/l Fe		
KW 3	200,0 mg/l Fe		
KW 4	100,0 mg/l Fe		
KW 5	50,0 mg/l Fe		

Kontrollstandard	
K24	10,0 mg/l Fe

Methode:	OAKW2.1Boden	OAKW2.1Boden	OAKW2.1Boden
	OAKW2.1Humus	OAKW2.1Humus	OAKW2.1Humus
	OAKWEG3.1Boden	OAKWEG3.1Boden	OAKWEG3.1Boden
Element:	Fe	Fe	Fe
Wellenlänge:	238.204	238.204	271.441
Plasma-	axial	radial	radial
beobachtung:			
Messbereich	BG-5	5 - 50	50 - 200
[mg/l]:			
Standards:	Blank	KW 1	KW 3
	KW 1	KW 2	KW 4
		KW 5	KW 5
Bemerkungen:	Fensterweite: 20	Fensterweite: 20	Fensterweite: 14
	Pixelbreite: 1	Pixelbreite: 1	Pixelbreite: 2
	Pixelhöhe: 3	Pixelhöhe: 3	Pixelhöhe: 3
	TIntanama 1	TIntonoma 1	TIntanama 1
	<u>Untergrund-</u>	<u>Untergrund-</u>	<u>Untergrund-</u>
	Korrektur:	Korrektur:	Korrektur:
	Pos. links: fixed	Pos. links: fixed	Pos. links: fixed
	Pos. rechts: fixed	Pos. rechts: fixed	Pos. rechts: fixed

Zur Herstellung der Blank-Lösung werden 7,5 ml der 65 %igen HNO3 p.a. in einen 250 ml PFA-Kolben gegeben und mit H2O bidemin. aufgefüllt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP6.1 beschrieben.

Element	Form	Gerät	Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP19.2	5

Die Geräteparameter sind im Sammelanhang S33.1 zusammengestellt. Für die Bestimmung der Hauptelemente werden alle Proben mit dem Dilutor in PP-Röhrchen, (12 ml, Fa. Greiner Bio-One) 1:5 vorverdünnt. Proben die mit der Untersuchungsmethode OAKWEG3.1 aufgeschlossen wurden, werden mit dem Dilutor 1:10 vorverdünnt. Für der Bestimmung von Schwermetallen werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Fe

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 24 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %

Auswertung/Datendokumentation:

Die gemessenen Fe-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP19.2	6

Element	Form	Gerät	Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP20.1	1

Elementbestimmungsmethode:

EISEN

Untersuchungsmethode		BG	OMG
ANULL, ANULLIC, EXT1:2H2O1.1, GBL1.1, DAN1.1, DAN2.2	0,0005	0,0017	15

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1
Humus	DAN1.1, DAN2.2
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL, ANULLIC

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D17.1.4.2, D17.1.5.3 und D17.1.6.2
HFA-Code	D;4;1;2;-1;-1;1

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich iCAP 7400 mit Iris	Nölte: ICP Emissionsspektroskopie für Praktiker;
Advantage	Weinheim, 2002
Sammelanhang S24.1: Geräteparameter und	Montaser, Golightly: Inductively Coupled Plasmas
Standardzusammen-	in Analytical Atomic Spectrometry;
setzung	Weinheim, 1987
Kurzanleitung ICP5.1	

Fe

Datum:

01.05.2014

Element	Form	Gerät	Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP20.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 μl, Varipette 100-1000 μl, Varipette 500-5000 μl sowie 250 μl, 500 μl und Fe

1000 µl Pipetten der Fa. Eppendorf

1000 ml und 2000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 150 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 5 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Standard (Fa B. Kraft) => 5 g/l Fe Fe:

Al, Ca, K, Mg, Mn, Na, P, S:

Standard (Fa B. Kraft) => jeweils 5 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S24.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Fe auch andere Elemente enthalten (siehe Sammelanhang S24.1), verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Fe
HE 1	10,0 mg/l Fe
HE 2	2,5 mg/l Fe
HE 3	0,5 mg/l Fe
HE 4	5,0 mg/l Fe
HE 5	7,5 mg/l Fe
HE 6	1,0 mg/l Fe

_

	Kontrollstandard
K 1	10,0 mg/l Fe

Form

Feges

Gerät

ICP(sim)

Element

Fe

		1
Methode:		ANULL
	ANULLIC	ANULLIC
	EXT1:2H2O1.1	EXT1:2H2O1.1
	GBL1.1	GBL1.1
	DAN1.1Pflanze	DAN1.1Pflanze
	DAN2.2Pflanze	DAN2.2Pflanze
	DAN1.1Humus	DAN1.1Humus
	DAN2.2Humus	DAN2.2Humus
Element:	Fe	Fe
Wellenlänge:	238.204	238.204
Messbereich [mg/l]:	BG - 0.5	0,5 - OMG
Standards:	Blank	Blank
	HE 3	HE 1
		HE 2
		HE 3
		HE 4
		HE 5
		HE 6
Bemerkungen:	Fensterweite: 21	Fensterweite: 21
	Pixelbreite: 3	Pixelbreite: 3
	Pixelhöhe: 2	Pixelhöhe: 2
	Untergrund-	Untergrund-
	Korrektur:	Korrektur:
	Pos. links: 3	Pos. links: 3
	Pixelanzahl: 2	Pixelanzahl: 2
	Pos. rechts: 16	Pos. rechts: 16
	Pixelanzahl: 1	Pixelanzahl: 1

Der Blank, die Standards und der Kontrollstandard werden in 2 %-iger HNO_3 (30 ml HNO_3 65 %, p.a. in 1000 ml) in 1 Liter Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S24.1 zusammengestellt.

Wässrige Proben werden vor dem Messen mit 180 µl HNO₃ konz. pro 6 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

Werden Proben verdünnt, müssen die durch die zusätzliche Säurezugabe veränderten

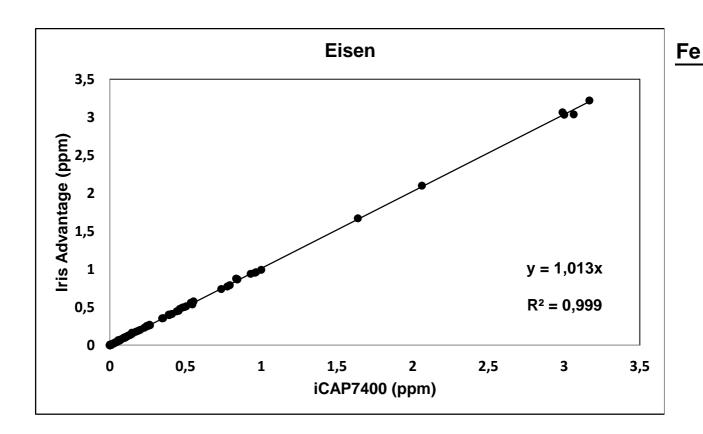
Verdünnungsfaktoren beachtet werden.

Element	Form	Gerät	Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP20.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 24	
		Proben und nach jeder Eichungswiederholung;	
		erlaubte Abweichung 3 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Al-Bilanz	QAlB1.1	Siehe Methodenbeschreibung	
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung	
IBW		_	
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung	
NFV			
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung	
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung	
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1	
		mitgemessen; erlaubte Abweichung 5 %	
		Bei Pflanzenproben: Standard NHARZ, erlaubte	
		Abweichung 10 %	
		Bei Humusproben: Standard NFVH, erlaubte	
		Abweichung 10 %	


Auswertung/Datendokumentation:

Die gemessenen Fe-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr. 1 für F	e Feges	ICP(sim)	FeFegesICP20.1
--------------------	---------	----------	----------------

Methodenvergleich ICP Iris Advantage mit iCAP 7400

Darstellung einer Vergleichsmessung der Methode FeFegesICP7.3 und der hier beschriebenen Methode an der Wasserserie 2013W078 (151 Proben):

Anhang Nr. 1 für Fe Feges ICP(sim) FeFegesICP20.1

Methoden-Nr.	Seite
FeFegesICP21.1	1

Datum:

01.05.2014

Elementbestimmungsmethode:

Form

Feges

Eisen

Untersuchungsmethode		BG	OMG
AKE1.1, AKEG1.1, AKH3.1	0,001	0,003	15

Gerät

ICP(sim)

geeignet für:

Element

Fe

Boden	AKE1.1, AKEG1.1
Humus	AKEG1.1, AKH3.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D17.1.5.3
HFA-Code	D;4;1;2;-1;-1;1;

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich iCAP 7400 mit Iris Advantage	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002
Sammelanhang S25.1: Geräteparameter und Standardzusammensetzung	Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987
Kurzanleitung ICP5.1	Weilineini, 1907

Element	Form	Gerät	Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP21.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 2 mm, für stark salzhaltige Lösungen

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 μl, Varipette 100-1000 μl, Varipette 500-5000 μl sowie 250 μl, 500 μl und **Fe**

1000 µl Pipetten der Fa. Eppendorf

250 ml-Messkolben aus Glas

Chemikalien:

keine

Lösungen:

keine

Eichung/Standards:

Stammlösungen:

Fe: Standard (Fa B. Kraft) \Rightarrow 5 g/l Fe

Al, Ca, K, Mg, Mn, Na: Standard (Fa B. Kraft) => jeweils 5 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S25.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Fe auch andere Elemente enthalten (siehe Sammelanhang S25.1), verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Fe
AKE 1	3,0 mg/l Fe
AKE 2	5,0 mg/l Fe
AKE 3	10,0 mg/l Fe
AKE 4	1,0 mg/l Fe

	Kontrollstandard
K5	10,0 mg/l Fe

Element	Form	Gerät	Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP21.1	3

M (1 1	A IZT 1 1	
Methode:	AKE1.1	
	AKEG1.1	
	AKH3.1	
Element:	Fe	
Wellenlänge:	238.204	
Messbereich[mg/l]:	BG – 15	
Standards:	Blank	
	AKE 1	
	AKE 2	
	AKE 3	
	AKE 4	
Bemerkungen:	Fensterweite:	21
	Pixelbreite:	3
	Pixelhöhe:	2
	<u>Untergrund-</u>	
	Korrektur:	
	Pos. links:	3
	Pixelanzahl:	2
	Pos. rechts:	17
	Pixelanzahl:	2

Der Blank, die Standards und der Kontrollstandard werden mit der jeweils verwendeten Perkolationslösung in 250 ml Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S25.1 zusammengestellt.

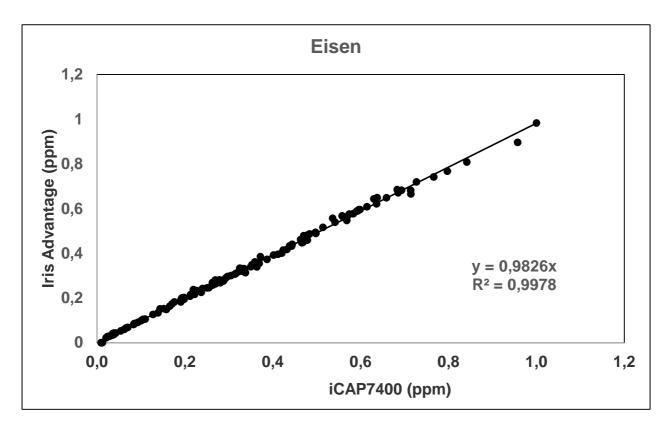
AKEG-Perkolate werden mit $180 \,\mu l$ 65 % iger HNO₃ p.a. pro 6 ml Probe versetzt und 1:5 verdünnt. Die Standards werden mit 1:5 verdünnter Perkolationslösung angesetzt und ebenfalls angesäuert (3 ml 65 % iger HNO₃ p.a. auf $100 \,\mathrm{ml}$).

AKH-Perkolate werden vor dem Messen 1:2 verdünnt. Die Standards werden mit 1:2 verdünnter Perkolationslösung angesetzt.

Element	Form	Gerät	Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP21.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):


Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K5; Messung nach der Eichung, alle 24
		Proben und nach jeder Eichungswiederholung;
		erlaubte Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards Harste 30-50, BZE-THUE, Solling 0-10,
		Solling0-10neu, BioSoil und BZE-HUM; erlaubte
		Abweichung 10 % - 15 %

Auswertung/Datendokumentation:

Die gemessenen Fe-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Methodenvergleich ICP Iris Advantage mit iCAP 7400

Darstellung einer Vergleichsmessung der Methode FeFegesICP10.1 und der hier beschriebenen Methode an den Bodenserien 2013B057 und 2013B059 (140 Proben):

Anhang Nr. 1 für Fe Feges ICP(sim) FeFegesICP21.1

Element	Form	Gerät	Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP22.1	1

Elementbestimmungsmethode:

EISEN

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2,	0,0008	0.0025	300
OAKWEG3.1		- ,	

geeignet für:

Boden	OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1
Humus	OAKW1.1, OAKW1.2, OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D17.1.6.2
HFA-Code	D;4;1;2;-1;-1;1; (238.204 nm), D;4;1;2;-1;-1;5; (271.441 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S26.1: Geräteparameter und Standardzusammensetzung	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas
Kurzanleitung ICP5.1	in Analytical Atomic Spectrometry; Weinheim, 1987

Fe

Datum:

01.08.2014

Element	Form	Gerät	Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP22.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Fe: ICP-Konzentrat (Fa B. Kraft) => 10 g/l Fe

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, K, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Fe auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

Element	Form	Gerät	Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP22.1	3

	<u>Standards</u>
KW 0	0,0 mg/l Fe
KW 1	50,0 mg/l Fe
KW 2	20,0 mg/l Fe
KW 3	200,0 mg/l Fe
KW 4	100,0 mg/l Fe
KW 5	2,0 mg/l Fe
KW 6	5,0 mg/l Fe
KW 7	10,0 mg/l Fe
KW 8	300,0 mg/l Fe

	Kontrollstandard
K24	10,0 mg/l Fe

Methode:	OAKW2.1Boden	OAKW2.1Boden	OAKW2.1Boden	OAKW2.1Boden
	OAKWEG2.1Boden	OAKWEG2.1Boden	OAKWEG2.1Boden	
	OAKWEG2.2Boden	OAKWEG2.2Boden	OAKWEG2.2Boden	OAKWEG2.2Boden
	OAKWEG3.1Boden	OAKWEG3.1Boden	OAKWEG3.1Boden	OAKWEG3.1Boden
	OAKW1.1Humus	OAKW1.1Humus	OAKW1.1Humus	OAKW1.1Humus
	OAKW1.2Humus	OAKW1.2Humus	OAKW1.2Humus	OAKW1.2Humus
	OAKW2.1Humus	OAKW2.1Humus	OAKW2.1Humus	OAKW2.1Humus
Element:	Fe	Fe	Fe	Fe
Wellenlänge:	238.204	238.204	238.204	271.441
Messbereich	BG-2	2 - 20	20 - 50	50 - OMG
[mg/l]:				
Standards:	Blank	KW 2	KW 1	KW 1
	KW 5	KW 5	KW 2	KW 2
		KW 6	KW 5	KW 3
		KW 7	KW 6	KW 4
			KW 7	KW 8
Bemerkungen:	Fensterweite: 21	Fensterweite: 21	Fensterweite: 21	Fensterweite: 20
	Pixelbreite: 3	Pixelbreite: 3	Pixelbreite: 3	Pixelbreite: 2
	Pixelhöhe: 2	Pixelhöhe: 2	Pixelhöhe: 3	Pixelhöhe: 3
	Untergrund-	Untergrund-	Untergrund-	Untergrund-
	Korrektur:	Korrektur:	Korrektur:	Korrektur:
	Pos. links: 1	Pos. links: 1	Pos. links: 1	Pos. links: 2
	Pixelanzahl: 2	Pixelanzahl: 2	Pixelanzahl: 2	Pixelanzahl: 1
	Pos. rechts: 21	Pos. rechts: 21	Pos. rechts: 21	Pos. rechts: 17
	Pixelanzahl: 1	Pixelanzahl: 1	Pixelanzahl: 1	Pixelanzahl: 1

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit $_2$ O bidemin. aufgefüllt.

Element	Form	Gerät	Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP22.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %.

