Berichte des Forschungszentrums Waldökosysteme, Reihe B, Band 77, 2009

Probenvorbereitungs-, Untersuchungs- und Elementbestimmungsmethoden des Umweltanalytik-Labors der Nordwestdeutschen Forstlichen Versuchsanstalt

2. Ergänzung: 1999 - 2008 Teil 3: Elementbestimmungsmethoden Mg - Ni

von

Nils König, Heike Fortmann und Karl-Ludwig Lüter

Göttingen 2009

Inhaltsübersicht Band 75 - 78:

Elementbestimmungsmethoden AI – CI

Band 75:

Band 76:

3
3
5
6
7
12
25

Vorwort

Bei Inbetriebnahme des Labors der Niedersächsischen Forstlichen Versuchsanstalt im Jahre 1989 wurde von der Laborleitung entschieden, alle verwendeten Methoden gut zu dokumentieren und auch eventuell nötige Änderungen oder Verbesserungen stets festzuhalten. Dass dieser gute Vorsatz in der Praxis eines Routinelabors nicht immer leicht zu erfüllen ist, können die Kolleginnen und Kollegen anderer Labors sicher gut nachvollziehen. Fragt man nämlich bei anderen Labors einmal nach Details einer verwendeten Methode, so liegen oft nur veraltete Methodenbeschreibungen und Handaufzeichnungen beim Laborpersonal vor. Detaillierte Methoden-Veröffentlichungen sind relativ selten.

Mit Einführung des Laborproben-Informationssystems LAPIS wurde entschieden, zu jedem Einzelanalysen-Wert ein Methoden-Code abzuspeichern, um auch nach vielen Jahren noch nachvollziehen zu können, mit welcher Methode, welchem Analysegerät und nach welcher Probenvorbereitung und -Behandlung der Analysenwert ermittelt wurde. Mit Hilfe des Methoden-Codes konnten auch kleinere Änderungen an einer Methode dokumentiert werden, was sich sehr bald als sinnvoll und nötig erwies. So sind zum Beispiel innerhalb von 6 Jahren allein 9 verschiedene oder geänderte Nitrat-Bestimmungsmethoden verwendet worden, mit denen zum Teil nicht voll vergleichbare Daten gemessen wurden, wie sich später herausstellte. begonnen, zu jedem Methoden-Code eine vollständige 1994 haben wir Beschreibung der Probenbehandlungs-, Untersuchungs-, oder Analysenmethode, der Geräteparameter, der Gerätebedienung und der Datenauswertung sowie Datendokumentation anzufertigen bzw. die vorhandenen Beschreibungen in eine einheitliche Form zu übertragen. Der Umfang von ca. 1.400 Seiten hat uns selbst überrascht und zu der späten Veröffentlichung 1996 (Band 46-48) bzw. 1999 (Band 49) geführt. 1999 erschienen die ersten Ergänzungsbände (Band 58-60) mit den Methodenbeschreibungen aus den Jahren 1996 bis 1998. Leider ist es uns nicht wie geplant gelungen, alle 2 Jahre weitere Ergänzungsbände zu erstellen. Die Einführung unseres neuen Labordaten-Informations- und Managementsystems Arbeitsbelastung, Strukturreformdiskussionen (LIMS) LABBASE, hohe schließlich die Umwandlung der Niedersächsischen in die neue Nordwestdeutsche Forstliche Versuchsanstalt haben immer wieder zu Verzögerungen bei der Veröffentlichung unserer Labormethoden geführt.

In den vergangenen 10 Jahren sind allein weit über 200 neue Elementbestimmungsmethoden und zahlreiche Probenvorbereitungs-. Untersuchungs- und Qualitätskontrollmethoden hinzugekommen. In den nun vorliegenden 4 Ergänzungsbänden sind alle neuen Elementbestimmungsmethoden mit Anhängen und Sammelanhängen bis Ende 2008 abgedruckt. Im nächsten Jahr sollen die Ergänzungsbände mit den Probenvorbereitungs-, Untersuchungs- und Qualitätskontrollmethoden sowie den Gerätekurzanleitungen erscheinen.

Wir sind uns bewusst, dass wir mit dieser sehr detaillierten Dokumentation einen sehr weitgehenden Einblick in unsere Laborarbeit geben, die sicherlich nicht fehlerfrei ist. Wir möchten damit auch zur Diskussion über Methoden-Auswahl und - Durchführung, über Qualitätskontrolle und Datendokumentation und nicht zuletzt über Methoden- und damit Datenvergleichbarkeit anregen. Verbesserungs- und Korrektur-Vorschläge nehmen wir dankbar entgegen.

Nils König

Heike Fortmann

Abteilung Umweltkontrolle, Sachgebiet Umweltanalytik Nordwestdeutsche Forstliche Versuchsanstalt

Danksagung

Diese Veröffentlichung wäre nicht möglich gewesen ohne die vielfältige Arbeit aller Mitarbeiterinnen und Mitarbeiter des Labors, die bei der Einarbeitung, Durchführung und Verbesserung sowie bei der Fort- und Neuentwicklung der Methoden mitgewirkt haben.

Folgende Mitarbeiterinnen und Mitarbeiter haben sich um die Weiterentwicklung, Verbesserung und Dokumentation von Methoden sowie deren Tests und Einführung in die Routine verdient gemacht: Frau Claudia Günther, Frau Silke König, Frau Heike Koopmann, Frau Loan Mai, Frau Barbara Seewald, Frau Susanne Weinrich und Frau Ellen Wolff.

Für die Entwicklung und den Bau von verschiedenen Labor-Anlagen, Labor-Geräten und Arbeitshilfen gebührt unser Dank Herrn **Rolf Würriehausen** und Herrn **Frank Heun**.

In allen Fragen der Daten-Kontrolle, -Verarbeitung, -Sicherung und - Dokumentationen wurden wir von Herrn **Eberhart Bockhorst** und Herrn **Andreas Schulze** stets beraten und durch Programmierungsarbeiten unterstützt, wofür wir herzlich danken.

Danken möchten wir auch Herrn **Helmut Bartens** (gestorben 2007), Herrn **Simon Holbein** und Frau **Gabi Sambo**, ohne die wir bei der Textgestaltung, -Formatierung und -Speicherung in den sich wandelnden Microsoft-Word-Versionen kläglich gescheitert wären und Frau **Nicola Langer**, die die Texte Korrektur gelesen hat.

Allgemeiner Aufbau der Elementbestimmungsmethoden

Der Text aller Elementbestimmungsmethoden ist gleich aufgebaut. Er wurde im Vergleich zum Aufbau der Methoden im Band 58 und 59, Reihe B, der Berichte des Forschungszentrums Waldökosysteme um eine Reihe von Informationen ergänzt. Jede Seite hat eine **Kopfzeile**, in der das zu bestimmende Element, die chemische Form des Elementes, die bestimmt wird, das Gerät, der Methoden-Code und die Seitenzahl eingetragen sind.

Auf der **Titelseite** ist direkt unter der Kopfzeile das **Einführungsdatum der Methode** angegeben. Es folgt die zu bestimmende Elementform und der **Messbereich** der Methode. Dieser wird dargestellt durch die **Nachweisgrenze**, die **Bestimmungsgrenze** und die **obere Messgrenze**.

Da für verschiedene Probenmatrices (z.B. Wasser, Aufschlusslösung, Salzextrakt) oft unterschiedliche Elementbestimmungsmethoden nötig sind, werden in einer nach Boden, Humus, Pflanze und Wasser unterteilten Tabelle diejenigen Untersuchungsmethoden aufgelistet, für die die Elementbestimmungsmethode geeignet ist. (So müssen z.B. Pflanzenproben, an denen Schwermetall-Gehalte bestimmt werden sollen, mit metallabriebfreien und mit einem für Schwermetalle gemahlen geeigneten schlussverfahren in Lösung gebracht worden sein.)

Es folgt eine Tabelle, in der **Methodenverweise** gegeben werden. Wenn die Elementbestimmungsmethode normgerecht ist oder in Anlehnung an eine **Norm** (DIN, EN, ISO) entwickelt wurde, so ist die entsprechende Norm in der 1. Zeile der Tabelle angegeben. In der 2. Zeile ist angegeben, welcher Methode des **Handbuchs Forstliche Analytik (HFA)** die Elementbestimmungsmethode entspricht. In Zeile 3 ist der aus dem HFA, Teil E ableitbare **Methoden-Code** angegeben.

Weiterhin ist auf der Titelseite eine kurze Beschreibung des physikalischen Prinzips bzw. der chemischen Reaktionen der Methode und eine Darstellung möglicher Störungen bei der Methode dargestellt.

In einem Kasten am unteren Ende der Seite sind die zur Methode gehörigen Anhänge und Literaturangaben zur Methode angegeben. Die durchnummerierten Anhänge findet man direkt im Anschluss an die Methodenbeschreibung und die Sammel-anhänge im Band 78 hinter den Methodenbeschreibungen. Die Kurzanleitungen werden in einem weiteren Band später veröffentlicht.

Auf den folgenden Seiten der Methodenbeschreibung sind in stets gleicher Reihenfolge die nachfolgenden Unterabschnitte zu finden:

- Analysengeräte und Zubehör
- Chemikalien
- Lösungen
- Eichung/Standards
- Durchführung
- Qualitätskontrolle
- Auswertung/Datendokumentation

Im Abschnitt **Analysengeräte und Zubehör** ist jeweils der genaue Gerätetyp mit allen Zusatzgeräten wie Probenehmer oder Dilutoren sowie die zugehörige Geräte-Software

beschrieben. Des Weiteren sind hier wichtige, methodenspezifische Detail-Angaben wie Art des Brenners, Graphitrohrtyp, Zerstäubertyp usw. zu finden.

Im Abschnitt **Chemikalien** sind alle für die Durchführung der Methode wie auch für Spül- oder Reinigungsarbeiten benötigte Chemikalien in der handelsüblichen Form aufgelistet.

Die daraus anzusetzenden Lösungen und Gemische sind im Abschnitt **Lösungen** mit genauen Herstellungsvorschriften aufgeführt.

Im Abschnitt Eichung/Standards sind im Unterabschnitt Stammlösungen die Herstellungsvorschriften für die Lösungen angegeben, aus denen die Standards hergestellt werden. Bei manchen Methoden (z.B. ICP-Methoden) gibt es den Abschnitt Standardlösungen, in dem die genaue Herstellung der Standards beschrieben ist. Es folgen Tabellen für die zu verwendende Standardreihe und die Kontrollstandards, mit denen die Eichung und die Messungen im Laufe des Arbeitstages überprüft werden. Werden an einem Gerät mehrere Elemente gleichzeitig oder direkt nacheinander bestimmt, so ist die Verwendung von Mehrelement-Standards sinnvoll. In diesem Fall sind in einer eigenen Tabelle die Standardzusammensetzungen für die Mehrelementbestimmung aufgelistet. Nach den Tabellen folgen Angaben zum Extinktions-Sollwert eines ausgewählten Standards. Hiermit kann die Geräteeinstellung überprüft werden. Schließlich sind noch Hinweise zur Matrix-Anpassung von Standards und Proben sowie Lagerungshinweise aufgeführt.

Die genaue Durchführung der Analysen ist im Abschnitt **Durchführung** beschrieben. Bei vielen Methoden wird hier auf die jeweilige Gerätekurzanleitung verwiesen. Da diese jedoch meist für mehrere Methoden gilt, sind die methodenspezifischen Angaben als Ergänzung der Gerätekurzanleitung in diesem Abschnitt dargestellt. Gibt es keine eigene Gerätekurzanleitung für das zu benutzende Gerät, so findet man die Angaben zur Gerätebedienung im Abschnitt Durchführung. Besonders wichtige Durchführungshinweise sind mit "**Achtung**" hervorgehoben.

Im Abschnitt **Qualitätskontrolle** sind in einer Tabelle alle durchzuführenden Qualitätskontrollen mit Verweis auf die Methodenvorschriften aufgelistet. Über die Methodenvorschrift hinausgehende Detailfestlegungen wie verwendete Kontrollstandards, erlaubt prozentuale Abweichungen u.s.w. sind in der Spalte "Durchführung" zusammengestellt.

Der letzte Abschnitt **Auswertung/Datendokumentation** beschreibt, welche Messergebnisse wo und wie festzuhalten sind bzw. welches Datenverarbeitungsprogramm für die Datenkontrolle, -Übertragung und -Sicherung verwendet werden muss. Bei Verwendung solcher Programme wird auf die jeweilige Gerätekurzanleitung Datenverarbeitung verwiesen. Diese Anleitungen werden im gleichen Band wie die Gerätekurzanleitungen veröffentlicht.

In den Anhängen am Ende der Methode sind unterschiedliche Detailinformationen zur Methode angegeben. Dies können Chromatogramme, Geräteparameter, Spektren, Fließschemata bei Cont.-Flow-Methoden u. ä. sein. Auf die Anhänge ist im Methodentext an der jeweiligen Stelle verwiesen.

In den folgenden 3 Tabellen sind die **verwendeten Abkürzungen** für Analysengeräte (Tabelle 1), für die Untersuchungsverfahren (Tabelle 2) und für die Probenvorbereitungs- und Lagerungsverfahren (Tabelle 3) aufgelistet.

Tabelle 1: verwendete Abkürzungen für Analysengeräte

Abkürzung	Gerät
AAS	Atomabsorptionsspektrophotometer
	AAS(G): mit Graphitrohrofen-Atomisierung
	AAS(FI): mit Flammen-Atomisierung
CFC	Continuous-Flow-Colorimeter
CFE	Continuous-Flow-Elektrochemie
CNS	Elementaranalysator für C, N und S
GC	Gaschromatograph
IC	Ionenchromatograph
ICP	Induktiv-gekoppeltes Plasma-Spektrophotometer
LFM	Leitfähigkeitsmessgerät
PHM	pH-Meter
SCH	Scheibler-Apparatur zur CO ₂ -Bestimmung
TIT	Titrator für pH- und Leitfähigkeitstitrationen
TOC	Total-Organic-Carbon-Analysator
TN	Total-Nitrogen-Analysator
WG	Waage

Tabelle 2: Abkürzungen für Untersuchungsmethoden

Abkürzung	Untersuchungsverfahren	
ANULL	ohne Anwendung eines Untersuchungsverfahrens	
	(Flüssige Proben)	
ANULLIC	ohne Anwendung eines Untersuchungsverfahrens	
	(Flüssige Proben, bei denen u.a. mit lonenchromatographie	
A T N II II I	gemessen wird)	
ATNULL	ohne Anwendung eines Untersuchungsverfahrens (Festproben)	
AKE	effektive Austauschkapazitäts-Bestimmung	
AKEG	Europäische Methode zur Austauschkapazitätsbestimmung	
AKH	Austauschkapazitätsbestimmung an Humusproben	
AKT	totale (potentielle) Austauschkapazitäts-Bestimmung	
BGW	Blattgewicht	
BNK	Basen-Neutralisierungs-Kapazitäts-Bestimmung	
Clges	Gesamt-Chlor-Bestimmung	
CNMIK	C- und N-Bestimmung der mikrobiellen Biomasse	
CO2ATM	CO ₂ -Atmung	
DAN	Druckaufschluss mit Salpetersäure	
DANF	Druckaufschluss mit Salpeter- und Flußsäure	
EXT1:2H2O	wässriger 1:2-Extrakt	
EXT1:2ALKP	Bestimmung der komplexierten Al-Fraktion im wässrigen	
EVTEDTA	1:2-Extrakt	
EXTEDTA	EDTA-Extrakt	
EXTOX	Oxalat-Extrakt	
FBA	Feinbodenanteil-Bestimmung	
GBL	Gleichgewichts-Bodenlösung	
GBLALKP	Bestimmung der komplexierten Al-Fraktion in der GBL	
Nmin	Bestimmung der mineralischen Stickstoff-Fraktion	
NGW	Nadelgewicht	
KOMPAL	Bestimmung der komplexierten Al-Fraktion	
OAKW	offener Aufschluss mit Königswasser	
OAKWEG	Europäische Variante des offenen Aufschlusses mit Königswasser	
PHH2O	pH-Bestimmung in wässriger Suspension	
PHKCI	pH-Bestimmung in KCI-Suspension	
PHCACI2	pH-Bestimmung in CaCl ₂ -Suspension	
TRD	Trockenraumdichte-Bestimmung	
WGH	Wassergehalts-Bestimmung	

Tabelle 3: Abkürzungen für Probenvorbereitungs- und Lagerungsverfahren

Abkürzung	Probenvorbereitungs- oder Lagerungsverfahren	
F	Filtration	
L	Lagerung	
М	Mahlen mit verschiedenen Mühlen	
S	Sieben	
SM	Probenvorbehandlung von Wasserproben, in denen Schwermetalle (SM) gemessen werden	
Τ	Trocknung/Homogenisieren/Sortieren	
M/S B	Mühle/Sieb für Bodenproben geeignet	
M/S P	Mühle/Sieb für Pflanzen(Humus)proben geeignet	
M/S BP	Mühle/Sieb für Boden-und Pflanzenproben geeignet	

Hinweis:

Die Methoden-Bände sind so gedruckt, dass jede neue Methode mit einer ungeraden Seitenzahl beginnt. Bei Entfernung der Verleimung kann die Methodensammlung auch als Loseblatt-Sammlung verwendet werden. Daher sind bei neuen Methoden-Versionen nicht nur die Änderungen, sondern der vollständige Methodentext abgedruckt. Die neuen Methoden bzw. Methodenversionen der Ergänzungs-Bände können in die Loseblattsammlung eingeordnet werden.

Liste der alten und der zwischen dem 1.1.99 und dem 31.12.08 neu hinzugekommenen Elementbestimmungsmethoden

(neue Methoden im Fettdruck; mit Angaben zum Verwendungszeitraum der jeweiligen Methoden)

Element	Elementbestimmungsmethode	gültig von	gültig bis
Al	AlAlgesAAS1.1	01.01.1989	31.12.2002
Al	AlAlgesAAS2.1	01.01.1989	01.06.2002
Al	AlAlgesAAS6.1	01.11.2001	
Al	AlAlgesAAS7.1	15.11.2001	
Al	AlAlgesICP1.1	01.10.1990	01.05.1994
Al	AlAlgesICP1.2	01.05.1994	01.08.1998
Al	AlAlgesICP1.3	01.08.1998	31.12.2002
Al	AlAlgesICP2.1	01.01.1997	01.11.1998
Al	AlAlgesICP2.2	01.11.1998	01.10.2006
Al	AlAlgesICP3.1	01.08.1997	01.11.1998
Al	AlAlgesICP3.2P	01.11.1998	31.12.2002
Al	AlAlgesICP4.1	01.04.1998	15.09.1998
Al	AlAlgesICP4.2	01.11.1998	01.10.2006
Al	AlAlgesICP5.1	01.11.1998	01.10.2006
Al	AlAlgesICP7.1	15.02.2003	28.02.2006
Al	AlAlgesICP7.2	01.03.2006	01.03.2008
Al	AlAlgesICP7.3	01.03.2008	
Al	AIAIgesICP8.1	10.03.2003	01.06.2005
Al	AIAIgesICP8.2	01.05.2005	
Al	AlAlgesICP10.1	01.01.2004	
Al	AIAIgesICP15.1	01.10.2006	
Al	AlAlgesICP16.1	01.02.2007	
Al	AlAlgesICP18.1	01.10.2006	
AIK	ALK37TIT1.1	01.01.2000	
AIK	ALK40TIT1.1	01.01.2000	
AIK	ALK43TIT1.1	01.01.2000	
AIK	ALK45TIT1.1	01.01.2000	
AIK	Alkalinität -43	01.01.2000	
AIK	Alkalinität -45	01.01.2000	
AIK	Alkalinität-Gran	01.01.2000	
As	AsAsgesICP2.1	01.01.1997	01.11.1998
As	AsAsgesICP2.2	01.11.1998	01.10.2006
As	AsAsgesICP3.1	01.11.1998	31.12.2005
Ва	BaBagesICP1.1	01.04.1992	01.11.1998
Ba	BaBagesICP1.2	01.11.1998	31.12.2002
Ва	BaBagesICP2.1	01.11.1998	01.10.2006
Ва	BaBagesICP8.1	01.01.2004	01.06.2005
Ва	BaBagesICP8.2	01.05.2005	

Ва	BaBagesICP10.1	01.01.2004	
Ва	BaBagesICP16.1	01.02.2007	
С	CCanorgTOC1.1	01.01.1989	
С	CCanorgTOC2.1	01.10.1991	01.04.1994
C C	CCanorgTOC2.2	01.04.1994	01.06.1997
С	CCanorgTOC2.3	01.06.1997	31.12.1999
С	CCanorgTOC3.1	01.01.1999	14.12.2007
C	CCanorgTOC3.2	15.12.2007	
С	CCgesCNS1.1	01.01.1989	01.10.1995
C C C	CCgesCNS1.2	01.10.1995	31.12.1997
С	CCgesCNS2.1	01.02.1996	01.10.1997
С	CCgesCNS2.2	01.10.1997	30.11.2004
С	CCgesCNS3.1	01.10.1997	30.11.2004
С	CCgesCNS5.1	20.08.2004	
С	CCgesTOC1.1	01.01.1989	
C	CCgesTOC2.1	01.10.1991	01.04.1994
	CCgesTOC2.2	01.04.1994	01.06.1997
С	CCgesTOC2.3	01.06.1997	31.12.1999
С	CCgesTOC3.1	01.01.1999	31.10.1999
С	CCgesTOC3.2	01.11.1999	14.12.2007
С	CCgesTOC3.3	15.12.2007	
C C C	CCgesTOC4.1	28.08.2008	
С	CCO2GC1.1	01.06.1996	
С	CCO3CNS1.1	20.08.2004	
С	CCO3DRU1.1	01.01.2004	
C C	CCO3SCH1.1	01.01.1993	01.01.1997
	CCO3SCH1.2	01.01.1997	
С	CCorgCNS1.1	01.01.2000	30.11.2003
С	CCorgCNS2.1	20.08.2004	01.11.2007
	Corg berechnet	01.01.1989	
С	CCorgTOC2.1	01.01.1999	14.12.2007
С	CCorgTOC2.2	15.12.2007	
Ca	CaCagesAAS1.1	01.01.1989	31.12.2002
Ca	CaCagesAAS2.1	01.01.1989	01.06.2002
Ca	CaCagesAAS6.1	01.11.2001	
Ca	CaCagesAAS7.1	15.11.2001	
Ca	CaCagesIC2.1	15.12.2007	
Ca	CaCagesICP1.1	01.10.1990	01.05.1994
Ca	CaCagesICP1.2	01.05.1994	01.08.1998
Ca	CaCagesICP1.3	01.08.1998	31.12.2002
Ca	CaCagesICP2.1	01.01.1997	01.11.1998
Ca	CaCagesICP2.2	01.11.1998	01.10.2006
Ca	CaCagesICP3.1	01.08.1997	01.11.1998
Ca	CaCagesICP3.2P	01.11.1998	31.12.2002
Ca	CaCagesICP4.1	01.04.1998	01.11.1998

Ca	CaCagesICP4.2	15.06.1998	01.10.2006
Ca	CaCagesICP5.1	01.11.1998	01.10.2006
Са	CaCagesICP6.1	01.07.2000	30.06.2006
Ca	CaCagesICP7.1	15.02.2003	28.02.2006
Ca	CaCagesICP7.2	01.03.2006	01.03.2008
Ca	CaCagesICP7.3	01.03.2008	
Ca	CaCagesICP8.1	10.03.2003	01.06.2005
Ca	CaCagesICP8.2	01.05.2005	
Ca	CaCagesICP10.1	01.01.2004	
Ca	CaCagesICP13.1	01.03.2004	
Ca	CaCagesICP15.1	01.10.2006	
Ca	CaCagesICP16.1	01.02.2007	
Cd	CdCdgesAAS1.1	01.01.1989	01.11.1996
Cd	CdCdgesAAS1.2	01.11.1996	01.06.2002
Cd	CdCdgesAAS2.1	01.01.1993	01.11.1996
Cd	CdCdgesAAS2.2	01.11.1996	01.06.2002
Cd	CdCdgesAAS3.1	01.01.1989	01.11.1993
Cd	CdCdgesAAS3.2	01.01.1993	01.07.1994
Cd	CdCdgesAAS4.1	01.07.1994	01.11.1996
Cd	CdCdgesAAS4.2	01.11.1996	31.12.2002
Cd	CdCdgesAAS5.1	01.01.1997	31.12.2002
Cd	CdCdgesAAS8.1	01.02.2005	
Cd	CdCdgeslCP1.1	01.05.1994	01.01.1997
Cd	CdCdgesICP2.1	01.01.1997	01.11.1998
Cd	CdCdgesICP2.2	01.11.1998	30.06.2000
Cd	CdCdgesICP2.3	01.07.2000	01.10.2006
Cd	CdCdgesICP3.1	01.11.1998	30.06.2000
Cd	CdCdgesICP3.2	01.07.2000	01.10.2006
Cd	CdCdgesICP4.1	01.01.2001	30.06.2006
Cd	CdCdgesICP8.1	10.03.2003	
Cd	CdCdgesICP14.1	01.09.2006	
Cd	CdCdgesICP15.1	01.10.2006	
Cd	CdCdgesICP16.1	01.02.2007	
Cd	CdCdgesICP17.1	01.10.2006	
CI	CICICFC1.1	01.01.1989	01.03.1991
CI	CICICFC1.2	01.03.1991	01.03.1994
CI	CICICFC1.3	01.03.1994	01.02.1995
CI	CICICFC1.4	01.02.1995	01.01.1996
CI	CICICFC1.5	15.05.1996	31.12.2003
CI	CICICFE1.1	15.05.1996	31.12.2000
CI	CICICFE2.1	01.07.1997	30.11.1999
CI	CICICFE2.2	01.12.1999	31.12.2003
CI	CICICFE3.1	01.06.1999	30.11.1999
CI	CICICFE3.2	01.12.1999	
CI	CICIIC1.1	01.08.1992	31.12.1998

CI	CICIIC2.1	15.12.2007	
Co	CoCogesAAS1.1	01.11.1996	31.12.2002
Со	CoCogesAAS2.1	01.01.1993	01.01.1996
Co	CoCogesAAS2.2	01.01.1996	01.06.2002
Со	CoCogesAAS3.1	01.01.1989	01.07.1994
Со	CoCogesAAS4.1	01.07.1994	31.12.2002
Со	CoCogesAAS4.2	01.11.1996	31.12.2002
Со	CoCogesICP2.1	01.01.1997	01.11.1998
Co	CoCogesICP2.2	01.11.1998	30.06.2000
Со	CoCogesICP2.3	01.07.2000	01.10.2006
Co	CoCogesICP3.1	01.11.1998	30.06.2000
Со	CoCogesICP3.2	01.07.2000	30.06.2006
Со	CoCogesICP4.1	01.01.2001	01.10.2006
Со	CoCogesICP8.1	10.03.2003	
Со	CoCogesICP14.1	01.09.2006	
Со	CoCogesICP15.1	01.10.2006	
Со	CoCogesICP16.1	01.02.2007	
Со	CoCogesICP17.1	01.10.2006	
Cr	CrCrgesAAS1.1	01.11.1996	31.12.2002
Cr	CrCrgesAAS2.1	01.01.1993	01.11.1996
Cr	CrCrgesAAS2.2	01.11.1996	01.06.2002
Cr	CrCrgesAAS3.1	01.01.1989	01.07.1994
Cr	CrCrgesAAS4.1	01.07.1994	31.12.2002
Cr	CrCrgesICP2.1	01.01.1997	01.11.1998
Cr	CrCrgesICP2.2	01.11.1998	01.10.2006
Cr	CrCrgesICP3.1	01.11.1998	30.06.2006
Cr	CrCrgesICP4.1	01.01.2001	01.10.2006
Cr	CrCrgesICP8.1	10.03.2003	
Cr	CrCrgesICP14.1	01.09.2006	
Cr	CrCrgesICP15.1	01.10.2006	
Cr	CrCrgesICP16.1	01.02.2007	
Cr	CrCrgesICP17.1	01.10.2006	
Cu	CuCugesAAS1.1	01.01.1989	01.11.1996
Cu	CuCugesAAS1.2	01.11.1996	01.06.2002
Cu	CuCugesAAS2.1	01.01.1993	01.11.1996
Cu	CuCugesAAS2.2	01.11.1996	01.06.2002
Cu	CuCugesAAS3.1	01.01.1989	01.11.1992
Cu	CuCugesAAS4.1	01.11.1992	01.07.1994
Cu	CuCugesAAS5.1	01.07.1994	01.11.1996
Cu	CuCugesAAS5.2	01.11.1996	31.12.2002
Cu	CuCugesAAS8.1	01.02.2005	
Cu	CuCugesICP1.1	01.10.1990	01.05.1994
Cu	CuCugesICP1.2	01.05.1994	01.01.1997
Cu	CuCugesICP2.1	01.01.1997	01.11.1998
Cu	CuCugesICP2.2	01.11.1998	01.10.2006

Cu	CuCugesICP3.1	01.11.1998	30.06.2000
Cu	CuCugesICP3.2	01.07.2000	30.06.2006
Cu	CuCugesICP4.1	01.01.2001	01.10.2006
Cu	CuCugesICP8.1	10.03.2003	
Cu	CuCugesICP14.1	01.09.2006	
Cu	CuCugesICP15.1	01.10.2006	
Cu	CuCugesICP16.1	01.02.2007	
Cu	CuCugesICP17.1	01.10.2006	
Fe	FeFegesAAS1.1	01.01.1989	31.12.2002
Fe	FeFegesAAS2.1	01.01.1989	01.06.2002
Fe	FeFegesAAS6.1	01.11.2001	
Fe	FeFegesAAS7.1	15.11.2001	
Fe	FeFegesICP1.1	01.10.1990	01.05.1994
Fe	FeFegesICP1.2	01.05.1994	01.08.1998
Fe	FeFegesICP1.3	01.08.1998	31.12.2002
Fe	FeFegesICP2.1	01.01.1997	01.11.1998
Fe	FeFegesICP2.2	01.11.1998	01.10.2006
Fe	FeFegesICP3.1	01.08.1997	01.11.1998
Fe	FeFegesICP3.2P	01.11.1998	31.12.2002
Fe	FeFegesICP4.1	01.04.1998	01.11.1998
Fe	FeFegesICP4.2	01.11.1998	30.06.2006
Fe	FeFegesICP5.1	01.11.1998	01.10.2006
Fe	FeFegesICP7.1	15.02.2003	28.02.2006
Fe	FeFegesICP7.2	01.03.2006	01.03.2008
Fe	FeFegesICP7.3	01.03.2008	
Fe	FeFegesICP8.1	10.03.2003	01.06.2005
Fe	FeFegesICP8.2	01.05.2005	
Fe	FeFegesICP10.1	01.01.2004	
Fe	FeFegesICP15.1	01.10.2006	
Fe	FeFegesICP16.1	01.02.2007	
Fe	FeFegesICP18.1	01.10.2006	
F	FFIC2.1	15.12.2007	
Н	HH+PHM1.1	01.01.1989	01.03.1996
Н	HH+PHM1.2	01.03.1996	01.03.1997
Н	HH+PHM1.3	01.03.1997	31.01.2000
Н	HH+PHM1.4	01.02.2000	
Н	HH+PHM2.1	01.11.1995	01.03.1996
Н	HH+PHM3.1	01.03.1996	31.12.1996
Н	HH+PHM4.1	01.01.2000	
Н	HH+1PHM4.1	01.01.2001	
Н	HH+2PHM4.1	01.01.2001	
Н	HH+PHM5.1	01.01.2000	
Н	HH+PHM6.1	01.06.2006	
Н	HH+PHM7.1	01.06.2006	

Н	HH+TIT1.1	01.05.1989	31.12.1993
Н	HH+1PHM1.1	01.01.1989	
Н	HH+2PHM1.1	01.01.1989	
K	KKgesAAS1.1	01.01.1989	31.12.2002
K	KKgesAAS2.1	01.01.1989	01.06.2002
K	KKgesAAS6.1	01.11.2001	
K	KKgesAAS7.1	15.11.2001	01.03.2003
K	KKgesAAS7.2	01.03.2003	
K	KKgesIC2.1	15.12.2007	
K	KKgesICP1.1	01.10.1990	01.05.1994
K	KKgesICP1.2	01.05.1994	01.08.1998
K	KKgesICP1.3	01.08.1998	31.12.2002
K	KKgesICP2.1	01.01.1997	01.08.1998
K	KKgesICP3.1	01.08.1997	01.11.1998
K	KKgesICP3.2P	01.11.1998	31.12.2002
K	KKgesICP4.1	01.04.1998	01.11.1998
K	KKgesICP4.2	01.11.1998	30.06.2006
K	KKgesICP5.1	01.07.2000	01.10.2006
K	KKgesICP7.1	15.02.2003	28.02.2006
K	KKgesICP7.2	01.03.2006	01.03.2008
K	KKgesICP7.3	01.03.2008	
K	KKgesICP8.1	10.03.2003	01.06.2005
K	KKgesICP8.2	01.05.2005	
K	KKgesICP10.1	01.01.2004	
K	KKgesICP13.1	01.03.2004	
K	KKgesICP15.1	01.10.2006	
K	KKgesICP16.1	01.02.2007	
LF	LFLFCFC1.1	01.03.2000	31.12.2003
LF	LFLFLFM1.1	01.01.1989	31.05.1997
LF	LFLFLFM1.2	01.06.1997	
LF	LFLFLFM2.1	01.06.2006	
LF	LFLFTIT1.1	01.05.1989	31.12.2000
Mg	MgMggesAAS1.1	01.01.1989	31.12.2002
Mg	MgMggesAAS2.1	01.01.1989	01.08.1993
Mg	MgMggesAAS2.2	01.08.1993	01.06.2002
Mg	MgMggesAAS6.1	01.11.2001	
Mg	MgMggesAAS7.1	15.11.2001	
Mg	MgMggesIC2.1	15.12.2007	
Mg	MgMggesICP1.1	01.10.1990	01.05.1994
Mg	MgMggesICP1.2	01.05.1994	01.08.1998
Mg	MgMggesICP1.3	01.08.1998	31.12.2002
Mg	MgMggesICP2.1	01.01.1997	01.11.1998
Mg	MgMggesICP2.2	01.11.1998	01.10.2006
Mg	MgMggesICP3.1	01.08.1997	01.11.1998
Mg	MgMggesICP3.2P	01.11.1998	31.12.2002

Mg	MgMggesICP4.1	01.04.1998	01.11.1998
Mg	MgMggesICP4.2	01.11.1998	30.06.2006
Mg	MgMggesICP5.1	01.11.1998	01.10.2006
Mg	MgMggesICP6.1	01.07.2000	30.06.2006
Mg	MgMggesICP7.1	15.02.2003	28.02.2006
Mg	MgMggesICP7.2	01.03.2006	01.03.2008
Mg	MgMggesICP7.3	01.03.2008	
Mg	MgMggesICP8.1	10.03.2003	01.06.2005
Mg	MgMggesICP8.2	01.05.2005	
Mg	MgMggesICP10.1	01.01.2004	
Mg	MgMggesICP13.1	01.03.2004	
Mg	MgMggesICP15.1	01.10.2006	
Mg	MgMggesICP16.1	01.02.2007	
Mn	MnMngesAAS1.1	01.01.1989	31.12.2002
Mn	MnMngesAAS2.1	01.01.1989	01.06.2002
Mn	MnMngesAAS6.1	01.11.2001	
Mn	MnMngesAAS7.1	15.11.2001	
Mn	MnMngesICP1.1	01.10.1990	01.05.1994
Mn	MnMngesICP1.2	01.05.1994	01.08.1998
Mn	MnMngesICP1.3	01.08.1998	31.12.2002
Mn	MnMngesICP2.1	01.01.1997	01.11.1998
Mn	MnMngesICP2.2	01.11.1998	30.06.2000
Mn	MnMngesICP2.3	01.07.2000	01.10.2006
Mn	MnMngesICP3.1	01.08.1997	01.11.1998
Mn	MnMngesICP3.2P	01.11.1998	31.12.2002
Mn	MnMngesICP4.1	01.04.1998	01.11.1998
Mn	MnMngesICP4.2	01.11.1998	30.06.2006
Mn	MnMngesICP5.1	01.11.1998	30.06.2000
Mn	MnMngesICP5.2	01.07.2000	01.10.2006
Mn	MnMngesICP7.1	15.02.2003	28.02.2006
Mn	MnMngesICP7.2	01.03.2006	01.03.2008
Mn	MnMngesICP7.3	01.03.2008	
Mn	MnMngesICP8.1	10.03.2003	01.06.2005
Mn	MnMngesICP8.2	01.05.2005	
Mn	MnMngesICP10.1	01.01.2004	
Mn	MnMngesICP15.1	01.10.2006	
Mn	MnMngesICP16.1	01.02.2007	
N	NNgesCFC1.1	01.01.1989	01.12.1994
N	NNgesCFC1.2	01.12.1994	31.01.1995
N	NNgesCFC2.1	01.02.1995	31.12.1997
N	NNgesCFC3.1	01.04.1996	01.09.1996
N	NNgesCFC3.2	01.09.1996	31.12.1997
N	NNgesCFC4.1	01.07.1997	30.11.1999
N	NNgesCFC4.2	01.12.1999	31.12.2003
N	NNgesCFC5.1	01.06.1999	30.11.1999

N	NNgesCNS1.1	01.01.1989	01.10.1995
N	NNgesCNS1.2	01.10.1995	31.12.1997
N	NNgesCNS2.1	01.02.1996	01.10.1997
N	NNgesCNS2.2	01.10.1997	30.11.2004
N	NNgesCNS3.1	01.09.1997	30.11.2004
N	NNgesCNS5.1	20.08.2004	
N	NNgesTOC1.1	01.11.1999	01.12.1999
N	NNgesTOC2.1	01.12.1999	14.12.2007
N	NNgesTOC2.2	15.12.2007	
N	NNgesTOC3.1	28.08.2008	
N	NNH4CFC1.1	01.01.1989	01.03.1991
N	NNH4CFC1.2	01.03.1991	01.12.1993
N	NNH4CFC1.3	01.12.1993	01.11.1994
Ν	NNH4CFC1.4	01.11.1994	31.01.1997
Ζ	NNH4CFC2.1	01.02.1995	31.08.1996
N	NNH4CFC2.2	01.09.1996	30.06.1997
N	NNH4CFC3.1	01.07.1997	31.12.2003
N	NNH4CFC3.2	01.12.1999	31.12.2003
N	NNH4CFC4.1	01.06.1999	30.11.1999
N	NNH4CFC4.2	01.12.1999	15.02.2006
N	NNH4CFC4.3	15.01.2006	28.02.2007
N	NNH4CFC5.1	01.11.2004	28.02.2007
N	NNH4CFC6.1	01.03.2007	
N	NNH4CFC7.1	01.03.2007	
Ν	NNH4IC1.1	01.08.1992	31.12.1998
N	NNH4IC2.1	15.12.2007	
Ν	NNO2+3CFC1.1	01.01.1989	01.10.1989
N	NNO2+3CFC1.2	01.01.1991	31.12.1992
N	NNO2+3CFC2.1	01.10.1989	01.03.1991
N	NNO2+3CFC2.2	01.03.1991	01.11.1994
N	NNO2+3CFC2.3	01.11.1994	01.09.1995
N	NNO2+3CFC2.4	01.09.1995	31.12.2008
N	NNO2+3CFC3.1	01.02.1995	01.09.1995
N	NNO2+3CFC3.2	01.09.1995	31.08.1996
N	NNO2+3CFC3.3	01.09.1996	30.06.1997
N	NNO2+3CFC4.1	01.07.1997	30.11.1999
N	NNO2IC2.1	01.01.2008	
N	NNO3CFC4.2	01.12.1999	31.12.2003
N	NNO3CFC5.1	01.06.1999	30.11.1999
N	NNO3CFC5.2	01.12.1999	28.02.2006
N	NNO3CFC5.3	15.01.2006	28.02.2007
N	NNO3CFC5.4	01.03.2007	
N	NNO3CFC6.1	01.11.2004	28.02.2007
N	NNO3CFC6.2	01.03.2007	
N	NNO3IC1.1	01.08.1992	31.12.1998

N	NNO3IC2.1	15.12.2007	
Na	NaNagesAAS1.1	01.01.1989	31.12.2002
Na	NaNagesAAS2.1	01.01.1989	01.06.2002
Na	NaNagesAAS6.1	01.11.2001	
Na	NaNagesAAS7.1	15.11.2001	01.03.2003
Na	NaNagesAAS7.2	01.03.2003	
Na	NaNagesIC2.1	15.12.2007	
Na	NaNagesICP1.1	01.10.1990	01.05.1994
Na	NaNagesICP1.2	01.05.1994	01.08.1998
Na	NaNagesICP1.3	01.08.1998	31.12.2002
Na	NaNagesICP2.1	01.01.1997	01.08.1998
Na	NaNagesICP3.1	01.08.1997	01.11.1998
Na	NaNagesICP3.2P	01.11.1998	31.12.2002
Na	NaNagesICP4.2	01.11.1998	30.06.2006
Na	NaNagesICP5.1	01.07.2000	01.10.2006
Na	NaNagesICP7.1	15.02.2003	28.02.2006
Na	NaNagesICP7.2	01.03.2006	01.03.2008
Na	NaNagesICP7.3	01.03.2008	
Na	NaNagesICP8.1	10.03.2003	01.06.2005
Na	NaNagesICP8.2	01.05.2005	
Na	NaNagesICP10.1	01.01.2004	
Na	NaNagesICP13.1	01.03.2004	
Na	NaNagesICP15.1	01.10.2006	
Na	NaNagesICP16.1	01.02.2007	
Ni	NiNigesAAS1.1	01.11.1996	31.12.2002
Ni	NiNigesAAS2.1	01.01.1993	01.11.1996
Ni	NiNigesAAS2.2	01.11.1996	01.06.2002
Ni	NiNigesAAS3.1	01.01.1989	01.07.1994
Ni	NiNigesAAS4.1	01.07.1994	31.12.2002
Ni	NiNigesAAS4.2	01.11.1996	31.12.2002
Ni	NiNigesICP2.1	01.01.1997	01.11.1998
Ni	NiNigesICP2.2	01.11.1998	01.10.2006
Ni	NiNigesICP3.1	01.11.1998	30.06.2000
Ni	NiNigesICP3.2	01.07.2000	30.06.2006
Ni	NiNigesICP4.1	01.01.2001	01.10.2006
Ni	NiNigesICP8.1	10.03.2003	
Ni	NiNigesICP14.1	01.09.2006	
Ni	NiNigesICP15.1	01.10.2006	
Ni	NiNigesICP16.1	01.02.2007	
Ni	NiNigesICP17.1	01.10.2006	
Р	PPgesICP1.1	01.10.1990	01.05.1994
Р	PPgesICP1.2	01.05.1994	01.08.1998
Р	PPgesICP1.3	01.08.1998	31.12.2002
Р	PPgesICP2.1	01.01.1997	01.11.1998
Р	PPgesICP2.2	01.11.1998	01.10.2006

Р	PPgesICP3.1	01.11.1998	01.10.2006
P	PPO4CFC1.1	01.01.1989	01.03.1991
Р	PPO4CFC1.2	01.03.1991	01.02.1995
Р	PPO4CFC2.1	01.01.1989	01.10.1990
Р	PPO4CFC2.2	01.10.1990	01.02.1995
Р	PPO4IC1.1	01.08.1992	31.12.1998
Р	PPO4IC2.1	15.12.2007	
Р	PPgesICP7.1	15.02.2003	01.04.2006
Р	PPgesICP7.2	01.03.2006	01.03.2008
Р	PPgesICP7.3	01.03.2008	
Р	PPgesICP8.1	10.03.2003	01.05.2005
Р	PPgesICP8.2	01.05.2005	
Р	PPgesICP9.1	01.09.2003	01.06.2005
Р	PPgesICP15.1	01.10.2006	
Р	PPgesICP16.1	01.02.2007	
Р	PO4 berechnet	01.01.1989	
Pb	PbPbgesAAS1.1	01.01.1989	01.11.1996
Pb	PbPbgesAAS1.2	01.11.1996	01.06.2002
Pb	PbPbgesAAS2.1	01.01.1993	01.11.1996
Pb	PbPbgesAAS2.2	01.11.1996	01.06.2002
Pb	PbPbgesAAS3.1	01.01.1989	01.11.1993
Pb	PbPbgesAAS3.2	01.11.1993	01.07.1994
Pb	PbPbgesAAS4.1	01.07.1994	01.11.1996
Pb	PbPbgesAAS4.2	01.11.1996	31.12.2002
Pb	PbPbgesAAS8.1	01.02.2005	
Pb	PbPbgesICP1.1	01.06.1993	01.05.1994
Pb	PbPbgesICP1.2	01.05.1994	15.03.1995
Pb	PbPbgesICP1.3	15.03.1995	01.01.1997
Pb	PbPbgesICP2.1	01.01.1997	01.11.1998
Pb	PbPbgesICP2.2	01.11.1998	30.06.2000
Pb	PbPbgesICP2.3	01.07.2000	30.06.2006
Pb	PbPbgesICP3.1	01.11.1998	30.06.2000
Pb	PbPbgesICP3.2	01.07.2000	01.10.2006
Pb	PbPbgesICP4.1	01.01.2001	30.06.2006
Pb	PbPbgesICP8.1	10.03.2004	
Pb	PbPbgesICP14.1	01.09.2006	
Pb	PbPbgesICP15.1	01.10.2006	
Pb	PbPbgesICP16.1	01.02.2007	
Pb	PbPbgesICP17.1	01.10.2006	
Si	SiSigesAAS1.1	01.01.1989	31.12.2002
Si	SiSigesICP1.1	01.01.1990	01.05.1994
Si	SiSigesICP1.2	01.05.1994	01.08.1998
Si	SiSigesICP1.3	01.08.1998	31.12.2002
Si	SiSiO2WG1.1	01.01.1989	
Sr	SrSrgesICP1.1	01.07.1994	31.12.2002

S	SSgesCNS1.1	01.01.1989	31.12.1997
S	SSgesICP1.1	01.10.1990	01.05.1994
	SSgesICP1.2	01.05.1994	01.08.1998
S S	SSgesICP1.3	01.08.1998	31.12.2002
S	SSgesICP2.1	01.01.1997	01.11.1998
S	SSgesICP2.2	01.11.1998	01.10.2006
S	SSgesICP3.1	01.11.1998	30.06.2006
S	SSgesICP7.1	15.02.2003	31.08.2003
S	SSgesICP7.2	01.09.2003	31.12.2003
S	SSgesICP8.1	10.03.2003	31.08.2003
S	SSgesICP8.2	01.09.2003	31.12.2003
S	SSgesICP9.1	01.09.2003	31.12.2003
S	SSgesICP10.1	01.01.2004	01.04.2006
S	SSgesICP10.2	01.03.2006	01.03.2008
S	SSgesICP10.3	01.03.2008	
s s	SSgesICP11.1	01.01.2004	01.06.2005
S	SSgesICP11.2	01.05.2005	
S	SSgesICP12.1	01.01.2004	
S	SSgesICP15.1	01.10.2006	
S	SSgesICP16.1	01.02.2007	
	SSO4CFC1.1	01.01.1989	01.03.1991
S S	SSO4CFC1.2	01.03.1991	01.06.1993
S	SSO4IC1.1	01.08.1992	31.12.1998
S	SSO4IC2.1	15.12.2007	
S	SO4 berechnet	02.02.2000	
Ti	TiTigesICP1.1	01.11.1998	01.11.1999
Ti	TiTigesICP2.1	01.11.1998	30.06.2000
Ti	TiTigesICP2.2	01.07.2000	01.10.2006
Ti	TiTigesICP8.1	01.05.2005	
Ti	TiTigesICP16.1	01.02.2007	
Zn	ZnZngesAAS1.1	01.01.1989	01.11.1996
Zn	ZnZngesAAS1.2	01.11.1996	01.06.2002
Zn	ZnZngesAAS2.1	01.01.1993	01.11.1996
Zn	ZnZngesAAS2.2	01.11.1996	01.06.2002
Zn	ZnZngesICP1.1	01.10.1990	01.05.1994
Zn	ZnZngesICP1.2	01.05.1994	01.01.1997
Zn	ZnZngesICP2.1	01.01.1997	01.11.1998
Zn	ZnZngesICP2.2	01.11.1998	30.06.2000
Zn	ZnZngesICP2.3	01.07.2000	01.10.2006
Zn	ZnZngesICP3.1	01.11.1998	30.06.2000
Zn	ZnZngesICP3.2	01.07.2000	30.06.2006
Zn	ZnZngesICP4.1	01.01.2001	01.10.2006
Zn	ZnZngesICP8.1	10.03.2003	
Zn	ZnZngesICP14.1	01.09.2006	
Zn	ZnZngesICP15.1	01.10.2006	

Zn	ZnZngesICP16.1	01.02.2007	
Zn	ZnZngesICP17.1	01.10.2006	

ELEMENTBESTIMMUNGSMETHODEN

Mg - Ni

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	AAS(Fl)	MgMggesAAS6.1	1

Datum:

1.11.2001

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode		BG	OMG
ANULL, AKH1.4, AKH2.4, GBL1.1, EXT12H2O1.1	0,002	0,008	5

geeignet für:

<u> </u>	
Boden	GBL1.1, EXT12H2O1.1
Humus	AKH1.4, AKH2.4
Pflanze	
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 7980
HFA	D36.1.4.1 u. D36.1.5.1
HFA-Code	D;1;1;2;-1;3;0

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einer Luft/Acetylen-Flamme auf ca. 2300 °C erhitzt. Dadurch wird ein möglichst großer Teil des zu bestimmenden Elements in den atomaren Zustand überführt. Mit einer Hohlkathodenlampe wird elementspezifisches Licht erzeugt und durch die Flamme geführt. Die Atome im Grundzustand können dieses Licht einer spezifischen Wellenlänge absorbieren und gehen Mg für kurze Zeit in einen angeregten Zustand über. Aus der Messung der Intensitäten des eingestrahlten und des um die absorbierte Lichtmenge reduzierten, austretenden Lichts kann auf die Elementkonzentration in der Lösung geschlossen werden.

Störungen:

Mg bildet in der Flamme Aluminate, Phosphate und verschiedene Oxide. Diese Störung kann durch CsCl/La-Zusatz (Schinkel-Lösung) beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenparameter	B. Welz: Atomabsorptionsspektroskopie
Kurzanleitung AAS(Fl) 4.1	Weinheim, 1983
Kurzanleitung AAS-DV2.1	H. Schinkel: Fresenius Z. Anal. Chem. 317
	S. 10-26, 1984

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	AAS(Fl)	MgMggesAAS6.1	2

Analysengeräte und Zubehör:

Atomabsorptionsspektrometer AAS Vario 6 Probengeber AS 52 Injektionsschalter IS5 Lachgas-Brennerkopf

Chemikalien:

Cäsiumchlorid-Lanthanchlorid-Pufferlösung nach Schinkel (Fa. Merck). Enthält 10 g/l CsCl und 100 g/l La.

Lösungen:

_

Eichung/Standards:

Stammlösungen:

Mg: AAS-Standard (Fa. B. Kraft) \Rightarrow 5 g/l

Al, Ca, Fe, K, Mn, Na: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Stammlösung Standard ANULL, GBL1.1, EXT12H2O1.1: In einen 250 ml-Glaskolben werden je 2,5 ml Na, Fe, K, Mg und Mn sowie je 5 ml Al und Ca der 5 g/l enthaltenden Stammlösungen gegeben, mit 5 ml Schinkel-Lösung versetzt und mit H₂O bidemin. aufgefüllt.

=>100 mg/l Al und Ca, 50 mg/l Fe, K, Mg, Mn und Na.

Stammlösung Standard AKH1.4: In einen 250 ml-Glaskolben werden 2,5 ml Mg und 5 ml Ca der 5 g/l enthaltenden Stammlösungen gegeben, mit 5 ml Schinkel-Lösung versetzt und mit der Perkolationslösung (0,2 m KCl) (unbedingt gleiche Lösung wie im Perkolationslauf verwenden) aufgefüllt. =>100 mg/l Ca, 50 mg/l Mg.

Stammlösung Standard AKH2.4: In einen 250 ml-Glaskolben werden je 2,5 ml K und Mg sowie 5 ml Ca der 5 g/l enthaltenden Stammlösungen gegeben, mit 5 ml Schinkel-

Lösung versetzt und mit der Perkolationslösung (0,2 m CsCl) (unbedingt gleiche Lösung wie im Perkolationslauf verwenden) aufgefüllt.

=>100 mg/l Ca, 50 mg/l K und Mg.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	AAS(Fl)	MgMggesAAS6.1	3

Einzelbestimmung: Mehrelementbestimmung:

Unter such ung smethode: ANULL, GBL 1.1, EXT 12H 2O 1.1:

Standardreihe		
	[mg/l]	
Blank:	0,0	
S1:	1,0	
S2:	2,0	
S3:	3,0	
S4:	4,0	
S5:	5,0	
Rekalibrations	4,0	
Standard		

	Na	K	Al	Ca	Fe	Mg	Mn
	[mg/l]						
Blank:	0,0	0,0	0,0	0,0	0,0	0,0	0,0
S1:	1,5	2,0	5,0	4,0	2,0	1,0	1,0
S2:	3,0	4,0	10,0	8,0	4,0	2,0	2,0
S3:	4,5	6,0	15,0	12,0	6,0	3,0	4,0
S4:	6,0	8,0	20,0	16,0	8,0	4,0	6,0
S5:			25,0	20,0	10,0	5,0	8,0

Untersuchungsmethode: AKH 1.4

Standardreihe		
	[mg/l]	
Blank:	0,0	
S1:	1,0	
S2:	2,0	
S3:	3,0	
S4:	4,0	
S5:	5,0	
Rekalibrations	4,0	
Standard		

	Ca	Mg
	[mg/l]	[mg/l]
Blank:	0,0	0,0
S1:	4,0	1,0
S2:	8,0	2,0
S3:	12,0	3,0
S4:	16,0	4,0
S5:	20,0	5,0

Untersuchungsmethode: AKH 2.4

Standardreihe		
	[mg/l]	
Blank:	0,0	
S1:	1,0	
S2:	2,0	
S3:	3,0	
S4:	4,0	
S5:	5,0	
Rekalibrations	4,0	
Standard		

	Ca	Mg	K
	[mg/l]	[mg/l]	[mg/l]
Blank:	0,0	0,0	0,0
S1:	4,0	1,0	2,0
S2:	8,0	2,0	4,0
S3:	12,0	3,0	6,0
S4:	16,0	4,0	8,0
S5:	20,0	5,0	

Kontro	<u>ollstandard</u>
K30 (QC 1)	2,5 mg/l Mg

]	Kalibrier-Daten
\mathbb{R}^2	0,999
Char. Konz.	0,02 mg/l / 1 % A

Element Form Gerät		Methoden-Nr.	Seite		
	Mg	Mgges	AAS(Fl)	MgMggesAAS6.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung AAS (Fl) 4.1 beschrieben.

Die Geräteparameter werden am AAS-Gerät durch Laden der Methode MgMggesAAS6.1 eingestellt. Sie sind im Anhang 1 zusammengestellt.

Wegen der hohen Empfindlichkeit der Mg-Messung muss der Brennerkopf um 20° Grad (2 Teilstriche) quergestellt werden

Der Blank, der Stammlösungs-Standard, der Kontrollstandard, die Verdünnungslösung am Probengeber und die Proben werden im Verhältnis 1:50 mit Cäsiumchlorid-Lanthanchlorid-Pufferlösung nach Schinkel versetzt. In die Probengefässe wird zuerst die notwendige Menge Schinkel-Lösung pipettiert und anschließend die Probe zugegeben. Als Verdünnungsfaktor muss in der Probentabelle 1.02 eingegeben werden.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Quadratische Anpassung der Eichkurve;
		Bestimmtheitsmass ≥0,999
Kontrollstandard	QKSt.1.1	K30 (QC1); Messung nach der Eichung, alle 15
		Proben und nach jeder Rekalibration; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Der Standard Wasser HE1 wird alle 50 Proben
		mitgemessen; erlaubte Abweichung: 5 %
Al-Bilanz	QAlB1.1	Siehe Methodenbeschreibung
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU	Siehe Methodenbeschreibung

Auswertung/Datendokumentation:

Die gemessenen Mg-Konzentrationen werden in die entsprechenden Datenblätter des LIMS eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung AAS-DV 2.1) bearbeitet.

Geräteparameter AAS(Fl) Analytic Jena Vario6

Spektrometer

Linie	285.2 nm	Spalt	1.2 nm
Lampen-Typ	M-HKL	Lampenstrom	5.0 mA
Integrations-Art	wiederh. Mittelw.	Integr. Zeit	1.5 s
PMT	223.0 V	D2HKL-Strom	
AZ-Zeit	5.0 s	Peak-Glättung	aus/aus
Verzögerung	5.0 s	Betriebsart	Einstrahl
HC/BC-Verst.		HC/BC-Tastverh.	

AAS(Fl) Vario6

Flamme

Flamme	C2H2/Luft		
Brenngas-Fluss	65 NL/h	Ges. Ox.	525 NL/h
Brennertyp	50 mm		
Br.Höhe	6 mm	Br.Winkel	20 °
Zerstäuber-Rate	7.0 mL/min		

Probengeber

Probengeber	AS52	Teller-Typ	89 Positionen
Arbeitsweise	manuell	Spülen	nach jeder Probe
Spülzeit	5 s		
Injekt.Schalter	aktiv	Ladezeit	
Injekt.Zeit		Probenvolumen	1 mL
Verdünnung	automat. Verdünn.	Zugabe IonPuffer	keine Zugabe
vor Verdünnung	keine Wdh.	Mischgefäß spülen	1 mal
Zugabe IonPuffer	aus		

QC-Parameter

QC-Art	KonzKontrolle		
QC Kontrollpr.1	QC 1	QC Kontrollpr.2	
Konz.	2.500 mg/L	Konz.	
Fehlergrenze	±3%	Fehlergrenze	
Messwiederh.	aus	Reaktion	Rekalib.+Fortsetz.
Aufstock-Probe			
Konz. Aufstock-Pr.		Vol. Aufstock-Pr.	
Kalibr.Std. Nr.	3	Erwart. Blindw. Ex	
		Reaktion	Marke + Fortsetz.
QC Präzision	ein	Fehlergrenzen	
R%-Kontrolle	markieren	RSD-Grenze	3.0
		R%-Grenze	4.0

Mg

Anhang Nr. 1 für Mg Mgges AAS(Fl) Vario6 MgMggesAAS6.1

Kalibrations-Bedingungen

Kalib.Verfahren	Standard-Kalibr.	KalibEinheit	mg/L
Anzahl Std.	5	Umrechnungs-Faktor	1
Art d. RefProben		Herstellung Std.	durch Sampler
		Blindwertkorr.	aus
		Abgl.vor Bezugslösg.	aus
		Rekalibrier-Std Nr.	4
Ausgabe-Einheit	mg/L	Umrechnungs-Fak.	1
Kalib.Statistik	Mittelwert	Messzyklen	4
		Leerzyklen	1
Stammlösung 1	50.000 mg/L	Stammlösung 2	
Stammlösung 3		Stammlösung 4	
Typ d. Kal.Kurve	nichtlinear	Achsenabschnitt	berechnen
Wichtung	aus	Grubbs-Stat.	ein (Mark.!)
Prüf. d. Kal.Kurve	1 x neu vermessen		

Proben-Statistik

Stat.Art	Mittelwert	Messzyklen	4
Sign.Niveau	95.4 %	Leerzyklen	1
Grubbs-Stat.	ein (Mark.!)		

Mg

Element Form		Gerät	Methoden-Nr.	
Mg	Mgges	AAS(Fl)	MgMggesAAS7.1	1

Datum:

15.11.2001

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode	NG	BG	OMG
AKE1.1, AKEG2.1	0,006	0,019	2

geeignet für:

<u> </u>		
Boden	AKE1.1, AKEG2.1	
Pflanze		
Humus		
Wasser		

Methodenverweise:

Norm	In Anlehnung an DIN 38406-14
HFA	D36.1.5.1
HFA-Code	D;1;1;2;-1;3;0

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einer Luft/Acetylen-Flamme auf ca. 2300 °C erhitzt. Dadurch wird ein möglichst großer Teil des zu bestimmenden Elements in den atomaren Zustand überführt. Mit einer Hohlkathodenlampe wird elementspezifisches Licht erzeugt und durch die Flamme geführt. Die Atome im Grundzustand können dieses Licht einer spezifischen Wellenlänge absorbieren und gehen Mg für kurze Zeit in einen angeregten Zustand über. Aus der Messung der Intensitäten des eingestrahlten und des um die absorbierte Lichtmenge reduzierten, austretenden Lichts kann auf die Elementkonzentration in der Lösung geschlossen werden.

Störungen:

Mg bildet in der Flamme Aluminate, Phosphate und verschiedene Oxide. Diese Störung kann durch CsCl/La-Zusatz (Schinkel-Lösung) beseitigt werden.

Um das Fliessverhalten und die Aerosolbildung der NH₄Cl-Perkolationslösung zu verbessern, wird allen Proben ein Konditionierungsmittel zugegeben.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenparameter	B. Welz: Atomabsorptionsspektroskopie,
Kurzanleitung AAS(Fl) 4.1	Weinheim, 1983
Kurzanleitung AAS-DV2.1	H. Schinkel: Fresenius Z. Anal. Chem. 317
	S. 10-26, 1984

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	AAS(Fl)	MgMggesAAS7.1	2

Analysengeräte und Zubehör:

Atomabsorptionsspektrometer AAS Vario 6 Probengeber AS 52 Injektionsschalter IS5 Lachgas-Brennerkopf, modifizierte Form

Chemikalien:

Cäsiumchlorid-Lanthanchlorid-Pufferlösung nach Schinkel (Fa. Merck). Enthält 10 g/l CsCl und 100 g/l La.

Konditionierungslösung 1%-ig der Fa. Analytik Jena (Tenside, Gelantine und weitere Inhaltsstoffe)

Lösungen:

Eichung/Standards:

Stammlösungen:

Mg: AAS-Standard (Fa. B. Kraft) => 5 g/l

Al, Ca, Fe, K, Mn, Na: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Mg

Stammlösung Standard AKE1.1: In einen 250 ml-Glaskolben werden je 0,5 ml der Mg- und Na-, je

1 ml der Fe-, Mg- und K-, 2,5 ml der Ca-, sowie 5 ml der Al - Stammlösungen gegeben. Dazu kommen 5 ml Schinkel-Lösung. Es wird mit 1 n NH₄Cl-Lösung (unbedingt gleiche Lösung wie im Perkolations-

lauf verwenden) bis zur Eichmarke aufgefüllt.

=>100 mg/l Al, 50 mg/l Ca, 20 mg/l Fe, K und Mn, 10 mg/l Mg und Na.

Achtung: Standard, Blanklösung und Kontrollstandard müssen nach der Her-

stellung in Polyethylenflaschen aufbewahrt werden.

Element	Form	Gerät	Methoden-Nr.	Seite	
Mg	Mgges	AAS(Fl)	MgMggesAAS7.1	3	

Einzelbestimmung: Mehrelementbestimmung:

Untersuchungsmethode: AKE1.1, AKEG2.1

Standardreihe			
	[mg/l]		
Blank:	0,0		
S1:	0,5		
S2:	1,0		
S3:	1,5		
S4:	2,0		
S5:			
Rekalibrations	1,5		
Standard			

	Al	Ca	Fe	K	Mg	Mn	Na
	[mg/l]						
Blank:	0,0	0,0	0,0	0,0	0,0	0,0	0,0
S1:	5,0	2,5	1,0	0,4	0,5	1,0	0,5
S2:	10,0	5,0	2,0	0,8	1,0	2,0	1,0
S3:	15,0	7,5	3,0	1,2	1,5	3,0	1,5
S4:	20,0	10,0	4,0	1,6	2,0	4,0	2,0
S5:	25,0	12,5		2,0			

<u>Kontrollstandard</u>
K30 (QC 1) 1,5 mg/l Mg

<u>Kalibrierdaten</u>			
\mathbb{R}^2	0,999		
Char. Konz. 0,02 mg/l/ 1 % A			

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung AAS (Fl) 4.1 beschrieben. Die Geräteparameter werden am AAS-Gerät durch Laden der Methode CaCagesAAS7.1 eingestellt. Sie sind im Anhang 1 zusammengestellt.

Der Blank und der Stammlösungsstandard werden an die entsprechenden Positionen des Probengebertellers gestellt. Die Einzelstandards werden durch den Probengeber hergestellt.

Der Blank, der Kontrollstandard, die Verdünnungslösung des Probengebers und die Proben werden im Verhältnis 1:50 mit Cäsiumchlorid-Lanthanchlorid-Pufferlösung nach Schinkel, sowie im gleichen Verhältnis mit 1 %-iger Konditionierungslösung versetzt. In die Probengefässe wird zuerst die notwendige Menge Schinkel-Lösung und Konditionierungslösung pipettiert und anschliessend die Probe zugegeben. Als Verdünnungsfaktor muss in der Probentabelle 1,04 eingegeben werden.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K30 (QC1); Messung nach der Eichung, alle 15 Proben und nach jeder Rekalibration; erlaubte Abweichung 5 %.
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die gemessenen Mg-Konzentrationen werden in die entsprechenden Datenblätter des LIMS eingetragen.

Geräteparameter AAS(Fl) Analytic Jena Vario 6

Spektrometer

Linie	285.2 nm	Spalt	1.2 nm
Lampen-Typ	HKL	Lampenstrom	5.0 mA
Integrations-Art	wiederh. Mittelw.	Integr. Zeit	1.5 s
PMT	264.0 V	D2HKL-Strom	
AZ-Zeit	5.0 s	Peak-Glättung	aus/aus
Verzögerung	7.0 s	Betriebsart	Einstrahl
HC/BC-Verst.		HC/BC-Tastverh.	2:6

Flamme

Flamme	C2H2/Luft		
Brenngas-Fluss	65 L/h	Ges. Ox.	510 NL/h
Brennertyp	50 mm		
Br.Höhe	6 mm	Br.Winkel	0 °
Zerstäuber-Rate	7.0 mL/min		

Probengeber

Probengeber	AS52	Teller-Typ	53 Positionen
Arbeitsweise	Kontinuierlich	Spülen	nach jeder Probe
Spülzeit	10 s		
Injekt.Schalter	aktiv	Ladezeit	
Injekt.Zeit		Probenvolumen	
Verdünnung	aus	Zugabe IonPuffer	
vor Verdünnung	keine Wdh.	Mischgefäß spülen	
Zugabe IonPuffer	aus		

QC-Parameter

QC-Art	KonzKontrolle		
QC Kontrollpr.1	QC 1	QC Kontrollpr.2	
Konz.	1.50 mg/L	Konz.	
Fehlergrenze	±3%	Fehlergrenze	
Messwiederh.	aus	Reaktion	Reka!ib.+Fortsetz.
Aufstock-Probe			
Konz. Aufstock-Pr.		Vol. Aufstock-Pr.	
Kalibr.Std. Nr.	1	Erwart. Blindw. Ex	
		Reaktion	Marke + Fortsetz.
QC Präzision	ein	Fehlergrenzen	
R%-Kontrolle	markieren	RSD-Grenze	3.0 %
		R%-Grenze	4.0

Mg

Anhang Nr. 1 für Mg Mgges AAS(Fl) Vario6 MgMggesAAS7.1

Kalibrations-Bedingungen

Kalib.Verfahren	Standard-Kalibr.	KalibEinheit	mg/L
Anzahl Std.	4	Umrechnungs-Fak.	1
Art d. RefProben		Herstellung Std.	durch Sampler
		Blindwertkorr.	aus
		Abgl. vor Bezugslösg.	aus
		Rekalibrier-Std. Nr.	3
Ausgabe-Einheit	mg/L	Umrechnungs-Fak.	1
Kalib.Statistik	Mittelwert	Messzyklen	4
		Leerzyklen	1
Stammlösung 1	10.0 mg/L	Stammlösung 2	
Stammlösung 3		Stammlösung 4	
Typ d. Kal. Kurve	automatisch	Achsenabschnitt	berechnen
Wichtung	aus	Grubbs-Stat.	ein (Mark.!)
Prüf. d. Kal.Kurve	1 x neu vermessen		

Proben-Statistik

Stat.Art	Mittelwert	Messzyklen	4
Sign.Niveau	95.4 %	Leerzyklen	1
Grubbs-Stat.	ein (Mark.!)		