Auswertung/Datendokumentation:

Die gemessenen Fe-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP23.1	1

Elementbestimmungsmethode:

EISEN

Untersuchungsmethode		BG	OMG
EXTOX1.1	0,003	0,01	100

geeignet für:

Boden	EXTOX1.1
Humus	
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D17.1.5.3
HFA-Code	D;4;1;6;-1;-1;1; (238.204 nm), D;4;1;1;-1;-1;5; (271.441 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	Lit.:
Sammelanhang S27.1: Geräteparameter und Standardzusammensetzung	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas
Kurzanleitung ICP5.1	in Analytical Atomic Spectrometry; Weinheim, 1987

Fe

Datum:

01.03.2015

Element	Form	Gerät	Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP23.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

100 und 250 ml-Messkolben aus Glas

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 µl, Varipette 100-1000 µl, Varipette 500-5000 µl sowie 250 µl, 500 µl und

1000 µl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Glas

Chemikalien:

Ammoniumoxalat: (NH₄)₂C₂O_{4*}H₂O

Oxalsäure: H₂C₂O_{4*}H₂O

Lösungen:

0,2 M Ammoniumoxalat-Lösung

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Fe: ICP-Konzentrat (Fa B. Kraft) => 10 g/l Fe

Al: ICP-Konzentrat (Fa B. Kraft) => 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S27.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Fe auch Al enthalten (siehe Sammelanhang S27.1), verwendet:

	<u>Standards</u>
Ox 0	0,0 mg/l Fe
Ox 1	5,0 mg/l Fe
Ox 2	20,0 mg/l Fe
Ox 3	50,0 mg/l Fe
Ox 4	100,0 mg/l Fe

	Kontrollstandard
K5	10,0 mg/l Fe

Form

Feges

Element

Fe

Methode:	EXTOX1.1Boden	EXTOX1.1Boden
Element:	Fe	Fe
Wellenlänge:	238.204	271.441
Messbereich	BG - 20	20 - OMG
[mg/l]:		
Standards:	Ox 0	Ox 0
	Ox 1	Ox 1
	Ox 2	Ox 2
		Ox 3
		Ox 4
Bemerkungen:	Fensterweite: 21	Fensterweite: 19
	Pixelbreite: 3	Pixelbreite: 3
	Pixelhöhe: 3	Pixelhöhe: 3
	<u>Untergrund-</u>	<u>Untergrund-</u>
	Korrektur:	Korrektur:
	Pos. links: 1	Pos. links: 1
	Pixelanzahl: 2	Pixelanzahl: 2
	Pos. rechts: 20	Pos. rechts: 16
	Pixelanzahl: 2	Pixelanzahl: 2

Gerät

ICP(sim)

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 20 ml der für die Perkolation verwendeten Oxalat-Lösung in 100 ml Glaskolben gegeben, mit 3 ml 65 %iger HNO_3 p.a. versetzt und anschließend mit H_2O bidemin. aufgefüllt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S27.1 zusammengestellt. Alle Proben werden vor dem Messen 1:5 verdünnt und mit $180~\mu l$ HNO $_3$ p.a pro 6 ml verdünnter Probe versetzt.

Elemen	t Form	Gerät	Methoden-Nr.	Seite
Fe	Feges	ICP(sim)	FeFegesICP23.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K5; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards BZE-RLP und BioSoil; erlaubte
		Abweichung 10 %.

Fe

Auswertung/Datendokumentation:

Die gemessenen Fe-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

01.03.2013

Datum:

H+	H+	Autom.

Form

Elementbestimmungsmethode:

pH-WERT

Untersuchungsmethode	NG	BG	OMG
ANULL, ANULLIC, EXT1:2H2O1.1, GBL 1.1		(1,00)	14,0

Gerät

Autom. pH-Messsystem Metrohm

geeignet für:

Element

Boden	GBL1.1, EXT1:2H2O1.1
Humus	
Pflanze	
Wasser	ANULL, ANULLIC

Methodenverweise:

Norm	In Anlehnung an DIN 38404-5 u. DIN ISO 10390
HFA	D76.1.4.1 u. D76.1.5.1
HFA-Code	D;11;0;0;2;2;-3

Prinzip der Methode/chem. Reaktionen:

Der pH-Wert ist definiert als der negative dekadische Logarithmus der H⁺-Ionenkonzentration:

$$pH = -\log (H^+ - Ionenkonzentration [mol/l])$$

Diese Definition gilt für sehr verdünnte Lösungen. Bei nicht ideal verdünnten Lösungen hängt der pH-Wert wie folgt von der H⁺-Ionenaktivität ab:

$$pH = - log \frac{a H^+}{a_0 H^+}$$

In "reinem" Wasser beträgt die H⁺-Ionenkonzentration 10⁻⁷ mol/l, d.h. der pH-Wert ist 7. Unter diesen Bedingungen ist die OH⁻-Konzentration gleich der H⁺-Konzentration:

$$2 \text{ H}_2\text{O} \leftrightarrow \text{H}_3\text{O}^+ + \text{OH}^-$$

Hieraus ergibt sich das Ionenprodukt des Wassers:

$$10^{-14} [\text{mol/l}]^2 = \text{H}^+ [\text{mol/l}] * \text{OH}^- [\text{mol/l}]$$
 oder $pH + pOH = 14$

In wässrigen, verdünnten Lösungen liegt der pH-Wert demnach zwischen 0 und 14.

Die Messung der H⁺-Konzentration erfolgt potentiometrisch, d.h. es wird die Kettenspannung U zwischen zwei Elektroden gemessen. Hierbei handelt es sich um eine Bezugselektrode mit konstantem Potential (in der Regel eine Ag/AgCl-Elektrode) und eine Glaselektrode, deren Potential von der H⁺-Konzentration in der Lösung abhängig ist. Die Messung erfolgt stromlos (hoher Innenwiderstand des Messgerätes), so dass keine elektrolytischen Reaktionen in der Lösung ablaufen können.

Anhang:	<u>Lit.:</u>
Gerätekurzanleitung: TIT5.1	H. Christen: Lehrbuch der anorg. Chemie Deutsche Einheitsverfahren zur Wasser- und Schlammuntersuchung pH-Messung – Grundlagen und Probleme, Fa. Ingold

Н

HH+PHM1.5	2	

Seite

Methoden-Nr.

Störungen:

Element

H+

• Hohe Natriumkonzentrationen führen zu falschen Messwerten. Fette, Öle und Eiweißstoffe belegen das Diaphragma und behindern so die Potentialeinstellung.

Gerät

Autom. pH-Messsystem Metrohm

- Bei Proben mit pH-Werten über 5 kann sich während der Messung CO₂ in der Probe lösen, wodurch der pH-Wert ansteigt.
- Bei Proben mit einer Leitfähigkeit unter 100 μS/cm erfolgt die Potentialeinstellung langsamer und die Potentialeinstellung wird durch Bewegen der Elektrode stark gestört.

Analysengeräte und Zubehör:

Form

H+

Automatisches pH/LF/Titrations-Messsystem der Fa. Metrohm, bestehend aus:

Titrator: 888 Titrando

Probengeber: 815 Robotic USB Sample Processor XL

pH-Meter: 888 Titrando, kombinierte pH Elektrode LL Aquatrode plus mit integriertem Pt1000

Temperaturfühler Flüssigelektrolyt: 3 M KCl, Keramikstiftdiaphragma

Probengefäße LDPE, 75 ml, Länge 8,5 cm, Nalgene

Chemikalien:

Eichpufferlösungen

pH 4.01 Merck 1.99001, 7.00 Merck 1.99002, Einzelportionen in Beuteln, zertifiziert

Kontrollpufferlösungen

pH 4.00 Merck 1.09435, 7.00 Merck 1.09439 Fertiglösung 1 l Gebinde, (Kontrollstandards)

Elektrodenaufbewahrungslösung, Fa. Metrohm Best.-Nr. 6.2323.000

Kaliumchlorid: KCl (p.a.)

Lösungen:

Elektrolytlösung 3M KCl-Lösung, oder gesättigte KCl-Lösung

3 M KCl-Lösung: 226,67 g KCl werden in einen 1-l-Kolben eingewogen und mit H₂O demin. auf 1 laufgefüllt.

Н

Element Form Gerät		Methoden-Nr.	Seite	
H+	H+	Autom. pH-Messsystem Metrohm	НН+РНМ1.5	3

Eichung/Standards:

Einzelbestimmung:

Mehrelementbestimmung:

<u>Eichstandards</u>		
Puffer	pH 4,01	
	$(25^{\circ}C)$	
Puffer	pH 7,00	
	$(25^{\circ}C)$	

Kontrollstandards:		
Puffer	pH 4,00	
D. CC	(20°C)	
Puffer	pH 7,00	
	(20°C)	

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung TIT5.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Asymmetriepotential/Nullpunkt und Steilheit
		/Empfindlichkeit wie in der Gerätekurzanleitung
		TIT5.1 beschrieben; nach jeder Eichung kontrollieren.
Kontrollstandard	QKSt1.1	Puffer pH 4,00, 7,00; Messung der Puffer 7,00 und 4,00
		nach der Eichung und alle 20 Proben; erlaubte
		Abweichung +/- 0.02. Bei höherer Abweichung wird
		die Eichung wiederholt. Danach werden die 2 Kon-
		trollpuffer gemessen. Liegen deren Messwerte im
		erlaubten Bereich wird mit der Messung fortgefahren,
		anderen Falls die Messung abgebrochen.
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV mit ALK		
Ionen/Leitfähigkeitsbilanz	QIB3.1	Siehe Methodenbeschreibung
NFV ohne ALK		-
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung

Element	Form	Gerät	Methoden-Nr.	Seite
H+	H+	Autom. pH-Messsystem Metrohm	НН+РНМ1.5	4

Auswertung/Datendokumentation:

Die pH-Werte werden in Listen notiert und ins LIMS-System eingegeben.

Elementbestimmungsmethode:

pH-WERT

Untersuchungsmethode	NG	BG	OMG
ANULL, ANULLIC, EXT1:2H2O1.1, GBL 1.1		(1,00)	14,0

geeignet für:

<u> </u>	
Boden	GBL1.1, EXT1:2H2O1.1
Humus	
Pflanze	
Wasser	ANULL, ANULLIC

Methodenverweise:

Norm	In Anlehnung an DIN 38404-5
HFA	D76.1.4.1
HFA-Code	D;11;0;0;2;2;-3

Prinzip der Methode/chem. Reaktionen:

Der pH-Wert ist definiert als der negative dekadische Logarithmus der H⁺-Ionenkonzentration:

Diese Definition gilt für sehr verdünnte Lösungen. Bei nicht ideal verdünnten Lösungen hängt der pH-Wert wie folgt von der H⁺-Ionenaktivität ab:

$$pH = - log \frac{a H^+}{a_0 H^+}$$

In "reinem" Wasser beträgt die H⁺-Ionenkonzentration 10⁻⁷ mol/l, d.h. der pH-Wert ist 7. Unter diesen Bedingungen ist die OH⁻-Konzentration gleich der H⁺-Konzentration:

$$2 \text{ H}_2\text{O} \leftrightarrow \text{H}_3\text{O}^+ + \text{OH}^-$$

Hieraus ergibt sich das Ionenprodukt des Wassers:

$$10^{-14} [\text{mol/l}]^2 = \text{H}^+ [\text{mol/l}] * \text{OH}^- [\text{mol/l}]$$
 oder $\text{pH} + \text{pOH} = 14$

In wässrigen verdünnten Lösungen liegt der pH-Wert demnach zwischen 0 und 14.

Die Messung der H⁺-Konzentration erfolgt potentiometrisch, d.h. es wird die Kettenspannung U zwischen zwei Elektroden gemessen. Hierbei handelt es sich um eine Bezugselektrode mit konstantem Potential (in der Regel eine Ag/AgCl-Elektrode) und eine Glaselektrode, deren Potential von der H⁺-Konzentration in der Lösung abhängig ist. Die Messung erfolgt stromlos (hoher Innenwiderstand des Messgerätes), so dass keine elektrolytischen Reaktionen in der Lösung ablaufen können.

Anhang:	<u>Lit.:</u>
Gerätekurzanleitung: TIT5.1	H. Christen: Lehrbuch der anorg. Chemie Deutsche Einheitsverfahren zur Wasser- und Schlammuntersuchung pH-Messung – Grundlagen und Probleme, Fa. Ingold

Н

Datum:

01.03.2013

Element	Form	Gerät	Methoden-Nr.	Seite
H+	H+	Autom. pH-Messsystem Metrohm	НН+РНМ8.1	2

Störungen:

- Hohe Natriumkonzentrationen führen zu falschen Messwerten. Fette, Öle und Eiweißstoffe belegen das Diaphragma und behindern so die Potentialeinstellung.
- Bei Proben mit pH-Werten über 5 kann sich während der Messung CO₂ in der Probe lösen, wodurch der pH-Wert ansteigt.
- Bei Proben mit einer Leitfähigkeit unter 100 μS/cm erfolgt die Potentialeinstellung langsamer und die Potentialeinstellung wird durch Bewegen der Elektrode stark gestört.

Analysengeräte und Zubehör:

Automatisches pH/LF/Titrations-Messsystem der Fa. Metrohm, bestehend aus:

Titrator: 888 Titrando

Probengeber: 815 Robotic USB Sample Processor XL

pH-Meter: 888 Titrando, kombinierte pH Elektrode LL Aquatrode plus mit integriertem Pt1000

Temperaturfühler Flüssigelektrolyt: 3 M KCl, Keramikstiftdiaphragma

Probengefäße LDPE, 75 ml, Länge 8,5 cm, Nalgene

Chemikalien:

Eichpufferlösungen

pH 4.01 Merck 1.99001, 7.00 Merck 1.99002, Einzelportionen in Beuteln, zertifiziert

Kontrollpufferlösungen

pH 4.00 Merck 1.09435, 7.00 Merck 1.09439 Fertiglösung 11 Gebinde, (Kontrollstandards)

Elektrodenaufbewahrungslösung, Fa. Metrohm Best.-Nr. 6.2323.000

Kaliumchlorid: KCl (p.a.)

Lösungen:

Elektrolytlösung 3M KCl-Lösung, oder gesättigte KCl-Lösung

3 M KCl-Lösung: 226,67 g KCl werden in einen 1-l-Kolben eingewogen und mit $\rm H_2O$ demin. auf 1 laufgefüllt.

Eichung/Standards:

Einzelbestimmung:

1/111/2	cibestimmung.		
<u>Eichstandards</u>			
Puffer	pH 4,01		
Puffer	(25°C) pH 7,00		
	(25°C)		

Ko	ntrollstandards:
Puffer	pH 4,00
	$(20^{\circ}C)$
Puffer	pH 7,00
	$(20^{\circ}C)$

Mehrelementbestimmung:

Element	Element Form Gerät		Methoden-Nr.	Seite
H+	H+	Autom. pH-Messsystem Metrohm	НН+РНМ8.1	3

Durchführung:

Die Durchführung der Messung erfolgt wie in den Gerätekurzanleitungen TIT5.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Asymmetriepotential/Nullpunkt und Steilheit /Empfindlichkeit wie in der Gerätekurzanleitung
		TIT5.1ß beschrieben; nach jeder Eichung
		kontrollieren.
Kontrollstandard	QKSt1.1	Puffer pH 4,00, 7,00: Messung der Puffer 7,00 und 4,00 nach der Eichung und alle 20 Proben; erlaubte Abweichung +/- 0.02. Bei höherer Abweichung wird die Eichung wiederholt. Danach werden die 2 Kontrollpuffer gemessen. Liegen deren Messwerte im erlaubten Bereich wird mit der Messung fortgefahren, anderen Falls die Messung abgebrochen.
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Ionen/Leitfähigkeitsbilanz IBW	QIB1.2	Siehe Methodenbeschreibung
Ionen/Leitfähigkeitsbilanz NFV mit ALK	QIB2.1	Siehe Methodenbeschreibung
Ionen/Leitfähigkeitsbilanz NFV ohne ALK	QIB3.1	Siehe Methodenbeschreibung
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung

Auswertung/Datendokumentation:

Die pH-Werte werden mit dem Datenverarbeitungs- und Übertragungsprogramm Relaqs bearbeitet und ins LIMS-System übertragen.