Anhang Nr.	1	für	Mg	Mgges	AAS(Fl) Vario6	MgMggesAAS7.1
------------	---	-----	----	-------	----------------	---------------

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Mg	Mgges	IC	MgMggesIC2.1	-	1

15.12.2007

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode			BG	OMG
ANULLIC				8,25
geeignet für:				
Boden				
Humus				
Pflanze				
Wasser	ANULLIC			
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 14911			
HFA	D36.1.4.6			
HFA-Code	D·7·1·3·4·-1·1			

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Kationen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Kationen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit Carboxylgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine verdünnte Salpetersäurelösung verwendet. Diese hat eine außerordentlich hohe Ionenäguivalentleitfähigkeit. Daher nimmt auf Grund der geringeren Ionenäquivalentleitfähigkeit der getrennten Kationen die Leitfähigkeit ab, wenn die Kationen die Trennsäule mit dem Eluenten verlassen und in die Leitfähigkeitsdetektorzelle gelangen. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Kations geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 0,25 ppm) wird das Kationen-Chromatogramm doppelt aufgenommen und mit unterschiedlichen Eichkurven für den hohen Messbereich (= linear durch Null) und den niedrigen Messbereich (= linear) ausgewertet. In dem 2-Kanal-System werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Säule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC2.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S17.1: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC2.1	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Mg	Mgges	IC	MgMggesIC2.1	-	2

Analysengeräte und Zubehör:

- 2-Kanal-IC-Anlage Fa. Metrohm, bestehend aus:
- 2 IC-Pumpen 818
- 2 Leitfähigkeitsdetektoren 819

IC-Separation-Center 820 mit Säulenofen

IC-Liquid-Handling-Einheit 833

2 Pulsationsdämpfer

IC-Eluent-Degaser 837

IC-Probengeber 838

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5

b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen:

a. Anionen: 20 µl

b. Kationen: 50 µl

Software:

a. zur Anlagensteuerung: IC-Net

b. zur Chromatogrammauswertung: MagIC-Net

Chemikalien:

Mg

Salpetersäure, HNO₃, 1 M

Lösungen:

Eluent Kationen: In einen 2 l-Messkolben werden 10 ml 1 M Salpetersäure gegeben und mit

H₂O demin. reinst auf 2 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

1 g/l Mg: 1 g/l Magnesium als Magnesiumnitrat \Rightarrow 1 g/l Mg

Stammlösung II: Je 1 ml K-, NH₄-, Na-, Ca-, und Mg-Stammlösung werden in einen 100 ml-

Messkolben mit H₂O demin. reinst auf 100 ml aufgefüllt.

 \Rightarrow 0,01 g/l K, NH_4 , Na, Ca, Mg.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Mg	Mgges	IC	MgMggesIC2.1	-	3

Haltbarkeit:

Die Stammlösung II ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

<u>Kontrollstandard</u>		
K1IC:	2,0 mg/l Mg	
K2IC:	0,1 mg/l Mg	

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S17.1) mit insgesamt 19 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung II und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC2.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (2,0 mg/l Mg), K2IC (0,1 mg/l Mg), Messung
		nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1IC mit-
		gemessen; erlaubte Abweichung 5 %.

Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Magnesiumkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr. 1 für Mg Mgges IC MgMggesIC2.1

Chromatogramm der Kationenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP6.1	1

1.7.2000

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode	NG	BG	OMG
AKT2.1	0,005	0,016	30

geeignet für:

<u> </u>	
Boden	AKT2.1
Humus	
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D36.1.5.2
HFA-Code	D;4;2;2;-1;-1;2

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000 °C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit verschiedenen Photozellen gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Um eine möglichst hohe Messempfindlichkeit zu erreichen, wird eine axial gestellte Argonplasmafackel eingesetzt, was zu einer 2-5-fach höheren Signalintensität führt (günstigeres Signal-Rausch-Verhältnis).

Störungen:

Durch Matrixeinflüsse kommt es zu Verschiebungen des Untergrundes. Diese werden durch Setzen eines Untergrundkorrekturpunktes an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Linienstörungen und ihre Korn	rektur Montaser, Golightly: Inductively Coupled
Sammelanhang S9.3: Geräteparameter f	ür ver- Plasmas in Analytical Atomic Spectrometry;
schiedene Method	len Weinheim, 1987
Kurzanleitung ICP2.1	
Kurzanleitung ICP-DV1.2/2.1	

Element Form Gerät		Methoden-Nr.	Seite	
Mg	Mgges	ICP(sim)	MgMggesICP6.1	2

Analysengeräte und Zubehör:

ICAP 61E Trace Analyser der Fa. Thermo Jarrell Ash mit axialer Plasmafackel Zyklonmischkammer und Meinhard Zerstäuber Argonbefeuchter der Fa. Thermo Jarrell Ash Probengeber TJA 300 (Proben – Rack Typ 70) Rechner mit Software Thermospec (Version 6.0) Multipette der Fa. Eppendorf

Chemikalien:

Lösungen:

Eichung/Standards:

Stammlösungen:

AAS-Standard (Fa. B. Kraft) => 5 g/l Mg:

Ca, K, Na: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

In einen 250 ml-Glaskolben werden 2,5 ml Ca-, jeweils 1 ml Mg- und K-Standardlösung AKT2:

> sowie 0,5 ml Na- der 5 g/l enthaltenden Stammlösungen gegeben und mit der Perkolationslösung (unbedingt gleiche Lösung wie im Perkola-

tionslauf verwenden) auf 250 ml aufgefüllt.

=>50 mg/l Ca, 20 mg/l Mg, 20 mg/l K, 10 mg/l Na.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mg auch andere Elemente enthalten (siehe Sammelanhang S9.3), für die verschiedenen Methoden verwendet:

<u>Standards</u>		
Blank	0 mg/l Mg	
AKT2	20 mg/l Mg	

<u>Kontrollstandard</u>			
K5	10 mg/l Mg		

Element Form Gerät		Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP6.1	3

Methode:	AKT
Linie:	Mg
Wellenlänge:	285.210
Messbereich [mg/l]:	BG - OMG
Standards:	Blank
	AKT2
Bemerkungen:	Untergrund-
	korrektur:
	-24

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP2.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S9.3 zusammengestellt.

Die Messung der Proben erfolgt ohne Y als internem Standard, weil sich die Y- und die Barium-Triäthanollösung schlecht mischen. Deshalb wird der für andere Methoden nötige Ansaugschlauch für die Y-Lösung abgeklemmt.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K5; Messung nach der Eichung, alle 24 Proben und nach jeder Eichungswiederholung; erlaubte Abwei-
		chung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die gemessenen Mg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm ICPUNKER bzw. RELAQS (siehe Kurzanleitung ICP-DV1.2 bzw. 2.1) bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP6.1	4

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP7.1	1

15.02.2003

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL1.1, UFBL1.1, DAN1.1, DAN2.2	0,002	0,006	25

geeignet für:

<u> </u>	
Boden	EXT1:2H2O1.1, GBL1.1, UFBL1.1
Humus	
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D36.1.4.2 / D36.1.6.2
HFA-Code	D;4;1;2;2;-1;2 (285,213 nm), D;4;1;2;2;-1;0 (279,074 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei Mg den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Gesamtmatrixstörungen werden durch CsCl-Zusatz minimiert. Viskositätsschwankungen aufgrund unterschiedlicher Gesamtsalzkonzentrationen werden durch Messung mit internem Standard ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenvergleich	Nölte: ICP Emissionsspektroskopie für
Sammelanhang S13.1: Geräteparameter für ver-	Praktiker; Weinheim, 2002
schiedene Methoden	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP3.1	Plasmas in Analytical Atomic Spectrometry;
Kurzanleitung ICP-DV2.1	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP7.1	2

Analysengeräte und Zubehör:

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Zyklonmischkammer und Meinhard-Zerstäuber Standard-Injektorrohr 1,5 mm für wässrige und salpetersaure Lösungen Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva Mischsystem für internen Standard und Matrixanpassung Multipette der Fa. Eppendorf

Chemikalien:

Cäsiumchlorid (CsCl) p.a. Salpetersäure (HNO₃), 65 %, p.a Scandium (Sc) Standardlösung 1 g/l für ICP in HNO₃ 2 mol/l

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Scandium/Cäsium-Lösung: 1,26 g CsCl werden in einem 1 l-Glaskolben eingewogen, mit 10 ml

Scandium-Standardlösung sowie 30 ml konz. HNO3 versetzt und mit

H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mg: AAS-Standard (Fa B. Kraft) => 5 g/l Mg

Al, Ca, Fe, K, Mn, Na, P, S: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung HE10: In einen 250 ml-Glaskolben werden 0,25 ml der Mn-, je 0,5 ml der Fe-

und Mg-, sowie je 1 ml der K-, Na-, P- und S-Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO_3 65 % p.a. versetzt und mit H_2O

bidemin. auf 250 ml aufgefüllt.

=> 5 mg/l Mn, 10 mg/l Fe und Mg, 20 mg/l K, Na, P und S.

Standardlösung HE20: In einen 250 ml-Glaskolben werden jeweils 1 ml der Al-, Ca-, Mg- und

Mn-Stammlösungen gegeben. Es werden 7,5 ml HNO₃ 65 % p.a. zuge-

geben und mit H₂O bidemin. auf 250 ml aufgefüllt.

=> 20 mg/l Al, Ca, Mg und Mn.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP7.1	3

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mg auch andere Elemente enthalten (siehe Sammelanhang S13.1), für die verschiedenen Methoden verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Mg
HE10	10,0 mg/l Mg
HE20	20,0 mg/l Mg

	Kontrollstandard
K1	10,0 mg/l Mg

		,
Methode:	ANULL	ANULL
	EXT1:2H2O1.1	EXT1:2H2O1.1
	GBL1.1	GBL1.1
	UFBL1.1	UFBL1.1
	DAN1.1Pflanze	DAN1.1Pflanze
	DAN2.2Pflanze	DAN2.2Pflanze
Linie:	Mg	Mg
Wellenlänge:	285.213	279.074
Messbereich [mg/l]:	BG – 10	10 – OMG
<u>Standards:</u>	Blank	HE10
	HE10	HE20
Bemerkungen:	Untergrund-	Untergrund-
	korrektur:	korrektur:
	Pos. links: 1	Pos. links: 1
	Pixelanzahl:1	Pixelanzahl: 1
	Pos. rechts: 15	Pos. rechts: 21
	Pixelanzahl:2	Pixelanzahl: 1

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml HNO₃ 65 %, p.a. in 250 ml).

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S13.1 zusammengestellt.

Die Messung der Proben erfolgt mit Zusatz von CsCl zur Erhöhung der Salzkonzentration und Vereinheitlichung der Probenmatrix sowie mit Zusatz von Sc als internem Standard. Dazu wird über ein T-Stück und einen 2. Kanal der Schlauchpumpe zur Probenzuführung die Scandium/Cäsium-Lösung im Verhältnis Probe:Lösung von 10:1 der Probe kontinuierlich zudosiert und über eine Glasrohrspirale mit 5 Windungen gemischt.

Wässrige Proben werden vor dem Messen mit 225 µl HNO₃ konz. pro 7,5 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

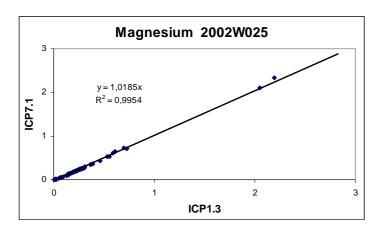
Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP7.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung		
Kontrollstandard QKSt.1.1		K1; Messung nach der Eichung, alle 16 Proben und		
		nach jeder Eichungswiederholung; erlaubte Abwei-		
		chung 3 %		
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie		
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung		
IBW				
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung		
NFV				
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung		
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung		
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1		
		mitgemessen; erlaubte Abweichung 5 %		

Auswertung/Datendokumentation:


Die gemessenen Mg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Anhang Nr. 1 für Mg Mgges ICP(sim) MgMg

Methodenvergleich ICP ICAP61E mit ICP Iris Advantage

Im folgenden sind Vergleichsmessungen zwischen der ICP-Methode MgMggesICP1.3 und der hier beschriebenen Methode dargestellt.

1.) Zusammenfassung der Vergleichsmessungen von ca. 70 Proben einer Wasser-Serie: Die Grafik zeigt den Vergleich zwischen der ICP1.3-Messung mit der ICP7.1-Messung. Die Vergleichbarkeit der beiden Messungen ist gut. Die Abweichung liegt bei maximal 2 %.

Anhang Nr.	1	für	Mg	Mgges	ICP(sim)	MgMggesICP7.1
------------	---	-----	----	-------	----------	---------------

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP7.2	1

1.03.2006

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL1.1, UFBL1.1, DAN1.1, DAN2.2	0,002	0,007	25

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1, UFBL1.1
Humus	
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D36.1.4.2 / D36.1.6.2
HFA-Code	D;4;1;2;-1;-1;2 (285,213 nm), D;4;1;2;-1;-1;0 (279,074 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S13.2: Geräteparameter für ver-	Nölte: ICP Emissionsspektroskopie für
schiedene Methoden	Praktiker; Weinheim, 2002
Kurzanleitung ICP3.1	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP-DV2.1	Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

M	g

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP7.2	2

Analysengeräte und Zubehör:

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Zyklonmischkammer und Meinhard-Zerstäuber Standard-Injektorrohr 1,5 mm für wässrige und salpetersaure Lösungen Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva Multipette der Fa. Eppendorf

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mg: ICP-Standard (Fa. B. Kraft => 1 g/l Mg
Mg: AAS-Standard (Fa. B. Kraft) => 5 g/l Mg
Al, Ca, Fe, K, Mn, Na: ICP-Standard (Fa. B. Kraft) => jeweils 1 g/l
Al, Ca, Fe, K, Mn, Na, P, S: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung HE1: In einen 500 ml-Glaskolben werden je 0,5 ml der K- und Na, sowie je

0,25 ml der Al, Ca, Fe, Mg und Mn enthaltenden ICP-Stammlösungen gegeben. Dazu kommen je 0,1 ml der P- und S- enthaltenden AAS-Stammlösungen. Der Kolben wird mit 15 ml HNO_3 65 % p.a. versetzt

und mit H₂O bidemin. auf 500 ml aufgefüllt.

=>0,5 mg/l Al, Ca, Fe, Mg und Mn, 1 mg/l K, Na, P und S.

Standardlösung HE10: In einen 500 ml-Glaskolben werden 0,5 ml der Mn-, je 1 ml der Fe- und

Mg-, sowie je 2 ml der K-, Na-, P- und S - AAS-Stammlösungen gegeben. Der Kolben wird mit 15 ml HNO₃ 65 % p.a. versetzt und mit

H₂O bidemin. auf 500 ml aufgefüllt.

=> 5 mg/l Mn, 10 mg/l Fe und Mg, 20 mg/l K, Na, P und S.

Standardlösung HE20: In einen 500 ml-Glaskolben werden jeweils 2 ml der Al-, Ca-, Mg- und

Mn- AAS-Stammlösungen gegeben. Es werden 15 ml HNO₃ 65 % p.a.

zugegeben und mit H₂O bidemin. auf 500 ml aufgefüllt.

=> 20 mg/l Al, Ca, Mg und Mn.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP7.2	3

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mg auch andere Elemente enthalten (siehe Sammelanhang S13.2), für die verschiedenen Methoden verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Mg
HE1	0,5 mg/l Mg
HE10	10,0 mg/l Mg
HE20	20,0 mg/l Mg

	Kontrollstandard
K1	10,0 mg/l Mg

	I		
Methode:	ANULL	ANULL	ANULL
	EXT1:2H2O1.1	EXT1:2H2O1.1	EXT1:2H2O1.1
	GBL1.1	GBL1.1	GBL1.1
	UFBL1.1	UFBL1.1	UFBL1.1
	DAN1.1Pflanze	DAN1.1Pflanze	DAN1.1Pflanze
	DAN2.2Pflanze	DAN2.2Pflanze	DAN2.2Pflanze
Linie:	Mg	Mg	Mg
Wellenlänge:	285.213	285.213	279.074
Messbereich [mg/l]:	BG – 1	1 – 10	10 – OMG
<u>Standards:</u>	Blank	Blank	HE10
	HE1	HE10	HE20
Bemerkungen:	Untergrund-	Untergrund-	Untergrund-
	korrektur:	korrektur:	korrektur:
	Pos. links: 1	Pos. links: 1	Pos. links: 1
	Pixelanzahl:1	Pixelanzahl:1	Pixelanzahl: 1
	Pos. rechts: 15	Pos. rechts: 15	Pos. rechts: 21
	Pixelanzahl:2	Pixelanzahl:2	Pixelanzahl: 1

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml HNO₃ 65 %, p.a. in 250 ml).

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S13.2 zusammengestellt.

Wässrige Proben werden vor dem Messen mit 225 µl HNO₃ konz. pro 7,5 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP7.2	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard QKSt.1.1		K1; Messung nach der Eichung, alle 16 Proben und	
		nach jeder Eichungswiederholung; erlaubte Abwei-	
		chung 3 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung	
IBW			
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung	
NFV			
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung	
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung	
Standardmaterial QStM1.1		Alle 50 Proben wird der Standard Wasser HE1	
		mitgemessen; erlaubte Abweichung 5 %.	

Auswertung/Datendokumentation:

Die gemessenen Mg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP7.3	1

1.03.2008

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode	NG	BG	OMG
ANULL, ANULLIC, EXT1:2H2O1.1, GBL1.1, UFBL1.1, KOMPAL1.1, DAN1.1, DAN2.2	0,002	0,007	25

geeignet für:

<u> </u>				
Boden	EXT1:2H2O1.1, GBL1.1, UFBL1.1			
Humus				
Pflanze	DAN1.1, DAN2.2			
Wasser	ANULL, ANULLIC			

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D36.1.4.2 / D36.1.6.2
HFA-Code	D;4;1;2;-1;-1;2

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S13.3: Geräteparameter für ver-	Nölte: ICP Emissionsspektroskopie für
schiedene Methoden	Praktiker; Weinheim, 2002
Kurzanleitung ICP3.1	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP-DV2.1	Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	
Mg	Mgges	ICP(sim)	MgMggesICP7.3	2

Analysengeräte und Zubehör:

Iris Advantage der Fa. Thermo Elemental, mit radialer Plasmafackel Zyklonmischkammer und Meinhard-Zerstäuber Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva Multipette der Fa. Eppendorf

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mg: Standard (Fa. B. Kraft) \Rightarrow 5 g/l Mg

Al, Ca, Fe, K, Mn,

Na, P, S: Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung HE 0.5: In einen 1000 ml Glas-Kolben werden je 0,1 ml der Al-, Mg-, Mn-, Na-

und S-, 1 ml der K-, 2 ml der Fe-, sowie je 4 ml der Ca- und P - Stammlösungen gegeben. Der Kolben wird mit 30 ml HNO₃ 65 % p.a.

versetzt und mit H₂O bidemin. auf 1000 ml aufgefüllt.

=> 0,5 mg/l Al, Mg, Mn, Na und S, 5 mg/l K, 10 mg/l Fe, 20 mg/l Ca

und P.

Standardlösung HE 2.5: In einen 1000 ml-Glaskolben werden je 0,5 ml der Al-, Ca-, Fe-, K-, Mn-

und S-, je 2 ml der Mg- und P-, sowie 4 ml der Na - Stammlösungen gegeben. Der Kolben wird mit 30 ml HNO₃ 65 % p.a. versetzt und mit

H₂O bidemin. auf 1000 ml aufgefüllt.

=> 2,5 mg/l Al, Ca, Fe, K, Mn und S, 10 mg/l Mg und P, 20 mg/l Na.

Standardlösung HE 5: In einen 1000 ml-Glaskolben werden je 0,1 ml der Ca-, Fe- und K-, je 1

ml der Mn-, Na-, P- und S-, sowie jeweils 4 ml der Al- und Mg - Stammlösungen gegeben. Es werden 30 ml HNO₃ 65 % p.a. zugegeben

und mit H₂O bidemin. auf 1000 ml aufgefüllt.

=> 0,5 mg/l Ca, Fe und K, 5 mg/l Mn, Na, P und S, 20 mg/l Al und Mg.

Standardlösung HE 10: In einen 1000 ml-Glaskolben werden 0,1 ml der P-, 0,5 ml der Mg-, je 1

ml der Al- und Fe, je 2 ml der Ca-, K-, Mn- und Na-, sowie 4 ml der S- Stammlösungen gegeben. Es werden 30 ml HNO $_3$ 65 % p.a. zugegeben

und mit H₂O bidemin. auf 1000 ml aufgefüllt.

	Mg	Mgges	ICP(sim)	MgMggesICP7.3	3
Standardlösung HE 20: In de		sung HE 20	Na, 20 mg/l S In einen 1000 ml-Glaskolben der Ca- und Mg-, 1,5 ml der 4 ml der K- und Mn-Stamml 65 % p.a. zugegeben und mit l	5 mg/l Al und Fe, 10 mg/l Ca, K, l werden je 0,5 ml der Na- und P-, Fe-, je 2 ml der Al- und S-, sowie ösungen gegeben. Es werden 30 ml H ₂ O bidemin. auf 1000 ml aufgefüllt Ca und Mg, 7,5 mg/l Fe, 10 mg/l Al	je 1 ml jeweils I HNO ₃

Methoden-Nr.

Seite

Gerät

Einzelbestimmung/Mehrelementbestimmung:

Element

Form

Es werden folgende Standardlösungen, die neben Mg auch andere Elemente enthalten (siehe Sammelanhang S13.3), für die verschiedenen Methoden verwendet:

Standards:		
Blank	0,0 mg/l Mg	
HE 0.5	0,5 mg/l Mg	
HE 2.5	10,0 mg/l Mg	
HE 5	20,0 mg/l Mg	
HE 10	2,5 mg/l Mg	
HE 20	5,0 mg/l Mg	

	Kontrollstandard:
K1	10,0 mg/l Mg

ANULL	ANULL
ANULLIC	ANULLIC
EXT1:2H2O1.1	EXT1:2H2O1.1
GBL1.1	GBL1.1
UFBL1.1	UFBL1.1
DAN1.1Pflanze	DAN1.1Pflanze
DAN2.2Pflanze	DAN2.2Pflanze
Mg	Mg
285.213	285.213
BG - 2,5	2,5 – OMG
Blank	HE 5
HE 0.5	HE 10
HE 10	HE 20
Untergrund-	Untergrund-
Korrektur:	Korrektur:
Pos. links: 1	Pos. links: 1
Pixelanzahl:1	Pixelanzahl:1
Pos. rechts: 15	Pos. rechts: 15
Pixelanzahl:2	Pixelanzahl:2
	ANULLIC EXT1:2H2O1.1 GBL1.1 UFBL1.1 DAN1.1Pflanze DAN2.2Pflanze Mg 285.213 BG - 2,5 Blank HE 0.5 HE 10 Untergrund- Korrektur: Pos. links: 1 Pixelanzahl: 1 Pos. rechts: 15

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml HNO₃ 65 %, p.a. in 250 ml).

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP7.3	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S13.3 zusammengestellt.

Wässrige Proben werden vor dem Messen mit 180 µl HNO₃ konz. pro 6 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 20 Proben und
		nach jeder Eichungswiederholung; erlaubte Abwei-
		chung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1
		mitgemessen; erlaubte Abweichung 5 %

Auswertung/Datendokumentation:

Die gemessenen Mg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP8.1	1

10.03.2003

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode		BG	OMG
DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1	0,002	0,006	75

geeignet für:

Boden	DAN1.1, DAN2.2, DANF1.1, OAKW1.1
Humus	DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885	
HFA	D36.1.6.2	
HFA-Code	D;4;1;2;2;-1;2 (285,213 nm), D;4;1;2;2;-1;0 (279,074 nm)	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei Mg den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse sowie Störungen durch Linien der Elemente Fe, Mn und Ti werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle ausgeglichen. Gesamtmatrixstörungen werden durch CsCl-Zusatz minimiert. Viskositätsschwankungen aufgrund unterschiedlicher Gesamtsalzkonzentrationen werden durch Messung mit internem Standard ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Linienstörungen und ihre Korrektur	Nölte: ICP Emissionsspektroskopie für
Sammelanhang S14.1: Geräteparameter für ver-	Praktiker; Weinheim, 2002
schiedene Methoden	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP3.1	Plasmas in Analytical Atomic Spectrometry;
Kurzanleitung ICP-DV2.1	Weinheim, 1987

M	g

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP8.1	2

Analysengeräte und Zubehör:

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Standard-Injektorrohr 1,5 mm für wässrige und salpetersaure Lösungen Zyklonmischkammer und Meinhard-Zerstäuber Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva Mischsystem für internen Standard und Matrixanpassung Multipette der Fa. Eppendorf

Chemikalien:

Cäsiumchlorid (CsCl) p.a. Salpetersäure (HNO₃), 65 %, p.a. Scandium (Sc)-Standardlösung 1 g/l für ICP in HNO₃ 2 mol/l

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Scandium/Cäsium-Lösung: 1,26 g CsCl werden in einem 1 l-Glaskolben eingewogen, mit 10 ml

Scandium-Standardlösung sowie 30 ml konz. HNO₃ versetzt und mit H₂O

demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mg: AAS-Standard (Fa B. Kraft) => 5 g/l Mg

Al, Ca, Fe, K, Mn, Na, P, S: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung A1: In einen 250 ml-Glaskolben werden 0,25 ml der Mn, je 0,5 ml der Fe-

und Mg-, sowie je 1 ml der Na-, P-, und S-Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO_3 65 % p.a. versetzt und mit H_2O bidemin.

aufgefüllt.

=> 5 mg/l Mn,10 mg/l Fe und Mg, 20 mg/l Na, P und S.

Standardlösung A2: In einen 250 ml-Glaskolben werden je 1 ml der Al-, K- und Mn- sowie

0,5 ml der Ca-Stammlösung gegeben. Der Kolben wird mit 7,5 ml HNO₃

65 % p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 20 mg/l Al, K und Mn, 10 mg/l Ca.

Standardlösung A3: In einen 250 ml-Glaskolben werden jeweils 2,5 ml der Al-, Ca-, Fe-, K-

und Mg-Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO₃ 65

% p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 50 mg/l Al, Ca, Fe, K und Mg.

Standardlösung A4: In einen 250 ml-Glaskolben werden jeweils 5 ml der Al-, Ca- und Fe-

Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % p.a.

versetzt und mit H₂O bidemin. aufgefüllt.

=> 100 mg/l Al, Ca und Fe.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP8.1	3

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mg auch andere Elemente enthalten (siehe Sammelanhang S14.1), für die verschiedenen Methoden verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Mg
A1	10,0 mg/l Mg
A2	0,0 mg/l Mg
A3	50,0 mg/l Mg
A4	0.0 mg/l Mg

	Kontrollstandard
K1	10,0 mg/l Mg

Methode:	DAN1.1Humus	DAN1.1Humus
	DAN2.2Humus	DAN2.2Humus
	DANF1.1Boden	DANF1.1Boden
	DANF1.1Humus	DANF1.1Humus
	OAKW1.1Boden	OAKW1.1Boden
	OAKW1.1Humus	OAKW1.1Humus
	OAKWEG1.1	OAKWEG1.1
Linie:	Mg	Mg
Wellenlänge:	285.213	279.074
Messbereich [mg/l]:	BG – 10	10 – OMG
<u>Standards:</u>	Blank	A1
	A1	A3
Bemerkungen:	<u>Untergrund-</u>	<u>Untergrund-</u>
	korrektur:	korrektur:
	Pos. links: 1	Pos. links: 1
	Pixelanzahl: 1	Pixelanzahl: 1
	Pos. rechts: 21	Pos. rechts: 15
	Pixelanzahl: 1	Pixelanzahl:2

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml HNO₃ 65 %, p.a. in 250 ml).

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S14.1 zusammengestellt.

Die Messung der Proben erfolgt mit Zusatz von CsCl zur Erhöhung der Salzkonzentration und Vereinheitlichung der Probenmatrix sowie mit Zusatz von Sc als internem Standard. Dazu wird über ein T-Stück und einen 2. Kanal der Schlauchpumpe zur Probenzuführung die Scandium/Cäsium-Lösung im Verhältnis Probe:Lösung von 10:1 der Probe kontinuierlich zudosiert und über eine Glasrohrspirale mit 5 Windungen gemischt.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP8.1	4

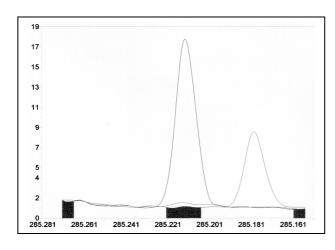
Königswasseraufschlusslösungen (OAKW) werden vor dem Messen mit einem Dilutor 1:5 verdünnt.

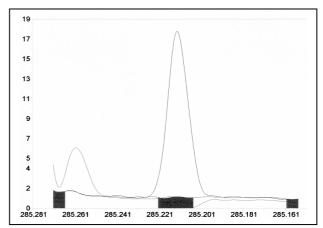
Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

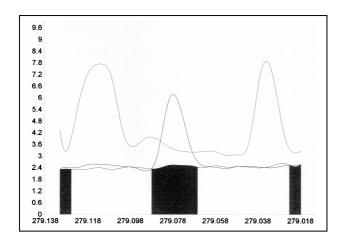
Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 16 Proben und	
		nach jeder Eichungswiederholung; erlaubte Abwei-	
		chung 3 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial	QStM1.1	Messung der Standardaufschlusslösungen ISE974-	
		LösungDANF und ISE974LösungKöWa; erlaubte	
		Abweichung bei HE 5 %, bei SM 10 % vom Sollwert	

Auswertung/Datendokumentation:


Die gemessenen Mg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.



Linienstörungen und ihre Korrektur:


Fe (100 ppm) Störung bei Mg285.213 (0,2 ppm)

Ti (50 ppm) Störung bei Mg285.213 (0,2 ppm)

Mn (100 ppm) Störung bei Mg279.074 (0,2 ppm)

Mg

Anhang Nr.	1	für	Mg	Mgges	ICP(sim)	MgMggesICP8.1
------------	---	-----	----	-------	----------	---------------

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP8.2	1

01.05.2005

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode	NG	BG	OMG
DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1	0,002	0,006	75

geeignet für:

Boden	DAN1.1, DAN2.2, DANF1.1, OAKW1.1
Humus	DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D36.1.6.2
HFA-Code	D;4;1;2;2;-1;2 (285,213 nm), D;4;1;2;2;-1;0 (279,074 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei Mg den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse sowie Störungen durch Linien der Elemente Fe und Ti werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Gesamtmatrixstörungen werden durch CsCl-Zusatz minimiert. Viskositätsschwankungen aufgrund unterschiedlicher Gesamtsalzkonzentrationen werden durch Messung mit internem Standard ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Linienstörungen und ihre Korrektur	Nölte: ICP Emissionsspektroskopie für
Sammelanhang S14.2: Geräteparameter für ver-	Praktiker; Weinheim, 2002
schiedene Methoden	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP3.1	Plasmas in Analytical Atomic Spectrometry;
Kurzanleitung ICP-DV2.1	Weinheim, 1987

einoaen-Nr.	Seite	
AggesICP8.2	2	

C -: 4 -

Analysengeräte und Zubehör:

Form

Mgges

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Standard-Injektorrohr 1,5 mm für wässrige und salpetersaure Lösungen Zyklonmischkammer und Meinhard-Zerstäuber

Gerät ICP(sim)

Probengeber 222 XL der Fa. Gilson

Rechner mit Software Teva

Mischsystem für internen Standard und Matrixanpassung

Multipette der Fa. Eppendorf

Dilutor der Fa. Hamilton Microlab plus 1000

Chemikalien:

Element

Mg

Cäsiumchlorid (CsCl) p.a.

Salpetersäure (HNO₃), 65 %, p.a.

Salpetersäure (HNO₃), 65 %, suprapur.

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Scandium/Cäsium-Lösung: 1,26 g CsCl werden in einem 1 l-Glaskolben eingewogen, mit 10 ml

Scandium-Standardlösung sowie 30 ml konz. HNO₃ versetzt und mit H₂O

MgN

demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

AAS-Standard (Fa B. Kraft) => 5 g/l Mg Mg:

ICP-Standards (Fa. B. Kraft) => 1 g/l Mg

Al, Ca, Fe, K, Mn, Na, P, S: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Ti, Zn: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Standardlösungen:

Standardlösung A1SM: In einen 250 ml PFA-Kolben werden je 2,5 ml der Al- und Mg-, 0,25 ml

> der Cd-, Co-, Cr-, Cu- und Ni- sowie 0,5 ml der Zn-ICP-Stammlösungen, sowie je 1 ml der Na-, P- und S - AAS-Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 %, suprapur versetzt und mit H₂O

bidemin. aufgefüllt.

=> 20 ppm Na, P und S, 10 ppm Al und Mg, je 1000 ppb Cd, Co, Cr, Cu

und Ni, 2000 ppb Zn.

In einen 250 ml PFA-Kolben werden je 2,5 ml der Ca- und Fe-, je 1 ml Standardlösung A2SM:

> der Mn- und Ba- und 0,5 ml der Pb - ICP-Stammlösungen, sowie 0,5 ml der 5 g/l K- AAS-Stammlösung gegeben. Der Kolben wird mit 7,5 ml

HNO₃ 65 % suprapur versetzt und mit H₂O bidemin. aufgefüllt.

=> 10 ppm Ca, Fe und K, 4 ppm Mn und Ba, 2000 ppb Pb.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP8.2	3

Standardlösung A3SM: In einen 250 ml-Glaskolben werden jeweils 2,5 ml der Al-, Ca-, Fe-, K-

und Mg- und 1 ml der Mn - AAS-Stammlösungen, sowie 2,5 ml der 1 g/l Ti- ICP-Stammlösung gegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 %

p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 50 mg/l Al, Ca, Fe, K und Mg 20 ppm Mn, 10 ppm Ti.

Standardlösung A4: In einen 250 ml-Glaskolben werden jeweils 5 ml der Al-, Ca- und Fe-

AAS-Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 %

p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 100 mg/l Al, Ca und Fe.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mg auch andere Elemente enthalten (siehe Sammelanhang S14.2), für die verschiedenen Methoden verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Mg
A1SM	10,0 mg/l Mg
A2SM	0,0 mg/l Mg
A3SM	50,0 mg/l Mg
A4	0,0 mg/l Mg

	Kontrollstandard
K24	10,0 mg/l Mg

Methode:	DAN1.1Humus	DAN1.1Humus
	DAN2.2Humus	DAN2.2Humus
	DAN1.1Boden	DAN1.1Boden
	DANF1.1Boden	DANF1.1Boden
	DANF1.1Humus	DANF1.1Humus
	OAKW1.1Boden	OAKW1.1Boden
	OAKW1.1Humus	OAKW1.1Humus
	OAKWEG1.1	OAKWEG1.1
Linie:	Mg	Mg
Wellenlänge:	285.213	279.074
Messbereich [mg/l]:	BG – 10	10 – OMG
<u>Standards:</u>	Blank	A1SM
	A1SM	A3SM
Bemerkungen:	Untergrund-	Untergrund-
	Korrektur:	Korrektur:
	Pos. links: 1	Pos. links: 1
	Pixelanzahl: 1	Pixelanzahl:1
	Pos. rechts: 21	Pos. rechts: 16
	Pixelanzahl: 1	Pixelanzahl:1

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml HNO₃ 65 %, suprapur in 250 ml).

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP8.2	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S14.2 zusammengestellt.

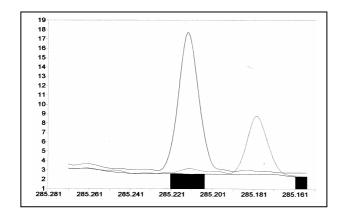
Die Messung der Proben erfolgt mit Zusatz von CsCl zur Erhöhung der Salzkonzentration und Vereinheitlichung der Probenmatrix sowie mit Zusatz von Sc als internem Standard. Dazu wird über ein T-Stück und einen 2. Kanal der Schlauchpumpe zur Probenzuführung die Scandium/Cäsium-Lösung im Verhältnis Probe:Lösung von 10:1 der Probe kontinuierlich zudosiert und über eine Glasrohrspirale mit 5 Windungen gemischt.

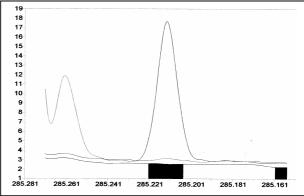
Königswasseraufschlusslösungen (OAKW) werden vor dem Messen mit einem Dilutor 1:5 verdünnt.

Qualitätskontrolle:

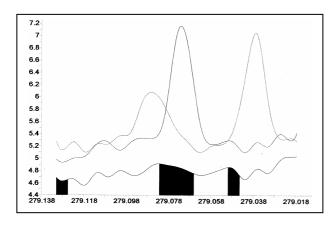
Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung		
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 16 Proben und		
		nach jeder Eichungswiederholung; erlaubte Abwei-		
		chung 3 %		
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie		
Standardmaterial	QStM1.1	Messung der Standardaufschlusslösungen ISE974-		
		LösungDANF und ISE974LösungKöWa; erlaubte		
		Abweichung bei HE 5 %, bei SM 10 % vom Sollwert		


Auswertung/Datendokumentation:


Die gemessenen Mg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Linienstörungen und ihre Korrektur:


Fe (100 ppm) Störung bei Mg285.213 (0,2 ppm)

Ti (40 ppm) Störung bei Mg285.213 (0,2 ppm)

Ti (40 ppm) Störung bei Mg279.074 (0,2 ppm)

Mg

Anhang Nr.	1	für	Mg	Mgges	ICP(sim)	MgMggesICP8.2
------------	---	-----	----	-------	----------	---------------

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP10.1	1

Datum:

01.01.2004

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode	NG	BG	OMG
AKE1.1, AKEG1.1, AKEG2.1	0,002	0,006	25

geeignet für:

Boden	AKE1.1, AKEG1.1, AKEG2.1
Humus	AKEG1.1, AKEG2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D36.1.5.2
HFA-Code	D;4;1;2;-1;-1;2 (285,213 nm), D;4;1;2;-1;-1;0 (279,079 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>	
Anhang 1: Methodenvergleich	Nölte: ICP Emissionsspektroskopie für	
Sammelanhang S15.1: Geräteparameter für ver-	Praktiker; Weinheim, 2002	
schiedene Methoden	Montaser, Golightly: Inductively Coupled	
Kurzanleitung ICP3.1	Plasmas in Analytical Atomic Spectrometry;	
Kurzanleitung ICP-DV2.1	Weinheim, 1987	

Element		Form	Gerät	Methoden-Nr.	Seite
	Mg	Mgges	ICP(sim)	MgMggesICP10.1	2

Analysengeräte und Zubehör:

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Zyklonmischkammer und Meinhard-Zerstäuber Injektorrohr 2 mm für stark salzhaltige Lösungen Argonbefeuchter der Fa. Thermo Elemental Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva Multipette der Fa. Eppendorf

Chemikalien:

keine

Lösungen:

keine

Eichung/Standards:

Stammlösungen:

Mg: AAS-Standard (Fa B. Kraft) => 5 g/l Mg
Al, Ca, Fe, K, Mn, Na: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung AKE, AKEG: In einen 250 ml Glaskolben werden 0,25 ml der Mn-Stammlösung, je 0,5 ml der Fe-, K, Mg- und Na-Stammlösungen, 1 ml der Al- und 2,5 ml der Ca-Stammlösung gegeben. Der Kolben wird mit der jeweiligen Perkolationslösung (unbedingt gleiche Lösungen wie im Perkolationslauf verwenden) bis zur Eichmarke aufgefüllt.

=> 20 mg/l Al, 50 mg/l Ca, 10 mg/l Fe, K, Mg und Na, 5 mg/l Mn.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mg auch andere Elemente enthalten (siehe Sammelanhang S15.1), für die verschiedenen Methoden verwendet:

<u>Standards</u>			
Blank	0,0 mg/l Mg		
AKE	10,0 mg/l Mg		
AKEG			

Kontrollstandard	
K5	10,0 mg/l Mg

3	

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP10.1	3

Methode:	AKE	AKE
	AKEG	AKEG
Linie:	Mg	Mg
Wellenlänge:	285.213	279.074
Messbereich [mg/l]:	BG – 10	10 – OMG
<u>Standards:</u>	Blank	Blank
	AKE	AKE
	AKEG	AKEG
Bemerkungen:	<u>Untergrund-</u>	<u>Untergrund-</u>
	korrektur:	korrektur:
	Pos. links: 4	Pos. links: 1
	Pixelanzahl:2	Pixelanzahl: 1
	Pos. rechts: 16	Pos. rechts: 21
	Pixelanzahl:2	Pixelanzahl: 1

Der Blank wird in der jeweiligen Perkolationslösung angesetzt.

Durchführung:

Den Argonbefeuchter sowie das 2 mm Injektorrohr installieren.

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

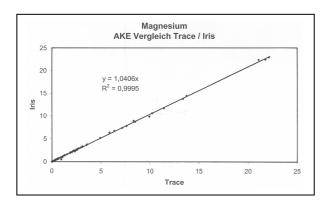
Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S15.1 zusammengestellt.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K5; Messung nach der Eichung, alle 16 Proben und
		nach jeder Eichungswiederholung; erlaubte Abwei-
		chung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:


Die gemessenen Mg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Anhang Nr. 1 für Mg Mgges ICP(sim) MgMggesICP10.1

Methodenvergleich ICP Trace-Analyzer mit ICP Iris Advantage:

Im folgenden sind Vergleichsmessungen zwischen der ICP-Methode MgMggesICP4.2 und der hier beschriebenen Methode dargestellt.

2.) Zusammenfassung der Vergleichsmessungen von ca. 80 Proben einer Boden-Serie: Die Grafik zeigt den Vergleich zwischen der ICP4.2-Messung mit der ICP10.1-Messung. Die Vergleichbarkeit der beiden Messungen ist gut. Die Abweichung liegt bei maximal 4 %.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP13.1	1

Datum:

01.03.2004

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode		BG	OMG
AKT2.1	0,003	0,01	30

geeignet für:

<u> </u>	
Boden	AKT2.1
Humus	
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D36.1.5.2
HFA-Code	D;4;1;2;-1;-1;2 (285,213 nm), D;4;1;2;-1;-1;0 (279,079 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei Mg den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S16.1: Geräteparameter für ver-	Nölte: ICP Emissionsspektroskopie für
schiedene Methoden	Praktiker; Weinheim, 2002
Kurzanleitung ICP3.1	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP-DV2.1	Plasmas in Analytical Atomic Spectrometry;
-	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP13.1	2

Analysengeräte und Zubehör:

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Zyklonmischkammer und Meinhard-Zerstäuber Injektorrohr 2 mm für stark salzhaltige Lösungen Argonbefeuchter der Fa. Thermo Elemental Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva Multipette der Fa. Eppendorf

Chemikalien:

keine

Lösungen:

keine

Eichung/Standards:

Stammlösungen:

Mg: AAS-Standard (Fa B. Kraft) => 5 g/l Mg
Ca, K, Na: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung AKT1: In einen 250 ml-Glaskolben werden 0,5 ml der Na- sowie je 1 ml der Ca-

K- und Mg-Stammlösungen und mit der Perkolationslösung (unbedingt gleiche Lösungen wie im Perkolationslauf verwenden) bis zur Eichmarke

aufgefüllt.

=>10 mg/l Na, 20 mg/l Ca, K und Mg.

Standardlösung AKT2: In einen 250 ml-Glaskolben werden 5 ml der Ca-Stammlösung gegeben

und mit der Perkolationslösung (unbedingt gleiche Lösungen wie im Per-

kolationslauf verwenden) bis zur Eichmarke aufgefüllt.

=>100 mg/l Ca

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mg auch andere Elemente enthalten (siehe Sammelanhang S16.1), für die verschiedenen Methoden verwendet:

	Standards
Blank	0,0 mg/l Mg
AKT1	10,0 mg/l Mg
AKT2	0.0 mg/l Mg

Element	ment Form Gerät		Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP13.1	3

	Kontrollstandard
K30	10,0 mg/l Mg

Methode:	AKE	AKE
	AKEG	AKEG
Linie:	Mg	Mg
Wellenlänge:	285.213	279.074
Messbereich [mg/l]:	BG – 10	10 – OMG
<u>Standards:</u>	Blank	Blank
	AKE	AKE
	AKEG	AKEG
Bemerkungen:	<u>Untergrund-</u>	<u>Untergrund-</u>
	korrektur:	korrektur:
	Pos. links: 4	Pos. links: 1
	Pixelanzahl:2	Pixelanzahl:1
	Pos. rechts: 16	Pos. rechts: 21
	Pixelanzahl:2	Pixelanzahl: 1

Der Blank wird in der jeweiligen Perkolationslösung angesetzt.

Durchführung:

Mg

Den Argonbefeuchter sowie das 2 mm Injektorrohr installieren.

Da Magnesium ohne Zusatz von Sc als internem Standard gemessen wird, müssen das T-Stück und die Glasspirale aus dem Probenzuführungssystem entfernt werden.

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S16.1 zusammengestellt.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K30; Messung nach der Eichung, alle 16 Proben und nach jeder Eichungswiederholung; erlaubte Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die gemessenen Mg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP13.1	4

Element		Form	Gerät	Methoden-Nr.	Seite
	Mg	Mgges	ICP(sim)	MgMggesICP15.1	1

Datum:

01.10.2006

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode	NG	BG	OMG
ANULL, ANULLIC, EXT1:2H2O1.1, GBL1.1, UFBL1.1, DAN1.1, DAN2.2	0,001	0,0034	30

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1, UFBL1.1
Humus	
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL, ANULLIC

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885	
HFA	D36.1.4.2 / D36.1.6.2	
HFA-Code	D;4;1;2;-1;-1;2	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleiche ICP-Iris / iCAP6500 Sammelanhang S19.1: Geräteparameter für verschiedene Methoden Kurzanleitung ICP4.1 Kurzanleitung ICP-DV2.1	Nölte: ICP Emissionsspektroskopie für Praktiker; Weinheim, 2002 Montaser, Golightly: Inductively Coupled Plasmas in Analytical Atomic Spectrometry; Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP15.1	2

Analysengeräte und Zubehör:

iCAP 6500 der Fa. ThermoFisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Laminar Flow Box FBS der Fa. Spetec, für Probengeber

Szintillationsgefässe, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

Multipette der Fa. Eppendorf

250 ml Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, suprapur Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mg: ICP-Standard (Fa B. Kraft) => 1 g/l Mg Mg: AAS-Standard (Fa. B. Kraft) => 5 g/l Mg

Cd, Co, Cr, Cu, Ni, Pb, Zn:

Lösung A: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Cd, Co, Cr, Cu, Ni, Pb, Zn:

Lösung B: 1:10 Verdünnungen von Lösung A => jeweils 0,1 g/l

Al, Ba, Ca, Fe, K, Mn, Na, Ti:

ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mn, Na, P, S:

AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung DAN 1: In einen 250 ml-PFA-Kolben werden 0,05 ml der Cd-, je 0,1 ml der Co-,

Cr- und Ni-, sowie 0,25 ml der Cu - Lösungen B gegeben. Dazu kommen 0,025 ml der Zn-, je 0,25 ml der Fe- und Mn-, sowie 1 ml der Ca - ICP-Standardlösungen. Des Weiteren werden 0,05 ml der P-, je 0,25 ml der K- und S-, sowie je 1 ml der Al-, Mg- und Na - AAS-Standardlösungen zugegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % suprapur versetzt

und mit H₂O bidemin. aufgefüllt.

=> 20 μ g/l Cd, 40 μ g/l Co, Cr und Ni, 100 μ g/l Cu und Zn, 1 mg/l Fe,

Mn und P, 4 mg/l Ca, 5 mg/l K und S, 20 mg/l Al, Mg und Na.

Standardlösung DAN 2: In einen 250 ml-PFA-Kolben werden 0,025 ml der Cd-, je 0,05 ml der

Co-, Cr- und Ni-, sowie je 0,5 ml der Cu- und Pb - Lösungen B gegeben. Dazu kommen 0,075 ml der Zn-, je 0,1 ml der Al-, Fe- und Mg-, 0,25 ml

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP15.1	3

der Ba-, sowie je 2,5 ml der Ca- und Mn - ICP-Standardlösungen. Des Weiteren werden je 0,25 ml der Na- und P-, sowie 1,5 ml der K- AAS-Standardlösungen zugegeben. Der Kolben wird mit 7,5 ml HNO $_3$ 65 % suprapur versetzt und mit $_2$ O bidemin. aufgefüllt.

=> 10 μ g/l Cd, 20 μ g/l Co, Cr und Ni, 200 μ g/l Cu und Pb, 300 μ g/l Zn, 0,4 mg/l Al, Fe und Mg, 1 mg/l Ba, 5 mg/l Na und P, 10 mg/l Ca und Mn, 30 mg/l K.

Standardlösung DAN 3:

In einen 250 ml-PFA-Kolben werden 0,075 ml der Cd,- 0,15 ml der Crund Ni-, 0,2 ml der Co- und 0,75 ml der Cu - Lösungen B gegeben. Dazu kommen 0,1 ml der Ca-, 0,15 ml der Zn-, je 0,25 ml der Na- und Ti-, sowie je 0,5 ml der Al-, Fe-, Mg- und Mn - ICP-Standardlösungen. Des Weiteren werden 0,5 ml der P-, je 1 ml der K- und S-, sowie 1,5 ml der Mg - AAS-Standardlösungen zugegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % suprapur versetzt und mit H₂O bidemin. aufgefüllt.

=> 30 μ g/l Cd, 60 μ g/l Cr und Ni, 80 μ g/l Co, 300 μ g/l Cu, 600 μ g/l Zn, 0,4 mg/l Ca, 1 mg/l Na und Ti, 2 mg/l Al, Fe und Mn, 10 mg/l P, 20 mg/l K und S, 30 mg/l Mg.

Standardlösung DAN 4:

In einen 250-ml PFA-Kolben werden 0,1 ml der Cd-, 0,15 ml der Co-, je 0,2 ml der Cr- und Ni-, sowie je 1 ml der Cu- und Pb - Lösungen B gegeben. Dazu kommen 0,1 ml der Mn- 0,125 ml der K-, 0,25 ml der Zn-, sowie 1 ml der Fe - ICP-Standardlösungen. Des Weiteren werden je 0,5 ml der Al- und Mg-, je 1 ml der Ca- und P-, sowie 1,5 ml der Na - AAS-Standardlösungen zugegeben.

=> 40 μ g/l Cd, 60 μ g/l Co, 80 μ g/l Cr und Ni, 400 μ g/l Cu und Pb, 1000 μ g/l Zn, 0,4 mg/l Mn, 0,5 mg/l K, 4 mg/l Fe, 10 mg/l Al und Mg, 20 mg/l Ca und P, 30 mg/l Na.

Standardlösung DAN 5:

In einen 250 ml-PFA-Kolben werden 0,5 ml der Mn-, sowie 1,5 ml der Fe- ICP-Standardlösungen gegeben. Dazu kommen je 0,25 ml der Alund Mg-, je 0,5 ml der K-, Na- und S-, 0,75 ml der P-, sowie 2 ml der Ca-AAS-Standardlösungen .

 \Rightarrow 2 mg/l Mn, 5 mg/l Al und Mg, 6 mg/l Fe, 10 mg/l K, Na und S, 15 mg/l P, 40 mg/l Ca.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP15.1	4

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mg auch andere Elemente enthalten (siehe Sammelanhang S19.1), verwendet:

<u>Standards</u>		
Blank	0,0 mg/l Mg	
DAN 1	20,0 mg/l Mg	
DAN 2	0,4 mg/l Mg	
DAN 3	2,0 mg/l Mg	
DAN 4	10,0 mg/l Mg	
DAN 5	5,0 mg/l Mg	

<u>Kontrollstandards</u>	
K1	10,0 mg/l Mg
K26	2,0 mg/l Mg

Methode:	ANULL	ANULL
	ANULLIC	ANULLIC
	DAN1.1	DAN1.1
	DAN2.2	DAN2.2
	EXT1:2H2O1.1	EXT1:2H2O1.1
	GBL1.1	GBL1.1
	UFBL1.1	UFBL1.1
Element:	Mg	Mg
Wellenlänge:	285.213	285.213
Plasmabeobachtung:	radial	radial
Messbereich [mg/l]:	BG – 2	5 – OMG
Standards:	Blank	Blank
	DAN 2	DAN 1
	DAN 3	DAN 2
		DAN 3
		DAN 4
		DAN 5
Bemerkungen:	Pixelbreite: 3	Pixelbreite: 3
	Pixelhöhe: 1	Pixelhöhe: 1
	<u>Untergrund-</u>	<u>Untergrund-</u>
	Korrektur:	Korrektur:
	Pos. links: 1	Pos. links: 1
	Pixelanzahl: 2	Pixelanzahl: 2
	Pos. rechts: 19	Pos. rechts: 19
	Pixelanzahl: 2	Pixelanzahl: 2

Der Blank wird in 2%-iger HNO_3 angesetzt (7,5 ml HNO_3 65 %, suprapur in 250 ml H_2O bidemin.)

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP15.1	5

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP4.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S19.1 zusammengestellt.

Pflanzenaufschlusslösungen (Untersuchungsmethode DAN2.2) werden direkt aus den säuregespülten Szintillationsgefässen (20 ml, Fa. Sarstedt) gemessen.

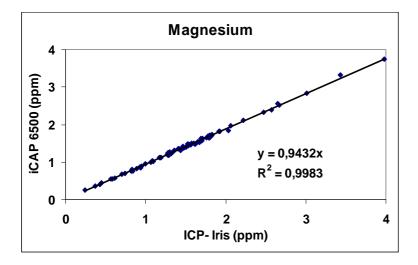
Pflanzenaufschlusslösungen (Untersuchungsmethode DAN1.1) werden in 13 mm Proberöhrchen abgefüllt und gemessen.

Alle anderen wässrigen Lösungen werden nach dem Abfüllen in 13 mm Proberöhrchen mit 0,2 ml HNO₃, 65 %, p.a. versetzt. Als Verdünnungsfaktor muss in diesem Fall 1,03 in die Probengebertabelle eingegeben werden.

Qualitätskontrolle:

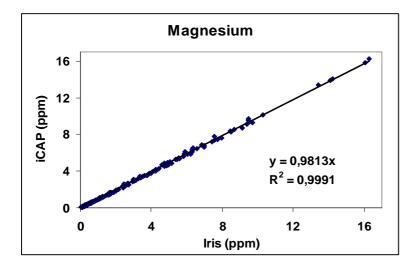
Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K1 oder K26; Messung nach der Eichung, alle
		20 Proben und nach jeder Eichungswiederholung;
		erlaubte Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Ionen / Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen / Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung
Standardmaterial	QStM1.1	NHARZ: erlaubte Abweichung 10 %,
		Wasser HE1, erlaubte Abweichung 5 %


Auswertung/Datendokumentation:

Die gemessenen Mg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Anhang Nr. 1 f	für Mg	Mgges ICP(sin	MgMggesICP15.1
----------------	--------	---------------	----------------


Gerätevergleich ICP-Iris / iCAP 6500:

Darstellung einer Vergleichsmessung der Methode MgMggesICP7.2 und der hier beschriebenen Methode an der Pflanzenaufschluss-Serie 2006P001 (80 Proben).

Darstellung einer Vergleichsmessung der Methode MgMggesICP7.2 und der hier beschriebenen Methode an der Wasserserie 2008W019 (240 Proben).

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP16.1	1

Datum:

01.02.2007

Elementbestimmungsmethode:

MAGNESIUM

Untersuchungsmethode	NG	BG	OMG
DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1	0,0005	0,002	60

geeignet für:

Boden	DANF1.1, OAKW1.1
Humus	DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D36.1.6.2
HFA-Code	D;4;1;2;-1;-1;2 (285.213 nm), D;4;1;2;-1;-1;0 (279.079 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei Mg den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden. Die Plasmabetrachtung erfolgt radial.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich Iris Advantage /	Nölte: ICP Emissionsspektroskopie für
iCAP6500	Praktiker; Weinheim, 2002
Sammelanhang S20.1: Geräteparameter für	Montaser, Golightly: Inductively Coupled
verschiedene Methoden	Plasmas in Analytical Atomic Spectrometry;
Kurzanleitung ICP4.1	Weinheim, 1987
Kurzanleitung ICP-DV2.1	

Mg

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP16.1	2

Analysengeräte und Zubehör:

iCAP 6500 der Fa. ThermoFisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Laminar Flow Box FBS der Fa. Spetec, für Probengeber

Szintillationsgefässe, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

Multipette der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Dilutor der Fa. Hamilton, Microlab plus 1000

Chemikalien:

Salpetersäure (HNO₃), 65 %, suprapur Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mg: ICP-Standard (Fa B. Kraft) => 1 g/l Mg Mg: AAS-Standard (Fa. B. Kraft) => 5 g/l Mg

Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K,

Mn, Na, Ni, Pb, Ti, Zn: Lösung A: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Cd, Co, Cr, Cu, Ni: Lösung B: 1:10 Verdünnungen von Lösung A => jeweils 0,1 g/l

Al, Ca, Fe, K, Mn, Na, P, S:

AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung GA1:

In einen 250 ml-PFA-Kolben werden 0,125 ml der Cd-, sowie je 0,25 ml der Co-, Cr-, Cu- und Ni-Lösungen B gegeben. Dazu kommen 0,1 ml der Zn-, sowie je 0,5 ml der Al-, Fe-, Mg- Mn- und Na-ICP-Standardlösungen. Des Weiteren werden je 0,1 ml der P- und S, 0,25 ml der K-sowie 1 ml der Ca-AAS-Standardlösungen zugegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % suprapur versetzt und mit H₂O bidemin. aufgefüllt.

=> 50 μ g/l Cd, 100 μ g/l Co, Cr, Cu und Ni, 400 μ g/l Zn, 2 mg/l Al, Fe, Mn, Na, P und S, 4 mg/l Mg, 5 mg/l K, 20 mg/l Ca.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP16.1	3

Standardlösung GA2:

In einen 250 ml-PFA-Kolben werden 0,25 ml der Cd-, sowie jeweils 0,5 ml der Co-, Cr-, Cu- und Ni-Lösungen B gegeben. Dazu kommen 0,2 ml der Zn-, 0,25 ml der K-, je 0,5 ml der Mg- und Pb-, 1 ml der Ba-, sowie je 5 ml der Al- und Fe-ICP-Standardlösungen. Des Weiteren werden je 0,5 ml der Mn-, Na- und P-, sowie 2 ml der Ca-AAS-Standardlösung zugegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % suprapur versetzt und mit H₂O bidemin. aufgefüllt.

=> 100 μg/l Cd, 200 μg/l Co, Cr, Cu und Ni, 800 μg/l Zn, 2000 μg/l Pb, 1 mg/l K, 2 mg/l Mg, 4 mg/l Ba, 10 mg/l Mn, Na und P, 20 mg/l Al und Fe, 40 mg/l Ca.

Standardlösung GA3:

In einen 250 ml-PFA-Kolben werden 0,375 ml der Cd- und 0,75 ml der Cu-Lösungen B gegeben. Dazu kommen 0,25 ml der Ca-, 0,3 ml der Znund 2 ml der Ti-ICP-Standardlösungen. Des Weiteren werden je 1 ml der Mn-, Na-, P- und S-, je 2 ml der Al-, K- und Mg-, sowie 5 ml der Fe-AAS-Standardlösungen gegeben.

 $=> 150 \mu g/l \text{ Cd}, 300 \mu g/l \text{ Cu}, 1200 \mu g/l \text{ Zn}, 1 \text{ mg/l Ca}, 8 \text{ mg/l Ti}, 20 \text{ mg/l}$ Mn, Na, P und S, 40 mg/l Al und K, 100 mg/l Fe.

Standardlösung GA4:

In einen 250 ml-PFA-Kolben werden 0,125 ml der As-, je 0,25 ml der Mo Na- und Mn- sowie 0,5 ml der Ti-ICP-Standardlösungen gegeben. Dazu kommen 0,05 ml der P-, 0,25 ml der S-, je 1 ml der K- und Mg-, 2 ml der Fe- sowie je 5 ml der Al- und Ca-AAS-Standardlösungen. Der Kolben wird mit 7,5 ml HNO₃ 65 % suprapur versetzt und mit H₂O bidemin. aufgefüllt.

 $=> 500 \mu g/l \text{ As}, 1 \text{ mg/l Mn}, \text{ Na und P}, 2 \text{ mg/l Ti}, 5 \text{ mg/l S}, 20 \text{ mg/l K}$ und Mg, 40 mg/l Fe, 100 mg/l Al und Ca.

Standardlösung GA5:

In einen 250 ml-PFA-Kolben werden je 0,75 ml der Co- und Ni- sowie 1 ml der Cr-Lösungen B gegeben. Dazu kommen 0,4 ml der Zn- und 4 ml der Ti-ICP-Standardlösungen. Des Weiteren werden je 0,25 ml der Ca-, Mn-, Na- und P sowie je 0,5 ml der Al-, Fe-, K- Mg- und S-AAS-Standardlösungen gegeben.

=> 300 μg/l Co und Ni, 400 μg/l Cr, 1600 μg/l Zn, 5 mg/l Ca, Mn, Na und P, 10 mg/l Al, Fe, Mg, K und S, 16 mg/l Ti.

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP16.1	4

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mg auch andere Elemente enthalten (siehe Sammelanhang S20.1), verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Mg
GA1	4,0 mg/l Mg
GA2	2,0 mg/l Mg
GA3	40,0 mg/l Mg
GA4	20,0 mg/l Mg
GA5	10,0 mg/l Mg

	Kontrollstandard
K24	10,0 mg/l Mg

	1	1
Methode:	DAN1.1Humus	DAN1.1Humus
	DAN2.2Humus	DAN2.2Humus
	DANF1.1Boden	DANF1.1Boden
	DANF1.1Humus	DANF1.1Humus
	OAKW1.1Boden	OAKW1.1Boden
	OAKW1.1Humus	OAKW1.1Humus
	OAKWEG1.1	OAKWEG1.1
Element:	Mg	Mg
Wellenlänge:	285.213	279.079
Plasmabeobachtung:	radial	radial
Messbereich [mg/l]:	BG – 10	10 -OMG
Standards:	Blank	GA1
	GA1	GA2
	GA2	GA3
	GA5	GA4
		GA5
Bemerkungen:	Pixelbreite: 3	Pixelbreite: 3
_	Pixelhöhe: 1	Pixelhöhe: 2
	<u>Untergrund-</u>	<u>Untergrund-</u>
	Korrektur:	Korrektur:
	Pos. links: 1	Pos. links: 1
	Pixelanzahl: 1	Pixelanzahl: 1
	Pos. rechts: 15	Pos. rechts: 15
	Pixelanzahl: 2	Pixelanzahl: 1

Der Blank wird in 2%-iger HNO₃ angesetzt (7,5 ml HNO₃ 65 %, suprapur in 250 ml H₂O bidemin.)

Element	Form	Gerät	Methoden-Nr.	Seite
Mg	Mgges	ICP(sim)	MgMggesICP16.1	5

Durchführung:

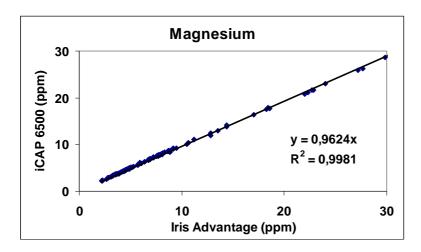
Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP4.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S20.1 zusammengestellt. Als Probengefässe werden säuregespülte Szintillationsgefässe (20 ml, Fa. Sarstedt) verwendet. Königswasseraufschlusslösungen (OAKW) werden vor dem Messen mit einem Dilutor 1:5 verdünnt.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974 Lösung, NFVH;
		erlaubte Abweichung 10 %

Auswertung/Datendokumentation:


Mg

Die gemessenen Mg-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Anhang Nr.	1	für	Mg	Mgges	ICP(sim)	MgMggesICP16.1
------------	---	-----	----	-------	----------	----------------

Gerätevergleich Iris Advantage / iCAP 6500:

Darstellung einer Vergleichsmessung der Methode MgMggesICP8.2 und der hier beschriebenen Methode an der Königswasseraufschluss-Serie 2007H007.

Element Fo	orm	Gerät	Methoden-Nr.	Seite
Mn M	nges A.	AS(Fl) M	InMngesAAS6.1	1

Datum:

01.11.2001

Elementbestimmungsmethode:

MANGAN

Untersuchungsmethode	NG	BG	OMG
ANULL, GBL1.1, EXT12H2O1.1	0,002	0,007	8

geeignet für:

<u> </u>	
Boden	GBL1.1, EXT12H2O1.1
Humus	
Pflanze	
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN ISO 11047
HFA	D37.1.4.1
HFA-Code	D;1;1;2;-1;3;0

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einer Luft/Acetylen-Flamme auf ca. 2300 °C erhitzt. Dadurch wird ein möglichst großer Teil des zu bestimmenden Elements in den atomaren Zustand überführt. Mit einer Hohlkathodenlampe wird elementspezifisches Licht erzeugt und durch die Flamme geführt. Die Atome im Grundzustand können dieses Licht einer spezifischen Wellenlänge absorbieren und gehen **Mn** für kurze Zeit in einen angeregten Zustand über. Aus der Messung der Intensitäten des eingestrahlten und des um die absorbierte Lichtmenge reduzierten, austretenden Lichts kann auf die Elementkonzentration in der Lösung geschlossen werden.

Störungen:

Mn wird in der Luft/Acetylen-Flamme teilweise ionisiert. Diese Störung kann durch CsCl/La-Zusatz (Schinkel-Lösung) beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenparameter	B. Welz: Atomabsorptionsspektroskopie,
Kurzanleitung AAS(Fl) 4.1	Weinheim, 1983
Kurzanleitung AAS-DV2.1	H. Schinkel: Fresenius Z. Anal. Chem. 31
	S. 10-26, 1984

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	AAS(Fl)	MnMngesAAS6.1	2

Analysengeräte und Zubehör:

Atomabsorptionsspektrometer AAS Vario 6 Probengeber AS 52 Injektionsschalter IS5 Lachgas-Brennerkopf

Chemikalien:

Cäsiumchlorid-Lanthanchlorid-Pufferlösung nach Schinkel (Fa. Merck). Enthält 10 g/l CsCl und 100 g/l La.

Lösungen:

_

Eichung/Standards:

Stammlösungen:

Mn: AAS-Standard (Fa. B. Kraft) => 5 g/l

Al, Ca, Fe, K, Mg, Mn: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Stammlösung Standard ANULL, GBL1.1, EXT12H2O1.1: In einen 250 ml-Glaskolben werden je

2,5 ml Na, Fe, K, Mg und Mn sowie je 5 ml Al und Ca der 5 g/l enthaltenden Stammlösungen gegeben, mit 5 ml Schinkel-Lösung versetzt und mit H₂O bidemin. aufgefüllt.

=>100 mg/l Al und Ca, 50 mg/l Fe, K, Mg, Mn und Na.

Einzelbestimmung: Mehrelementbestimmung:

Untersuchungsmethode: ANULL, GBL1.1, EXT12H2O1.1:

Standardreihe		
	[mg/l]	
Blank:	0,0	
S1:	1,0	
S2:	2,0	
S3:	4,0	
S4:	6,0	
S5:	8,0	
Rekalibrations-	6,0	
standard		

	Na	K	Al	Ca	Fe	Mg	Mn
	[mg/l]						
Blank:	0,0	0,0	0,0	0,0	0,0	0,0	0,0
S1:	1,5	2,0	5,0	4,0	2,0	1,0	1,0
S2:	3,0	4,0	10,0	8,0	4,0	2,0	2,0
S3:	4,5	6,0	15,0	12,0	6,0	3,0	4,0
S4:	6,0	8,0	20,0	16,0	8,0	4,0	6,0
S5:			25,0	20,0	10,0	5,0	8,0

Kontro	<u>ollstandard</u>
K30 (QC 1)	5,0 mg/l Mn

]	<u>Kalibrier-Daten</u>
\mathbb{R}^2	0,999
Char. Konz.	0,03 mg/l / 1 % A

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung AAS (Fl) 4.1 beschrieben. Die Geräteparameter werden am AAS-Gerät durch Laden der Methode MnMngesAAS6.1 eingestellt. Sie sind im Anhang 1 zusammengestellt.