Element	Form	Gerät	Methoden-Nr.	Seite
H+	H+	Autom. pH-Messsystem Metrohm	HH+PHM8.1	4

Datum:

01.03.2019

Element	Form	Gerät	Methoden-Nr.	Seite
H+	H+	Autom. pH-Messsystem Rohasys	HH+PHM10.1	1

Elementbestimmungsmethode:

pH-WERT

Untersuchungsmethode		BG	OMG
pHCaCl25.1, pHH2O5.1, pHKCl5.1, pHCaCl26.1, pHH2O6.1,		(1,00)	14,0
pHKC16.1			

geeignet für:

Boden	pHCaCl25.1, pHH2O5.1, pHKCl5.1, pHCaCl26.1, pHH2O6.1, pHKCl6.1
Humus	
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN 38404-5	
HFA	D76.1.4.1	
HFA-Code	D;11;0;0;2;2;-3	

Prinzip der Methode/chem. Reaktionen:

Der pH-Wert ist definiert als der negative dekadische Logarithmus der H⁺-Ionenkonzentration:

$$pH = - log (H^{+} - lonenkonzentration [mol/l])$$

Diese Definition gilt für sehr verdünnte Lösungen. Bei nicht ideal verdünnten Lösungen hängt der pH-Wert wie folgt von der H⁺-Ionenaktivität ab:

$$pH = -log \frac{a H^{+}}{a_0 H^{+}}$$

In "reinem" Wasser beträgt die H⁺-Ionenkonzentration 10⁻⁷ mol/l, d.h. der pH-Wert ist 7. Unter diesen Bedingungen ist die OH⁻-Konzentration gleich der H⁺-Konzentration:

$$2 \text{ H}_2\text{O} \leftrightarrow \text{H}_3\text{O}^+ + \text{OH}^-$$

Hieraus ergibt sich das Ionenprodukt des Wassers:

$$10^{-14} [\text{mol/l}]^2 = \text{H}^+ [\text{mol/l}] * \text{OH}^- [\text{mol/l}]$$
 oder $pH + pOH = 14$

In wässrigen verdünnten Lösungen liegt der pH-Wert demnach zwischen 0 und 14.

Die Messung der H⁺-Konzentration erfolgt potentiometrisch, d.h. es wird die Kettenspannung U zwischen zwei Elektroden gemessen. Hierbei handelt es sich um eine Bezugselektrode mit konstantem Potential (in der Regel eine Ag/AgCl-Elektrode) und eine Glaselektrode, deren Potential von der H⁺-Konzentration in der Lösung abhängig ist. Die Messung erfolgt stromlos (hoher Innenwiderstand des Messgerätes), so dass keine elektrolytischen Reaktionen in der Lösung ablaufen können.

Anhang:	<u>Lit.:</u>
Gerätekurzanleitung: PHM10.1	H. Christen: Lehrbuch der anorg. Chemie Deutsche Einheitsverfahren zur Wasser- und Schlammuntersuchung pH-Messung – Grundlagen und Probleme, Fa. Ingold

Element	ement Form Gerät		Form Gerät		Methoden-Nr.	Seite	
Н+	H+	Autom. pH-Messsystem Rohasys	HH+PHM10.1	2			

Störungen:

- Hohe Natriumkonzentrationen führen zu falschen Messwerten. Fette, Öle und Eiweißstoffe belegen das Diaphragma und behindern so die Potentialeinstellung.
- Bei Proben mit pH-Werten über 5 kann sich während der Messung CO₂ in der Probe lösen, wo durch der pH-Wert ansteigt.

Analysengeräte und Zubehör:

Automatisches Minilab Messsystem der Fa. Rohasys

pH Einstabmesskette Thermo Scientific ORION 8102BN, (Keramikdiaphragma, Flüssigelektrolyt: 3 M KCl)

Temperaturfühler (separat)

Probengefäße Polypropylen, 50 ml, Länge 8,0 cm

Chemikalien:

Eichpufferlösungen:

Puffer pH 7,00 und pH 4,00 (Merck Nr. 1.99002.0001 (pH 7.00), Nr. 1.99001.0001 (pH 4,00)), Einzelportionen in Beuteln, zertifiziert

Kontrollpufferlösungen (Kontrollstandards):

Puffer pH 7,00 und pH 4,00 (Merck Nr. 1.09439.1000 (pH 7.00), Nr. 1.09435.1000 (pH 4,00)), Fertiglösung 1 l Gebinde

Elektrodenaufbewahrungslösung:

Fa. Metrohm Best.-Nr. 6.2323.000

Kaliumchlorid: KCl (p.a.)

Lösungen:

Elektrolytlösung 3M KCl-Lösung, oder gesättigte KCl-Lösung

3 M KCl-Lösung: 226,67 g KCl werden in einen 1-l-Kolben eingewogen und mit $\rm H_2O$ demin. auf 1 laufgefüllt.

Eichung/Standards:

Einzelbestimmung:

<u>Eichstandards</u>		
Puffer	pH 4,00	
Puffer	(25°C) pH 7,00	
	$(25^{\circ}C)$	

Kontrollstandards:		
Puffer	pH 4,00	
D 00	(20°C)	
Puffer	pH 7,00	
	$(20^{\circ}C)$	

Mehrelementbestimmung:

Element	Form	Gerät	Methoden-Nr.	Seite
H+	Н+	Autom. pH-Messsystem Rohasys	HH+PHM10.1	3

Durchführung:

Die Durchführung der Messung erfolgt wie in den Gerätekurzanleitungen PHM10.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung		
Eichkurvenkontrolle	QEK1.2	Asymmetriepotential/Nullpunkt und Steilheit		
		/Empfindlichkeit wie in der Gerätekurzanleitung		
		PHM10.1 beschrieben; nach jeder Eichung		
		kontrollieren.		
Kontrollstandard	QKSt1.1	Puffer pH 4,00, 7,00: Messung der Puffer 7,00 und 4,00		
		nach der Eichung und alle 10 Proben; erlaubte		
		Abweichung +/- 0.03. Bei höherer Abweichung wird		
		die Eichung wiederholt. Danach werden die 2 Kon-		
		trollpuffer gemessen. Liegen deren Messwerte im		
		erlaubten Bereich wird mit der Messung fortgefahren,		
		anderen Falls die Messung abgebrochen.		
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie		
pH-Prüfung Festproben	QPH1.1	Siehe Methodenbeschreibung		

Auswertung/Datendokumentation:

Die pH-Werte werden mit dem Datenverarbeitungs- und Übertragungsprogramm Relaqs bearbeitet und ins LIMS-System übertragen.

Element	Form	Gerät	Methoden-Nr.	Seite
H+	H+	Autom. pH-Messsystem Rohasys	HH+PHM10.1	4

Element	Form	Gerät	Matha	den-Nr.		Seite
Hg	Hgges	AFS	HgHgg		.1	1
Elementbe	estimmungsmeth	ode:	0 00	Datu		1.11.2018
_	ungsmethode			NG 1,0	BG 3,0	OMG
geeignet fü Boden Humus Pflanze Wasser Methodenv Norm HFA HFA-Code Prinzip de In der Prob Hg²+ überg Trägergass abgetrennt angereiche in die Quad der Hg-Ato	ANULL(Hg) verweise: In Anlehnung D47.1.4.3 e D;20;-3;-3;-3; r Methode/chem pelösung werden peführt und ansch tromes (Argon) v und der so entst rt. Durch Aufheit rzküvette eines z me durch Licht et zustand abgegebe	die Quecksilbermole ließend mit Zinn-II-o vird das gasförmige andene Quecksilberd zen des Goldnetzes v Atomfluoreszenz-Spe	külverbindungen durch (chlorid-Lösung zu Hg(0)) Quecksilber über einen (dampf auf einem Goldne vird dann das gesamte Quektrometers überführt. Dektrometers überführt. Dektrometers überführt. Dektrometers überführt. Dektrometers überführt. Dektrometers überführt.	Oxidatior reduzier Gas/Flüss tz durch uecksilbe ort erfol	n z.B. mi t. Mit H sigkeits- Amalga er im Ar gt eine	it BrCl in ilfe eines Separator nisierung gonstrom Anregung
_	Methodenverglei Geräteparameter Standardzusamn	und	<u>Lit.:</u>			

Element	Form	Gerät	Methoden-Nr.	Seite
Hg	Hgges	AFS	HgHggesAFS1.1	2

Analysengeräte und Zubehör:

Millenium Merlin 1631 Hg-Analysator der Fa. PSA

Probengeber 20.410 der Fa. PSA

Rechner mit Software

Probengefäße 50 ml aus PFA

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon

Chemikalien:

Salzsäure (HCl), 36%-38% instra. Analysed, Baker

Salzsäure (HCl), 37%, p.A., Kraft

SnCl₂ p.A., max. 0,000001 % Hg, Merck

Bromid/Bromat-Titrisol für 1000 mL (c(Br₂) = 0,05 mol/l), Merck

L-(+)-Ascorbinsäure, Baker analysed.

Lösungen:

SnCl₂-Lösung:

40g SnCl₂ p.A., max. 0,000001 % Hg von Merck werden in 300 mL HCl 37% p.A. von Kraft gelöst und im 2 Liter Messkolben auf 2 Liter mit bidemin. Wasser aufgefüllt. Die Lösung wird mindestens 4 Stunden in einem 5L Kanister im Argonstrom mit einem Zerstäuberaufsatz unter dem Abzug entgast um das durch das SnCl₂ reduzierte Quecksilber in der Lösung gasförmig auszutreiben. Die Lösung wird in ein 5L Vorratsgefäß überführt.

Probennadel-Spüllösung:

Im 5 L Messkolben wird H₂O bidemin. vorgelegt und mit 50 mL Salzsäure, 36-38% (Baker) versetzt und bis zur Messmarke aufgefüllt. Die Lösung wird in ein 5 L Vorratsgefäß überführt.

Blindlösung AFS-Gerät:

Im 2 L Messkolben wird H₂O bidemin. vorgelegt, mit 20 mL Salzsäure, 36-38% (Baker), mit 10 mL BrCl und Ascorbinsäure (2mL) versetzt und bis zur Messmarke aufgefüllt. Die Lösung wird in das 5 L Vorratsgefäß überführt.

Das Ansetzen aller Lösungen ist in der Gerätekurzanleitung AFS1.1 beschrieben.

Element	Form	Gerät	Methoden-Nr.	Seite
Hg	Hgges	AFS	HgHggesAFS1.1	3

Eichung/Standards:

Stammlösungen:

Hg: ICP-Standard (Fa B. Kraft) => 1 g/l Hg

Standardlösungen:

Der Blank, die Standards und die Kontrollstandards werden mit der verwendeten Matrix, 1,0 % HCl v/v, 0,5 % BrCl v/v und Ascorbinsäure (100mg/L) in 250 ml PFA-Messkolben angesetzt. Die Zusammensetzung der Standardlösungen ist im Anhang 1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen verwendet:

	<u>Standards</u>
Hg 0	0 ng/l Hg
Hg 1	5 ng/l Hg
Hg 2	10 ng/l Hg
Hg 3	15 ng/l Hg
Hg 4	20 ng/l Hg
Hg 5	25 ng/l Hg

Kontrollstandard
K25MSHg
15 ng/l Hg

Methode:	WasserSMHg
Element:	Hg
Messbereich	BG - OMG
[ng/l]:	3,0-30
Standards:	Hg 0
	Hg 1
	Hg 2
	Hg 3
	Hg 4
	Hg 5
Bemerkungen:	

Der Blank, die Standards und die Kontrollstandards werden mit der verwendeten Matrixlösung in 250 ml-PFA-Messkolben angesetzt.

Element	Form	Gerät	Methoden-Nr.	Seite
Hg	Hgges	AFS	HgHggesAFS1.1	4

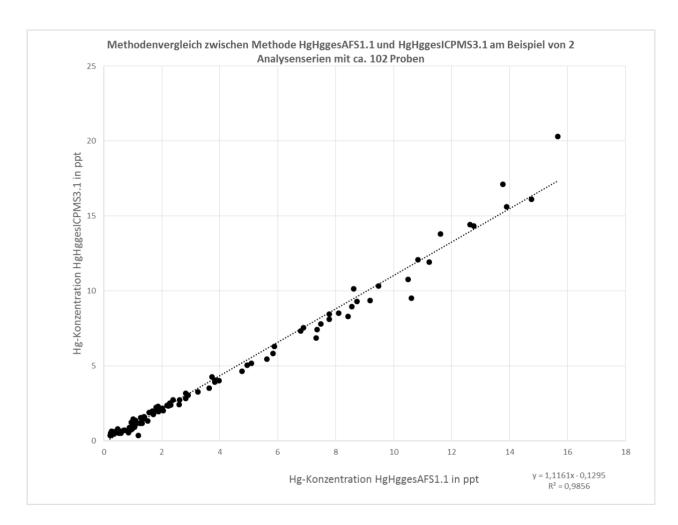
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung KAAFS1.1 beschrieben. Als Probengefäße werden PFA-Gefäße (50 ml, Fa. PSA) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

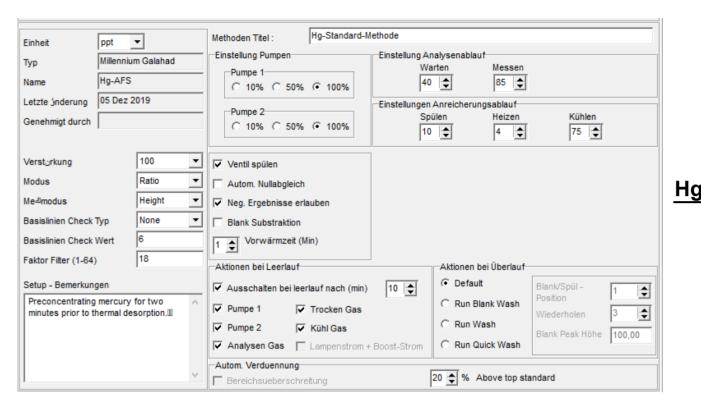
Qualitätskontrolle	Methode	Durchführung			
Kontrollstandard	QKSt.1.1	K25MSHg (15ppt); Messung nach der Eichung,			
		Messung alle 5 Proben als Reslope, erlaubte			
		Abweichung von der Kalibrierung 10%			
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie			
Standardmaterial	QStM1.1	- NIST(Hg) (11,68 ppt); erlaubte Abweichung			
		10 %.			
		- WasserSM1(Hg) (20ppt) ; erlaubte			
		Abweichung 10 %			

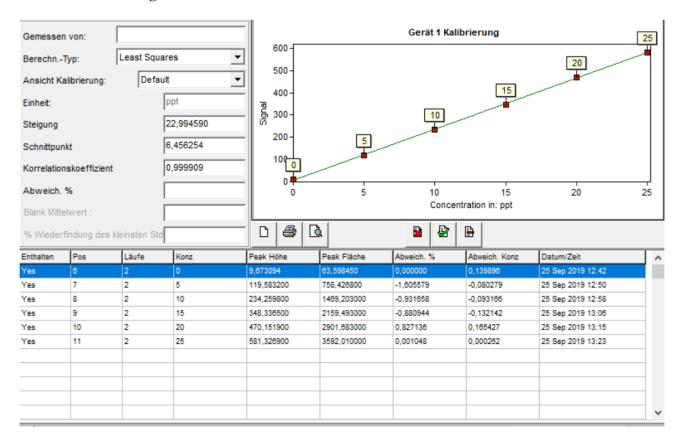

Auswertung/Datendokumentation:

Die gemessenen Hg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Anhang Nr.	1	für	Hg	Hgges	AFS	HgHggesAFS1.1
0			0			0 00

Methodenvergleich Seite 1


Methodenvergleich zwischen Methode HgHggesAFS1.1 und HghggesICPMS3.1 am Beispiel von 2 Analysenserien mit ca. 100 Proben


Geräteparameter und Standardzusammensetzung

Seite 1

a. Methodenparameter

b. Kalibrierungsübersicht

Anhang Nr. 2 für Hg Hgges AFS HgHggesAFS1.1

Geräteparameter und Standardzusammensetzung

Seite 2

c. Standardzusammensetzung

AFS HgHggesAFS1.1 Standards AFS Hg (1-5)

	<u>Hg 1</u>	<u>Hg 2</u>	<u>Hg 3</u>	<u>Hg 4</u>	<u>Hg 5</u>
Element					
Hg	5,0 ppt	10, 0 ppt	15,0 ppt	20,0 ppt	25,0 ppt
	125 μL	250 μL	375 μL	500 μL	625 μL
Aus einem 10 ppb Hg(II)-Ausgangsstandard.					

plus 2,5mL HCl (Baker) plus 1,25mL BrCl-Lösung + 250 μ L Ascorbinsäurelösung (1g/10g Lösung) in 250 ml bi- demin H2O

Anhang Nr.	2	für	Hg	Hgges	AFS	HgHggesAFS1.1

Geräteparameter und Standardzusammensetzung

Seite 2

Element	Form	Gerät	Methoden-Nr.	Seite
Hg	Hgges	ICP-MS	HgHggesICPMS1.1	1

Elementbestimmungsmethode:

Quecksilber

Untersuchungsmethode	NG	BG	OMG
OAKW2.1, OAKWEG3.1	9,8	29,4	50000

geeignet für:

Boden	OAKW2.1, OAKWEG3.1
Humus	OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 17294-2
HFA	D47.1.6.2
HFA-Code	D;5;1;1;1;-2;1

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden. ²⁰²Hg ist gestört durch ¹⁶O + ¹⁸⁶W; hier erfolgt eine Interelementkorrektur (siehe Anhang 1) über ¹⁸²W. Weitere Störungen können durch eine vor dem Quadrupol eingebaute Reaktions- und Kollisionszelle beseitigt werden (KED-H2-Modus).