Der Blank, der Stammlösungs-Standard, der Kontrollstandard, die Verdünnungslösung am Probengeber und die Proben werden im Verhältnis 1:50 mit Cäsiumchlorid-Lanthanchlorid-Pufferlösung nach Schinkel versetzt. In die Probengefässe wird zuerst die notwendige Menge Schinkel-Lösung pipettiert und anschließend die Probe zugegeben. Als Verdünnungsfaktor muss in der Probentabelle 1.02 eingegeben werden.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Quadratische Anpassung der Eichkurve;
		Bestimmtheitsmass ≥0,999
Kontrollstandard	QKSt.1.1	K30 (QC1); Messung nach der Eichung, alle 15
		Proben und nach jeder Rekalibration; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Der Standard Wasser HE1 wird alle 50 Proben
		mitgemessen; erlaubte Abweichung: 5 %
Al-Bilanz	QAlB1.1	Siehe Methodenbeschreibung
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU	Siehe Methodenbeschreibung

Auswertung/Datendokumentation:

Die gemessenen Mn-Konzentrationen werden in die entsprechenden Datenblätter des LIMS eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung AAS-DV 2.1) bearbeitet.

Geräteparameter AAS(Fl) Analytic Jena Vario6

Spektrometer

Linie	279.5 nm	Spalt	0.2 nm
Lampen-Typ	HKL	Lampenstrom	10.0 mA
Integrations-Art	wiederh. Mittelw.	Integr. Zeit	1.5 s
PMT	279.0 V	D2HKL-Strom	
AZ-Zeit	5.0 s	Peak-Glättung	aus/aus
Verzögerung	5.0 s	Betriebsart	Einstrahl
HC/BC-Verst.		HC/BC-Tastverh.	

Flamme

Flamme	C2H2/Luft		
Brenngas-Fluss	70 NL/h	Ges. Ox.	490 NL/h
Brennertyp	50 mm		
Br.Höhe	5 mm	Br.Winkel	0 °
Zerstäuber-Rate	7.0 mL/min		

Probengeber

Probengeber	AS52	Teller-Typ	89 Positionen
Arbeitsweise	manuell	Spülen	nach jeder Probe
Spülzeit	5 s		
Injekt.Schalter	aktiv	Ladezeit	
Injekt.Zeit		Probenvolumen	1 mL
Verdünnung	automat. Verdünn.	Zugabe IonPuffer	keine Zugabe
vor Verdünnung	keine Wdh.	Mischgefäß spülen	1 mal
Zugabe IonPuffer	aus		

QC-Parameter

QC-Art	KonzKontrolle		
QC Kontrollpr.1	QC 1	QC Kontrollpr.2	
Konz.	5.000 mg/L	Konz.	
Fehlergrenze	±3%	Fehlergrenze	
Messwiederh.	aus	Reaktion	Rekalib.+Fortsetz.
Aufstock-Probe			
Konz. Aufstock-Pr.		Vol. Aufstock-Pr.	
Kalibr.Std. Nr.	1	Erwart. Blindw. Ex	
		Reaktion	Marke + Fortsetz.
QC Präzision	ein	Fehlergrenzen	
R%-Kontrolle	markieren	RSD-Grenze	3.0
		R%-Grenze	4.0

Anhang Nr.	1	für	Mn	Mnges	AAS(Fl)	MnMngesAAS6.1
------------	---	-----	----	-------	---------	---------------

Kalibrations-Bedingungen

Kalib.Verfahren	Standard-Kalibr.	KalibEinheit	mg/L
Anzahl Std.	5	Umrechnungs-Fak	1
Art d. RefProben		Herstellung Std.	durch Sampler
		Blindwertkorr.	aus
		Abgl.vor Bezugslösg.	aus
		Rekalibrier-Std. Nr.	4
Ausgabe-Einheit	mg/L	Umrechnungs-Fak.	1
Kalib.Statistik	Mittelwert	Messzyklen	4
		Leerzyklen	1
Stammlösung 1	25.000 mg/L	Stammlösung 2	
Stammlösung 3		Stammlösung 4	
Typ d. Kal.Kurve	nichtlinear	Achsenabschnitt	berechnen
Wichtung	aus	Grubbs-Stat.	ein (Mark.!)
Prüf. d. Kal.Kurve	1 x neu vermessen		

Proben-Statistik

Stat.Art	Mittelwert	Messzyklen	4
Sign.Niveau	95.4 %	Leerzyklen	1
Grubbs-Stat.	ein (Mark.!)		

Anhang Nr.	1	für	Mn	Mnges	AAS(Fl)	MnMngesAAS6.1
------------	---	-----	----	-------	---------	---------------

Element Form		Gerät	Methoden-Nr.	Seite
Mn	Mnges	AAS(Fl)	MnMngesAAS7.1	1

Elementbestimmungsmethode:

MANGAN

Untersuchungsmethode	NG	BG	OMG
AKE1.1, AKEG2.1	0,007	0,021	4

geeignet für:

Boden	AKE1.1, AKEG2.1
Pflanze	
Humus	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN 38406-14		
HFA	D37.1.5.2		
HFA-Code	D;1;1;2;-1;3;0		

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einer Luft/Acetylen-Flamme auf ca. 2300 °C erhitzt. Dadurch wird ein möglichst großer Teil des zu bestimmenden Elements in den atomaren Zustand überführt. Mit einer Hohlkathodenlampe wird elementspezifisches Licht erzeugt und durch die Flamme geführt. Die Mn Atome im Grundzustand können dieses Licht einer spezifischen Wellenlänge absorbieren und gehen für kurze Zeit in einen angeregten Zustand über. Aus der Messung der Intensitäten des eingestrahlten und des um die absorbierte Lichtmenge reduzierten, austretenden Lichts kann auf die Elementkonzentration in der Lösung geschlossen werden.

Datum: 15. 11. 2001

Störungen:

Um das Fliessverhalten und die Aerosolbildung der NH₄Cl-Perkolationslösung zu verbessern, wird allen Proben ein Konditionierungsmittel zugegeben

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenparameter	B. Welz: Atomabsorptionsspektroskopie,
Kurzanleitung AAS(Fl) 4.1	Weinheim, 1983
Kurzanleitung AAS-DV2.1	H. Schinkel: Fresenius Z. Anal. Chem. 317
	S. 10-26, 1984

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	AAS(Fl)	MnMngesAAS7.1	2

Analysengeräte und Zubehör:

Atomabsorptionsspektrometer AAS Vario 6 Probengeber AS 52 Injektionsschalter IS5 Lachgas-Brennerkopf, modifizierte Form

Chemikalien:

Konditionierungslösung 1%-ig der Fa. Analytik Jena (Tenside, Gelantine und weitere Inhaltsstoffe)

Lösungen:

Eichung/Standards:

Stammlösungen:

Mn: AAS-Standard (Fa. B. Kraft) => 5 g/l

Al, Ca, Fe, K, Mg, Na: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Stammlösung Standard AKE1.1: In einen 250 ml-Glaskolben werden je 0,5 ml der Mg- und Na-, je

1 ml der Fe-, Mg- und K-, 2,5 ml der Ca-, sowie 5 ml der Al - Stammlösungen gegeben. Dazu kommen 5 ml Schinkel-Lösung. Es wird mit 1 n NH₄Cl-Lösung (unbedingt gleiche Lösung wie im Perkolations-

lauf verwenden) bis zur Eichmarke aufgefüllt.

=>100 mg/l Al, 50 mg/l Ca, 20 mg/l Fe, K und Mn, 10 mg/l Mg und Na.

Achtung: Standard, Blanklösung und Kontrollstandard müssen nach der Her-

stellung in Polyethylenflaschen aufbewahrt werden.

Element	nt Form Gerät Methoden-Nr.		Seite	
Mn	Mnges	AAS(Fl)	MnMngesAAS7.1	3

Einzelbestimmung: Mehrelementbestimmung:

Untersuchungsmethode: AKE1.1, AKEG1.1

<u>Standardreihe</u>		
	[mg/l]	
Blank:	0,0	
S1:	1,0	
S2:	2,0	
S3:	3,0	
S4:	4,0	
S5:		
Rekalibrations	3,0	
Standard		

	Al	Ca	Fe	K	Mg	Mn	Na
	[mg/l]						
Blank:	0,0	0	0,0	0,0	0,0	0,0	0,0
S1:	5,0	2,5	1,0	0,4	0,5	1,0	0,5
S2:	10,0	5,0	2,0	0,8	1,0	2,0	1,0
S3:	15,0	7,5	3,0	1,2	1,5	3,0	1,5
S4:	20,0	10,0	4,0	1,6	2,0	4,0	2,0
S5:	25,0	12,5		2,0			

<u>Kontrollstandard</u>
K30 (QC 1)3,0 mg/l Mn

Kal	<u>ibrierdaten</u>
\mathbb{R}^2	0,999
Char. Konz.	0,04 mg/l / 1 % A

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung AAS (Fl) 4.1 beschrieben. Die Geräteparameter werden am AAS-Gerät durch Laden der Methode MnMngesAAS7.1 eingestellt. Sie sind im Anhang 1 zusammengestellt.

Der Blank und der Stammlösungsstandard werden an die entsprechenden Positionen des Probengebertellers gestellt. Die Einzelstandards werden durch den Probengeber hergestellt.

Der Blank, der Kontrollstandard, die Verdünnungslösung des Probengebers und die Proben werden im Verhältnis 1:50 mit Cäsiumchlorid-Lanthanchlorid-Pufferlösung nach Schinkel, sowie im gleichen Verhältnis mit 1 %-iger Konditionierungslösung versetzt. In die Probengefässe wird zuerst die notwendige Menge Schinkel-Lösung und Konditionierungslösung pipettiert und anschliessend die Probe zugegeben. Als Verdünnungsfaktor muss in der Probentabelle 1,04 eingegeben werden.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K30 (QC1); Messung nach der Eichung, alle 15 Pro-
		ben und nach jeder Rekalibration; erlaubte Abwei-
		chung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die gemessenen Mn-Konzentrationen werden in die entsprechenden Datenblätter des LIMS eingetragen.

Geräteparameter AAS(Fl) Analytic Jena Vario 6

Spektrometer

Linie	279.5 nm	Spalt	0.2 nm
Lampen-Typ	HKL	Lampenstrom	7.0 mA
Integrations-Art	wiederh. Mittelw.	Integr. Zeit	1.5 s
PMT	264.0 V	D2HKL-Strom	
AZ-Zeit	5.0 s	Peak-Glättung	aus/aus
Verzögerung	7.0 s	Betriebsart	Einstrahl
HC/BC-Verst.		HC/BC-Tastverh.	2:6

Flamme

Flamme	C2H2/Luft		
Brenngas-Fluss	65 L/h	Ges. Ox.	510 NL/h
Brennertyp	50 mm		
Br.Höhe	6 mm	Br.Winkel	0 °
Zerstäuber-Rate	7.0 mL/min		

Probengeber

Probengeber	AS52	Teller-Typ	53 Positionen
Arbeitsweise	Kontinuierlich	Spülen	nach jeder Probe
Spülzeit	10 s		
Injekt.Schalter	aktiv	Ladezeit	
Injekt.Zeit		Probenvolumen	
Verdünnung	aus	Zugabe IonPuffer	
vor Verdünnung	keine Wdh.	Mischgefäß spülen	
Zugabe IonPuffer	aus		

QC-Parameter

QC-Art	KonzKontrolle		
QC Kontrollpr.1	QC 1	QC Kontrollpr.2	
Konz.	3.00 mg/L	Konz.	
Fehlergrenze	±3%	Fehlergrenze	
Messwiederh.	aus	Reaktion	Reka!ib.+Fortsetz.
Aufstock-Probe			
Konz. Aufstock-Pr.		Vol. Aufstock-Pr.	
Kalibr.Std. Nr.	1	Erwart. Blindw. Ex	
		Reaktion	Marke + Fortsetz.
QC Präzision	ein	Fehlergrenzen	
R%-Kontrolle	markieren	RSD-Grenze	3.0 %
		R%-Grenze	4.0

Kalibrations-Bedingungen

Kalib.Verfahren	Standard-Kalibr.	KalibEinheit	mg/L
Anzahl Std.	4	Umrechnungs-Fak.	1
Art d. RefProben		Herstellung Std.	durch Sampler
		Blindwertkorr.	aus
		Abgl. vor Bezugslösg.	aus
		Rekalibrier-Std. Nr.	3
Ausgabe-Einheit	mg/L	Umrechnungs-Fak.	1
Kalib.Statistik	Mittelwert	Messzyklen	4
		Leerzyklen	1
Stammlösung 1	20.0 mg/L	Stammlösung 2	
Stammlösung 3		Stammlösung 4	
Typ d. Kal. Kurve	automatisch	Achsenabschnitt	berechnen
Wichtung	aus	Grubbs-Stat.	ein (Mark.!)
Prüf. d. Kal.Kurve	1 x neu vermessen		

Proben-Statistik

Stat.Art	Mittelwert	Messzyklen	4
Sign.Niveau	95.4 %	Leerzyklen	1
Grubbs-Stat.	ein (Mark.!)		

Anhang Nr.	1	für	Mn	Mnges	AAS(Fl)	MnMngesAAS7.1
------------	---	-----	----	-------	---------	---------------

Element	Form	Gerät Methoden-Nr.		Seite
Mn	Mnges	ICP(sim)/USN	MnMngesICP2.3	1

Datum:

01.07.2000

Elementbestimmungsmethode:

MANGAN

Untersuchungsmethode		BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1; DAN2.2		(0,1)	30

geeignet für:

<u> </u>	
Boden	GBL1.1, EXT1:2H2O1.1
Humus	
Pflanze	DAN2.2
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D37.1.4.3 / D37.1.6.3
HFA-Code	D;4;2;3;1;9;0 (257,610 nm), D;4;2;3;1;9;1 (293,306 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit verschiedenen Photozellen gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Um eine möglichst hohe Messempfindlichkeit zu erreichen, wird eine axial gestellte Argonplasmafackel und ein Ultraschall-Zerstäuber (USN) eingesetzt. Dadurch wird der Plasmafackel eine wesentlich höhere Aerosolkonzentration zugeführt, was zu einer 5-10-fach höheren Signal-Intensität führt.

(Die hohe Empfindlichkeit ist nicht für die Mn-Messung, sondern für die simultan gemessenen Schwermetalle nötig.)

Störungen:

Die Elemente Mo und Ti stören durch Linienüberlagerung bei hoher Konzentration und das Element Fe durch einen strukturierten Untergrund. Für Ti und Fe wird diese Störung durch rechnerische Interelement-Korrektur auf der Basis von ermittelten Korrekturfaktoren behoben. Bei dem Element Mo kommt es nur bei hohen Konzentrationen des Störelements, die in der Regel nicht in den Probelösungen vorkommt, zu Störungen. Wird die im Anhang 1 genannte Konzentration des Störelementes überschritten, so sind die gemessenen Mn-Gehalte falsch.

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen eines Untergrundkorrekturpunktes an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Gesamtmatrixstörungen bei der Verwendung eines USN werden durch CsCl-Zusatz minimiert. Viskositätsschwankungen aufgrund unterschiedlicher Gesamtsalzkonzentrationen werden durch Messung mit internem Standard ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Linienstörungen und ihre Korrektur	Montaser, Golightly: Inductively Coupled
Sammelanhang S6.3: Geräteparameter für ver-	Plasmas in Analytical Atomic Spectrometry;
schiedene Methoden	Weinheim, 1987
Kurzanleitung ICP2.1	
Kurzanleitung ICP-DV1.2/2.1	

Memoden-Mr.	Seite	
MnMngesICP2.3	2	

Coita

Mothodon Nn

Analysengeräte und Zubehör:

Form

Mnges

ICAP 61E Trace Analyser der Fa. Thermo Jarrell Ash mit axialer Plasmafackel

Gerät

ICP(sim)/USN

Probengeber TJA 300 (umgebaut auf 2 Racks mit je 48 Szintillationsgefässen (20 ml, Fa. Sarstedt)) mit Staub-Abdeckhaube

Rechner mit Software Thermospec (Version 6.0) Ultraschall-Zerstäuber U 5000 AT⁺ der Fa. Cetac

Mischsystem für internen Standard und Matrixanpassung

Multipette der Fa. Eppendorf

Chemikalien:

Element

Mn

Cäsiumchlorid (CsCl) p.a.

Salpetersäure (HNO₃), 65 %, suprapur

Salpetersäure (HNO₃), 65 %, p.a

Yttrium (Y)-Standardlösung 1000 mg/l für ICP in 5 % HNO₃

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Yttrium/Cäsium-Lösung: 0,63 g CsCl werden in einem 1 l-Glaskolben eingewogen, mit 2 ml

Yttrium-Standardlösung sowie 30 ml konz. HNO₃ versetzt und mit H₂O

demin. auf 1 l aufgefüllt.

Mn

Eichung/Standards:

Stammlösungen:

Mn: ICP-Standard (Fa. B. Kraft) => 1 g/l Mn bzw. AAS-Standard (Fa B.

Kraft) => 5 g/l Mn

Cd, Co, Cr, Cu, Ni: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

1 ml davon wird jeweils in einen 100 ml PFA-Kolben gegeben, mit 3 ml

HNO₃ 65 %, suprapur versetzt und mit H₂O bidemin. Aufgefüllt

=>0.01 g/l

Al, As, Mg, Pb, Zn: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l Al, Ca, Fe, Mg, P, S, Ti: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung ICPUT5: In einen 250 ml PFA-Kolben werden 0,5 ml Cd, 0,5 ml Cr, 2,5 ml Co,

2,5 ml Cu, 2,5 ml Ni und 2,5 ml As der 0,01 g/l enthaltenden Stammlösungen gegeben; dazu kommen 0,05 ml Pb, 0,125 ml Zn, 0,5 ml Al, 0,5 ml Fe, 0,5 ml Mg und 0,625 ml Mn der 1g/l enthaltenden Stammlösungen. Es werden 7,5 ml HNO₃ 65 %, suprapur zugegeben und mit

H₂O bidemin. auf 250 ml aufgefüllt.

=> 20 μ g/l Cd, 20 μ g/l Cr, 100 μ g/l Co, 100 μ g/l Cu, 100 μ g/l Ni, 100 μ g/l As, 200 μ g/l Pb, 500 μ g/l Zn, 2 mg/l Al, 2 mg/l Fe, 2 mg/l Mg

und 2,5 mg/l Mn.

SICP2.5	3	
		-

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)/USN	MnMngesICP2.3	3

Standardlösung ICPUT8: In einen 250 ml-Glaskolben werden 0,5 ml Mg-, 0,5 ml P-, 0,5 ml S-, 1 ml Al-, 1 ml Fe-, 1 ml Mn- 1 ml Ti- und 2 ml Ca- der 5g/l enthaltenden AAS-Standardlösung gegeben, mit HNO3, 65 %, p.a versetzt und mit H₂O bidemin. auf 250 ml aufgefüllt.

=>20 mg/l Al, 40 mg/l Ca, 20 mg/l Fe, 10 mg/l Mg, 20 mg/l Mn, 10 mg/l P, 10 mg/l S und 20 mg/l Ti.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mn auch andere Elemente enthalten (siehe Sammelanhang S6.3), für die verschiedenen Methoden verwendet.

<u>Standards</u>	
Blank:	0,0 mg/l Mn
ICPUT5:	2,5 mg/l Mn
ICPUT8:	20,0 mg/l Mn

Kon	trollstandard
K21	2,0 mg/l Mn

Methode:	ANULUT	ANULUT
	GBLUT	GBLUT
	EXTUT	EXTUT
	DANUT	DANUT
Linie:	Mn (I)	Mn (II)
Wellenlänge:	257,610	293,306
Messbereich [mg/l]:	BG-10	10,0-OMG
<u>Standards:</u>	Blank	Blank
	ICPUT5	ICPUT5
	ICPUT8	ICPUT8
Bemerkungen:	Untergrund-	Untergrund-
	korrektur:	korrektur:
	+24	-11
		Interelement-
		korrektur
		bei Ti, Fe

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml HNO₃ 65 %, suprapur in 250 ml).

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP2.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S6.3 zusammengestellt.

Die Messung der Proben erfolgt mit Zusatz von CsCl zur Erhöhung der Salzkonzentration und Vereinheitlichung der Probenmatrix sowie mit Zusatz von Y als internem Standard. Dazu wird über ein T-Stück und einen 2. Kanal der Schlauchpumpe zur Probenzuführung die Yttrium/Cäsium-Lösung

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)/USN	MnMngesICP2.3	4

im Verhältnis Probe:Lösung von 10:1 der Probe kontinuierlich zudosiert und über eine Glasrohrspirale mit 5 Windungen gemischt.

Als Probengefässe für den umgebauten Probengeber TJA 300 werden säuregespülte Szintillationsgefässe (20 ml, Fa. Sarstedt) verwendet.

Bodenextrakte werden mit 600 μl HNO₃ konz. pro 20 ml Probe versetzt.

Schwermetallwasserproben (versetzt mit 1 ml HNO_3 konz. pro 100 ml Probe) werden mit 400 μl HNO_3 konz. pro 20 ml Probe versetzt.

Salpetersaure Druckaufschlusslösungen (DANUT) werden ohne Zusatz direkt aus den Probengefässen gemessen.

<u>Achtung:</u> Bei Bodenextrakten und Schwermetallwasserproben müssen beim Erstellen der Autosampler-Table (siehe Gerätekurzanleitung ICP2.1) folgende Verdünnungsfaktoren eingegeben werden:

Probelösung	<u>Faktor</u>
Boden-Extrakte	1,03
SM-Wasserproben	1,02

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

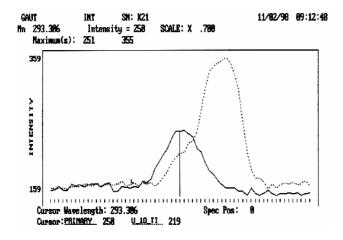
Mn

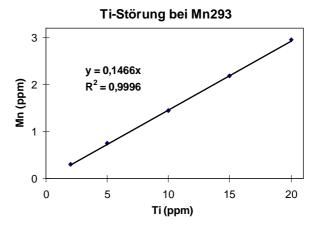
Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K21; Messung nach der Eichung, alle 16 Proben und
		nach jeder Eichungswiederholung; erlaubte Abwei-
		chung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU	Siehe Methodenbeschreibung
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1
		mitgemessen; erlaubte Abweichung 5 %

Auswertung/Datendokumentation:

Die gemessenen Mn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm ICPUNKER bzw. RELAQS (siehe Kurzanleitung ICP-DV1.2 bzw. 2.1) bearbeitet.

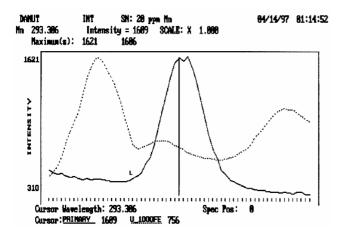
Anhang Nr.	1	für	Mn	Mnges	ICP(sim)/USN	MnMngesICP2.3


Linienstörungen und ihre Korrektur


Tabelle 1: Störungen und ihre Korrektur bzw. Bewertung bei der Mn293-Messung:

Stör- ele- ment	Spek- trum (Abb.)	Korrekturen:					
		Inter	elementkorr	ektur		rgrund- rektur	Keine Korrektur
		Faktor- ermittlung (Abb.)	Korrektur- faktor 1	Korrektur- faktor 2	Unter- grund- punkte	Störung ab (ppm):	Störung ab (ppm)
Ti	1	2	0,1466*	-			
Fe	3	4	0,0019*				
Mo	5						0,2

^{*} Die Korrekturfaktoren können sich über längere Zeiträume durch Instabilitäten der Optik verändern. Sie werden deshalb regelmäßig durch Messung spezieller Standardlösungen überprüft und gegebenenfalls korrigiert.


Abb.1: Ti (10 ppm) Störung bei Mn293 (20 ppm) Abb.2: IEC-Faktorermittlung

Anhang Nr. 1 für Mn Mnges ICP(sim)/USN MnMngesICP2.3

Abb. 3: Fe (1000 ppm) Störung bei Mn (20 ppm) Abb. 4: IEC-Faktorermittlung

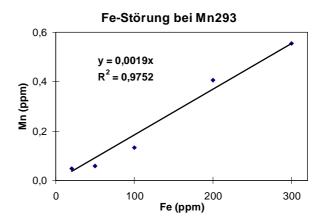
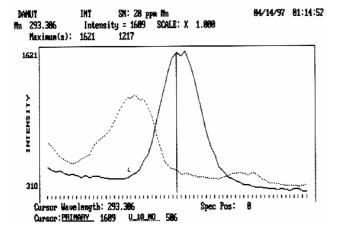



Abb. 5: Mo (10 ppm) Störung bei Mn293 (20 ppm)

Element	Form	Gerät	Methoden-Nr.	
Mn	Mnges	ICP(sim)	MnMngesICP5.2	7

Datum:

01.07.2000

Elementbestimmungsmethode:

MANGAN

Untersuchungsmethode	NG	BG	OMG
DANF1.1, DAN2.2, OAKW1.1		0,01	30

geeignet für:

Boden	OAKW1.1, DANF1.1
Humus	OAKW1.1, DANF1.1, DAN2.2
Pflanze	
Wasser	

Methodenverweise:

Norm	
HFA	D37.1.6.3
HFA-Code	D;4;2;3;1;-2;0 (257,610 nm), D;4;2;3;1;-1;1 (293,306 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Gitter spektral zerlegt und die Intensität des Lichtes bei den Element-spezifischen Wellenlängen der zu bestimmenden Elemente mit verschiedenen Photozellen gemessen. Durch Vergleich der Intensitäten bei Probe- und Standard-Lösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Um eine möglichst hohe Meßempfindlichkeit zu erreichen, wird ein axial gestelltes Argonplasma und ein Ultraschall-Zerstäuber (USN) eingesetzt. Dadurch wird der Plasmafackel eine wesentlich höhere Aerosol-Konzentration zugeführt, was zu einer 5-10-fach höheren Signal-Intensität führt. (Die hohe Empfindlichkeit ist nur für die simultan gemessenen Schwermetalle nötig.)

Störungen:

Die Elemente Mo und Ti stören durch Linienüberlagerung bei hoher Konzentration und das Element Fe durch einen strukturierten Untergrund. Für Ti und Fe werden diese Störungen durch rechnerische Interelement-Korrektur auf der Basis von ermittelten Korrekturfaktoren behoben. Bei dem Element Mo kommt es nur bei hohen Konzentrationen des Störelements, die in der Regel nicht in den Probelösungen vorkommen, zu Störungen. Werden die im Anhang 1 genannten Konzentrationen der Störelemente überschritten, so sind die gemessenen Mn-Gehalte falsch.

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen eines Untergrundkorrekturpunktes an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Gesamtmatrix-Störungen bei der Verwendung eines USN werden durch CsCl-Zusatz minimiert. Viskositätsschwankungen aufgrund unterschiedlicher Gesamtsalzkonzentrationen werden durch Messung mit internem Standard ausgeglichen.

Lit.:
Montaser, Golightly: Inductively Coupled
Plasmas in Analytical Atomic
Spectrometry;
Weinheim, 1987

Element	Form	Gerät	Gerät Methoden-Nr.	
Mn	Mnges	ICP(sim)	MnMngesICP5.2	8

Analysengeräte und Zubehör:

ICAP 61E Trace Analyser der Fa. Thermo Jarrell Ash mit axialer Plasmafackel

Probengeber TJA 300 (umgebaut auf 2 Racks mit je 48 Szintillationsgefäßen (20 ml, Fa. Sarstedt)) mit Staub-Abdeckhaube

Einkanalschlauchpumpe für Probengeber-Spülstation

Rechner mit Software Thermospec (Version 6.0)

Ultraschall-Zerstäuber U 5000 AT+ der Fa. Cetac

Mischsystem (mit Entlüftung) für Internen Standard und Matrixanpassung

Multipette der Fa. Eppendorf

Chemikalien:

Cäsiumchlorid (CsCl) p.a.

Salpetersäure (HNO₃), 65 %, p.a.

Yttrium (Y) Standardlösung 1000 mg/l für ICP in 5 % HNO₃

Lösungen:

30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt. Spülsäure:

Yttrium/Cäsium-Lösung: 0,63 g CsCl werden in einem 1 l-Glaskolben eingewogen, mit 50 ml

Yttrium-Standard-Lösung sowie 30 ml konz. HNO₃ versetzt und mit H₂O

demin. auf 1 l aufgefüllt.

Mn

Eichung/Standards:

Stammlösungen:

Mn AAS-Standard (Fa. B. Kraft) \Rightarrow 5 g/l Mn

I. Cd, Co, Cr Cu, Ni, Pb, Zn, Fe, Mn: In einen 100 ml PFA-Kolben werden 0,25 ml Cd-, 1 ml Co-, 2,5 ml Cr-, 2,5 ml Cu-, 2,5 ml Ni-, 15 ml Pb- und 15 ml Zn- ICP-

Standard (Fa. B. Kraft, 1 g/l), 10 ml Fe- AAS-Standard (Fa. B. Kraft, 5 g/l) sowie 10 ml Mn- AAS-Standard (Fa. B. Kraft, 5 g/l) gegeben, mit 3 ml konz. HNO₃ versetzt und mit H₂O bidemin. auf 100 ml aufgefüllt.

=> 2,5 mg/l Cd, 10 mg/l Co, 25 mg/l Cr, 25 mg/l Cu, 25 mg/l Ni, 150 mg/l Pb, 150 mg/l Zn, 500 mg/l Fe, 500 mg/l Mn.

II. Al, As, Ca, Fe Mg, Mn, Ti: In einen 500 ml Kolben werden 50 ml Al-, 50 ml Ca-, 50 ml Fe-,

20 ml Mg-, 20 ml Mn- und 20 ml Ti- AAS Standard (Fa. B. Kraft, 5 g/l) sowie 2,5 ml As- ICP-Standard (Fa. B. Kraft, 1 g/l) gegeben und mit H₂O

bidemin. auf 500 ml aufgefüllt.

=> 500 mg/l Al, 5 mg/l As, 500 mg/l Ca, 500 mg/l Fe, 200 mg/l Mg, 200 mg/l Mn, 200 mg/l Ti.

AAS-Standard (Fa. B. Kraft) => 5 g/l S III. S: IV. P: AAS-Standard (Fa. B. Kraft) => 5 g/l P V. Ba: ICP-Standard (Fa. B. Kraft) => 1 g/l Ba

Element	Form	Gerät	Gerät Methoden-Nr.		
Mn	Mnges	ICP(sim)	MnMngesICP5.2	9	

Standardlösungen:

Standardlösung GAUT5: in einen 250 ml PFA-Kolben werden 5 ml von Stammlösung I und 2,5 ml von Stammlösung V gegeben, mit 7,5 ml konz. HNO₃ versetzt und mit H₂O bidemin. auf 250 ml aufgefüllt.

Standardlösung HUGAKWUT7: in einen 250 ml PFA-Kolben werden 25 ml von Stammlösung II, 0,5 ml von Stammlösung III und 0,25 ml von Stammlösung IV gegeben, mit 7,5 ml konz. HNO $_3$ versetzt und mit H $_2$ O bidemin. auf 250 ml aufgefüllt.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mn auch andere Elemente enthalten (siehe Sammelanhang S10.1), für die verschiedenen Methoden verwendet

<u>Standards</u>					
Blank	0,0 mg/l Mn				
GAUT5	10,0 mg/l Mn				
HUGAKWUT7	20,0 mg/l Mn				

Kontrollstandard	
K22	5,0 mg/l Mn

Mn

Methode:	KWUT	KWUT
	GAUT	GAUT
	DANHUT	DANHUT
Linie:	Mn (I)	Mn (II)
Wellenlänge:	257,610	293,306
Meßbereich [mg/l]:	0,01 - 10,0	10,0-30,0
Standards:	Blank	Blank
	GAUT5	GAUT5
	HUGAKWUT7	HUGAKWUT7
Bemerkungen:	Untergrund-	Untergrund-
-	Korrektur	Korrektur
	+24	-11
		Interelem
		Korrektur
		bei Fe, Ti

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml konz. HNO₃ in 250 ml).

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP5.2	10

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP2.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S10.1 zusammengestellt.

Die Messung der Proben erfolgt mit Zusatz von CsCl zur Erhöhung der Salzkonzentration und Vereinheitlichung der Probenmatrix sowie mit Zusatz von Y als internem Standard. Dazu wird über ein T-Stück und einen 2. Kanal der Schlauchpumpe zur Probenzuführung die Yttrium/Cäsium-Lösung im Verhältnis Probe:Lösung von 10:1 der Probe kontinuierlich zudosiert und über eine Glasrohrspirale mit 5 Windungen gemischt.

Als Probengefäße für den umgebauten Probengeber TJA 300 werden säuregespülte Szintillationsgefäße (20 ml, Fa. Sarstedt) verwendet.

Königswasseraufschluß-Lösungen (KWUT) von Boden-Aufschlüssen werden mit einem Diluter 1:10 verdünnt und anschließend mit einer Multipette 225 µl HNO₃ konz. zugesetzt.

Königswasseraufschluß-Lösungen (KWUT) von Humus-Aufschlüssen werden mit einem Diluter 1:5 verdünnt.

Gesamtaufschluß-Lösungen (GAUT) von Boden-Aufschlüssen werden mit 2 %iger HNO_3 1:2 verdünnt.

<u>Achtung:</u> Bei KW-Boden- und Humus-, sowie GA-Boden-Aufschlüssen müssen beim Erstellen der Autosampler-Table (siehe Gerätekurzanleitung ICP2.1) folgende Verdünnungsfaktoren eingegeben werden:

Probe-Lösung	<u>Faktor</u>
KW-Lsg. Boden	10,15
KW-Lsg. Humus	5,00
GA-Lsg. Boden	2,00

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K22; Messung nach der Eichung, alle 16 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

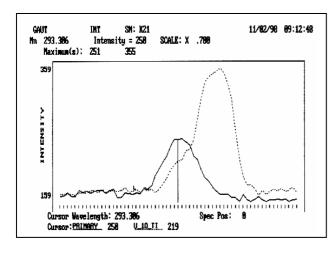
Auswertung/Datendokumentation:

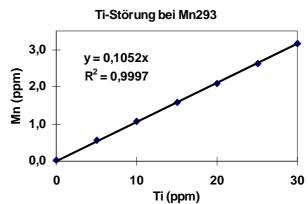
Die gemessenen Mn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm ICPUNKER (siehe Kurzanleitung ICP-DV1.2 bzw. 2.1) bearbeitet.