Anhang:	<u>Lit.:</u>
Anhang 1: Wolfram Korrektur	
Sammelanhang S30.1: Geräteparameter und	
Standardzusammen-	
setzung	
Kurzanleitung ICPMS1.1	

Hg

Datum:

01.11.2018

Element	Form	Gerät	Methoden-Nr.	Seite
Hg	Hgges	ICP-MS	HgHggesICPMS1.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

1000, 2000 und 5000ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 65% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Y, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Mg, Fe, K: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25 ml HCl im 5 l-Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40ml Salpetersäure (HNO₃) im 2 l-Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10~ml Salpetersäure (HNO3) im 2~l-Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 10 ppm, Ge 1 ppm, Y 10 ppm, Re 5 ppb, Rh 100 ppb) = 10 ml Sc, 1 ml Ge, 10 ml Y, 0,1 ml Rh jeweils aus 1 g/l und 1 ml Re aus 5 mg/l plus 20 ml HNO₃ im 1000 ml Glas-Messkolben mit bidemin. Wasser auffüllen.

Aus dieser Stammlösung eine 1:10 Verdünnung (mit bi-demin H₂O aufgefüllt) zum Messen herstellen (mindestens 100 ml).

Element	Form	Gerät	Methoden-Nr.	Seite
Hg	Hgges	ICP-MS	HgHggesICPMS1.1	3

Basislösung für Standards und Kontrollstandard:

Ansatz der Lösung (Al 50 ppm, Mg 50 ppm, Fe 20 ppm, K 10 ppm)

Jeweils 5 ml Al und Mg, 2 ml Fe und 1 ml K mit 60 ml HCl und 20 ml HNO3 in einem 1000 ml Messkolben mit bi-demin H2O auffüllen.

Eichung/Standards:

Stammlösungen:

Hg: ICP-Standard (Fa B. Kraft) => 1 g/l Hg

Cd, Co, Cr, Cu, Ni, Pb, Zn, Hg, W: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg, Al, Fe, K: ICP-Standard (Fa B. Kraft) => jeweils 10 g/l

dard (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S30.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in einer dem Königswasserextrakt entsprechenden Mischung aus HCl und HNO₃ mit Zusatz von 50 ppm Al, 50 ppm Mg, 20 ppm Fe und 10 ppm K, die neben Hg auch andere Elemente enthalten (siehe Sammelanhang S30.1), verwendet:

	<u>Standards</u>
Dlaule	0.00/1.110
Blank KWSM1	0 ng/l Hg
KWSM1 KWSM2	500 ng/l Hg
KWSM3	1000 ng/l Hg
KWSM3 KWSM4	50 ng/l Hg
	100 ng/l Hg
KWSM5	200 ng/l Hg

<u>Kontrollstandard</u>	
K24MS	
1000 ng/l Hg	

Element	Form	Gerät	Methoden-Nr.	Seite
Hg	Hgges	ICP-MS	HgHggesICPMS1.1	4

Methode:	OAKWSM	OAKWEGSM
Element:	Hg	Hg
Masse:	201.9706430	201.9706430
Messbereich	BG – OMG	BG – OMG
[ng/l]:	588 - 50000	1470 - 50000
Standards:	Blank	Blank
	KWSM1	KWSM1
	KWSM2	KWSM2
	KWSM3	KWSM3
	KWSM4	KWSM4
	KWSM5	KWSM5

Bemerkungen:	Kollisions/Reaktions-	Kollisions/Reaktions-
_	zelle:	<u>zelle:</u>
	Gasfluss H ₂ : 0,5 ml	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml	Gasfluss He: 4,5 ml

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. OAKW-Aufschlusslösungen werden 1:20 vom PrepFAST-Probengeber verdünnt, OAKWEG-Aufschlusslösungen 1:50.

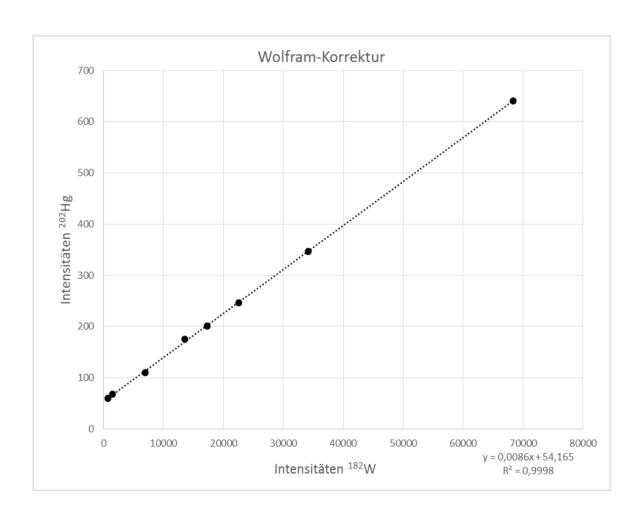
Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (OAKWSM-1, OAKWEGSM-1, OAKWSMHg-1, OAKWEGSMHg-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S30.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K24MS; Messung nach der Eichung, alle 10 Proben	
		und nach jeder Eichungswiederholung; erlaubte	
		Abweichung 5 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial	QStM1.1	ISE974, NFVH; erlaubte Abweichung 10 %.	


Auswertung/Datendokumentation:

Die gemessenen Hg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Massenstörungen und ihre Korrektur

Seite 1

Störmasse	Interelement- korrektur	
	Faktorer- mittlung Graphik	Faktor 1
¹⁸² W	1	-0,0086

Anhang Nr.	1	für	Hg	Hgges	ICP-MS	HgHggesICPMS1.1

Datum:

01.11.2018

Element	Form	Gerät	Methoden-Nr.	Seite
Hg	Hgges	ICP-MS	HgHggesICPMS3.1	1

Elementbestimmungsmethode:

QUECKSILBER

Untersuchungsmethode	NG	BG	OMG
ANULL	0,5	1,5	30

geeignet für:

Boden	
Humus	
Pflanze	
Wasser	ANULL(Hg)

Methodenverweise

Norm	In Anlehnung an DIN EN ISO				
HFA	D47.1.6.2				
HFA-Code	D;5;1;1;1;-2;1				

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

²⁰²Hg ist gestört durch ¹⁶O + ¹⁸⁶W; hier erfolgt eine Interelementkorrektur (siehe Anhang 1) über ¹⁸²W. Weitere Störungen können durch eine vor dem Quadrupol eingebaute Reaktions- und Kollisionszelle beseitigt werden (KED-H2-Modus).

Element	Form	Gerät	Methoden-Nr.	Seite
Hg	Hgges	ICP-MS	HgHggesICPMS3.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI, Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon

Chemikalien:

Salpetersäure (HNO₃), 65% suprapur

Salzsäure (HCl), 36%-38% instra. Analysed, Baker

Salzsäure (HCl) 37% p.A.

L-(+)-Ascorbinsäure Baker analysed, Baker

ICAP Q/RQ Tune solution

ICAP Q/Qnova CALIBRATION solution

Sc, Ge, Re, Rh: ICP-Standard(Fa. B.Kraft) => jeweils 1 g/l

Lösungen:

Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die zwei Positionen =

 $100 ml\ HNO_3$ suprapur und $25 ml\ HCl$ im 5 L- Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

PrepFAST Rinse-Lösung:

20 mL Salzsäure (HCl), 36%-38% instra. Analysed und 10 mL BrCl-Lsöung c(Br₂)= 0,05 mol/L) sowie 2 mL Ascorbinsäurelösung (100mg Ascorbinsäure pro mL) im 2 Liter Messkolben auf 2 Liter mit bidemin. Wasser auffüllen und in 2000 mL-PFA-Vorratsgefäß umfüllen.

FAST Carrier-Lösung:

20 mL Salzsäure (HCl), 36%-38% instra. Analysed und 10 mL BrCl-Lsöung c(Br₂)= 0,05 mol/L) sowie 2 mL Ascorbinsäurelösung (100mg Ascorbinsäure pro mL) im 2 Liter Messkolben auf 2 Liter mit bidemin. Wasser auffüllen und in 2000 mL-PFA-Vorratsgefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO3) = 10 ml Salpetersäure (HNO3) im 2 l-Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 5 ppm, Ge 1 ppm, Y 10 ppm, Re 5 ppb, Rh 100 ppb) = 5ml Sc, 1ml Ge, 10ml Y, 0,1ml Rh jeweils aus 1g/l und 1ml Re aus 5mg/l plus 20ml HNO3 im 1000ml Glas-Messkolben mit bidemin. Wasser auffüllen.

Aus dieser Stammlösung eine 1:100 Verdünnung in 1% HCl, 0,5% BrCl und Ascorbinsäure herstellen.(mindestens 100 ml).

Element	Form	Gerät	Methoden-Nr.	Seite
Hg	Hgges	ICP-MS	HgHggesICPMS3.1	3

Eichung/Standards:

Stammlösungen:

Hg:
$$ICP$$
-Standard (Fa B. Kraft) => 1 g/l Hg

Standardlösungen:

Der Blank, die Standards und die Kontrollstandards werden mit der verwendeten Matrix, 1,0 % HCl v/v, 0,5 % BrCl v/v und Ascorbinsäure (100mg/L) in 250 ml PFA-Messkolben angesetzt. Die Zusammensetzung der Standardlösungen ist im Anhang 3 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen für Hg verwendet, sowie eine Standardreihe (WasserSMHg 0-7) die andere Elemente und Wolfram für die Wolframkorrektur enthalten(Anhang 3).

	<u>Standards</u>
Hg 0	0 ng/l Hg
Hg 1	5 ng/l Hg
Hg 2	10 ng/l Hg
Hg 3	15 ng/l Hg
Hg 4	20 ng/l Hg
Hg 5	25 ng/l Hg

<u>Kontrollstandard</u>	
K25MSHg	
15 ng/l Hg	

Element	Form	Gerät	Methoden-Nr.	Seite
Hg	Hgges	ICP-MS	HgHggesICPMS3.1	4

WasserSMHg-1
Hg
201.9706430
BG - OMG
0,5 - 30 ng/L
Hg 1
Hg 2
Hg 3
Hg 4
Hg 5
Kollisions/
Reaktions-zelle:
Gasfluss H ₂ : 0,5
ml
Gasfluss He: 4,5
ml

Durchführung:

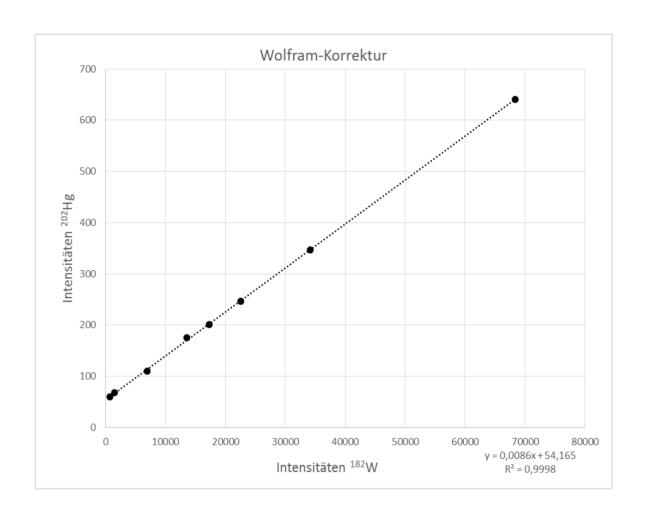
Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (WasserSMHg) mit der höchsten Revisions-Nummer aufgerufen. Sie sind Anhang 3 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K25MSHg (15ppt); Messung nach der Eichung, alle
		10 Proben und nach jeder Eichungswiederholung;
		erlaubte Abweichung 10 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	- NIST(Hg) (11,68ppt); erlaubte Abweichung
		10 %.
		- WasserSM1(Hg) (20ppt) ; erlaubte
		Abweichung 10 %

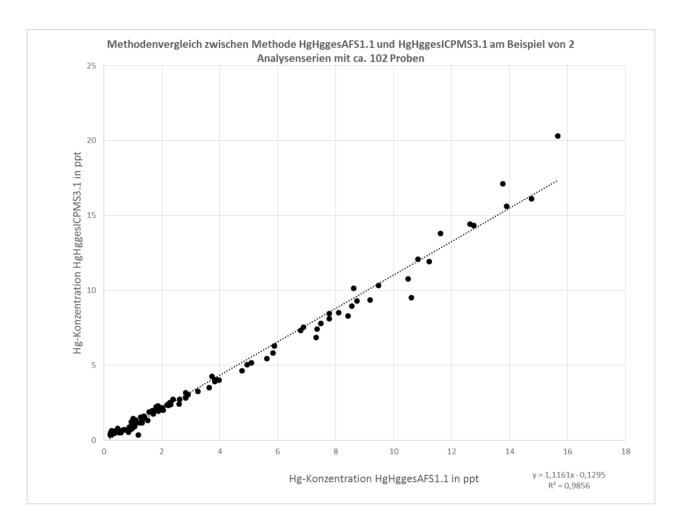

Auswertung/Datendokumentation:

Die gemessenen Hg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Massenstörungen und ihre Korrektur

Seite 1

Störmasse	Interelement- korrektur	
	Faktorer- mittlung Graphik	Faktor 1
$^{182}\mathbf{W}$	1	-0,0086



Anhang Nr. 2 für Hg Hgges ICP-MS HgHggesIC
--

Gerätevergleich ICP-MS / AFS

Seite 1

Methodenvergleich zwischen Methode HgHggesAFS1.1 und HgHggesICPMS3.1 am Beispiel von 2 Analysenserien mit ca. 100 Proben

<u>Hg</u>

Anhang Nr.	3	für	Hg	Hgges	ICP-MS	HgHggesICPMS3.1
				00		0 00

Seite 1

Geräteparameter und Grundeichung für iCAP RQ der Fa. Thermo Scientific für die Methode ICPMS3.1

a. Verwendete Standards

Die Herstellung der Standardlösungen ist in der jeweiligen Methode angegeben. Hg 1- 5

Element	K25MSHG	Hg 1	Hg 2	Hg 3	Hg 4	Hg 5
Hg	15 ppt	5 ppt	10 ppt	15 ppt	20 ppt	25 ppt

WasserSMHg-1-7

Element	K25MSHg	K25MSW	WasserSMHg 1	WasserSMHg 2	WasserSMHg 3	WasserSMHg 4	WasserSMHg 5	WasserSMHg 6	WasserSMHg 7
Cd	20 ppb		0,5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	
Со	20 ppb		0,5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	
Cr	20 ppb		0,5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	
Cu	20 ppb		0,5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	
Ni	20 ppb		0,5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	
Pb	50 ppb		0,5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	50 ppb
W		50 ppt						50 ppt	100 ppt
Zn	100 ppb		0,5 ppb	1 ppb	2 ppb	5 ppb	10 ppb	20 ppb	200 ppb

Seite 2

b. Methodenparameter

Gerätetuning:

Geraleluning:	_
Additional Gas Flow 1	0
D1 Lens	-340
D2 Lens	-158
Deflection Entry Lens	-35
Extraction Lens 1 Negative	0
Extraction Lens 1 Polarity	0
Extraction Lens 1 Positive	0
Extraction Lens 2	-78.333
Filename	WasserSM(Hg)_Proben_18.11.2019.imexp
Focus Lens	-4.125
Identifier	mp_KED-H2
Nebulizer Flow	1.08
Peristaltic Pump Speed	40
Plasma Power	1550
Pole Bias	-18
Quad Entry Lens	-56
Sampling Depth	5
Source Autotune Configuration	SourceTune High Matrix-mp
Spray Chamber Temperature	2.7
Torch Horizontal Position	-0.547
Torch Vertical Position	-0.3
Virtual CCT Mass Maximum Dac Limit Set	4095
Virtual CCT Mass parameter b	1
Virtual CCT Mass to Dac Factor	60
Virtual CCT Mass to Dac Offset	37.5

Seite 3

Acquisitionsparameter:

Identifier	Channels	Dwell time (s) Fit Type	Fit Type	Forcing	Internal Standard	Is Internal Standard	Measurement mode	Resolution	Spacing (u)
45Sc (mp_KED-H2)	1	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	Normal	0.1
52Cr (mp_KED-H2)	_	0.01	Linear	Blank	Use Interpolation	False	mp_KED-H2	Normal	0.1
59Co (mp_KED-H2)	_	0.01	Linear	Blank	Use Interpolation	False	mp_KED-H2	Normal	0.1
60Ni (mp_KED-H2)	-	0.01	Linear	Blank	Use Interpolation	False	mp_KED-H2	Normal	0.1
63Cu (mp_KED-H2)	_	0.01	Linear	Blank	Use Interpolation	False	mp_KED-H2	Normal	0.1
66Zn (mp_KED-H2)	-	0.01	Linear	Blank	Use Interpolation	False	mp_KED-H2	Normal	0.1
74Ge (mp_KED-H2)	_	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	Normal	0.1
103Rh (mp_KED-H2)	_	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	Normal	0.1
111Cd (mp_KED-H2)	_	0.01	Linear	Blank	Use Interpolation	False	mp_KED-H2	Normal	0.1
182W (mp_KED-H2)	-	0.01	Linear	Blank	Use Interpolation	False	mp_KED-H2	Normal	0.1
187Re (mp_KED-H2)	_	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	Normal	0.1
187Re (mp_KED-H2,1)	-	0.01	Linear	Blank	Internal Standard	True	mp_KED-H2	High	0.1
202Hg (mp_KED-H2)	-	0.05	Linear	Blank	Use Interpolation	False	mp_KED-H2	Normal	0.1
206Pb (mp_KED-H2)	_	0.01	Linear	Blank	Use Interpolation	False	mp_KED-H2	High	0.1
207Pb (mp_KED-H2)	_	0.01	Linear	Blank	Use Interpolation	False	mp_KED-H2	High	0.1
208Pb (mp_KED-H2)	1	0.01	0.01 Linear	Blank	Use Interpolation	False	mp_KED-H2	High	0.1

Seite 4

Probenparameter:

Sample Type	Total Dilution Factor	Main Runs
BLK	1	4
QC	1	4
STD	1	4
UNKNOWN	1	4

No. of sweeps	100
Time per sweep[s]	0.2
Time per main run[s]	20
Order of modes	mp_KED-H2
Maximum monitored wash time[s]	300
Minimum monitored wash time[s]	30

Inter-Element-Korrekturen:

Analyte	Correction	Enabled
59Co (mp_KED-H2)		False
63Cu (mp_KED-H2)		False
66Zn (mp_KED-H2)		False
111Cd (mp_KED-H2)		False
52Cr (mp_KED-H2)		False
60Ni (mp_KED-H2)		False
103Rh (mp_KED-H2)		False
74Ge (mp_KED-H2)	- 0.118421 * 77Se	False
207Pb (mp_KED-H2)		False
208Pb (mp_KED-H2)	+ 1 * 206Pb (mp_KED-H2) + 1 * 207Pb (mp_KED-H2)	True
187Re (mp_KED-H2)	- 0.0993789 * 189Os	False
206Pb (mp_KED-H2)		False
45Sc (mp_KED-H2)		False
202Hg (mp_KED-H2)	- 0.008 * 182W (mp_KED-H2)	True
182W (mp_KED-H2)		False
187Re (mp_KED-H2,1)	- 0.0993789 * 189Os	False

Ha

c. Zusammensetzung der Lösungen und Standards

ICP- MS

Methode/Template WasserSMHg-1

Interner Standard

Stammlösung in 2% HNO3 supr.

Stammosang m 270 m to 5 sapm			
Element	Konzentration		
Sc	50 ppm	5ml	
Ge	50 ppm	5ml	auf 100ml
Re	5 ppm	0,5ml	mit bi-demin
Rh	5 ppm	0,5ml	auffüllen
		aus 1g/l	

!!! vor dem Auffüllen 2ml HNO3 suprapur dazupipettieren !!!

für Messung 1:100 verdünnen:		
	Sc	500 ppb
5ml Stammlösung	Ge	500 ppb
+ 5 mL HCl (Baker) + 2,5 mL BrCl-Lösung +	Re	50 ppb
500 μL Ascorbinsäure (1g/10g) /500ml bi-demin	Rh	50 ppb

Seite 6

Methode/Template WasserSMHg-1 Standards ICP-MS ICP- MS

plus 2.5mL HCl (Baker) plus 1.25mL BrCl-Lösung + 250 uL Ascorbinsäurelösung (1g/10g Lösung) in 250 ml bl- demin H2O

SM 7	Konz / Vol						<u>200 ppb</u> 5000 μΙ	50 ppb 1250 µl	<u>100 ppt</u> 250 μL
SW 6	Konz / Vol	20 ppb 500 µl	20 ppb 500 µl	20 ppb 500 µl	20 ppb 500 µl	<u>20 ppb</u> 500 μl	<u>100 ppb</u> 2500 μl	20 ppb 500 µl	<u>50 ppt</u> 125 μL
SM2 SM2 SM4 SM5 SM6 SM7	Konzentration	<u>10 ppb</u>	<u>10 ppb</u>	<u>10 ppb</u>					
SM 4	Konzentration	qdd <u>S</u>	qdd <u>s</u>	<u>qdd 5</u>	qdd <u>S</u>	qdd <u>S</u>	<u>qdd 5</u>	qdd <u>S</u>	
SM3	Konzentration	<u>2 ppb</u>	<u>2 ppb</u>	<u>2 ppb</u>					
SM 2	Konzentration	<u>1 ppb</u>	<u>1 ppb</u>	<u>1 ppb</u>					
SM 1	Konzentration	0,5 ppb	0,5 ppb	<u>0,5 ppb</u>	<u>975 pbb</u>	<u>0,5 ppb</u>	<u>0,5 ppb</u>	<u>0,5 ppb</u>	
	Element	Ö	РЭ	°Co	Ni	Cu	Zn	Pb	W

Mit den 7 Schwermetallen einen gemeinsamen Ausgangsstandard von je 10 ppm in 1%HCl Baker, sowie 7 Einzelstandards mit je 10 ppm ansetzen:

Hg 10 ppb-Ausgangsstandard: 1000 µL Hg (1 ppm) in einen 100 mL-PFA-Messkolben pipettieren in 1%HCl (Baker) und den Standards 1-5 das jeweils ieweils 1000μ/ aus 1g/l in einen 100ml PFA-Messkolben pipettieren.

oben in den Kästchen angegebene Volumen hinzupipettieren

SM 1	SM 2	SM 3	SM 4	SM 5	<u>SM 6</u>		
12,5 µl /250ml	25,0 µl /250ml	50 µl /250ml	125 µl /250ml	250 µl /250ml	125 µl/250ml 250 µl/250ml das jeweils oben in den Kästchen ang	angegebene Volumen	
pipettieren	pipettieren	pipettieren	pipettieren	pipettieren	aus 10 ppm - Einzelstandards in 250ml pipettierer	ds in 250ml pipettieren	
III Nach de	r Vorl	emin H2O und vo	r Zugabe der Star	ndardlösungen al	age des bi-demin H2O und vor Zugabe der Standardlösungen allen Standards und dem Blanks ieweils. 2.5 ^ml H 0	nks ieweils 2.5ml HCl	

(Baker), 1,25ml BrCl-Lösung und 250 µL Ascorbinsäurelösung (1g/10g) hinzupipettieren !!!

Seite 7

ICP- MS Methode/Template WasserSMHg-1 Standards ICP-MS Hg (1-5)

	<u>Hg 1</u>	<u>Hg 2</u>	<u>Hg 3</u>	<u>Hg 4</u>	<u>Hg 5</u>
Element	Conzentration	onzentration	Conzentration	Conzentration	ionzentration
Hg	5,0 ppt	10, 0 ppt	15,0 ppt	20,0 ppt	25,0 ppt
	125 μL	250 μL	375 μL	500 μL	625 μL

Aus einem 10 ppb Hg(II)-Ausgangsstandard.

plus 2,5mL HCI (Baker) plus 1,25mL BrCI-Lösung + 250 μ L Ascorbinsäurelösung (1g/10g Lösung) in

250 ml bi- demin H2O ICP- MS

Methode/Template WasserSMHg-1

K25MS(Hg)

in 250 ml plus 2,5 mL HCl (Baker), plus 1,25mL BrCl-Lösung, plus 250μL-Ascorbinsäurelösung (1g/10g-Lösung)

Element	Konzentration	zu dosierende Menge	
Cr	20 ppb	500 μl	
Cd	20 ppb	500 μΙ	
Co	20 ppb	500 μΙ	
Ni	20 ppb	500 μΙ	auf 250ml
Cu	20 ppb	500 μΙ	aui 250iiii
Zn	100 ppb	2500 μΙ	
Pb	50 ppb	1250 μΙ	
Hg	15 ppt	375μL	

10ppm 10ppb (Hg)

!!! Nach der Vorlage des bi-demin H2O und vor Zugabe der Standardlösungen allen Standards und dem Blanks jeweils 2,5ml HCl (Baker), 1,25ml BrCl-Lösung und 250 μL Ascorbinsäurelösung (1g/10g) hinzupipettieren !!!

Hα

Seite 8

ICP- MS

WasserSM1(Hg)

Methode/Template WasserSMHg-1

in **250 ml** plus 2,5 mL HCl (Baker), plus 1,25mL BrCl-Lösung, plus 250µL-Ascorbinsäurelösung (1g/10g-Lösung)

Element	Konzentration	zu dosierende Menge	
Cd	2 ppb	50 μΙ	
Co	5 ppb	125 μΙ	
Cr	5 ppb	125 μΙ	
Cu	5 ppb	125 μΙ	auf 250ml
Ni	5 ppb	125 μΙ	aui 250iiii
Pb	5 ppb	125 μΙ	
Zn	100 ppb	2500 μΙ	
Hg	15 ppt	500μL	

aus 10ppm aus 10ppb (Hg)

!!! Nach der Vorlage des bi-demin H2O und vor Zugabe der Standardlösungen allen Standards und dem Blanks jeweils 2,5ml HCl (Baker), 1,25ml BrCl-Lösung und 250 μL Ascorbinsäurelösung (1g/10g) hinzupipettieren !!!

ICP- MS Methode/Template WasserSMHg-1

prepFast-Rinse

in **2000 ml** plus 20mL HCl (Baker), plus 10mL BrCl-Lösung, plus 2000µL-Ascorbinsäurelösung (1g/10g-Lösung)

<u>Pumpenlösung</u>

in **250 ml** plus 2,5mL HCl (Baker), plus 1,25mL BrCl-Lösung, plus 250µL-Ascorbinsäurelösung (1g/10g-Lösung)

Seite 1

Methoden-Templates für ICP-MS

Königswasser-Aufschluss

LIMS-Methode	Probenart	Glas/Teflon	SM/HE/Hg	Template-Name	Probenverd.	Eich-Std.	Kontroll-Std	Standardmaterial	Interne StdLösung	ICP-MS-Methoden
OAKW2.1	Boden	Teflon	SM	OAKWSM-1	1:20	KWSM1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Boden	Glas	SM	OAKWSM-1	1:20	KWSM1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG3.1	Boden	Teflon	SM	OAKWEGSM-1	1:50	KWSM1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG2.2	Boden	Glas	SM	OAKWEGSM-1	1:50	KWSM1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Humus	Teflon	SM	OAKWSM-1	1:20	KWSM1-5	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Humus	Glas	SM	OAKWSM-1	1:20	KWSM1-5	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Boden	Teflon	HE	OAKW-1	1:20	KWHE1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Boden	Glas	HE	OAKW-1	1:20	KWHE1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG3.1	Boden	Teflon	HE	OAKWEG-1	1:50	KWHE1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG2.2	Boden	Glas	ICP	OAKWEG-1	1:50	KWHE1-5	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Humus	Teflon	HE	OAKW-1	1:20	KWHE1-5	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Humus	Glas	HE	OAKW-1	1:20	KWHE1-5	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Boden	Teflon	SM+Hg	OAKWSMHg-1	1:20	KWSM1-6	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Boden	Glas	SM+Hg	OAKWSMHg-1	1:20	KWSM1-6	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG3.1	Boden	Teflon	SM+Hg	OAKWEGSMHg-1	1:50	KWSM1-6	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKWEG2.2	Boden	Glas	SM+Hg	OAKWEGSMHg-1	1:50	KWSM1-6	K24MS	ISE974, BZE-SAC	KWSM-IS	XXgesICPMS1.1
OAKW2.1	Humus	Teflon	SM+Hg	OAKWSMHg-1	1:20	KWSM1-6	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1
OAKW1.2	Humus	Glas	SM+Hg	OAKWSMHg-1	1:20	KWSM1-6	K24MS	NFVH	KWSM-IS	XXgesICPMS1.1

Wasserproben-SM

LIMS-Methode	Probenart	BrCl	SM/HE/Hg	Template-Name	Probenverd.	Eich-Std.	Kontroll-Std	Standardmaterial	Interne StdLösung	ICP-MS-Methoden
ANULL	Wasser	х	SM	WasserSM-1	1:1	WasserSM1-7	K25MS	WasserSM1	WasserSM-IS	XXgesICPMS2.1
								WasserSM1(Hg),		
ANULL-Hg	Wasser	BrCl	SM+Hg	WasserSMHg-1	1:1	Hg 1-5: WasserSMHg1-7	K25MSHg	NIST(Hg)	WasserSMHg-IS	XXgesICPMS3.1

Druckaufschluss

LIMS-Methode	Probenart		SM/HE/Hg	Template-Name	Probenverd.	Eich-Std.	Kontroll-Std	Standardmaterial	Interne StdLösung	ICP-MS-Methoden
DAN2.2	Pflanze	х	SM	DANSM-1	1:2	WasserSM1-7	K26MS	NHarz	WasserSM-IS	XXgesICPMS2.1
DAN2.2	Pflanze	х	SM+Hg	DANSMHg-1	1:2	WasserSM1-7		NHarz	WasserSM-IS	XXgesICPMS2.1
DAN2.2	Humus	Х	SM	DANSM-1	1:2	WasserSM1-7	K26MS	NFVH	WasserSM-IS	XXgesICPMS2.1
DAN2.2	Humus	х	SM+Hg	DANSMHg-1	1:2	WasserSM1-7		NFVH	WasserSM-IS	XXgesICPMS2.1

Element	Form	Gerät	Methoden-Nr.	Seite
Hg	Hgges	ICP-MS	HgHggesICPMS4.1	1

Elementbestimmungsmethode:

QUECKSILBER

Untersuchungsmethode	NG	BG	OMG
DAN2.2	6,1	18,3	2000

geeignet für:

Boden	
Humus	
Pflanze	DAN2.2
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 17294-2	
HFA	D47.1.6.2	
HFA-Code	D;5;1;1;1;-2;1	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente ionisiert. Anschließend werden die im Plasma generierten Ionen in Richtung des Analysators des Massenspektrometers beschleunigt. Nachdem die Analyt-Ionen sowie die (unerwünschten) Ionen des Plasmas durch zwei Konen in das Hochvakuum überführt wurden, wird der Ionen-Strom durch eine Ionenoptik gebündelt und als feiner Strahl in Richtung des Massenspektrometers geleitet. Der Ionen-Strahl aus der Ionenoptik wird direkt in das Quadrupol zur Ionentrennung geleitet. Im Quadrupol werden die Ionen durch entsprechende Spannungssteuerung auf eine Spiralbahn gelenkt. Der gewünschte Effekt eines Massenspektrometers entsteht dadurch, dass zwei Spannungen so eingestellt werden, dass es jeweils nur für eine Masse eine stabile Flugbahn mit mehreren Umdrehungen gibt. Alle anderen Massen werden entweder in die Mitte der Quadrupol-Stäbe gezogen und dort abgeleitet oder sie verlassen die Spiralbahn nach außen und werden direkt von der Vakuumpumpe abgesaugt. Nur die Masse, für die gerade die richtigen Spannungs- und Frequenzverhältnisse angelegt sind, beschreibt eine stabile Spiralbahn, die am Detektor endet. Im digitalen Teil des Detektors sind mehrere Dynoden in Reihe geschaltet und dienen als Detektor und Verstärker in einem. Im analogen Teil für hohe Konzentrationen erfolgt eine Stromflussmessung, die in einen Messwert umgewandelt wird.

Störungen:

Störungen können durch Isotope oder Molekülionen gleicher Masse oder doppelt geladene Ionen auftreten. Ein Teil der Störungen kann durch eine vor dem Quadrupol eingebaute Reaktions- und kollisionszelle beseitigt werden.