<u>Mn</u>

Anhang Nr. 1 für Mn Mnges ICP(sim) MnMnges	ICP5.2
--	--------

Linienstörungen und ihre Korrektur


Seite 1


Tabelle 1: Störungen und ihre Korrektur bzw. Bewertung bei der Mn293-Messung:

Stör- ele- ment	Spek- trum (Abb.)	<u>Korrekturen:</u>					
		Intere	element-Kori	ektur		rgrund- rektur	Keine Korrektur
		Faktor- Ermittlung (Abb.)	Korrektur- Faktor 1	Korrektur- Faktor 2	Unter- grund- Punkte	Störung ab (ppm):	Störung ab (ppm)
Ti	1	2	0,1052	-			
Fe	3	4	0,0012	•			
Mo	5			_			0,2

Abb.1: Ti (10 ppm) Störung bei Mn (20 ppm)

Abb.2: IEC-Faktorermittlung

K

Linienstörungen und ihre Korrektur

Seite 1

Abb. 3: Fe (1000 ppm) Störung bei Mn (20 ppm)

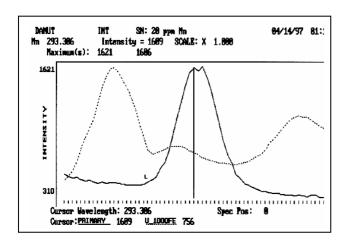
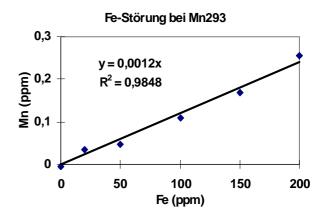
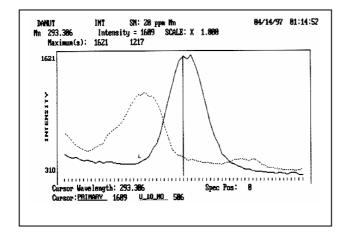




Abb.4: IEC-Faktorermittlung

K

Abb 5: Mo (10 ppm) Störung bei Mn (20 ppm)

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP7.1	1

Datum:

15.02.2003

Elementbestimmungsmethode:

MANGAN

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL1.1, UFBL1.1, DAN1.1, DAN2.2	0,001	0,005	15

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1, UFBL1.1
Humus	
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885 (teilw. andere Wellenlänge)
HFA	D37.1.4.3 / D71.1.4.4 / D37.1.6.3 / D37.1.6.4
HFA-Code	D;4;1;2;2;-1;3 (260,569 nm), D;4;1;2;2;-1;1 (293,306 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei Mn den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Gesamtmatrixstörungen werden durch CsCl-Zusatz minimiert. Viskositätsschwankungen aufgrund unterschiedlicher Gesamtsalzkonzentrationen werden durch Messung mit internem Standard ausgeglichen.

Anhang:	<u>Lit.:</u>	
Anhang 1: Methodenvergleich	Nölte: ICP Emissionsspektroskopie für	
Sammelanhang S13.1: Geräteparameter für ver-	Praktiker; Weinheim, 2002	
schiedene Methoden	Montaser, Golightly: Inductively Coupled	
Kurzanleitung ICP3.1	Plasmas in Analytical Atomic Spectrometry;	
Kurzanleitung ICP-DV2.1	Weinheim, 1987	

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP7.1	2

Analysengeräte und Zubehör:

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Standard-Injektorrohr 1,5 mm für wässrige und salpetersaure Lösungen Zyklonmischkammer und Meinhard-Zerstäuber Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva Mischsystem für internen Standard und Matrixanpassung Multipette der Fa. Eppendorf

Chemikalien:

Cäsiumchlorid (CsCl) p.a. Salpetersäure (HNO₃), 65 %, p.a Scandium (Sc) Standardlösung 1 g/l für ICP in HNO₃ 2 mol/l

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Scandium/Cäsium-Lösung: 1,26 g CsCl werden in einem 1 l-Glaskolben eingewogen, mit 10 ml

Scandium-Standardlösung sowie 30 ml konz. HNO₃ versetzt und mit H₂O

demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mn: AAS-Standard (Fa B. Kraft) => 5 g/l Mn

Al, Ca, Fe, K, Mg, Na, P, S: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung HE10: In einen 250 ml-Glaskolben werden 0,25 ml der Mn-, je 0,5 ml der Fe-

und Mg-, sowie je 1 ml der K-, Na-, P- und S-Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO $_3$ 65 % p.a. versetzt und mit H_2O

bidemin. auf 250 ml aufgefüllt.

=> 5 mg/l Mn, 10 mg/l Fe und Mg, 20 mg/l K, Na, P und S.

Standardlösung HE20: In einen 250 ml-Glaskolben werden jeweils 1 ml der Al-, Ca-, Mg- und

Mn-Stammlösungen gegeben. Es werden 7,5 ml HNO₃ 65 % p.a. zuge-

geben und mit H₂O bidemin. auf 250 ml aufgefüllt.

⇒ 20 mg/l Al, Ca, Mg und Mn.

<u>Mn</u>

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP7.1	3

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mn auch andere Elemente enthalten (siehe Sammelanhang S13.1), für die verschiedenen Methoden verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Mn
HE10	5,0 mg/l Mn
HE20	20,0 mg/l Mn

	Kontrollstandard
K1	10,0 mg/l Mn

Methode:	ANULL	ANULL
	EXT1:2H2O1.1	EXT1:2H2O1.1
	GBL1.1	GBL1.1
	UFBL1.1	UFBL1.1
	DAN1.1Pflanze	DAN1.1Pflanze
	DAN2.2Pflanze	DAN2.2Pflanze
Linie:	Mn	Mn
Wellenlänge:	260.569	293.306
Messbereich [mg/l]:	BG – 5	5 – OMG
<u>Standards:</u>	Blank	Blank
	HE10	HE20
Bemerkungen:	Untergrund-	Untergrund-
	korrektur:	korrektur:
	Pos. links: 1	Pos. links: 1
	Pixelanzahl:2	Pixelanzahl: 1
	Pos. rechts: 21	Pos. rechts: 20
	Pixelanzahl: 1	Pixelanzahl:2

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml HNO₃ 65 %, p.a. in 250 ml).

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S13.1 zusammengestellt.

Die Messung der Proben erfolgt mit Zusatz von CsCl zur Erhöhung der Salzkonzentration und Vereinheitlichung der Probenmatrix sowie mit Zusatz von Sc als internem Standard. Dazu wird über ein T-Stück und einen 2. Kanal der Schlauchpumpe zur Probenzuführung die Scandium/Cäsium-Lösung im Verhältnis Probe:Lösung von 10:1 der Probe kontinuierlich zudosiert und über eine Glasrohrspirale mit 5 Windungen gemischt.

Wässrige Proben werden vor dem Messen mit 225 μl HNO $_3$ konz. pro 7,5 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP7.1	4

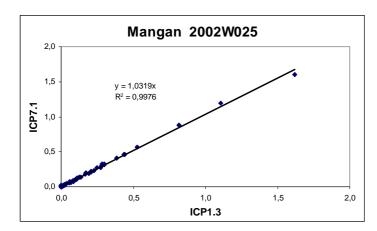
Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1 K1; Messung nach der Eichung, alle 16 Probe	
		nach jeder Eichungswiederholung; erlaubte Abwei-
		chung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1
		mitgemessen; erlaubte Abweichung 5 %

Auswertung/Datendokumentation:

Die gemessenen Mn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP- Mn DV2.1) bearbeitet.



Anhang Nr. 1 für Mn Mnges ICP(sim) MnMngesICP7.1

Methodenvergleich ICP ICAP61E mit ICP Iris Advantage

Im folgenden sind Vergleichsmessungen zwischen der ICP-Methode MnMngesICP1.3 und der hier beschriebenen Methode dargestellt.

3.) Zusammenfassung der Vergleichsmessungen von ca. 70 Proben einer Wasser-Serie: Die Grafik zeigt den Vergleich zwischen der ICP1.3-Messung mit der ICP7.1-Messung. Die Vergleichbarkeit der beiden Messungen ist gut. Die Abweichung liegt bei maximal 3,5 %.

Anhang Nr.	1	für	Mn	Mnges	ICP(sim)	MnMngesICP7.1
------------	---	-----	----	-------	----------	---------------

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP7.2	1

Datum:

1.03.2006

Elementbestimmungsmethode:

MANGAN

Untersuchungsmethode		BG	OMG
ANULL, EXT1:2H2O1.1, GBL1.1, UFBL1.1, DAN1.1, DAN2.2	0,001	0,003	15

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1, UFBL1.1
Humus	
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885 (teilw. andere Wellenlänge)
HFA	D37.1.4.3 / D71.1.4.4 / D37.1.6.3 / D37.1.6.4
HFA-Code	D;4;1;2;-1;-1;3 (260,569 nm), D;4;1;2;-1;-1;1 (293,306 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei Mn den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S13.2: Geräteparameter für ver-	Nölte: ICP Emissionsspektroskopie für
schiedene Methoden	Praktiker; Weinheim, 2002
Kurzanleitung ICP3.1	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP-DV2.1	Plasmas in Analytical Atomic Spectrometry;
-	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP7.2	2

Analysengeräte und Zubehör:

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Standard-Injektorrohr 1,5 mm für wässrige und salpetersaure Lösungen Zyklonmischkammer und Meinhard-Zerstäuber Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva Multipette der Fa. Eppendorf

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mn: ICP-Standard (Fa. B. Kraft => 1 g/l Mn
Mn: AAS-Standard (Fa. B. Kraft) => 5 g/l Mn
Al, Ca, Fe, K, Mg, Na: ICP-Standard (Fa. B. Kraft) => jeweils 1 g/l
Al, Ca, Fe, K, Mg, Na, P, S: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung HE1: In einen 500 ml-Glaskolben werden je 0,5 ml der K- und Na, sowie je

0,25 ml der Al, Ca, Fe, Mg und Mn enthaltenden ICP-Stammlösungen gegeben. Dazu kommen je 0,1 ml der P- und S- AAS-Stammlösungen. Der Kolben wird mit 15 ml HNO₃ 65 % p.a. versetzt und mit H₂O

bidemin. auf 500 ml aufgefüllt.

=>0,5 mg/l Al, Ca, Fe, Mg und Mn, 1 mg/l K, Na, P und S.

Standardlösung HE10: In einen 500 ml-Glaskolben werden 0,5 ml der Mn-, je 1 ml der Fe- und

Mg-, sowie je 2 ml der K-, Na-, P- und S - AAS-Stammlösungen gegeben. Der Kolben wird mit 15 ml HNO_3 65 % p.a. versetzt und mit

H₂O bidemin. auf 500 ml aufgefüllt.

=> 5 mg/l Mn, 10 mg/l Fe und Mg, 20 mg/l K, Na, P und S.

Standardlösung HE20: In einen 500 ml-Glaskolben werden jeweils 2 ml der Al-, Ca-, Mg- und

Mn- AAS-Stammlösungen gegeben. Es werden 15 ml HNO₃ 65 % p.a.

zugegeben und mit H₂O bidemin. auf 500 ml aufgefüllt.

=> 20 mg/l Al, Ca, Mg und Mn.

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP7.2	3

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mn auch andere Elemente enthalten (siehe Sammelanhang S13.2), für die verschiedenen Methoden verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Mn
HE1	0,5 mg/l Mn
HE10	5,0 mg/l Mn
HE20	20,0 mg/l Mn

	Kontrollstandard
K1	10,0 mg/l Mn

Methode:	ANULL	ANULL	ANULL	
	EXT1:2H2O1.1	EXT1:2H2O1.1	EXT1:2H2O1.1	
	GBL1.1	GBL1.1	GBL1.1	
	UFBL1.1	UFBL1.1	UFBL1.1	
	DAN1.1Pflanze	DAN1.1Pflanze	DAN1.1Pflanze	
	DAN2.2Pflanze	DAN2.2Pflanze	DAN2.2Pflanze	
Linie:	Mn	Mn	Mn	
Wellenlänge:	260.569	260.569	293.306	
Messbereich [mg/l]:	BG – 1	1 – 5	5 – OMG	
Standards:	Blank	Blank	Blank	
	HE1	HE10	HE20	
Bemerkungen:	Untergrund-	Untergrund-	Untergrund-	
	korrektur:	korrektur:	korrektur:	
	Pos. links: 1	Pos. links: 1	Pos. links: 1	
	Pixelanzahl:2	Pixelanzahl:2	Pixelanzahl: 1	
	Pos. rechts: 21	Pos. rechts: 21	Pos. rechts: 20	
	Pixelanzahl:1	Pixelanzahl:1	Pixelanzahl:2	

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml HNO₃ 65 %, p.a. in 250 ml).

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S13.2 zusammengestellt.

Wässrige Proben werden vor dem Messen mit 225 µl HNO₃ konz. pro 7,5 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP7.2	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung		
Kontrollstandard QKSt.1.1		K1; Messung nach der Eichung, alle 16 Proben und		
		nach jeder Eichungswiederholung; erlaubte Abwei-		
		chung 3 %		
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie		
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung		
IBW				
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung		
NFV				
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung		
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung		
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1		
		mitgemessen; erlaubte Abweichung 5 %		

Auswertung/Datendokumentation:

Die gemessenen Mn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP- Mn DV2.1) bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP7.3	1

Datum:

1.03.2008

Elementbestimmungsmethode:

MANGAN

Untersuchungsmethode	NG	BG	OMG
ANULL, ANULLIC, EXT1:2H2O1.1, GBL1.1, UFBL1.1, KOMPAL1.1, DAN1.1, DAN2.2	0,001	0,003	15

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1, UFBL1.1
Humus	
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL, ANULLIC

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885 (teilw. andere Wellenlänge)
HFA	D37.1.4.3 / D71.1.4.4 / D37.1.6.3 / D37.1.6.4
HFA-Code	D;4;1;2;-1;-1;3 (260,569 nm), D;4;1;2;-1;-1;1 (293,306 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S13.3: Geräteparameter für ver-	Nölte: ICP Emissionsspektroskopie für
schiedene Methoden	Praktiker; Weinheim, 2002
Kurzanleitung ICP3.1	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP-DV2.1	Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

1	V	ľ	1
_			

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP7.3	2

Analysengeräte und Zubehör:

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Zyklonmischkammer und Meinhard-Zerstäuber Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva Multipette der Fa. Eppendorf

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mn: Standard (Fa. B. Kraft) => 5 g/l Mn

Al, Ca, Fe, K, Mg, Na, P, S: Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung HE 0.5: In einen 1000 ml-Glaskolben werden je 0,1 ml der Al-, Mg-, Mn-, Na-

und S-, 1 ml der K-, 2 ml der Fe-, sowie je 4 ml der Ca- und P - Stammlösungen gegeben. Der Kolben wird mit 30 ml HNO_3 65 % p.a.

versetzt und mit H₂O bidemin. auf 1000 ml aufgefüllt.

=> 0,5 mg/l Al, Mg, Mn, Na und S, 5 mg/l K, 10 mg/l Fe, 20 mg/l Ca

und P.

Standardlösung HE 2.5: In einen 1000 ml-Glaskolben werden je 0,5 ml der Al-, Ca-, Fe-, K-, Mn-

und S-, je 2 ml der Mg- und P-, sowie 4 ml der Na - Stammlösungen gegeben. Der Kolben wird mit 30 ml HNO_3 65 % p.a. versetzt und mit

H₂O bidemin. auf 1000 ml aufgefüllt.

=> 2,5 mg/l Al, Ca, Fe, K, Mn und S, 10 mg/l Mg und P, 20 mg/l Na.

Standardlösung HE 5: In einen 1000 ml-Glaskolben werden je 0,1 ml der Ca-, Fe- und K-, je 1

ml der Mn-, Na-, P- und S-, sowie jeweils 4 ml der Al- und Mg - Stammlösungen gegeben. Es werden 30 ml HNO_3 65 % p.a. zugegeben

und mit H₂O bidemin. auf 1000 ml aufgefüllt.

=> 0,5 mg/l Ca, Fe und K, 5 mg/l Mn, Na, P und S, 20 mg/l Al und Mg.

Standardlösung HE 10: In einen 1000 ml-Glaskolben werden 0,1 ml der P-, 0,5 ml der Mg-, je 1

ml der Al- und Fe, je 2 ml der Ca-, K-, Mn- und Na-, sowie 4 ml der S - Stammlösungen gegeben. Es werden 30 ml HNO $_3$ 65 % p.a. zugegeben

und mit H₂O bidemin. auf 1000 ml aufgefüllt.

=> 0,5 mg/l P, 2,5 mg/l Mg, 5 mg/l Al und Fe, 10 mg/l Ca, K, Mn und

Na, 20 mg/l S

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP7.3	3

Standardlösung HE 20:

In einen 1000 ml-Glaskolben werden je 0,5 ml der Na- und P-, je 1 ml der Ca- und Mg-, 1,5 ml der Fe-, je 2 ml der Al- und S-, sowie jeweils 4 ml der K- und Mn - Stammlösungen gegeben. Es werden 30 ml HNO $_3$ 65 % p.a. zugegeben und mit H $_2$ O bidemin. auf 1000 ml aufgefüllt. => 2,5 mg/l Na und P, 5 mg/l Ca und Mg, 7,5 mg/l Fe, 10 mg/l Al und S, 20 mg/l K und Mn.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mn auch andere Elemente enthalten (siehe Sammelanhang S13.3), für die verschiedenen Methoden verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Mn
HE 0.5	0,5 mg/l Mn
HE 2.5	2,5 mg/l Mn
HE 5	5,0 mg/l Mn
HE 10	10,0 mg/l Mn
HE 20	20,0 mg/l Mn

	<u>Kontrollstandard</u>
K1	10,0 mg/l Mn

Methode:	ANULL	ANULL
	ANULLIC	ANULLIC
	EXT1:2H2O1.1	EXT1:2H2O1.1
	GBL1.1	GBL1.1
	UFBL1.1	UFBL1.1
	DAN1.1Pflanze	DAN1.1Pflanze
	DAN2.2Pflanze	DAN2.2Pflanze
Element:	Mn	Mn
Wellenlänge:	260.569	293.306
Messbereich [mg/l]:	BG - 2,5	2,5 – OMG
Standards:	Blank	HE 5
	HE 0.5	HE 10
	HE 2,5	HE 20
Bemerkungen:	Untergrund-	Untergrund-
-	Korrektur:	Korrektur:
	Pos. links: 1	Pos. links: 1
	Pixelanzahl:2	Pixelanzahl:1
	Pos. rechts: 21	Pos. rechts: 20
	Pixelanzahl:1	Pixelanzahl:2

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml HNO₃ 65 %, p.a. in 250 ml).

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP7.3	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S13.3 zusammengestellt.

Wässrige Proben werden vor dem Messen mit 180 µl HNO₃ konz. pro 6 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung		
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 20 Proben und		
		nach jeder Eichungswiederholung; erlaubte Abwei-		
		chung 3 %		
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie		
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung		
IBW				
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung		
NFV				
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung		
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung		
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1		
		mitgemessen; erlaubte Abweichung 5 %		

Mn

Auswertung/Datendokumentation:

Die gemessenen Mn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP8.1	1

Datum:

10.03.2003

Elementbestimmungsmethode:

MANGAN

Untersuchungsmethode		BG	OMG
DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1	0,001	0,005	30

geeignet für:

Boden	DAN1.1, DAN2.2, DANF1.1, OAKW1.1
Humus	DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	rm In Anlehnung an DIN EN ISO 11885 (teilw. andere Wellenlänge)	
HFA	D37.1.6.3 / D37.1.6.4	
HFA-Code	D;4;1;2;2;-1;3 (260,569 nm), D;4;1;2;2;-1;1 (293,306 nm)	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei Mn den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse sowie Störungen durch Linien des Elementes Fe werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle ausgeglichen. Gesamtmatrixstörungen werden durch CsCl-Zusatz minimiert. Viskositätsschwankungen aufgrund unterschiedlicher Gesamtsalzkonzentrationen werden durch Messung mit internem Standard ausgeglichen.

Anhang:	<u>Lit.:</u>	
Anhang 1: Linienstörungen und ihre Korrektur	Nölte: ICP Emissionsspektroskopie für	
Sammelanhang S14.1: Geräteparameter für ver-	Praktiker; Weinheim, 2002	
schiedene Methoden	Montaser, Golightly: Inductively Coupled	
Kurzanleitung ICP3.1	Plasmas in Analytical Atomic Spectrometry;	
Kurzanleitung ICP-DV2.1	Weinheim, 1987	

\mathbf{E}	lement	ement Form Gerät		Methoden-Nr.	
	Mn	Mnges	ICP(sim)	MnMngesICP8.1	2

Analysengeräte und Zubehör:

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Standard-Injektorrohr 1,5 mm für wässrige und salpetersaure Lösungen Zyklonmischkammer und Meinhard-Zerstäuber

Probengeber 222 XL der Fa. Gilson

Rechner mit Software Teva

Mischsystem für internen Standard und Matrixanpassung

Multipette der Fa. Eppendorf

Chemikalien:

Cäsiumchlorid (CsCl) p.a.

Salpetersäure (HNO₃), 65 %, p.a.

Scandium (Sc) Standardlösung 1 g/l für ICP in HNO₃ 2 mol/l

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Scandium/Cäsium-Lösung: 1,26 g CsCl werden in einem 1 l-Glaskolben eingewogen, mit 10 ml

Scandium-Standardlösung sowie 30 ml konz. HNO₃ versetzt und mit H₂O

demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mn: AAS-Standard (Fa B. Kraft) => 5 g/l Mn

Al, Ca, Fe, K, Mg, Na, P, S: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung A1: In einen 250 ml-Glaskolben werden 0,25 ml der Mn, je 0,5 ml der Fe-

und Mg-, sowie je 1 ml der Na-, P-, und S-Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % p.a. versetzt und mit H₂O bidemin.

aufgefüllt.

=> 5 mg/l Mn, 10 mg/l Fe und Mg, 20 mg/l Na, P und S.

Standardlösung A2: In einen 250 ml-Glaskolben werden je 1 ml der Al-, K- und Mn- sowie

0,5 ml der Ca-Stammlösung gegeben. Der Kolben wird mit 7,5 ml HNO₃

65 % p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 20 mg/l Al, K und Mn, 10 mg/l Ca.

Standardlösung A3: In einen 250 ml-Glaskolben werden jeweils 2,5 ml der Al-, Ca-, Fe-, K-

und Mg-Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO₃

65 % p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 50 mg/l Al, Ca, Fe, K und Mg.

Standardlösung A4: In einen 250 ml-Glaskolben werden jeweils 5 ml der Al-, Ca- und Fe-

Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % p.a.

versetzt und mit H₂O bidemin. aufgefüllt.

=> 100 mg/l Al, Ca und Fe.

<u>Mn</u>

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mn auch andere Elemente enthalten (siehe Sammelanhang S14.1), für die verschiedenen Methoden verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Mn
A1	10,0 mg/l Mn
A2	20,0 mg/l Mn
A3	0,0 mg/l Mn
A4	0,0 mg/l Mn

	Kontrollstandard
K1	10,0 mg/l Mn

Methode:	DAN1.1Humus	DAN1.1Humus
	DAN2.2Humus	DAN2.2Humus
	DANF1.1Boden	DANF1.1Boden
	DANF1.1Humus	DANF1.1Humus
	OAKW1.1Boden	OAKW1.1Boden
	OAKW1.1Humus	OAKW1.1Humus
	OAKWEG1.1	OAKWEG1.1
Linie:	Mn	Mn
Wellenlänge:	260.569	293.306
Messbereich [mg/l]:	BG – 10	10 - OMG
Standards:	Blank	A1
	A1	A2
Bemerkungen:	Untergrund-	Untergrund-
	Korrektur:	Korrektur:
	Pos. links: 1	Pos. links: 1
	Pixelanzahl:2	Pixelanzahl:2
	Pos. rechts: 21	Pos. rechts: 21
	Pixelanzahl: 1	Pixelanzahl: 1

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml HNO₃ 65 %, p.a. in 250 ml).

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S14.1 zusammengestellt.

Die Messung der Proben erfolgt mit Zusatz von CsCl zur Erhöhung der Salzkonzentration und Vereinheitlichung der Probenmatrix sowie mit Zusatz von Sc als internem Standard. Dazu wird über ein T-Stück und einen 2. Kanal der Schlauchpumpe zur Probenzuführung die Scandium/Cäsium-Lösung im Verhältnis Probe:Lösung von 10:1 der Probe kontinuierlich zudosiert und über eine Glasrohrspirale mit 5 Windungen gemischt.

Element	ement Form Gerät		Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP8.1	4

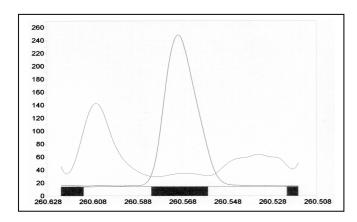
Königswasseraufschluss-Lösungen (OAKW) werden vor dem Messen mit einem Dilutor 1:5 verdünnt

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 16 Proben und
		nach jeder Eichungswiederholung; erlaubte Abwei-
		chung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Messung der Standardaufschlusslösungen ISE974-
		LösungDANF und ISE974LösungKöWa; erlaubte
		Abweichung bei HE 5 %, bei SM 10 % vom Sollwert

Auswertung/Datendokumentation:


Die gemessenen Mn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Anhang Nr.	1	für	Mn	Mnges	ICP(sim)	MnMngesICP8.1
111114115 1 11 1	_	141	1477	1111500		THE SECTION OF

Linienstörung und ihre Korrektur:

Fe (100 ppm) Störung bei Mn260.569 (0,2 ppm)

Anhang Nr.	1	für	Mn	Mnges	ICP(sim)	MnMngesICP8.1
------------	---	-----	----	-------	----------	---------------

Element	Form	Form Gerät Methoden-Nr.		Seite
Mn	Mnges	ICP(sim)	MnMngesICP8.2	1

Datum:

01.05.2005

Elementbestimmungsmethode:

MANGAN

Untersuchungsmethode	NG	BG	OMG
DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1	0,001	0,005	30

geeignet für:

Boden	DAN1.1, DAN2.2, DANF1.1, OAKW1.1
Humus	DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885 (teilw. andere Wellenlänge)
HFA	D37.1.6.3 / D37.1.6.4
HFA-Code	D;4;1;2;2;-1;3 (260,569 nm), D;4;1;2;2;-1;1 (293,306 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei Mn den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse sowie Störungen durch Linien der Elemente Fe und Ti werden durch Setzen von Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Gesamtmatrixstörungen werden durch CsCl-Zusatz minimiert. Viskositätsschwankungen aufgrund unterschiedlicher Gesamtsalzkonzentrationen werden durch Messung mit internem Standard ausgeglichen.

Anhang:	<u>Lit.:</u>	
Anhang 1: Linienstörungen und ihre Korrektur	Nölte: ICP Emissionsspektroskopie für	
Sammelanhang S14.2: Geräteparameter für ver-	Praktiker; Weinheim, 2002	
schiedene Methoden	Montaser, Golightly: Inductively Coupled	
Kurzanleitung ICP3.1	Plasmas in Analytical Atomic Spectrometry;	
Kurzanleitung ICP-DV2.1	Weinheim, 1987	

Element Form Gerät		Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP8.2	2

Analysengeräte und Zubehör:

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Standard-Injektorrohr 1,5 mm für wässrige und salpetersaure Lösungen Zyklonmischkammer und Meinhard-Zerstäuber Probengeber 222 XL der Fa. Gilson

Rechner mit Software Teva

Mischsystem für internen Standard und Matrixanpassung

Multipette der Fa. Eppendorf

Dilutor der Fa. Hamilton Microlab plus 1000

Chemikalien:

Cäsiumchlorid (CsCl) p.a. Salpetersäure (HNO₃), 65 %, p.a. Salpetersäure (HNO₃), 65 %, suprapur.

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Scandium/Cäsium-Lösung: 1,26 g CsCl werden in einem 1 l-Glaskolben eingewogen, mit 10 ml

Scandium-Standardlösung sowie 30 ml konz. HNO_3 versetzt und mit H_2O

demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mn: AAS-Standard (Fa B. Kraft) => 5 g/l Mn

ICP-Standards (Fa. B. Kraft) => 1 g/l Mn

Al, Ca, Fe, K, Mg, Na, P, S: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Ni, Pb, Ti, Zn: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Standardlösungen:

Standardlösung A1SM: In einen 250 ml PFA-Kolben werden je 2,5 ml der Al- und Mg-, 0,25 ml

der Cd-, Co-, Cr-, Cu- und Ni- sowie $0.5\,$ ml der Zn - ICP- Stammlösungen, sowie je $1\,$ ml der Na-, P- und S enthaltenden AAS- Stammlösungen gegeben. Der Kolben wird mit $7.5\,$ ml HNO $_3\,$ 65 %,

suprapur versetzt und mit H₂O bidemin. aufgefüllt.

=> 20 ppm Na, P und S, 10 ppm Al und Mg, je 1000 ppb Cd, Co, Cr, Cu

und Ni, 2000 ppb Zn.

Standardlösung A2SM: In einen 250 ml PFA-Kolben werden je 2,5 ml der Ca- und Fe-, je 1 ml

der Mn- und Ba- und 0,5 ml der Pb - ICP-Stammlösungen, sowie 0,5 ml der 5 g/l K- AAS-Stammlösung gegeben. Der Kolben wird mit 7,5 ml

 $HNO_3\ 65\ \%$ suprapur versetzt und mit H_2O bidemin. aufgefüllt.

=> 10 ppm Ca, Fe und K, 4 ppm Mn und Ba, 2000 ppb Pb.

<u>Mn</u>

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP8.2	3

Standardlösung A3SM: In einen 250 ml-Glaskolben werden jeweils 2,5 ml der Al-, Ca-, Fe-, K-

und Mg- und 1 ml der Mn - AAS-Stammlösungen, sowie 2,5 ml der 1 g/l Ti- ICP-Stammlösung gegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 %

p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 50 mg/l Al, Ca, Fe, K und Mg 20 ppm Mn, 10 ppm Ti.

Standardlösung A4: In einen 250 ml-Glaskolben werden jeweils 5 ml der Al-, Ca- und Fe-

AAS-Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 %

p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 100 mg/l Al, Ca und Fe.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mn auch andere Elemente enthalten (siehe Sammelanhang S14.2), für die verschiedenen Methoden verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Mn
A1SM	0,0 mg/l Mn
A2SM	4,0 mg/l Mn
A3SM	20,0 mg/l Mn
A4	0,0 mg/l Mn

	Kontrollstandard
K24	5,0 mg/l Mn

Methode:	DAN1.1Humus	DAN1.1Humus
	DAN2.2Humus	DAN2.2Humus
	DAN1.1Boden	DAN1.1Boden
	DANF1.1Boden	DANF1.1Boden
	DANF1.1Humus	DANF1.1Humus
	OAKW1.1Boden	OAKW1.1Boden
	OAKW1.1Humus	OAKW1.1Humus
	OAKWEG1.1	OAKWEG1.1
Linie:	Mn	Mn
Wellenlänge:	260.569	Mn293.306
Messbereich [mg/l]:	BG – 10	10 - OMG
Standards:	Blank	A2SM
	A2SM	A3SM
Bemerkungen:	Untergrund-	Untergrund-
_	Korrektur:	Korrektur:
	Pos. links: 1	Pos. links: 1
	Pixelanzahl:1	Pixelanzahl:1
	Pos. rechts: -	Pos. rechts: 20
	Pixelanzahl:-	Pixelanzahl:2

Der Blank wird in 2 %-iger HNO_3 angesetzt (= 7,5 ml HNO_3 65 %, suprapur in 250 ml).

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP8.2	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S14.2 zusammengestellt.

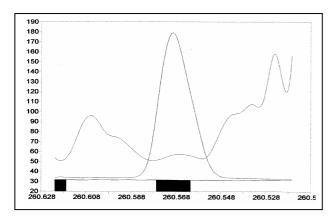
Die Messung der Proben erfolgt mit Zusatz von CsCl zur Erhöhung der Salzkonzentration und Vereinheitlichung der Probenmatrix sowie mit Zusatz von Sc als internem Standard. Dazu wird über ein T-Stück und einen 2. Kanal der Schlauchpumpe zur Probenzuführung die Scandium/Cäsium-Lösung im Verhältnis Probe:Lösung von 10:1 der Probe kontinuierlich zudosiert und über eine Glasrohrspirale mit 5 Windungen gemischt.

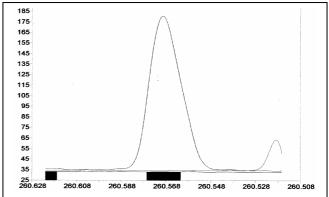
Königswasseraufschlusslösungen (OAKW) werden vor dem Messen mit einem Dilutor 1:5 verdünnt

Qualitätskontrolle:

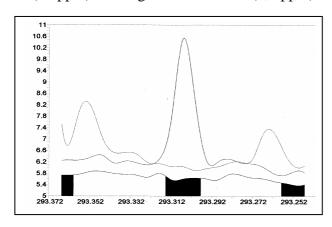
Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung			
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 16 Proben und nach jeder Eichungswiederholung; erlaubte Abweichung 3 %			
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie			
Standardmaterial	QStM1.1	Messung der Standardaufschlusslösungen ISE974- LösungDANF und ISE974LösungKöWa; erlaubte Abweichung bei HE 5 %, bei SM 10 % vom Sollwert			


Mn


Auswertung/Datendokumentation:

Die gemessenen Mn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.