Anhang:	<u>Lit.:</u>
Sammelanhang S32.1: Geräteparameter und Standardzusammensetzung	
Kurzanleitung ICPMS1.1	

Hg

Datum:

01.01.2019

Element	Form	Gerät	Methoden-Nr.	Seite
Hg	Hgges	ICP-MS	HgHggesICPMS4.1	2

Analysengeräte und Zubehör:

iCAP RQ der Fa. Thermo Scientific

Zyklonmischkammer und Teflon-Zerstäuber

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber mit Probenzuführsystem PrepFAST 4DX P Fa. ESI Szintillationsgefäße, 20 ml, Fa.

Sarstedt, Probenschleife:1,5ml loop

Rechner mit Software QTegra

100 μl, 1000 μl und 5000 μl Varipetten, sowie 250 μl, 500 μl und 1000 μl Pipetten der Fa. Eppendorf

100 und 250 ml-Messkolben aus Teflon/PFA

2000 und 5000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃),65% suprapur

Salzsäure (HCl) 37% p.A.

ICAP Q/RQ TUNE solution

ICAP O/Onova CALIBRATION solution

Sc, Ge, Re, Rh: ICP- Standard (Fa B. Kraft) => jeweils 1 g/l

Lösungen:

PrepFAST Rinse-Lösung / Autosampler Rinse-Lösung 1 und 2:

Ansatz der Spülsäure (2% HNO₃ und 0,5% HCl) für die drei Positionen =

100 ml HNO₃ und 25ml HCl im 5 l- Messkolben mit bidemin. Wasser auffüllen und in die entsprechenden Gefäße einfüllen.

FAST Carrier-Lösung:

Ansatz der Trägerlösung (2% HNO₃) =

40 ml Salpetersäure (HNO₃) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechende Gefäß umfüllen.

PrepFAST Diluent/Carrier-Lösung:

Ansatz der Verdünnungslösung (0,5 % HNO₃) =

10 ml Salpetersäure (HNO3) im 2 l- Messkolben mit bidemin. Wasser auffüllen und in das entsprechendes Gefäß umfüllen.

Interner Standard:

Ansatz einer Ausgangs-/Stammlösung (Sc 50 ppm, Ge 50 ppm, Re 5 ppm, Rh 5 ppm) =

5 ml Sc, 5 ml Ge, 0.5 ml Re, $0.5 \text{ ml Rh und } 2 \text{ ml HNO}_3 \text{ im } 100 \text{ ml PFA- Messkolben mit bidemin.}$ Wasser auffüllen.

Aus dieser Stammlösung eine 1:100 Verdünnung in 2% HNO₃-Lösung zum Messen herstellen (mindestens 100 ml).

Element	Form	Gerät	Methoden-Nr.	Seite
Hg	Hgges	ICP-MS	HgHggesICPMS4.1	3

Eichung/Standards:

Stammlösungen:

Hg: ICP-Standard (Fa B. Kraft) => 1 g/l Hg

Co, Cr, Cu, Ni, Pb, Zn: ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Mg: ICP-Standard (Fa B. Kraft) \Rightarrow 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S32.1 beschrieben.

Hg

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, angesetzt in 0,5 % HNO₃ mit Zusatz von 5 ppm Mg, die neben Hg auch andere Elemente enthalten (siehe Sammelanhang S32.1), verwendet:

<u>S</u>	tandards
Blank	0 μg/l Hg
DAN SM1	25 μg/l Hg
DAN SM2	50 μg/l Hg
DAN SM3	$100 \mu\mathrm{g/l}\mathrm{Hg}$
DAN SM4	$200 \mu g/l Hg$
DAN SM5	500 μg/l Hg

Kontrollstandard	
K26MS	
100 μg/l Hg	

Methode:	DANSM-1
Element:	Hg
Masse:	201.9706430
Messbereich	BG – OMG
[µg/1]:	18,3 - 2000
Standards:	DAN SM0
	DAN SM1
	DAN SM2
	DAN SM3
	DAN SM4
	DAN SM5
Bemerkungen:	Kollisions/Reaktions-
	zelle:
	Gasfluss H ₂ : 0,5 ml
	Gasfluss He: 4,5 ml

Element	Form	Gerät	Methoden-Nr.	Seite
Hg	Hgges	ICP-MS	HgHggesICPMS4.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICPMS1.1 beschrieben. Die Aufschlusslösungen werden 1:2 verdünnt.

Die Geräteparameter werden am ICP-MS-Gerät durch Eingabe des jeweiligen Templates (DANSM-1) mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S32.1 zusammengestellt.

Als Probengefäße werden Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) Ho durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K26MS; Messung nach der Eichung, alle 10 Proben
		und nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	NHARZ; erlaubte Abweichung 10 %.

Auswertung/Datendokumentation:

Die gemessenen Hg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

15.7.2012

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
K	Kges	IC	KKgesIC2.2	-	1

Elementbestimmungsmethode:

KALIUM

Untersuchungsmethode		1	١G	BG	OMG
ANULLIC		0,	005	0,015	15,0
geeignet für:					
Boden					
Humus					
Pflanze					
Wasser	ANULLIC				
Methodenver	weise:				
Norm	In Anlehnung an DIN EN ISO 14911				
HFA	D30.1.4.6				
HFA-Code	0713401				

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Kationen über eine Austauschersäule getrennt, K und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Kationen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit Carboxylgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine verdünnte Salpetersäurelösung verwendet. Diese hat eine außerordentlich hohe Ionenäguivalentleitfähigkeit. Daher nimmt auf Grund der geringeren Ionenäquivalentleitfähigkeit der getrennten Kationen die Leitfähigkeit ab, wenn die Kationen die Trennsäule mit dem Eluenten verlassen und in die Leitfähigkeitsdetektorzelle gelangen. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Kations geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 0,25 ppm) wird das Kationen-Chromatogramm doppelt aufgenommen und mit unterschiedlichen Eichkurven für den hohen Messbereich (= linear durch Null) und den niedrigen Messbereich (= linear) ausgewertet. In dem 2-Kanal-System werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Säule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC2.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S17.3: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC2.1	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
K	Kges	IC	KKgesIC2.2	-	2

Analysengeräte und Zubehör:

- 2-Kanal-IC-Anlage Fa. Metrohm, bestehend aus:
- 2 IC-Pumpen 818
- 2 Leitfähigkeitsdetektoren 819

IC-Separation-Center 820 mit Säulenofen

IC-Liquid-Handling-Einheit 833

2 Pulsationsdämpfer

IC-Eluent-Degaser 837

IC-Probengeber 838

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5

b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen:

a. Anionen: 20 μlb. Kationen: 50 μl

Software:

a. zur Anlagensteuerung: IC-Net

b. zur Chromatogrammauswertung: MagIC-Net

Chemikalien:

Salpetersäure, HNO₃, 1 M

Lösungen:

Eluent-Kationen: In einen 2 l-Messkolben werden 12 ml 1 M Salpetersäure gegeben und mit

H₂O demin. reinst auf 2 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

1 g/l K: 1 g/l Kalium als Kaliumnitrat \Rightarrow 1 g/l K

Stammlösung II: Je 1 ml K-, NH₄-, Na-, Ca-, und Mg-Stammlösung werden in einen 100 ml-

Messkolben mit H₂O demin. reinst auf 100 ml aufgefüllt.

 \Rightarrow 0,01 g/l K, NH₄, Na, Ca, Mg

Haltbarkeit:

Die Stammlösung II ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

	Kontrollstandard
K1IC:	2,0 mg/l K
K2IC:	0,1 mg/l K

v
\mathbf{r}

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
K	Kges	IC	KKgesIC2.2	-	3

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S17.3) mit insgesamt 19 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung II und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

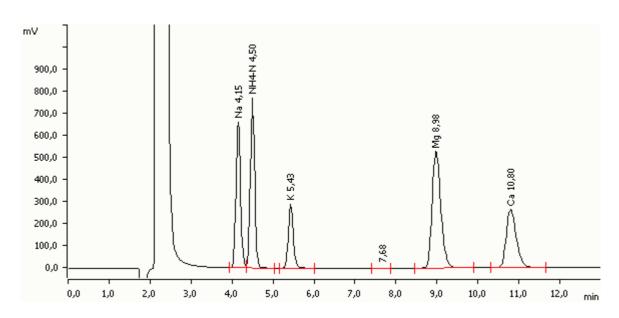
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC2.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (2,0 mg/l K), K2IC (0,1 mg/l K), Messung nach
		der Eichung, alle 15 Proben; erlaubte Abweichung
		5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE3IC mit-
		gemessen; erlaubte Abweichung 5 %.


Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Kalium-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr. 1 für K Kges IC KKgesIC2.2

Chromatogramm der Kationenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

20.12.2015

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
K	Kges	IC	KKgesIC3.1	-	1

Elementbestimmungsmethode:

KALIUM

Untersuchun	gsmethode	NG	BG	OMG
ANULLIC		0,008	0,026	15,0
geeignet für:				
Boden				
Humus				
Pflanze				
Wasser	ANULLIC			
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 14911			
HFA	D30.1.4.6			
HFA-Code	D:7:1:3:2:-1:1:			

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Kationen über eine Austauschersäule getrennt, K und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Kationen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit Carboxylgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine verdünnte Salpetersäurelösung verwendet. Diese hat eine außerordentlich hohe Ionenäguivalentleitfähigkeit. Daher nimmt auf Grund der geringeren Ionenäquivalentleitfähigkeit der getrennten Kationen die Leitfähigkeit ab, wenn die Kationen die Trennsäule mit dem Eluenten verlassen und in die Leitfähigkeitsdetektorzelle gelangen. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Kations geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 0,25 ppm) wird das Kationen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich (Kurventyp: linear durch 0, Gewichtung 1) und den niedrigen Messbereich (Kurventyp: linear, Gewichtung 1) ausgewertet. Mit Flex 1 (Anionen) und Flex 2 (Kationen) werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Säule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC3.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S29.1: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC3.1	_

Lapis alt	Seite	
-	2	

Methoden-Nr.

KKgesIC3.1

Analysengeräte und Zubehör:

Form

Kges

2 Compact IC Flex- Anlagen Fa. Metrohm, bestehend aus:

Compact IC Flex 1 Anionen mit MSM Suppressor und MCS-Suppressor

Gerät IC

Compact IC Flex 2 Kationen

IC-Probengeber 858 Professional Sample Processor

Probenröhrchen mit Durchstichdeckel

Säulen:

Element

K

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5 b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard Probenschleifen:

a. Anionen: 20 μlb. Kationen: 50 μl

Software: MagIC-Net3.1

Chemikalien:

Salpetersäure, HNO₃, 1 M

K

Lösungen:

Eluent-Kationen: In einen 2 l-Messkolben werden 10 ml 1 M Salpetersäure gegeben und mit

H₂O demin. reinst auf 2 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

1 g/l K: 1 g/l Kalium als Kaliumnitrat \Rightarrow 1 g/l K

Stammlösung II: Je 1 ml K-, NH₄-, Na-, Ca-, und Mg-Stammlösung werden in einen 100 ml-

Messkolben mit H₂O demin. reinst auf 100 ml aufgefüllt.

 \Rightarrow 0,01 g/l K, NH₄, Na, Ca, Mg

Haltbarkeit:

Die Stammlösung II ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

<u>Kontrollstandard</u>			
K1IC:	2,0 mg/l K		
K2IC:	0,1 mg/l K		

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S29.1) mit insgesamt 18 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung II und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
K	Kges	IC	KKgesIC3.1	•	3

Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

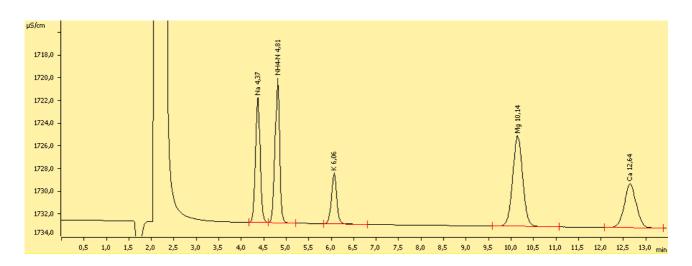
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC3.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt1.1	K1IC (2,0 mg/l K), K2IC (0,1 mg/l K), Messung nach	
		der Eichung, alle 15 Proben; erlaubte Abweichung	
		5 % (K1IC), bzw. 10 % (K2IC).	
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial QStM1.1		Alle 50 Proben wird der Standard Wasser HE3IC mit-	
		gemessen; erlaubte Abweichung 5 %.	


Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Kalium-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr. 1 für K Kges IC KKgesIC3.1	Anhang Nr.	1 für	nang Nr. 1 für K	K Kges	IC	KKgesIC3.1
---	------------	-------	------------------	--------	----	------------

Chromatogramm der Kationenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

01.01.2019

Element	Form	Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP19.2	1

Elementbestimmungsmethode:

KALIUM

Untersuchungsmethode	NG	BG	OMG
OAKW2.1, OAKWEG3.1	0,014	0,045	100

geeignet für:

Boden	OAKW2.1, OAKWEG3.1
Humus	OAKW2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D30.1.6.4
HFA-Code	D;4;1;2;1;-1;0

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S33.1: Geräteparameter und	Nölte: ICP Emissionsspektroskopie für
Standardzusammen-	Praktiker; Weinheim, 2002
setzung	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP6.1	Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP19.2	2

Analysengeräte und Zubehör:

iCAP 6500 der Fa. Thermo Fisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 2 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac mit Probenrack für 60 Positionen für Hauptelemente, bzw. 21 Positionen für Schwermetalle

PP-Röhrchen Natur, 12 ml, Fa. Greiner bio-one

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Laminar Flow Box FBS der Fa. Spetec, für Probengeber (zur Verhinderung von Staubeintrag in die Probengefäße)

Rechner mit Software QTEGRA

5000 ml Varipette, sowie 250 µl, 500 µl und 1000 µl Pipetten der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Mischfitting (Fa. Thermo Fisher) zur zur gleichmässigen Vermischung von Probelösung und internem Standard

Dilutor der Fa. Hamilton

Chemikalien:

Salpetersäure (HNO3), 65 %, p.a.

Y, AAS-Standard Yttrium 1 g/l Y (Fa B. Kraft)

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Interner Standard: 10 ml Yttriumlösung werden in einen 1 l Glaskolben gegeben, mit 30 ml

65 %. HNO₃ p.a. versetzt und mit H₂O demin. bis zur Eichmarke

aufgefüllt.

Eichung/Standards:

Stammlösungen:

K: ICP-Konzentrat (Fa B. Kraft) \Rightarrow 10 g/l K

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Im folgenden wird nur die Herstellung der K-Standardlösungen beschrieben. Die Zugaben aller anderen Elemente, die sich auch in den beschriebenen Lösungen befinden, werden im Sammelanhang S33.1 beschrieben.

Standardlösung KW 1: In einen 250 ml PFA-Kolben werden 0,125 ml des 10 g/l K enthaltenden

	K	

Element	Form	Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP19.2	3
			e entsprechenden Mengen der mmelanhang S33.1), mit 7,5 ml mit H ₂ O bidemin. aufgefüllt.	
			d Ni, 200 μg/l Pb und Zn, 2 mg/l M 10 mg/l P, 20 mg/l Ca und 200 mg/	
Standardlös	sung KW 2:	ICP-Konzentrates, sowie di	werden 1,25 ml des 10 g/l K enthalte entsprechenden Mengen der ammelanhang S33.1), mit 7,5 ml mit H_2O bidemin. aufgefüllt.	anderen
		· —	und Ni, 500 µg/l Pb und Zn, 1 1 10 mg/l Fe, Mn und Na, 50 mg/l C	-
Standardlösung KW 3:		In einen 250 ml PFA-Kolben werden 0,25 ml des 10 g/l K enthaltenden ICP-Konzentrates, sowie die entsprechenden Mengen der anderen Elemente gegeben (siehe Sammelanhang S33.1), mit 7,5 ml der 65 %igen HNO ₃ p.a. versetzt und mit H ₂ O bidemin. aufgefüllt.		
		. •	und Ni, 1000 μg/l Pb und Zn, 0,5 i, 6 mg/l P, 8 mg/l Na, 10 mg/l K ι	_
Standardlösung KW 4:		ICP-Konzentrates, sowie di	werden 0.5 ml des 10 g/l K enthale entsprechenden Mengen der ammelanhang S33.1), mit 7.5 ml mit H_2O bidemin. aufgefüllt.	anderen
		· —	Ti, 2000 μg/l Pb und Zn, 4 mg/l Na mg/l K, Mg und Mn, 50 mg/l Al, 10	
Standardlösung KW 5:		ICP-Konzentrates, sowie di	werden 0,05 ml des 10 g/l K enthate entsprechenden Mengen der ummelanhang S33.1), mit 7,5 ml mit H_2O bidemin. aufgefüllt.	anderen
		, —	00 μg/l Pb und Zn, 2 mg/l K und P d S, 50 mg/l Fe und Mg, 100 mg/l C	_

Element Form Gerät		Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP19.2	4

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben K auch andere Elemente enthalten (siehe Sammelanhang S33.1), verwendet:

<u>Standards</u>		
Blank	0,0 mg/l K	
KW 1	5,0 mg/l K	
KW 2	50,0 mg/l K	
KW 3	10,0 mg/l K	
KW 4	20,0 mg/l K	
KW 5	2,0 mg/l K	

	Kontrollstandard
K24	10,0 mg/l K

Methode:	OAKW2.1Boden	OAKW2.1Boden	
	OAKW2.1Humus	OAKW2.1Humus	
	OAKWEG3.1Boden	OAKWEG3.1Boden	
Element:	K	K	
Wellenlänge:	766.490	766.490	
Plasma-	radial	radial	
beobachtung:			
Messbereich	BG-10	10 – OMG	
[mg/l]:			
Standards:	Blank	KW 3	
	KW 1	KW 4	
	KW 2	KW 5	
	KW 5		
Bemerkungen:	Fensterweite: 20	Fensterweite: 20	
	Pixelbreite: 2	Pixelbreite: 2	
	Pixelhöhe: 1	Pixelhöhe: 1	
	Untergrund-	Untergrund-	
	Korrektur:	Korrektur:	
	Pos. links: fixed	Pos. links: fixed	
	Pos. rechts: fixed	Pos. rechts: fixed	

Zur Herstellung der Blank-Lösung werden 7,5 ml der 65 %igen HNO_3 p.a. in einen 250 ml PFA-Kolben gegeben und mit H_2O bidemin. aufgefüllt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP6.1 beschrieben.

Elemen	t Form	Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP19.2	5

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S33.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung		
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 24 Proben un		
		nach jeder Eichungswiederholung; erlaubte		
		Abweichung 5 %		
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie		
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,		
		NFVH; erlaubte Abweichung 10 %		

Auswertung/Datendokumentation:

Die gemessenen K-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP19.2	6

01.05.2014

Element Form Gerät		Gerät	Methoden-Nr.	Seite	
K	Kges	ICP(sim)	KKgesICP20.1	1	

Elementbestimmungsmethode:

KALIUM

Untersuchungsmethode	NG	BG	OMG
ANULL, ANULLIC, EXT1:2H2O1.1, GBL1.1, DAN1.1, DAN2.2	0,011	0,034	75

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1
Humus	DAN1.1, DAN2.2
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL, ANULLIC

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885	
HFA	D30.1.4.4, D30.1.5.4 und D30.1.6.4	
HFA-Code	D;4;1;2;-1;-1;0	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich iCAP 7400 mit	Nölte: ICP Emissionsspektroskopie für Praktiker;
Ionenchromatograph Fa. Metrohm	Weinheim, 2002
Sammelanhang S24.1: Geräteparameter und	Montaser, Golightly: Inductively Coupled Plasmas
Standardzusammen-	in Analytical Atomic Spectrometry;
setzung	Weinheim, 1987
Kurzanleitung ICP5.1	

Element	Form	Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP20.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 μl, Varipette 100-1000 μl, Varipette 500-5000 μl sowie 250 μl, 500 μl und

1000 µl Pipetten der Fa. Eppendorf

1000 ml und 2000 ml-Messkolben aus Glas

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 150 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 5 l aufgefüllt.

K

Eichung/Standards:

Stammlösungen:

K: Standard (Fa B. Kraft) \Rightarrow 5 g/l K

Al, Ca, Fe, Mg, Mn, Na, P, S:

Standard (Fa B. Kraft) => jeweils 5 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S24.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben K auch andere Elemente enthalten (siehe Sammelanhang S24.1), verwendet:

	<u>Standards</u>
Blank	0,0 mg/l K
HE 1	5,0 mg/l K
HE 2	2,5 mg/l K
HE 3	0,5 mg/l K
HE 4	10,0 mg/l K
HE 5	20,0 mg/l K
HE 6	50,0 mg/l K

Element	Form	Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP20.1	3

	Kontrollstandard
K1	10,0 mg/l K

	r	T
Methode:	ANULL	ANULL
	ANULLIC	ANULLIC
	EXT1:2H2O1.1	EXT1:2H2O1.1
	GBL1.1	GBL1.1
	DAN1.1Pflanze	DAN1.1Pflanze
	DAN2.2Pflanze	DAN2.2Pflanze
	DAN1.1Humus	DAN1.1Humus
	DAN2.2Humus	DAN2.2Humus
Element:	K	K
Wellenlänge:	766.490	766.490
Messbereich [mg/l]:	BG - 0.5	0,5 - OMG
Standards:	Blank	Blank
	HE 3	HE 1
		HE 2
		HE 3
		HE 4
		HE 5
		HE 6
Bemerkungen:	Fensterweite: 20	Fensterweite: 20
	Pixelbreite: 3	Pixelbreite: 3
	Pixelhöhe: 2	Pixelhöhe: 2
	Untergrund-	Untergrund-
	Korrektur:	Korrektur:
	Pos. links: 1	Pos. links: 1
	Pixelanzahl: 2	Pixelanzahl: 2
	Pos. rechts: 19	Pos. rechts: 19
	Pixelanzahl: 2	Pixelanzahl: 2

Der Blank, die Standards und der Kontrollstandard werden in 2 %-iger HNO_3 (30 ml HNO_3 65 %, p.a. in 1000 ml) in 1 Liter Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S24.1 zusammengestellt.

Wässrige Proben werden vor dem Messen mit 180 µl HNO₃ konz. pro 6 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

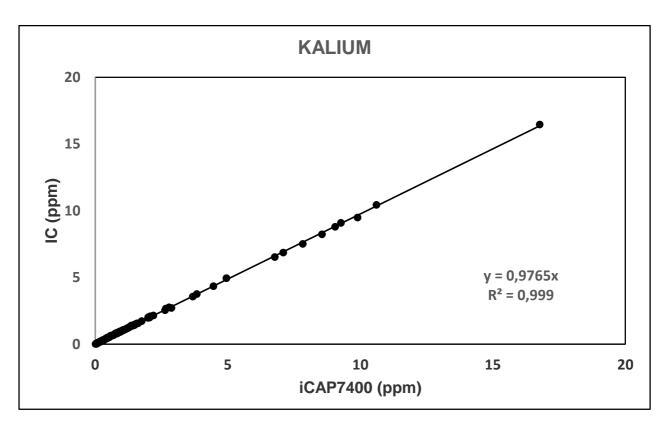
Werden Proben verdünnt, müssen die durch die zusätzliche Säurezugabe veränderten

Verdünnungsfaktoren beachtet werden.

Element	Form	Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP20.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):


Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 24
		Proben und nach jeder Eichungswiederholung;
		erlaubte Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Al-Bilanz	QAlB1.1	Siehe Methodenbeschreibung
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1
		mitgemessen; erlaubte Abweichung 5 %
		Bei Pflanzenproben: Standard NHARZ, erlaubte
		Abweichung 10 %
		Bei Humusproben: Standard NFVH, erlaubte
		Abweichung 10 %

Auswertung/Datendokumentation:

Die gemessenen K-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Methodenvergleich ICP Iris Advantage mit iCAP 7400

Darstellung einer Vergleichsmessung der Methode KKgesICP7.3 und der hier beschriebenen Methode an der Wasserserie 2013W078 (151 Proben):

Anhang Nr. 1 für K Kges ICP(sim) KKgesICP20.1

01.05.2014

Element	Form	Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP21.1	1

Elementbestimmungsmethode:

KALIUM

Untersuchungsmethode	NG	BG	OMG
AKE1.1, AKEG1.1, AKH3.1, AKT2.1	0,006	0,019	30

geeignet für:

Boden	AKE1.1, AKEG1.1, AKT2.1
Humus	AKEG1.1, AKH3.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885	
HFA	D30.1.5.4	
HFA-Code	D;4;1;2;-1;-1;0;	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
	Nölte: ICP Emissionsspektroskopie für Praktiker;
Advantage	Weinheim, 2002
Sammelanhang S25.1: Geräteparameter und	Montaser, Golightly: Inductively Coupled Plasmas
Standardzusammen-	in Analytical Atomic Spectrometry;
setzung	Weinheim, 1987
Kurzanleitung ICP5.1	

Element	Form	Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP21.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauter Argonbefeuchter

Standard-Injektorrohr 2 mm, für stark salzhaltige Lösungen

Probengeber ASX-520 der Fa. Cetac

Rechner mit Software iTeva

Varipette 10-100 μl, Varipette 100-1000 μl, Varipette 500-5000 μl sowie 250 μl, 500 μl und

 $1000~\mu l$ Pipetten der Fa. Eppendorf

250 ml-Messkolben aus Glas

Chemikalien:

keine

Lösungen:

keine

Eichung/Standards:

Stammlösungen:

K: Standard (Fa B. Kraft) \Rightarrow 5 g/l K

Al, Ca, Fe, Mg, Mn, Na: Standard (Fa B. Kraft) => jeweils 5 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S25.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben K auch andere Elemente enthalten (siehe Sammelanhang S25.1), verwendet:

<u>Standards</u>		
Blank	0,0 mg/l K	
AKE 1	10,0 mg/l K	
AKE 2	20,0 mg/l K	
AKE 3	5,0 mg/l K	
AKE 4	2,0 mg/l K	

	Kontrollstandard
K5	10,0 mg/l K

Element	Form	Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP21.1	3

	1
Methode:	AKE1.1
	AKEG1.1
	AKH3.1
	AKT2.1
Element:	K
Wellenlänge:	766.490
Messbereich[mg/l]:	BG – OMG
Standards:	Blank
	AKE 1
	AKE 2
	AKE 3
	AKE 3
Bemerkungen:	Fensterweite: 21
	Pixelbreite: 2
	Pixelhöhe: 2
	<u>Untergrund-</u>
	Korrektur:
	Pos. links: 3
	Pixelanzahl: 2
	Pos. rechts: 17
	Pixelanzahl: 2

Der Blank, die Standards und der Kontrollstandard werden mit der jeweils verwendeten Perkolationslösung in 250 ml Glaskolben angesetzt.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S25.1 zusammengestellt.

AKEG-Perkolate werden mit $180 \,\mu l$ 65 % iger HNO₃ p.a. pro 6 ml Probe versetzt und 1:5 verdünnt. Die Standards werden mit 1:5 verdünnter Perkolationslösung angesetzt und ebenfalls angesäuert (3 ml 65 % iger HNO₃ p.a. auf $100 \,\mathrm{ml}$).

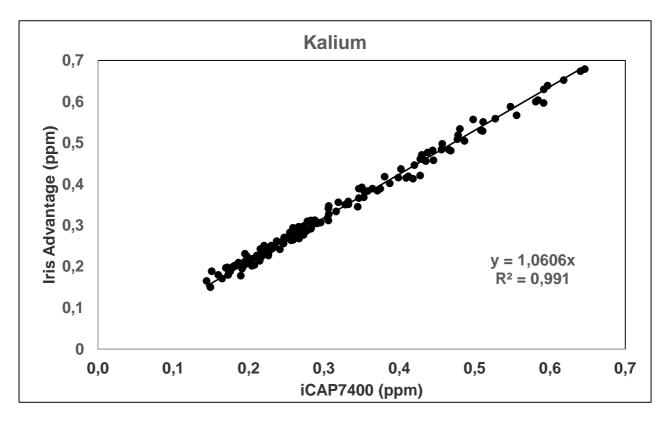
AKT- und AKH-Perkolate werden vor dem Messen 1:2 verdünnt. Die Standards werden mit 1:2 verdünnter Perkolationslösung angesetzt.

Element	Form	Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP21.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard QKSt.1.1		K5; Messung nach der Eichung, alle 24
		Proben und nach jeder Eichungswiederholung;
		erlaubte Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards Harste 30-50, BZE-THUE, Solling 0-10,
		Solling0-10neu, BioSoil und BZE-HUM; erlaubte
		Abweichung 10 % - 15 %


Auswertung/Datendokumentation:

Die gemessenen K-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Methodenvergleich ICP Iris Advantage mit iCAP 7400

Darstellung einer Vergleichsmessung der Methode KKgesICP10.1 und der hier beschriebenen Methode an den Bodenserien 2013B057 und 2013B059 (140 Proben):

Anhang Nr. 1 für K Kges ICP(sim) KKgesICP21.1

01.08.2014

Element	Form	Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP22.1	1

Elementbestimmungsmethode:

KALIUM

Untersuchungsmethode	NG	BG	OMG
OAKW1.1, OAKW1.2, OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1	0,015	0,046	100

geeignet für:

Boden OAKW2.1, OAKWEG2.1, OAKWEG2.2, OAKWEG3.1		
Humus OAKW1.1, OAKW1.2, OAKW2.1		
Pflanze		
Wasser		

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885	
HFA	D30.1.6.4	
HFA-Code	D;4;1;2;-1;-1;0;	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S26.1: Geräteparameter und Standardzusammensetzung Kurzanleitung ICP5.1	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987
	Weimienii, 1907

Element	Form	Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP22.1	2

Analysengeräte und Zubehör:

iCAP 7400 Radial der Fa. Thermo Fisher

Zyklonmischkammer und konzentrischer Meinhard-Zerstäuber

In den Zerstäubergasstrom eingebauten Argonbefeuchter

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Szintillationsgefäße, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

100 $\mu l,~1000~\mu l$ und 5000 μl Varipetten, sowie 250 $\mu l,~500~\mu l$ und 1000 μl Pipetten der Fa.

Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a. Salzsäure (HCl), 25 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

K: ICP-Konzentrat (Fa B. Kraft) \Rightarrow 10 g/l K

As, Ba, Cd, Co, Cr, Cu, Ni, Pb, Zn:

ICP-Standard (Fa B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, Mg, Mn, Na, P, S, Ti:

ICP-Konzentrat (Fa B. Kraft) => jeweils 10 g/l

Standardlösungen:

Die Zusammensetzung der Standardlösungen ist im Sammelanhang S26.1 beschrieben.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben K auch andere Elemente enthalten (siehe Sammelanhang S26.1), verwendet:

Element	Form	Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP22.1	3

	<u>Standards</u>		
KW 0	0,0 mg/l K		
KW 1	5,0 mg/l K		
KW 2	1,0 mg/l K		
KW 3	40,0 mg/l K		
KW 4	20,0 mg/l K		
KW 5	10,0 mg/l K		
KW 6	60,0 mg/l K		
KW 7	100,0 mg/l K		
KW 8	80,0 mg/l K		