Linienstörung und ihre Korrektur:

Fe (100 ppm) Störung bei Mn260.569 (0,1 ppm) Ti (40 ppm) Störung bei Mn260.569 (0,1 ppm)

Ti (40 ppm) Störung bei Mn293.306 (0,1 ppm)

Anhang Nr.	1	für	Mn	Mnges	ICP(sim)	MnMngesICP8.2
------------	---	-----	----	-------	----------	---------------

E	lement	Form	Gerät	Methoden-Nr.	Seite
	Mn	Mnges	ICP(sim)	MnMngesICP10.1	1

Datum:

01.01.2004

Elementbestimmungsmethode:

MANGAN

Untersuchungsmethode	NG	BG	OMG
AKE1.1, AKEG1.1, AKEG2.1	0,001	0,004	15

geeignet für:

Boden	AKE1.1, AKEG1.1, AKEG2.1
Humus	AKEG1.1, AKEG2.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885 (teilw. andere Wellenlänge)
HFA	D37.1.5.3 / D37.1.5.4
HFA-Code	D;4;1;2;2;-1;3 (260,569 nm), D;4;1;2;2;-1;1 (293,306 nm)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei Mn den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Viskositätsschwankungen aufgrund unterschiedlicher Gesamtsalzkonzentrationen werden durch Messung mit internem Standard ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenvergleich	Nölte: ICP Emissionsspektroskopie für
Sammelanhang S15.1: Geräteparameter für ver-	Praktiker; Weinheim, 2002
schiedene Methoden	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP3.1	Plasmas in Analytical Atomic Spectrometry;
Kurzanleitung ICP-DV2.1	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP10.1	2

Analysengeräte und Zubehör:

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Zyklonmischkammer und Meinhard-Zerstäuber Injektorrohr 2 mm für stark salzhaltige Lösungen Argonbefeuchter der Fa. Thermo Elemental Mischsystem für internen Standard und Matrixanpassung Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva Multipette der Fa. Eppendorf

Chemikalien:

Scandium (Sc) Standardlösung 1g/l für ICP

Lösungen:

Scandium-Lösung: 10 ml Scandium-Standardlösung werden in einen 1 l Messkolben gege-

ben. Es wird mit der jeweiligen Perkolationslösung aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mn

Mn: AAS-Standard (Fa B. Kraft) => 5 g/l Mn
Al, Ca, Fe, K, Mg, Na: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung AKE, AKEG: In einen 250 ml-Glaskolben werden 0,25 ml der Mn-Stammlösung,

je 0,5 ml der Fe-, K, Mg- und Na-Stammlösungen, 1 ml der Al- und 2,5 ml der Ca-Stammlösung gegeben. Der Kolben wird mit der jeweiligen Perkolationslösung (unbedingt gleiche Lösungen wie im Perkolationslösung (unbedingt gleiche Lösungen wie im Perkolationslösungen wie im Perkolation

lationslauf verwenden) bis zur Eichmarke aufgefüllt.

=> 20 mg/l Al, 50 mg/l Ca, 10 mg/l Fe, K, Mg und Na, 5 mg/l Mn.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mn auch andere Elemente enthalten (siehe Sammelanhang S15.1), für die verschiedenen Methoden verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Mn
AKE	5,0 mg/l Mn
AKEG	

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP10.1	3

	Kontrollstandard
K5	10,0 mg/l Mn

Methode:	AKE	AKE
	AKEG	AKEG
Linie:	Mn	Mn
Wellenlänge:	260.569	293.306
Messbereich [mg/l]:	BG – 5	5 – OMG
<u>Standards:</u>	Blank	Blank
	AKE	AKE
	AKEG	AKEG
Bemerkungen:	Untergrund-	<u>Untergrund-</u>
	korrektur:	korrektur:
	Pos. links: 2	Pos. links: 3
	Pixelanzahl:21	Pixelanzahl:2
	Pos. rechts: 20	Pos. rechts: 17
	Pixelanzahl:2	Pixelanzahl: 1

Der Blank wird in der jeweiligen Perkolationslösung angesetzt.

<u>Durchführung:</u>

Mn

Den Argonbefeuchter sowie das 2 mm Injektorrohr installieren.

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S15.1 zusammengestellt.

Die Messung der Proben erfolgt mit Zusatz von CsCl zur Erhöhung der Salzkonzentration und Vereinheitlichung der Probenmatrix sowie mit Zusatz von Sc als internem Standard. Dazu wird über ein T-Stück und einen 2. Kanal der Schlauchpumpe zur Probenzuführung die Scandium/Cäsium-Lösung im Verhältnis Probe:Lösung von 10:1 der Probe kontinuierlich zudosiert und über eine Glasrohrspirale mit 5 Windungen gemischt.

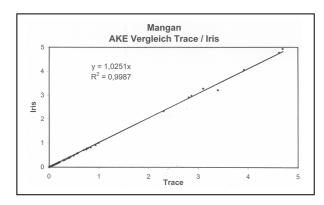
Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard QKSt.1.1		K5; Messung nach der Eichung, alle 16 Proben und
		nach jeder Eichungswiederholung; erlaubte Abwei-
		chung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP10.1	4

Auswertung/Datendokumentation:


Die gemessenen Mn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Anhang Nr. 1 für Mn Mnges ICP(sim) MnMngesICP10.1

Methodenvergleich ICP Trace-Analyzer mit ICP Iris Advantage

Im folgenden sind Vergleichsmessungen zwischen der ICP-Methode MnMngesICP4.2 und der hier beschriebenen Methode dargestellt.

4.) Zusammenfassung der Vergleichsmessungen von ca. 80 Proben einer Boden-Serie: Die Grafik zeigt den Vergleich zwischen der ICP4.2-Messung mit der ICP10.1-Messung. Die Vergleichbarkeit der beiden Messungen ist gut. Die Abweichung liegt bei maximal 2,5 %.

Anhang Nr.	1	für	Mn	Mnges	ICP(sim)	MnMngesICP10.1
------------	---	-----	----	-------	----------	----------------

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP15.1	1

Datum:

01.10.2006

Elementbestimmungsmethode:

MANGAN

Untersuchungsmethode	NG	BG	OMG
ANULL, ANULLIC, EXT1:2H2O1.1, GBL1.1, UFBL1.1, DAN1.1, DAN2.2	0,0005	0,0017	15

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1, UFBL1.1
Humus	
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL, ANULLIC

Methodenverweise:

Norm	
HFA	D37.1.4.4 / D37.1.6.4
HFA-Code	D;4;2;2;-1;-1;3 (260,569 nm, axial), D;4;1;2;-1;-1;9 (293,930 nm, radial)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Mn

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

<u>Lit.:</u>
Nölte: ICP Emissionsspektroskopie für
Praktiker; Weinheim, 2002
Montaser, Golightly: Inductively Coupled
Plasmas in Analytical Atomic
Spectrometry; Weinheim, 1987
•

Analysengeräte und Zubehör:

Form

Mnges

iCAP 6500 der Fa. ThermoFisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Gerät

ICP(sim)

Probengeber ASX-520 der Fa. Cetac

Laminar Flow Box FBS der Fa. Spetec, für Probengeber

Szintillationsgefässe, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

Multipette der Fa. Eppendorf

250 ml Messkolben aus PFA

Chemikalien:

Element

Mn

Salpetersäure (HNO₃), 65 %, suprapur Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

ICP-Standard (Fa B. Kraft) => 1 g/l Mn Mn: AAS-Standard (Fa. B. Kraft) => 5 g/l Mn Mn:

Cd, Co, Cr, Cu, Ni, Pb, Zn:

Lösung A: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Cd, Co, Cr, Cu, Ni, Pb, Zn:

Lösung B: 1:10 Verdünnungen von Lösung A => jeweils 0,1 g/l

Al, Ba, Ca, Fe, K, Mg, Na, Ti:

ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Na, P, S:

AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung DAN 1: In einen 250 ml-PFA-Kolben werden 0,05 ml der Cd-, je 0,1 ml der Co-,

> Cr- und Ni-, sowie 0,25 ml der Cu -Lösungen B gegeben. Dazu kommen 0,025 ml der Zn-, je 0,25 ml der Fe- und Mn-, sowie 1 ml der Ca - ICP-Standardlösungen. Des Weiteren werden 0,05 ml der P-, je 0,25 ml der K- und S-, sowie je 1 ml der Al-, Mg- und Na - AAS-Standardlösungen zugegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % suprapur versetzt

und mit H₂O bidemin. aufgefüllt.

=> 20 μg/l Cd, 40 μg/l Co, Cr und Ni, 100 μg/l Cu und Zn, 1 mg/l Fe,

Mn und P, 4 mg/l Ca, 5 mg/l K und S, 20 mg/l Al, Mg und Na.

In einen 250 ml-PFA-Kolben werden 0,025 ml der Cd-, je 0,05 ml der

Co-, Cr- und Ni-, sowie je 0,5 ml der Cu- und Pb- Lösungen B gegeben. Dazu kommen 0,075 ml der Zn-, je 0,1 ml der Al-, Fe- und Mg-, 0,25 ml

Standardlösung DAN 2:

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP15.1	3

der Ba-, sowie je 2,5 ml der Ca- und Mn - ICP-Standardlösungen. Des Weiteren werden je 0,25 ml der Na- und P-, sowie 1,5 ml der K -AAS-Standardlösungen zugegeben. Der Kolben wird mit 7,5 ml HNO $_3$ 65 % suprapur versetzt und mit $_2$ O bidemin. aufgefüllt.

=> 10 μ g/l Cd, 20 μ g/l Co, Cr und Ni, 200 μ g/l Cu und Pb, 300 μ g/l Zn, 0,4 mg/l Al, Fe und Mg, 1 mg/l Ba, 5 mg/l Na und P, 10 mg/l Ca und Mn, 30 mg/l K.

Standardlösung DAN 3:

In einen 250 ml-PFA-Kolben werden 0,075 ml der Cd,- 0,15 ml der Crund Ni-, 0,2 ml der Co- und 0,75 ml der Cu- Lösungen B gegeben. Dazu kommen 0,1 ml der Ca-, 0,15 ml der Zn-, je 0,25 ml der Na- und Ti-, sowie je 0,5 ml der Al-, Fe-, Mg- und Mn - ICP-Standardlösungen. Des Weiteren werden 0,5 ml der P-, je 1 ml der K- und S-, sowie 1,5 ml der Mg - AAS-Standardlösungen zugegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % suprapur versetzt und mit H₂O bidemin. aufgefüllt.

=> 30 μ g/l Cd, 60 μ g/l Cr und Ni, 80 μ g/l Co, 300 μ g/l Cu, 600 μ g/l Zn, 0,4 mg/l Ca, 1 mg/l Na und Ti, 2 mg/l Al, Fe und Mn, 10 mg/l P, 20 mg/l K und S, 30 mg/l Mg.

Standardlösung DAN 4:

In einen 250 ml-PFA-Kolben werden 0,1 ml der Cd-, 0,15 ml der Co-, je 0,2 ml der Cr- und Ni-, sowie je 1 ml der Cu- und Pb - Lösungen B gegeben. Dazu kommen 0,1 ml der Mn- 0,125 ml der K-, 0,25 ml der Zn-, sowie 1 ml der Fe - ICP-Standardlösungen. Des Weiteren werden je 0,5 ml der Al- und Mg-, je 1 ml der Ca- und P-, sowie 1,5 ml der Na - AAS-Standardlösungen zugegeben.

=> 40 μ g/l Cd, 60 μ g/l Co, 80 μ g/l Cr und Ni, 400 μ g/l Cu und Pb, 1000 μ g/l Zn, 0,4 mg/l Mn, 0,5 mg/l K, 4 mg/l Fe, 10 mg/l Al und Mg, 20 mg/l Ca und P, 30 mg/l Na.

Standardlösung DAN 5:

In einen 250 ml-PFA-Kolben werden 0,5 ml der Mn-, sowie 1,5 ml der Fe- ICP-Standardlösungen gegeben. Dazu kommen je 0,25 ml der Alund Mg-, je 0,5 ml der K-, Na- und S-, 0,75 ml der P-, sowie 2 ml der Ca-AAS-Standardlösungen .

=> 2 mg/l Mn, 5 mg/l Al und Mg, 6 mg/l Fe, 10 mg/l K, Na und S, 15 mg/l P, 40 mg/l Ca.

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP15.1	4

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mn auch andere Elemente enthalten (siehe Sammelanhang S19.1), verwendet:

<u>Standards</u>		
Blank	0,0 mg/l Mn	
DAN 1	1,0 mg/l Mn	
DAN 2	10,0 mg/l Mn	
DAN 3	5,0 mg/l Mn	
DAN 4	0,4 mg/l Mn	
DAN 5	2,0 mg/l Mn	

<u>Kontrollstandards</u>		
K1	10,0 mg/l Mn	
K26	1,0 mg/l Mn	

Methode:	ANULL	ANULL
	ANULLIC	ANULLIC
	DAN1.1	DAN1.1
	DAN2.2	DAN2.2
	EXT1:2H2O1.1	EXT1:2H2O1.1
	GBL1.1	GBL1.1
	UFBL1.1	UFBL1.1
Element:	Mn	Mn
Wellenlänge:	260.569	293.930
Plasmabeobachtung:	axial	radial
Messbereich [mg/l]:	BG-2	2 – OMG
Standards:	Blank	Blank
	DAN 1	DAN 1
	DAN 5	DAN 2
		DAN 3
		DAN 4
		DAN 5
Bemerkungen:	Pixelbreite: 3	Pixelbreite: 3
	Pixelhöhe: 1	Pixelhöhe: 1
	<u>Untergrund-</u>	<u>Untergrund-</u>
	Korrektur:	Korrektur:
	Pos. links: 1	Pos. links: 1
	Pixelanzahl: 2	Pixelanzahl: 2
	Pos. rechts: 19	Pos. rechts: 19
	Pixelanzahl: 2	Pixelanzahl: 2

Der Blank wird in 2%-iger HNO₃ angesetzt (7,5 ml HNO₃ 65 %, suprapur in 250 ml H₂O bidemin.)

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP15.1	5

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP4.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S19.1 zusammengestellt.

Pflanzenaufschlusslösungen (Untersuchungsmethode DAN2.2) werden direkt aus den säuregespülten Szintillationsgefässen (20 ml, Fa. Sarstedt) gemessen.

Pflanzenaufschlusslösungen (Untersuchungsmethode DAN1.1) werden in 13 mm Proberöhrchen abgefüllt und gemessen.

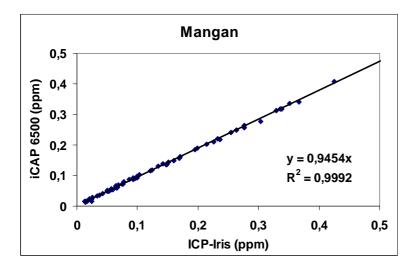
Alle anderen wässrigen Lösungen werden nach dem Abfüllen in 13 mm Proberöhrchen mit 0,2 ml HNO₃, 65 %, p.a. versetzt. Als Verdünnungsfaktor muss in diesem Fall 1,03 in die Probengebertabelle eingegeben werden.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

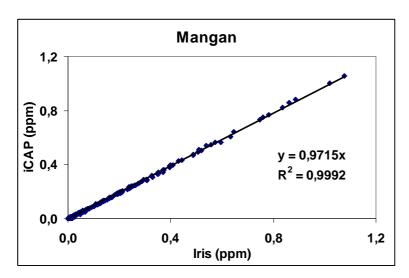
Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K1 oder K26; Messung nach der Eichung, alle
		20 Proben und nach jeder Eichungswiederholung;
		erlaubte Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Ionen / Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen / Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung
Standardmaterial	QStM1.1	NHARZ: erlaubte Abweichung 10 %,
		Wasser HE1, erlaubte Abweichung 5 %

Auswertung/Datendokumentation:


Die gemessenen Mn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

<u>Mn</u>

Anhang Nr.	1	für	Mn	Mnges	ICP(sim)	MnMngesICP15.1
------------	---	-----	----	-------	----------	----------------


Gerätevergleich ICP-Iris / iCAP 6500:

Darstellung einer Vergleichsmessung der Methode MnMngesICP7.2 und der hier beschriebenen Methode an der Pflanzenaufschluss-Serie 2006P001 (80 Proben).

Darstellung einer Vergleichsmessung der Methode MnMngesICP7.2 und der hier beschriebenen Methode an der Wasserserie 2008W019 (240 Proben).

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP16.1	1

Datum:

01.02.2007

Elementbestimmungsmethode:

MANGAN

Untersuchungsmethode	NG	BG	OMG
DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1	0,0001	0,0004	30

geeignet für:

Boden	DANF1.1, OAKW1.1
Humus	DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	
HFA	D37.1.6.4
HFA-Code	D;4;2;2;-1;-1;3 (260.569 nm, axial), D;4;1;2;-1;-1;9 (293.930 nm, radial)

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden. Um eine möglichst hohe Messempfindlichkeit zu erreichen, wird für den Konzentrationsbereich bis 2 mg/l eine axiale Plasmabetrachtung gewählt. Oberhalb dieses Bereichs wird das Plasma radial betrachtet.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen eines, bzw. 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich Iris Advantage /	Nölte: ICP Emissionsspektroskopie für
iCAP6500	Praktiker; Weinheim, 2002
Sammelanhang S20.1: Geräteparameter für	Montaser, Golightly: Inductively Coupled
verschiedene Methoden	Plasmas in Analytical Atomic Spectrometry;
Kurzanleitung ICP4.1	Weinheim, 1987
Kurzanleitung ICP-DV2.1	

Methoden-Nr.	Seite	
MnMngesICP16.1	2	

Analysengeräte und Zubehör:

Form

Mnges

iCAP 6500 der Fa. ThermoFisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Gerät

ICP(sim)

Probengeber ASX-520 der Fa. Cetac

Laminar Flow Box FBS der Fa. Spetec, für Probengeber

Szintillationsgefässe ,20 ml, Fa. Sarstedt

Rechner mit Software iTeva

Multipette der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Dilutor der Fa. Hamilton Microlab plus 1000

Chemikalien:

Element

Mn

Salpetersäure (HNO₃), 65 %, suprapur Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Mn: ICP-Standard (Fa B. Kraft) => 1 g/l Mn Mn: AAS-Standard (Fa. B. Kraft) => 5 g/l Mn

Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K,

Mg, Na, Ni, Pb, Ti, Zn: Lösung A: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Cd, Co, Cr, Cu, Ni: Lösung B: 1:10 Verdünnungen von Lösung A => jeweils 0,1 g/l

Al, Ca, Fe, K, Mg, Na, P, S:

AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung GA1:

In einen 250 ml-PFA-Kolben werden 0,125 ml der Cd-, sowie je 0,25 ml der Co-, Cr-, Cu- und Ni-Lösungen B gegeben. Dazu kommen 0,1 ml der Zn-, sowie je 0,5 ml der Al-, Fe-, Mg- Mn- und Na-ICP-Standardlösungen. Des Weiteren werden je 0,1 ml der P- und S, 0,25 ml der K-sowie 1 ml der Ca-AAS-Standardlösungen zugegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % suprapur versetzt und mit H₂O bidemin. aufgefüllt.

=> $50 \mu g/l$ Cd, $100 \mu g/l$ Co, Cr, Cu und Ni, $400 \mu g/l$ Zn, 2 mg/l Al, Fe, Mn, Na, P und S, 4 mg/l Mg, 5 mg/l K, 20 mg/l Ca.

<u>Mn</u>

ľ	V	ľ	1

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP16.1	3
Standardlö	sung GA2:	0,5 ml der Co-, Cr-, Cu- und Mml der Zn-, 0,25 ml der K-, sowie je 5 ml der Al- und werden je 0,5 ml der Mn-, Na-	n werden 0,25 ml der Cd-, sow Ni-Lösungen B gegeben. Dazu ko je 0,5 ml der Mg- und Pb-, 1 m Fe-ICP-Standardlösungen. Des und P-, sowie 2 ml der Ca-AAS- en wird mit 7,5 ml HNO ₃ 65 % aufgefüllt.	ommen 0,2 d der Ba-, Weiteren -Standard-
			Cr, Cu und Ni, 800 µg/l Zn, 200 Ba, 10 mg/l Mn, Na und P, 20 m	
Standardlö	sung GA3:	Cu-Lösungen B gegeben. Daz und 2 ml der Ti-ICP-Standard	werden 0,375 ml der Cd- und 0, u kommen 0,25 ml der Ca-, 0,3 mlösungen. Des Weiteren werden j der Al-, K- und Mg-, sowie 5 men.	nl der Zn- e 1 ml der
		=> 150 μg/l Cd, 300 μg/l Cu, Mn, Na, P und S, 40 mg/l Al u	1200 μg/l Zn, 1 mg/l Ca, 8 mg/l 7 nd K, 100 mg/l Fe.	i, 20 mg/l
Standardlös	sung GA4:	Na- und Mn- sowie 0,5 ml de kommen 0,05 ml der P-, 0,25 der Fe- sowie je 5 ml der	werden 0,125 ml der As-, je 0, er Ti-ICP-Standardlösungen gege ml der S-, je 1 ml der K- und 1 Al- und Ca-AAS-Standardlösun O ₃ 65 % suprapur versetzt und	ben. Dazu Mg-, 2 ml ngen. Der
		=> 500 μg/l As, 1 mg/l Mn, l und Mg, 40 mg/l Fe, 100 mg/l	Na und P, 2 mg/l Ti, 5 mg/l S, 2 Al und Ca.	20 mg/l K
Standardlös	sung GA5:		werden je 0,75 ml der Co- und eben. Dazu kommen 0,4 ml der	

In einen 250 ml-PFA-Kolben werden je 0,75 ml der Co- und Ni- sowie 1 ml der Cr-Lösungen B gegeben. Dazu kommen 0,4 ml der Zn- und 4 ml der Ti-ICP-Standardlösungen. Des Weiteren werden je 0,25 ml der Ca-, Mn-, Na- und P sowie je 0,5 ml der Al-, Fe-, K- Mg- und S-AAS-Standardlösungen gegeben.

=> 300 $\mu g/l$ Co und Ni, 400 $\mu g/l$ Cr, 1600 $\mu g/l$ Zn, 5 mg/l Ca, Mn, Na und P, 10 mg/l Al, Fe, Mg, K und S, 16 mg/l Ti.

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP16.1	4

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Mn auch andere Elemente enthalten (siehe Sammelanhang S20.1), verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Mn
GA1	2,0 mg/l Mn
GA2	10,0 mg/l Mn
GA3	20,0 mg/l Mn
GA4	1,0 mg/l Mn
GA5	5,0 mg/l Mn

	Kontrollstandard
K24	5,0 mg/l Mn

	T	1	
Methode:	DAN1.1Humus	DAN1.1Humus	
	DAN2.2Humus	DAN2.2Humus	
	DANF1.1Boden	DANF1.1Boden	
	DANF1.1Humus	DANF1.1Humus	
	OAKW1.1Boden	OAKW1.1Boden	
	OAKW1.1Humus	OAKW1.1Humus	
	OAKWEG1.1	OAKWEG1.1	
Element:	Mn	Mn	
Wellenlänge:	260.569	293.930	
Plasmabeobachtung:	axial	radial	
Messbereich [mg/l]:	BG-5	5 - OMG	
Standards:	Blank	Blank	
	GA1	GA1	
	GA4	GA2	
	GA5	GA3	
		GA4	
		GA5	
Bemerkungen:	Pixelbreite: 3	Pixelbreite: 3	
_	Pixelhöhe: 1	Pixelhöhe: 1	
	Untergrund-	<u>Untergrund-</u>	
	Korrektur:	Korrektur:	
	Pos. links: -	Pos. links: 1	
	Pixelanzahl: -	Pixelanzahl: 2	
	Pos. rechts: 19	Pos. rechts: 19	
	Pixelanzahl: 2	Pixelanzahl: 2	

Der Blank wird in 2%-iger HNO_3 angesetzt (7.5 ml HNO_3 65 %, suprapur in 250 ml H_2O bidemin.)

Element	Form	Gerät	Methoden-Nr.	Seite
Mn	Mnges	ICP(sim)	MnMngesICP16.1	5

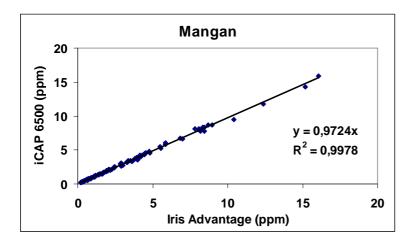
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP4.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S20.1 zusammengestellt. Als Probengefässe werden säuregespülte Szintillationsgefässe (20 ml, Fa. Sarstedt) verwendet. Königswasseraufschlusslösungen (OAKW) werden vor dem Messen mit einem Dilutor 1:5 verdünnt.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und	
		nach jeder Eichungswiederholung; erlaubte	
		Abweichung 3 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974 Lösung, NFVH;	
		erlaubte Abweichung 10 %	


Auswertung/Datendokumentation:

Mn

Die gemessenen Mn-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Gerätevergleich Iris Advantage / iCAP 6500:

Darstellung einer Vergleichsmessung der Methode MnMngesICP8.2 und der hier beschriebenen Methode an der Königswasseraufschluss-Serie 2007H007.

01.12.1999

Datum:

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	ALLIANCE	NNgesCFC4.2	-	1

Elementbestimmungsmethode:

STICKSTOFF gesamt

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1	0,19	0,612	14

geeignet für:

Boden	GBL1.1, EXT1:2H2O1.1
Pflanze	
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN ISO 14255	
HFA	D58.1.4.2	
HFA-Code	D;9;2;3;1;2;0	

Prinzip der Methode/chem. Reaktionen:

Stickstoff aus organischen Verbindungen wird ebenso wie Ammonium in Borat-gepufferter Lösung unter UV-Bestrahlung durch Peroxodisulfat zu Nitrat oxidiert:

$$NH_2\text{-}CH_2\text{-}COOH + 19 \text{ OH}^- + 7 \text{ S}_2\text{O}_8^{2^-} \qquad \frac{\text{UV}}{\text{VV}} > NO_3^- + 2 \text{ CO}_3^{2^-} + 8 \text{ SO}_4^{2^-} + 12 \text{ H}_2\text{O}$$

$$NH_4^+ + 10 \text{ OH}^- + 4 \text{ S}_2\text{O}_8^{2^-} \qquad ----> NO_3^- + 8 \text{ SO}_4^{2^-} + 7 \text{ H}_2\text{O}$$
Anschließend wird Nitrat in einer Cadmium-Säule mit Kupfersulfat als Katalysator zu Nitrit reduziert:

$$\begin{array}{ccc} Cd + Cu^{2+} & \rightarrow & Cu & + Cd^{2+} \\ Cu + NO_3^- + 2H^+ & \rightarrow & Cu^{2+} + NO_2^- + H_2O \\ \text{Nitrit reagiert mit Sulfanilamid unter Bildung eines Diazoniumsalzes:} \end{array}$$

$$NO_{2}^{-} + NH_{2}^{-}SO_{2} - \bigcirc NH_{2} + 2H^{+} \rightarrow NH_{2}^{-}SO_{2} - \bigcirc NH_{2}^{+} = N| + 2H_{2}^{-}O$$

Durch Azokupplung mit α-Naphthylethyldiamindihydrochlorid bildet sich ein rot-violetter Azofarb-

toff:

$$NH_2$$
-SO₂ \longrightarrow N_2^+ + NH -CH₂-CH₂-NH₂ * 2HCl \longrightarrow NH -CH₂-CH₂-NH₂ * 2HCl + H⁺ \longrightarrow $N=N-\bigcirc$ SO₂-NH₂

Der so gebildete rot-violette Farbstoff wird photometrisch bei 540 nm gemessen. Das Spektrum des gebildeten Farbstoffes ist in Anhang 1 abgebildet. Die Reagenzienzumischung zur Probe erfolgt im continuous-flow-Verfahren. Der Aufbau der Reaktionseinheit ist im Anhang Nr. 2 abgebildet.

Anhang:	<u>Lit.:</u>
Anhang 1: Spektrum des Farbkomplexes	Landw. Forschung 40, Heft 4, 1987, S. 295 ff
Anhang 2: ContFlow-Flußdiagramm	Anal. Chem. 51, 1979, S. 1333 ff
Kurzanleitung ALLIANCE3.1	A. Jorissen: Optimierung einer Gesamtstick-
Kurzanleitung TRAACS-DV2.2	stoffbestimmung in Bodenextrakten, Dipl. Arb.
	Fachhochsch. Hamburg, 1992

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	ALLIANCE	NNgesCFC4.2	-	2

Störungen:

Möglicherweise werden sehr stabile Organostickstoff-Verbindungen unter diesen Bedingungen nicht vollständig oxidiert.

Hohe Fe- und Cu-Konzentrationen beeinflussen die Nitratreduktion. Durch EDTA-Zusatz kann diese Störung behoben werden.

Analysengeräte und Zubehör:

Alliance Evolution cont.-flow-Gerät mit xyz-Probennehmer (Bran&Luebbe), Software CFS Skalar

Chemikalien:

Aceton: C₃H₆O

Ammoniumsulfat: $(NH_4)_2SO_4$ (p.a.)

Brij-35 (25%) Imidazol: C₃H₄N₂ Kaliumnitrat: KNO₃ Natriumnitrit: NaNO₂

Kaliumperoxidisulfat: K₂S₂O₈ Kupfersulfat: CuSO₄ * 5H₂O

 α -Naphthylethylendiamindihydrochlorid: $C_{12}H_{14}N_2 * 2 HCl$

Natriumtetraborat: Na₂B₄O₇*10H₂O

Phosphorsäure: H₃PO₄ Salpetersäure: HNO₃

Salzsäure: HCl

Sulfanilamid: C₆H₈O₂N₂S

Lösungen:

1. Konzentrierte Lösungen:

A (Imidazol): 6,81 g Imidazol werden mit H₂O dest. auf 11 aufgefüllt, und der pH-Wert der

Lösung mit HCl auf 7,5 durch Titration eingestellt. (Sinnvollerweise werden

jeweils 5 l Lösung hergestellt.)

B1 (0,01 M CuSO₄): 2,5 g CuSO₄ * 5H₂O werden mit H₂O dest. auf 1 l aufgefüllt. B2 (0,001 M CuSO₄): 10 ml von B1 werden mit H₂O dest. auf 100 ml aufgefüllt.

Brij: 30 %ige Brij-Lösung

2. Reagenzlösungen:

I (Borperx): 40 g Natriumtetraborat * 10 H₂O und 14 g Kaliumperoxodisulfat werden in einen 2-

1-Kolben eingewogen und auf 2 1 mit H₂O demin. aufgefüllt.

II (Imidazol): 250 ml von Lösung A und 2,5 ml von Lösung B2 werden mit H₂O dest. auf 500 ml

aufgefüllt und 1,5 ml Brij-35 (30%) versetzt.

III (Color): 20 g Sulfanilamid und 1,0 g α-Naphthylethylendiamindihydrochlorid und 200 ml

konz. Phosphorsäure werden mit H₂O demin. auf 2 l aufgefüllt. (Im Kühlschrank

aufbewahren, nicht im Ultraschallbad lösen!)

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	Nges	ALLIANCE	NNgesCFC4.2	-	3	

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen
	offen	geschlossen	
	(am Gerät)	(im Kühlschrank)	
A	/	1/2 Jahr	
B1	/	1/2 Jahr	
B2	/	1/2 Jahr	
I	Wochen	1/2 Jahr	
II	2 Tage	1/2 Jahr	CO ₂ -Aufnahme
III	2-3 Tage	4 Wochen	

Eichung/Standards:

Stammlösungen:

NO₂: 4,928 g Natriumnitrit werden mit H₂O dest. auf 1 l aufgefüllt.

 $=> 1 \text{ g NO}_2-N/1$

NH₄, NO₃: 4,717 g (NH₄) ₂ SO₄ und 7,218 g Kaliumnitrat werden in 1 l H₂O demin. gelöst.

 \Rightarrow 1 g/l NO₃-N und 1g/l NH₄-N

Haltbarkeit:

geschlossen im Kühlschrank: ein halbes Jahr (NO₂: 4-8 Wochen).

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Einzelbestimmung:

Mehrelementbestimmung:

<u>Standardreihe</u>				
S8:	14 mg/l N			
S7:	12 mg/l N			
S6:	10 mg/l N			
S5:	8 mg/l N			
S4:	6 mg/l N			
S3:	4 mg/l N			
S2:	2 mg/l N			
S1:	1 mg/l N			
S0:	0 mg/l N			

NH ₄ -N	NO ₃ -N	ges-N	Cl
[mg/l]	NO ₃ -N [mg/l]	[mg/l]	[mg/l]
7	7	14	15
6	6	12	13
5	5	10	11
4	4	8	9
3	3	6	7
2	2	4	5
1	1	2	3
0.5	0.5	1	1
0	0	0	0

<u>Kontrollstandards</u>				
KSK1:	2,0 mg/l N			
KSK2:	6,0 mg/l N			
KSK3:	10,0 mg/l N			

N	<u>itritstandard</u>
KNIT:	7,0 mg/l NO ₂ -N

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung ALLIANCE3.1 beschrieben.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	ALLIANCE	NNgesCFC4.2	-	4

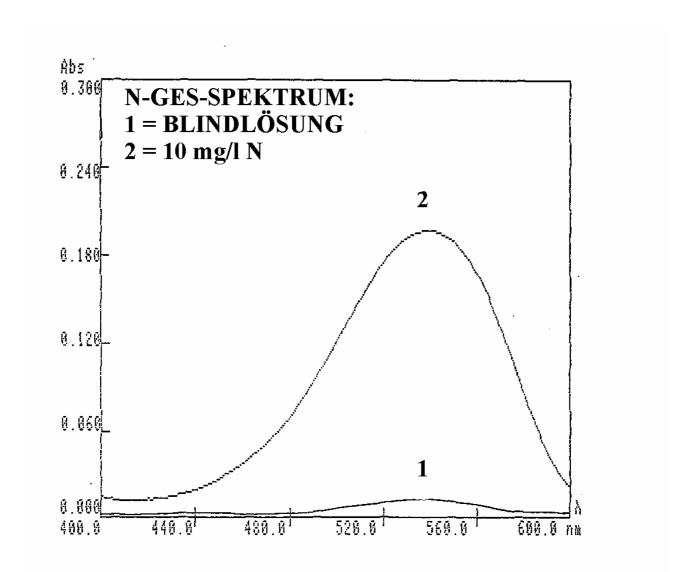
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ALLIANCE3.1 beschrieben. <u>Achtung:</u> Es ist darauf zu achten, dass bei der Art der Eichkurvenauswertung im Method-setup-Bildschirm *Berechnungen 1. Order (linear)* eingegeben wird.

<u>Achtung:</u> Die UV-Lampe muss ca. 1 Std. vor Analysenbetrieb eingeschaltet werden; Das Gerät sollte mit Reagenzien ca. 1/2 Std. einlaufen!