	Kontrollstandard
K24	10,0 mg/l K

Methode: OAKW2.1Boden OAKW2.1Boden OAKWEG2.1Boden OAKWEG2.1Boden OAKWEG2.2Boden OAKWEG3.1Boden OAKWEG3.1Boden OAKW1.1Humus OAKW1.2Humus OAKW2.1Humus	M-411	O A IZXVO 1D - 1	OAKWO ID - I	
OAKWEG2.2Boden OAKWEG3.1Boden OAKW1.1Humus OAKW1.2Humus OAKW2.1Humus OAKW1.2Humus OAKW2.1Humus OAKW2.1Humus OAKW1.2Humus OAW1.1Humus OAKW1.2Humus OAW1.1Humus OAW1	Methode:	OAKW2.1Boden	OAKW2.1Boden	
OAKWEG3.1Boden OAKW1.1Humus OAKW1.2Humus OAKW2.1Humus OAKW1.2Humus OAKW2.1Humus OAKW2.1Humus OAKW2.1Humus OAKW2.1Humus OAKW1.2Humus OAKW2.1Humus OAKW1.2Humus OAW1.2Humus OAW1.2Humu				
OAKW1.1Humus OAKW1.2Humus OAKW2.1Humus OAKW2.1Humus OAKW2.1Humus OAKW2.1Humus OAKW2.1Humus OAKW2.1Humus Element: K Wellenlänge: 766.490 Messbereich [mg/l]: Standards: Blank KW 1 KW 3 KW 2 KW 4 KW 5 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 21 Pixelbreite: 3 Pixelbreite: 3 Pixelbreite: 3 Pixelbreite: 3 Pixelbreite: 2 Untergrund- Korrektur: Pos. links: 2 Pixelanzahl: 2 Pixelanzahl: 2 Pixelanzahl: 2				
OAKW1.2Humus OAKW2.1Humus OAKW3.1Humus OAKW3				
Element: Wellenlänge: Messbereich [mg/l]: Standards: Blank KW 1 KW 2 KW 2 KW 4 KW 5 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 21 Pixelbreite: 3 Pixelhöhe: 2 Pixelanzahl: 2		OAKW1.1Humus	OAKW1.1Humus	
Element: K 766.490 766.490 Messbereich [mg/l]: Standards: Blank KW 1 KW 3 KW 2 KW 4 KW 5 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 21 Pixelbreite: 3 Pixelbreite: 3 Pixelhöhe: 2 Pixelhöhe: 2 Untergrund-Korrektur: Pos. links: 2 Pixelanzahl: 2 Pixelanzahl: 2 Pixelanzahl: 2		OAKW1.2Humus	OAKW1.2Humus	
Wellenlänge: 766.490 766.490 Messbereich BG – 10 10 – OMG [mg/l]: Standards: Blank KW 1 KW 3 KW 2 KW 4 KW 5 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 21 Pixelbreite: 3 Pixelbreite: 3 Pixelhöhe: 2 Pixelhöhe: 2 Untergrund-Korrektur: Pos. links: 2 Pixelanzahl: 2 Pixelanzahl: 2		OAKW2.1Humus	OAKW2.1Humus	
Messbereich [mg/l]: Standards: Blank KW 1 KW 2 KW 2 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 21 Pixelbreite: 3 Pixelhöhe: 2 Pixelhöhe: 2 Pixelanzahl: 2 Pixelanzahl: 2 Pixelanzahl: 2 Pixelanzahl: 2	Element:	K	K	
Messbereich [mg/l]: Standards: Blank KW 1 KW 2 KW 2 KW 5 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Pixelbreite: 3 Pixelbreite: 3 Pixelhöhe: 2 Untergrund- Korrektur: Pos. links: 2 Pixelanzahl: 2 Pixelanzahl: 2 Pixelanzahl: 2 Pixelanzahl: 2	Wellenlänge:	766.490	766.490	
[mg/l]: Standards: Blank KW 1 KW 2 KW 2 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Pensterweite: 21 Pixelbreite: 3 Pixelbreite: 3 Pixelhöhe: 2 Pixelhöhe: 2 Pixelanzahl: 2 Pixelanzahl: 2 Pixelanzahl: 2				
[mg/l]: Standards: Blank KW 1 KW 2 KW 2 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Pensterweite: 21 Pixelbreite: 3 Pixelbreite: 3 Pixelhöhe: 2 Pixelhöhe: 2 Pixelanzahl: 2 Pixelanzahl: 2 Pixelanzahl: 2	Messbereich	BG – 10	10 – OMG	
Standards: Blank KW 1 KW 2 KW 2 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 21 Pixelbreite: 3 Pixelbreite: 3 Pixelhöhe: 2 Pixelhöhe: 2 Pixelhöhe: 2 Untergrund- Korrektur: Pos. links: 2 Pixelanzahl: 2 Pixelanzahl: 2 Pixelanzahl: 2				
KW 1 KW 2 KW 5 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 21 Pixelbreite: 3 Pixelbreite: 3 Pixelhöhe: 2 Pixelhöhe: 2 Untergrund- Korrektur: Pos. links: 2 Pixelanzahl: 2 Pixelanzahl: 2 KW 3 KW 4 KW 4 KW 5 KW 6 KW 7 KW 8 Untergrund- Korrekter: 3 Pixelhöhe: 21 Pixelanzahl: 2	_	Rlank	KW 1	
KW 2 KW 5 KW 5 KW 6 KW 7 KW 8 Bemerkungen: Fensterweite: 21 Pixelbreite: 3 Pixelbreite: 3 Pixelhöhe: 2 Pixelhöhe: 2 Untergrund- Korrektur: Pos. links: 2 Pixelanzahl: 2 Pixelanzahl: 2 KW 4 KW 4 KW 5 KW 6 KW 7 KW 8 Untergrund- KW 8 Pixelbreite: 21 Pixelbreite: 3 Pixelbreite: 3 Pixelbreite: 3 Pixelbreite: 3 Pixelbreite: 3 Pixelbreite: 2 Pixelanzahl: 2	<u>Standards.</u>			
KW 5 KW 5 KW 6 KW 7 KW 8			· · · =	
KW 6 KW 7 KW 8				
KW 7 KW 8		KW 3	· · · -	
Bemerkungen: Fensterweite: 21 Fensterweite: 21 Pixelbreite: 3 Pixelbreite: 3 Pixelhöhe: 2 Untergrund-Korrektur: Pos. links: 2 Pixelanzahl: 2 Pixelanzahl: 2 KW 8 Fensterweite: 21 Pixelserweite: 21 Pixelbreite: 3 Pixelbreite: 3 Pixelbreite: 4 Pixelbreite: 3 Pixelbreite: 5 Pixelbreite: 2 Pixelanzahl: 2				
Bemerkungen: Pixelbreite: 21 Pixelbreite: 3 Pixelbreite: 3 Pixelhöhe: 2 Pixelhöhe: 2 Untergrund- Korrektur: Pos. links: 2 Pixelanzahl: 2 Pixelanzahl: 2 Fensterweite: 21 Pixelbreite: 3				
Pixelbreite: 3 Pixelbreite: 3 Pixelhöhe: 2 Pixelhöhe: 2 Untergrund- Korrektur: Pos. links: 2 Pixelanzahl: 2 Pixelbreite: 3 Pixelbreite: 3 Pixelbreite: 3 Pixelbreite: 3 Pixelbreite: 2 Pixelanzahl: 2			KW 8	
Pixelhöhe: 2 Pixelhöhe: 2 Untergrund- Korrektur: Pos. links: 2 Pixelanzahl: 2 Pixelanzahl: 2	Bemerkungen:	Fensterweite: 21	Fensterweite: 21	
Untergrund- Korrektur: Pos. links: 2 Pixelanzahl: 2 Untergrund- Korrektur: Pos. links: 2 Pixelanzahl: 2		Pixelbreite: 3	Pixelbreite: 3	
Korrektur: Pos. links: 2 Pixelanzahl: 2 Korrektur: Pos. links: 2 Pixelanzahl: 2		Pixelhöhe: 2	Pixelhöhe: 2	
Korrektur: Pos. links: 2 Pixelanzahl: 2 Korrektur: Pos. links: 2 Pixelanzahl: 2				
Korrektur: Pos. links: 2 Pixelanzahl: 2 Korrektur: Pos. links: 2 Pixelanzahl: 2		Untergrund-	Untergrund-	
Pos. links: 2 Pixelanzahl: 2 Pixelanzahl: 2				
Pos. rechts: 18 Pos. rechts: 18		Pixelanzahl: 2	Pixelanzahl: 2	
		Pos. rechts: 18	Pos. rechts: 18	
Pixelanzahl: 1 Pixelanzahl: 1		Pixelanzahl: 1	Pixelanzahl: 1	

Zur Herstellung der Blindlösung, der Standards und des Kontrollstandards werden 30 ml der 25 %igen HCl p.a. und 10 ml der 65 %igen HNO $_3$ p.a. in einen 250 ml PFA-Kolben gegeben und mit $\rm H_2O$ bidemin. aufgefüllt.

Element	Form	Gerät	Methoden-Nr.	Seite
K	Kges	ICP(sim)	KKgesICP22.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP5.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S26.1 zusammengestellt. Als Probengefäße werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974Lösung, BZE-SAC,
		NFVH; erlaubte Abweichung 10 %.

K

Auswertung/Datendokumentation:

Die gemessenen K-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
LF	LF	Autom. LF-Messsystem Metrohm	LFLFLFM1.3	1

01.03.2013

Elementbestimmungsmethode:

LEITFÄHIGKEIT

Untersuchungsmethode		BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1		(10)	1000

geeignet für:

<u> </u>	
Boden	GBL1.1, EXT1:2H2O1.1
Humus	
Pflanze	
Wasser	ANULL, ANULLIC

Methodenverweise:

Norm	n Anlehnung an DIN ISO 11265		
HFA	D77.1.4.2		
HFA-Code	D;12;1;3;2;-3;-3		

Prinzip der Methode/chem. Reaktionen:

Salzlösungen bestehen aus geladenen Teilchen (Anionen und Kationen) die im elektrischen Feld wandern.

Der dadurch bewirkte Ladungstransport ist umso größer, je mehr geladene Teilchen in der Lösung sind, d.h. der Widerstand einer Lösung wird kleiner, und die Leitfähigkeit der Lösung grösser. Die spezifische Leitfähigkeit (LF) einer Lösung wird neben der Ionenkonzentration durch den Abstand der Elektroden (1) und die Elektrodenfläche (A) bestimmt (s. Formel unten).

Die Größe I/A wird als Zellkonstante bezeichnet. Sie ist bei gegebener Elektrode gleich und kann mit einer KCL-Lösung bekannter Leitfähigkeit ermittelt werden.

LF
$$[\mu S/cm] = 1 [cm] / A [cm^2] * 1 / R [\mu S]$$

1 = Abstand der Elektroden

A = Fläche der Elektroden

R = Widerstand der Lösung

Störungen:

--

Anhang:	<u>Lit.:</u>
Gerätekurzanleitung: TIT5.1	H. Christen: Lehrbuch der anorg. Chemie Deutsche Einheitsverfahren zur Wasser- und Schlammuntersuchung

LF

Element	Form	Gerät	Methoden-Nr.	Seite
LF	LF	Autom. LF-Messsystem Metrohm	LFLFLFM1.3	2

Analysengeräte und Zubehör:

Automatisches pH/LF/Titrations-Messsystem der Fa. Metrohm, bestehend aus:

Titrator: 888 Titrando

Probengeber: 815 Robotic USB Sample Processor XL

LF-Meter: 856 Conductivity Module

Letfähigkeitsmesszelle 6.2324.010 mit integriertem Temperaturfühler

Software tiamo 2.3

Probengefäße LDPE, 75 ml, Länge 8,5 cm, Nalgene

Chemikalien:

Kaliumchlorid: KCl (p.a.)

Lösungen:

Leitfähigkeitsstandard: 100 μS/cm +/- 1% bei 25 °C von Metrohm, Best.Nr. 6.2324;

 $1413 \mu S/cm +/- 1\%$ bei 25 °C, 1278 μS/cm +/- 1% bei 20 °C,

von Mettler-Toledo, Best.Nr.: 51302049

1,41 mS/cm +/- 1% bei 25 °C von Merck, Best.Nr. 1.01553

oder:

0,01 M KCl-Lösung: 0,746 g des bei 105 °C getrockneten, und im Exsikkator über Silicagel aufbe-

wahrten KCl wird in einen 1-l-Meßkolben abgewogen und mit H₂O demin. auf

1 l aufgefüllt.

Eichung/Standards:

Die Kontrolle der eingegebenen Zellkonstante erfolgt mit dem Leitfähigkeitsstandard oder der 0,01 M KCl-Lösung (siehe Gerätekurzanleitung TIT5.1).

Durchführung:

Die Durchführung der Messung erfolgt wie in den Gerätekurzanleitungen TIT5.1 beschrieben.

Element	Form	Gerät	Methoden-Nr.	Seite
LF	LF	Autom. LF-Messsystem Metrohm	LFLFLFM1.3	3

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt:

Qualitätskontrolle	Methode	Durchführung
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Ionen/Leitfähigkeitsbilanz IBW	QIB1.2	Siehe Methodenbeschreibung
Ionen/Leitfähigkeitsbilanz NFV mit ALK	QIB2.1	Siehe Methodenbeschreibung
Ionen/Leitfähigkeitsbilanz NFV ohne ALK	QIB3.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung

Auswertung/Datendokumentation:

Die LF-Werte werden in Listen notiert und ins LIMS-System eingegeben.

Element	Form	Gerät	Methoden-Nr.	Seite
LF	LF	Autom. LF-Messsystem Metrohm	LFLFLFM1.3	4

Element	Form	Gerät	Methoden-Nr.	Seite
LF	LF	Autom. LF-Messsystem Metrohm	LFLFLFM3.1	1

01.03.2013

Elementbestimmungsmethode:

LEITFÄHIGKEIT

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1		(10)	1000

geeignet für:

J <u> </u>	
Boden	GBL1.1, EXT1:2H2O1.1
Humus	
Pflanze	
Wasser	ANULL, ANULLIC

Methodenverweise:

Norm	In Anlehnung an DIN ISO 11265		
HFA	D77.1.4.2		
HFA-Code	D;12;1;3;2;-3;-3		

Prinzip der Methode/chem. Reaktionen:

Salzlösungen bestehen aus geladenen Teilchen (Anionen und Kationen) die im elektrischen Feld wandern.

Der dadurch bewirkte Ladungstransport ist umso größer, je mehr geladene Teilchen in der Lösung sind, d.h. der Widerstand einer Lösung wird kleiner, und die Leitfähigkeit der Lösung grösser. Die spezifische Leitfähigkeit (LF) einer Lösung wird neben der Ionenkonzentration durch den Abstand der Elektroden (1) und die Elektrodenfläche (A) bestimmt (s. Formel unten).

Die Größe I/A wird als Zellkonstante bezeichnet. Sie ist bei gegebener Elektrode gleich und kann mit einer KCL-Lösung bekannter Leitfähigkeit ermittelt werden.

LF
$$[\mu S/cm] = 1 [cm] / A [cm^2] * 1 / R [\mu S]$$

1 = Abstand der Elektroden

A = Fläche der Elektroden

R = Widerstand der Lösung

Störungen:

Anhang:	<u>Lit.:</u>
Gerätekurzanleitung: TIT5.1	H. Christen: Lehrbuch der anorg. Chemie Deutsche Einheitsverfahren zur Wasser- und Schlammuntersuchung

LF

Element	Form	Gerät	Methoden-Nr.	Seite
LF	LF	Autom. LF-Messsystem Metrohm	LFLFLFM3.1	2

Analysengeräte und Zubehör:

Automatisches pH/LF/Titrations-Messsystem der Fa. Metrohm, bestehend aus:

Titrator: 888 Titrando

Probengeber: 815 Robotic USB Sample Processor XL

LF-Meter: 856 Conductivity Module

Letfähigkeitsmesszelle 6.2324.010 mit integriertem Temperaturfühler

Probengefäße LDPE, 75 ml, Länge 8,5 cm, Nalgene

Software tiamo 2.3

Chemikalien:

Kaliumchlorid: KCl (p.a.)

Lösungen:

Leitfähigkeitsstandard: 100 μS/cm +/- 1% bei 25 °C von Metrohm, Best.Nr. 6.2324;

 $1413 \mu S/cm +/- 1\%$ bei 25 °C, 1278 μS/cm +/- 1% bei 20 °C,

von Mettler-Toledo, Best.Nr.: 51302049

1,41 mS/cm +/- 1% bei 25 °C von Merck, Best.Nr. 1.01553

oder:

0,01 M KCl-Lösung: 0,746 g des bei 105 °C getrockneten, und im Exsikkator über Silicagel aufbe-

wahrten KCl wird in einen 1-l-Meßkolben abgewogen und mit H₂O demin. auf

1 l aufgefüllt.

Eichung/Standards:

Die Kontrolle der eingegebenen Zellkonstante erfolgt mit dem Leitfähigkeitsstandard oder der 0,01 M KCl-Lösung (siehe Gerätekurzanleitung TIT5.1).

Durchführung:

Die Durchführung der Messung erfolgt wie in den Gerätekurzanleitungen TIT5.1 beschrieben.

Element	Form	Gerät	Methoden-Nr.	Seite
LF	LF	Autom. LF-Messsystem Metrohm	LFLFLFM3.1	3

<u>Qualitätskontrolle:</u>
Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt:

Qualitätskontrolle	Methode	Durchführung
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Ionen/Leitfähigkeitsbilanz IBW	QIB1.2	Siehe Methodenbeschreibung
Ionen/Leitfähigkeitsbilanz NFV mit ALK	QIB2.1	Siehe Methodenbeschreibung
Ionen/Leitfähigkeitsbilanz NFV ohne ALK	QIB3.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung

Auswertung/Datendokumentation:

Die LF-Werte werden mit dem Datenverarbeitungs- und Übertragungsprogramm Relaqs bearbeitet und ins LIMS-System übertragen.

Element	Form	Gerät	Methoden-Nr.	Seite
LF	LF	Autom. LF-Messsystem Metrohm	LFLFLFM3.1	4