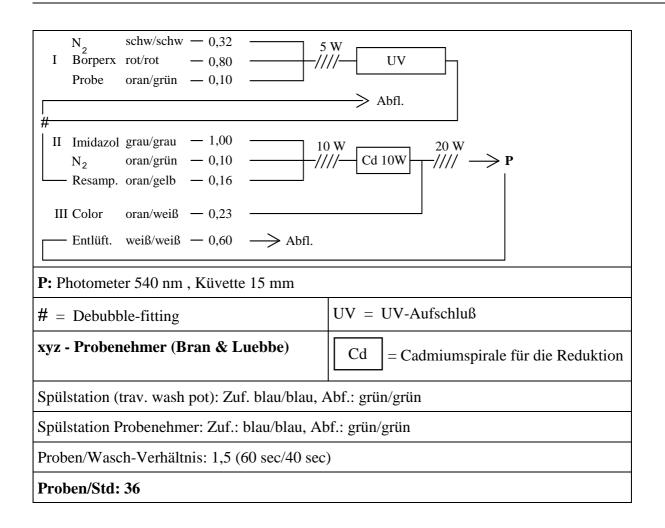
Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

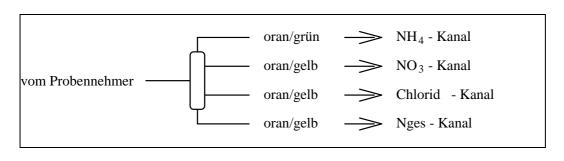

Qualitätskontrolle	Methode	Durchführung
Basislinienkontrolle	QBL1.1	Lineare Basislinienkorrektur durch Messen der Höhe
		der Basislinie am Anfang, nach jeweils 15 Proben,
		und am Ende eines Laufs.
Driftkontrolle	QDK1.1	Lineare Driftkorrektur mit 2 Drift-Standards (1.
		DRIFT IGNORE, 2. DRIFT) am Anfang, nach der
		Kalibrierung, nach jedem Kontrollstandardblock, und
		am Ende eines Laufes mit dem jeweils höchsten Stan-
		dard der Eichreihe. Die Messung von DRIFT
		IGNORE wird in die Berechnung der Drift nicht mit
		einbezogen.
Eichkurvenkontrolle	QEK1.2	Lineare Anpassung der Eichkurve; Bestimmtheits-
		mass ≥0,9998
Kontrollstandard	QKSt1.1	KSK1 (2 mg/l), KSK2 (6 mg/l N), KSK3 (10 mg/l N)
		Messung nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 %;
Stickstoffbilanz	QNB1.1	s. Methodenbeschreibung
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die Gesamtstickstoff-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm TRAACSED (siehe Kurzanleitung TRAACS-DV2.2) zu bearbeiten.


Anhang Nr. 1 für N Nges ALLIANCE NNgesCFC4.2

Spektrum des Farbkomplexes:



Ν

Aufbau der Reaktionseinheit zur N ges-Bestimmung:

Kopplung mit NH₄- und NO₃- und Cl-Messung:

N

01.06.1999

Datum:

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	Nges	SKALAR	NNgesCFC5.1	-	1	

Elementbestimmungsmethode:

STICKSTOFF gesamt

Untersuchungsmethode		BG	OMG
NMin1.1		(0,2)	14

geeignet für:

Boden	NMin1.1
Humus	NMin1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN ISO 14255	
HFA	D58.1.4.2	
HFA-Code	D;9;2;3;1;2;0	

Prinzip der Methode/chem. Reaktionen:

Stickstoff aus organischen Verbindungen wird ebenso wie Ammonium in Borat-gepufferter Lösung unter UV-Bestrahlung durch Peroxodisulfat zu Nitrat oxidiert:

$$\begin{array}{c} \text{NH}_2\text{-CH}_2\text{-COOH} + 19 \text{ OH}^- + 7 \text{ S}_2\text{O}_8^{2^-} & \xrightarrow{\bullet} \text{NO}_3^- + 2 \text{ CO}_3^{2^-} + 8 \text{ SO}_4^{2^-} + 12 \text{ H}_2\text{O} \\ \text{UV} \\ \text{NH}_4^+ + 10 \text{ OH}^- + 4 \text{ S}_2\text{O}_8^{2^-} & \xrightarrow{\bullet} \text{NO}_3^- + 8 \text{ SO}_4^{2^-} + 7 \text{ H}_2\text{O} \\ \underline{\text{Anschließend wird Nitrat in einer Cadmium-Säule mit Kupfersulfat als Katalysator zu Nitrit redu-} \end{array}$$

$$\begin{array}{ccc} & & & \underline{\text{ziert:}} \\ \text{Cd} + \text{Cu}^{2+} & \rightarrow & \text{Cu} & + \text{Cd}^{2+} \\ \text{Cu} + \text{NO}_3^- + 2\text{H}^+ & \rightarrow & \text{Cu}^{2+} + \text{NO}_2^- + \text{H}_2\text{O} \\ \text{reagiert mit Sulfanilamid unter Bildung eines Diazon} \end{array}$$

Nitrit reagiert mit Sulfanilamid unter Bildung eines Diazoniumsalzes:

$$NO_{2}^{-} + NH_{2}^{-}SO_{2} - \bigcirc NH_{2} + 2H^{+} \rightarrow NH_{2}^{-}SO_{2} - \bigcirc NH_{2}^{+} = N| + 2H_{2}O$$

Durch Azokupplung mit α-Naphthylethyldiamindihydrochlorid bildet sich ein rot-violetter Azofarbstoff:

$$NH_2-SO_2 - \bigcirc - N_2^+ + NH-CH_2-CH_2-NH_2 * 2HC1 \longrightarrow NH-CH_2-CH_2-NH_2 * 2HC1 + H^+$$

$$\bigcirc \bigcirc - N_2^+ + NH-CH_2-CH_2-NH_2 * 2HC1 + H^+$$

$$\bigcirc - N_2^+ -$$

Anhang:	<u>Lit.:</u>
Anhang 1: Spektrum des Farbkomplexes	Landw. Forschung 40, Heft 4, 1987, S. 295 ff
Anhang 2: ContFlow-Flußdiagramm	Anal. Chem. 51, 1979, S. 1333 ff
Kurzanleitung SKALAR1.3	A. Jorissen: Optimierung einer Gesamtstick-
Kurzanleitung TRAACS-DV2.2	stoffbestimmung in Bodenextrakten, Dipl. Arb.
	Fachhochsch. Hamburg, 1992

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	SKALAR	NNgesCFC5.1	-	2

Der so gebildete rot-violette Farbstoff wird photometrisch bei 540 nm gemessen. Das Spektrum des gebildeten Farbstoffes ist in Anhang 1 abgebildet. Die Reagenzienzumischung zur Probe erfolgt im continuous-flow-Verfahren. Der Aufbau der Reaktionseinheit ist im Anhang Nr. 2 abgebildet.

Störungen:

Möglicherweise werden sehr stabile Organostickstoff-Verbindungen unter diesen Bedingungen nicht vollständig oxidiert. Hohe Fe- und Cu-Konzentrationen beeinflussen die NO₃⁻-Reduktion. Durch EDTA- Zusatz kann diese Störung behoben werden.

Analysengeräte und Zubehör:

4-Kanal-Continuous-Flow-System SAN PLUS mit automatischem Probennehmer SA1070, online-Dilutor, automatischen Spülventilen und Systemkontroller, Fa. Skalar

Chemikalien:

Ammoniumsulfat: (NH₄)₂SO₄ (p.a.)

Brij-35 (25%) Imidazol: C₃H₄N₂ Kaliumnitrat: KNO₃ Natriumnitrit: NaNO₂

Kaliumperoxidisulfat: $K_2S_2O_8$ Kupfersulfat: $CuSO_4 * 5H_2O$

 α -Naphthylethylendiamindihydrochlorid: $C_{12}H_{14}N_2 * 2 HCl$

Natriumtetraborat: Na₂B₄O₇*10H₂O

Phosphorsäure: H₃PO₄ Sulfanilamid: C₆H₈O₂N₂S

Cadmiumgranulat aktiviert, Skalar Best.-Nr. 13913

Lösungen:

1. Konzentrierte Lösungen:

A (Imidazol): 6,81 g Imidazol werden mit H₂O dest. auf 11 aufgefüllt und der pH-Wert der

Lösung mit HCl auf 7,5 durch Titration eingestellt (Sinnvollerweise werden

jeweils 5 l Lösung hergestellt.).

B1 (0,01 M CuSO₄): 2,5 g CuSO₄ * 5H₂O werden mit H₂O dest. auf 1 l aufgefüllt. B2 (0,001 M CuSO₄): 10 ml von B1 werden mit H₂O dest. auf 100 ml aufgefüllt.

Brij: 30 %ige Brij-Lösung

2. Reagenzlösungen:

I (Borperx): 40 g Natriumtetraborat x 10 H₂O und 14 g Kaliumperoxodisulfat werden in einen

2-l-Kolben eingewogen und auf 2 l mit H₂O demin. aufgefüllt.

II (Imidazol): 250 ml von Lösung A und 2,5 ml von Lösung B2 werden mit H₂O dest. auf 500 ml

aufgefüllt und 1,5 ml Brij-35 (30%) versetzt.

III (Color): 20 g Sulfanilamid und 1,0 g α-Naphthylethylendiamindihydrochlorid und 200 ml

konz. Phosphorsäure werden mit H₂O demin. auf 2 l aufgefüllt. (Im Kühlschrank

aufbewahren, nicht im Ultraschallbad lösen!)

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	SKALAR	NNgesCFC5.1	-	3

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen
	offen	geschlossen	
	(am Gerät)	(im Kühlschrank)	
A	/	1/2 Jahr	
B1	/	1/2 Jahr	
B2	/	1/2 Jahr	
I	Wochen	1/2 Jahr	
II	2 Tage	1/2 Jahr	CO ₂ -Aufnahme
III	2-3 Tage	4 Wochen	

Eichung/Standards:

Stammlösungen:

NO₂: 4,928 g Natriumnitrit werden mit H₂O dest. auf 1 l aufgefüllt.

 $=> 1 \text{ g NO}_2-N/1$

NH₄, NO₃: 4,717 g (NH₄)₂SO₄ und 7,218 g Kaliumnitrat werden in 1 l H₂O demin. gelöst

 \Rightarrow 1 g/l NO₃-N und 1g/l NH₄-N

Standards:

Die Standards werden mit 0,5 M KCl-Lösung angesetzt.

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr (NO₂: 4-8 Wochen).

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Ν

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	Nges	SKALAR	NNgesCFC5.1	-	4	

Einzelbestimmung:

Mehrelementbestimmung:

	Standardreihe
Standard1:	14 mg/l N
Standard2:	12 mg/l N
Standard3:	10 mg/l N
Standard4:	8 mg/l N
Standard5:	6 mg/l N
Standard6:	4 mg/l N
Standard7:	2 mg/l N
Standard8:	1 mg/l N
Standard9:	0 mg/l N

NH ₄ -N	NO ₃ -N	ges-N	Cl
[mg/l]	NO ₃ -N [mg/l]	[mg/l]	[mg/l]
7	7	14	15
6	6	12	13
5	5	10	11
4	4	8	9
3	3	6	7
2	2	4	5
1	1	2	3
0.5	0.5	1	1
0	0	0	0

	Kontrollstandard
KSK1:	1.0 mg/l N
KSK5:	4.0 mg/l N
KSK6:	10.0 mg/l N
KINT:	8.0 mg/l N

Nitritstandard

KNIT: 7.0 mg/l NO₂-N

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.3 beschrieben.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.3 beschrieben. <u>Achtung:</u> Es ist darauf zu achten, dass bei der Art der Eichkurvenauswertung im Method-setup-Bildschirm *Berechnungen 1. Order (linear)* eingegeben wird. <u>Spüllösung:</u>

Als Spüllösung wird 0,5 M KCl-Lösung mit 50 µl/l Brij-35 verwendet.

<u>Neue Cd-Säule:</u> Bei Einbau einer neuen Cd-Säule muss diese zur Benutzung vorbereitet werden. Hierzu muss ein U-Glasrohr mit aktiviertem Cadmiumgranulat befüllt werden.

Das Granulat mithilfe eines Trichters in das vollständig mit H₂O demin. gefüllte Glasrohr rieseln lassen, bis an jeder Seite 5 mm ungefüllt sind. In die Enden ein Stück Schlauch (ca. 5 mm lang) stecken, um zu verhindern, dass Granulat in das System gelangen kann. Auf jeden Fall vermeiden, dass Luft in die Säule gelangt. Anschließend die Säule entweder verschliessen oder in das System einbauen. Nach dem Einbau der Cd-Säule in das System, die Säule durch Messen von 10 hohen (20 mg/l N) Nitratstandards konditionieren.

Kontrolle der Reduktionsleistung der Cd-Säule:

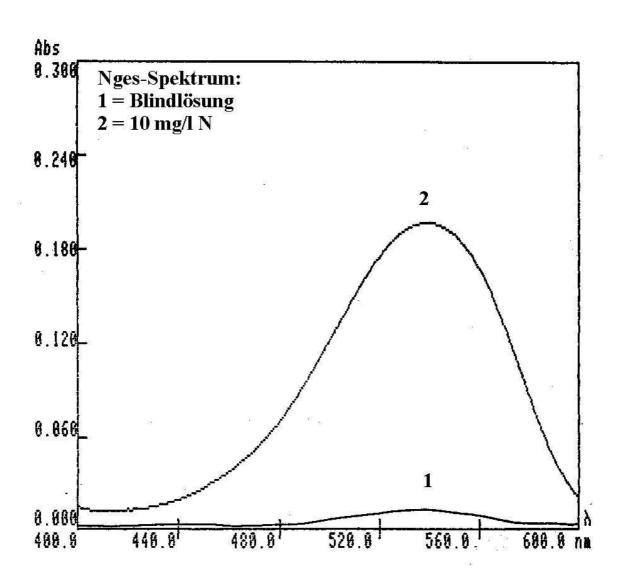
Der mitlaufende Nitrit-Standard (Ni, 7 ppm) sollte stets zwischen 6,7 und 7,3 liegen. Steigt der gemessene Wert über 7,3 ppm, sehen die Peaks spitzer als üblich aus, oder geht der Zwischenwasch zwischen den einzelnen Peaks nicht weit genug herunter, muss die Cd-Säule gegen eine neue ausgetauscht werden.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	SKALAR	NNgesCFC5.1	-	5

<u>Achtung:</u> Abends sollte die Säule nicht mit Spülwasser gespült werden. Hierzu den Hebel des blauen Ventils so stellen, dass die Säule kurzgeschlossen ist, d.h. das das Spülwasser nicht durch die Säule fliesst. Die Säule wird dadurch immer in Imidazolpuffer gelagert.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):


Qualitätskontrolle	Methode	Durchführung
Basislinienkontrolle	QBL1.1	Basislinienkontrollproben nach der Eichung und alle
		15 Proben (erlaubte Abweichung +/- 0,01 Ext.).
Driftkontrolle	QDK1.1	Driftkontrollproben nach der Eichung und alle 15
		Proben (erlaubte Abweichung +/- 0,02 Ext.).
Eichkurvenkontrolle	QEK1.2	Lineare Anpassung der Eichkurve; Bestimmtheits-
		mass ≥0,9998
Kontrollstandard	QKSt1.1	KSK1 (1 mg/l), KSK5 (4 mg/l N), KINT (8 mg/l),
		KSK6 (10 mg/l N) Messung nach der Eichung, alle 15
		Proben; erlaubte Abweichung 5 %
Stickstoffbilanz	QNB1.1	s. Methodenbeschreibung
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

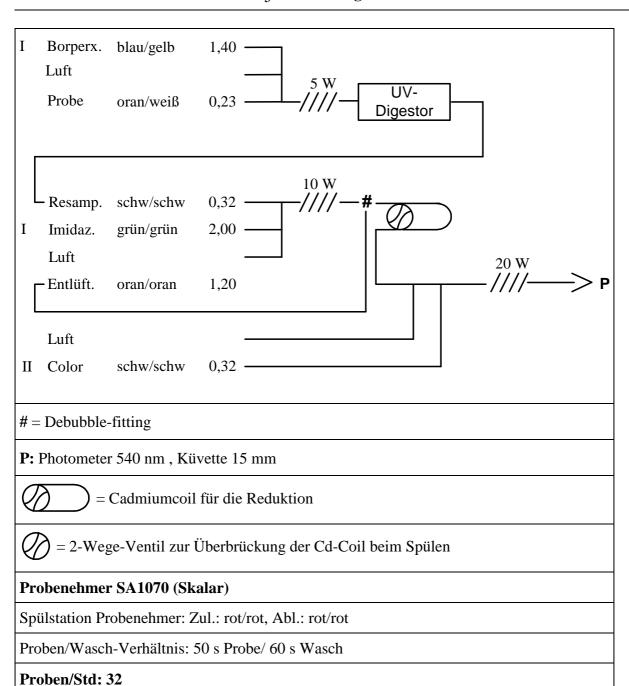
Auswertung/Datendokumentation:

Die Gesamt-N-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm TRAACSED (siehe Kurzanleitung TRAACS-DV2.2) zu bearbeiten.

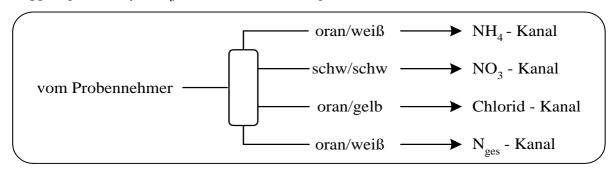
Anhang Nr. 1 für N Nges SKALAR NNgesCFC5.1

Spektrum des Azofarbstoffes:

Ν


für

Nges


N

SKALAR

Aufbau der Reaktionseinheit zur NO₃-Bestimmung:

Kopplung mit NH₄-, NO₃- und Chlorid-Messung:

N

Anhang Nr. 2 für N Nges SKALAR NNgesCFC5.1

Element Fo		Form	Gerät	Methoden-Nr.	Seite
	N	Nges	CN	NNgesCNS5.1	1

Datum:

20.08.2004

Elementbestimmungsmethode:

STICKSTOFF gesamt

Untersuchungsmethode	NG	BG	OMG
ATNULL (Pflanze, Humus)		0,006 mg abs.	2 mg abs.
ATNULL (Boden)		0,006 mg abs.	4 mg abs.

geeignet für:

Boden	ATNULL
Humus	ATNULL
Pflanze	ATNULL
Wasser	

Methodenverweise:

Norm	
HFA	D58.1.1.1, D58.1.2.1, D58.1.1.3.1
HFA-Code	D;8;1;2;5;9;-1

Prinzip der Methode/chem. Reaktionen:

Der Aufschluss der Probe (Boden-, Humus- oder Pflanzenmaterial) erfolgt durch Verbrennung im Sauerstoff/Heliumstrom bei einer Temperatur von 1000 °C, wobei die Proben dem Oxidationsrohr in Zinnkapseln zugeführt werden. Bei der Verbrennung des Zinns entstehen in unmittelbarer Nähe der Probe kurzfristig Temperaturen von 1600-1800 °C, wodurch auch schwer verbrennbare N Substanzen wie schwer zersetzbare Carbonate (z.B. Dolomite) erfasst werden. Außerdem enthält das Oxidationsrohr Kobaltoxid und Wolframoxid, die als Katalysatoren dienen.

Bei der Oxidation der C- und N-haltigen Verbindungen entstehen folgende Stoffe:

$$C_a H_b N_c O_d + y O_2 \xrightarrow{Co_2 O_3, WO_3} a CO_2 + \frac{1}{2} b H_2 O + \frac{1}{2} e N_2 + f NO_x$$

Da organische Substanz neben C, H, O und N auch S sowie Halogene enthält, entstehen neben den oben aufgeführten Verbindungen, flüchtige Halogen- und Schwefelverbindungen. Diese müssen vor dem Eintritt des Messgases in die Wärmeleitfähigkeitsmesszelle (WLD) aus dem Gasstrom entfernt werden, da sie sonst miterfasst würden. Sie sind an Silberionen, mit denen das als Katalysator dienende Kobaltoxid beschichtet ist, gebunden. Hinter dem Verbrennungsrohr befindet sich das mit Kupfer gefüllte Reduktionsrohr, in dem die Stickoxide zu elementarem Stickstoff reduziert werden und überschüssiger Sauerstoff aus dem Gasstrom entfernt wird:

$$NOx + Cu \rightarrow \frac{1}{2} N_2 + x CuO$$

$$\frac{1}{2} CO_2 + Cu \rightarrow CuO$$

Anhang:	<u>Lit.:</u>
Anhang1: Gasflussdiagramm	Bedienungsanl. Elementaranalysator Euro EA
Gerätekurzanleitung CN1.1	Smith, Soil Analysis 1983

Element For		Gerät	Methoden-Nr.		
N	Nges	CN	NNgesCNS5.1	2	

Das aus CO₂, N₂, H₂O und Helium bestehende Gasgemisch wird anschließend durch ein mit MgClO₄ gefülltes Glasrohr geleitet, um das Wasser aus dem Gasstrom entfernen. Helium wird als Trägergas verwendet, da es keine Reaktionen eingeht. Anschließend werden Kohlendioxid und Stickstoff gaschromatographisch getrennt. Zunächst durchströmt das aus Stickstoff und Helium bestehende Gasgemisch, dann das aus Sauerstoff und Helium bestehende Gasgemisch die Messzelle des Wärmeleitfähigkeitsdetektors. Die Spannung der Messzelle wird mit der Spannung der Referenzmesszelle, die nur von Helium durchströmt wird, verglichen. Gemessen wird die Peakfläche. da unterschiedliche organische Verbindungen ein unterschiedliches Verbrennungsverhalten haben, und dadurch zwar die Fläche der Peaks,nicht jedoch die Höhe der Peaks gleich ist.

Störungen:

keine

Analysengeräte und Zubehör:

CN- Elementaranalysator Euro EA mit automatischem Probengeber, Fa. Hekatech

Mikrowaage von Sartorius ME5 0,001 mg

Zinnkapseln, 5 x 9 mm

Verschlusswerkzeug für die Zinnkapseln, Fa. Hekatech

Mikrotiterplatten

Pinzette, gerade und gebogen

Mikrospatel

Ionisationsgebläse, Sartorius YIB01-0DR

Ascheeinsatz, 17 mm, aus Keramik, Fa Hekatech

Reduktionsrohr, Quarzrohr mit Verjüngung auf 6 mm, Außendurchmesser 18 mm, Länge 450 mm

Chemikalien:

Ethylendinitrilotetra-Essigsäure EDTA Titriplex II (p.a.),Fa. Merck Nr. 1.08417

Magnesiumperchlorat granuliert (p.a.), Fa. Merck Nr. 5874

Quarzwolle

Quarzsplitter

Cu-Stäbchen, reduziert hohe Sauerstoffaufnahme Nr. HE33835301, Fa.Hekatech

CHN-Oxidationsreaktor für Aschefänger, fertig befüllt mit (von unten): Quarzwolle, 10 g Co₂O₃,

Quarzwolle, 1,2 g WO $_3$ auf 12 g Al $_2$ O $_3$, Quarzwolle, Nr. HE46830510, Fa. Hekatech

Lösungen:

Keine

Element Form		Gerät	Methoden-Nr.	Seite
N	Nges	CN	NNgesCNS5.1	3

Eichung/Standards:

Eichsubstanz:

EDTA (Ethylendinitrilo-Essigsäure) C-Gehalt: 41,1 %

Eichung:

Vor Beginn der Messung werden Proben und Blindwerte zur Überprüfung der Eichung gemessen:

- 1. Eine Probe als sogen. Rohrputzer oder Einlaufprobe zur Konditionierung des Gerätes (Byp = Bypass)
- 2. Eine leere Zinnkartusche zur Überprüfung der Sauberkeit des Probengeberbereichs (Smp = Sample)
- 3. Zwei EDTA-Standards (ca. 1 mg und 3 mg) als (Smp = Sample)
- 4. Eine oder mehrere Kontrollproben, angepasst an die zu messenden Proben (z.B. Spruce Needles bei Humus- und Pflanzenproben, Boden1 bei Boden).

Die Messwerte der EDTA- und Kontrollstandards sollten nicht mehr als 1 % vom Sollwert abweichen. Die Fläche der Blindwertpeaks sollte < 12000 Flächeneinheiten sein.

Liegen die gemessenen Werte außerhalb der erlaubten Bereiche, so werden zunächst verschiedene Prüfungen am Gerät durchgeführt (s. Gerätekurzanleitung CN1.1). Führen diese nicht zu Messwerten von Standards und Blanks innerhalb der erlaubten Bereiche, so muss neu geeicht werden. Eine neue Eichung sollte außerdem nach dem Austausch des Oxidations- und/oder Reduktionreaktors erfolgen:

- 2 Konditionierungsproben (Zinnkartuschen mit Probe gefüllte) Byp = Bypass
- 1 leere Zinnkartusche, Byp = Bypass
- 1 leere Zinnkartusche, Blk = Blank
- 2 EDTA (ca. 1 und 3 mg), Std = Standard
- 2 EDTA (ca. 1 und 3 mg), Spc = Special
- 1-2 Kontrollstandards, Smp = Sample

Aus dem Blank und zwei EDTA-Standards wird die Eichung berechnet, die für die nachfolgenden Messungen verwendet werden kann.

Durchführung:

Die Durchführung der Messung erfolgt, wie in der Gerätekurzanleitung CN1.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.1	EDTA 9,57 % N, erlaubte Abweichung 3 %,
		Spruce needles (Pflanze) 1,889 % N, erlaubte
		Abweichung 5 %
		Boden1 (Boden) 0,216 % N, erlaubte Abweichung
		5 %

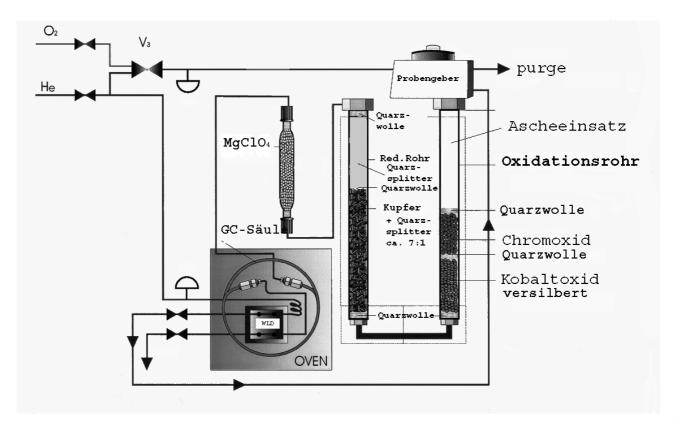
N	Nges	CN		NNgesCNS5.1	4
Standardn		QStM.1.2	BZE-HUM 12 % Beech lea Abweichun NHARZ (F 5% Boden4 (Bo % BZE-THUE Abweichun	mus) 2,15 % N, erlaubte Abweichung (Humus) 2,06 % N, erlaubte Abweichungs (Pflanze) 2,63 % N, erlaubte Abweichunge (Pflanze) 1,23 % N, erlaubte Abweichunge (Boden) 0,048 % N, erlaubte Abweichunge (Boden) 0,0596 % N, erlaubte (Boden) 0,0596 % N, erla	chung aubte chung ung 5 aubte
			Messung e Probenart in	sines Standards alle 10 Proben, je m Wechsel	nach
Wiederho	lungsproben	QWP1.2	Ca. 5 % alle	er Proben; mindestens 3 Proben pro Se	erie

Gerät

Methoden-Nr.

Seite

Auswertung/Datendokumentation:


Element

Form

Die gemessenen N-Gehalte werden in die entsprechenden Datenlisten eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm Relaqs bearbeitet.

Anhang Nr.	1	für	N	Nges	CN	NNgesCNS5.1
------------	---	-----	---	------	----	-------------

Flussdiagramm Euro EA, Hekatech:

Anhang Nr. 1 für N Nges CN	NNgesCNS5.1
----------------------------	-------------

01.11.1999

Datum:

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC3	NNgesTOC1.1		1

Elementbestimmungsmethode:

STICKSTOFF gesamt

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1		(0,3)	50

geeignet für:

Boden	GBL 1.1, EXT1:2H2O1.1
Humus	
Pflanze	
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN 12260	
HFA	D58.1.4.1	
HFA-Code	D;8;2;3;4;2;-1	

Prinzip der Methode/chem. Reaktionen:

Der anorganische (Nitrat, Nitrit und Ammonium) und der organische Stickstoffanteil einer Probe werden durch katalytische Verbrennung im Sauerstoffstrom in Stickoxide (NO_x x=1-3) umgesetzt. Die Probe wird hierzu in das mit Katalysator (Platin auf einem Trägermaterial) gefüllte und auf 850 °C aufgeheizte Verbrennungsrohr injiziert:

z.B.
$$2NH_2CH_2COOH +6,5O_2$$
 $\xrightarrow{Pt-Kat, 850 \, ^{\circ}C}$ $2NO_2 \uparrow + 5H_2O + 4CO_2 \uparrow$

Die Stickoxide (NO_x x=1-3) werden anschliessend durch den Trägergasstrom (Sauerstoff) zum Stickstoffdetektor transportiert. Dort werden sie im mit Molybdän (Mb) gefüllten Konverterrohr bei 330 °C vollständig in Stickstoffmonoxid (NO) umgewandelt:

z.B.
$$2 \text{ NO}_2 \xrightarrow{\text{Mb, } 330 \text{ °C}} 2 \text{NO} \uparrow + \text{O}_2 \uparrow$$

Das Stickstoffmonoxid reagiert anschließend mit Ozon (O₃) vollständig zu Stickstoffdioxid (NO₂), welches sofort unter Sauerstoffabspaltung zu Stickstoffmonoxid reagiert. Bei dieser Reaktion, bei der ein Elektronenübergang stattfindet, wird Energie in Form von Licht (rot und nahes Infrarot) frei (Chemilumineszenz). Das Ozon wird aus dem Trägergas Sauerstoff im Ozongenerator durch hohe elektrische Spannung (10 kV) erzeugt:

$$2NO + O_3 \rightarrow 2NO_2 \uparrow + O_2 \uparrow + hv$$

Diese Lichtquanten werden in einem Photomultiplier in ein elektrisches Signal umgewandelt, welches proportional zur Stickstoffmonoxidkonzentration ist.

Gemessen wird die Peakfläche, da unterschiedliche organische und anorganische N-Verbindungen ein unterschiedliches Verbrennungsverhalten haben und dadurch zwar die Fläche der Peaks, nicht jedoch die Höhe der Peaks gleich ist.

Anhang:	<u>Lit.:</u>
Kurzanleitung TOC3.1	Bedienungsanleitung für Dimatoc 100, Fa.
Kurzanleitung TOC-DV1.2	Dimatec, 1998

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC3	NNgesTOC1.1		2

Störungen:

N-haltige organische Verbindungen mit engem C/N-Verhältnis oder Ringsystemen werden unvollständig aufgeschlossen, was zu Minderbefunden führen kann.

Analysengeräte und Zubehör:

TOC-Analysator (Total Organic Carbon) Dimatoc 100, Fa. Dimatec

Stickstoffdetektor, Dimatec

Probenehmer Gilson 222 mit Dilutor

Probenrack mit 60 Positionen (6 x 10) von Fa.Dimatec

Probengefäße 20 ml aus Glas, mit Schraubdeckel zur Abdeckung der Gläser mit Aluminiumfolie

Chemikalien:

Ammoniumsulfat: (NH₄)₂SO₄ (p.a.)

Kaliumnitrat: KNO₃ (p.a.)

Pt-Al-Katalysator für das Verbrennungsrohr (Kugelkatalysator, G3250, Dimatec)

Quarzwolle (B4070, Dimatec) Platinwolle (R1735, Dimatec)

NO-Konverterfüllung (Molybdän-Verbindungen) (R1850, Dimatec)

Ozonabsorberfüllung (G3197, Dimatec)

Sauerstoff 4.5

Lösungen:

Keine

Eichung/Standards:

Stammlösung:

 NH_4 , NO_3^- : 4,717 g $(NH_4)_2SO_4$ und 7,218 g Kaliumnitrat werden in 1 l H_2O demin. gelöst.

 $=> 1 \text{ g/l NO}_3\text{-N} \text{ und } 1\text{g/l NH}_4\text{-N}$

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr.

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC3	NNgesTOC1.1		3

Einzelbestimmung:

Mehrelementbestimmung:

1. Standardreihe	Einspritzvol.
	[µl]
0,2 mg/l N	100
0,4 mg/l N	100
0,6 mg/l N	100
0,8 mg/l N	100
1,0 mg/l N	100
1,2 mg/l N	100
1,4 mg/l N	100
1,6 mg/l N	100
1,8 mg/l N	100
2,0 mg/l N	100

2. Standardreihe	Einspritzvol.
	[µ1]
2,0 mg/l N	100
4,0 mg/l N	100
6,0 mg/l N	100
8,0 mg/l N	100
10,0 mg/l N	100
12,0 mg/l N	100
14,0 mg/l N	100
16,0 mg/l N	100
18,0 mg/l N	100
20,0 mg/l N	100

Kontrollstandards		
N06	0,6 mg/l N	
N1	1,0 mg/l N	
N2	2,0 mg/l N	
N4	4,0 mg/l N	
N6	6,0 mg/l N	
N8	8,0 mg/l N	
N10	10,0 mg/l N	
N20	20,0 mg/l N	

Durchführung:

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC3	NNgesTOC1.1		4

siehe Gerätekurzanleitung TOC3.1

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Die Gerätesoftware passt den Eichkurvenverlauf opti-
		mal an, indem sie ab 3 Eichpunkten ein Polynom 1ter
		(linear) oder 2ter (quadratisch) Ordnung durch die
		Eichpunkte legt. Berechnet werden Verfahrensstan-
		dardabweichung, Sollwert: ≤3 % bei Standardreihe 1,
		≤ 1% bei Standardreihe 2, Verfahrensvariationskoeffi-
		zient, Prüfwert (nur bei linearer Kalibrierfunktion)
		Sollwert: ≤ Bestimmungsgrenze für Standardreihe 1.
		Die Eichkurve sollte linear sein.
Kontrollstandard	QKSt.1.1	N06, N1, N2, N4, N6, N8, N10, N20; Messung aller
		Standards nach der Eichung. Alle 10 Proben wird ein
		Kontrollstandard mit ähnlicher Konzentration wie in
		den Proben gemessen. Es werden Standards unter-
		schiedlicher Konzentration im Wechsel gemessen;
		erlaubte Abweichung bei N06, N1 10 %, bei N2-N20
		3 %.
Mehrfachmessung	QMM1.1	3-fach-Messung; das Gerät führt einen Grubbs-Test
		zur Ermittlung von Ausreissern durch. Wurde kein
		Ausreisser gefunden, wird die prozentuale
		Abweichung vom Mittelwert berechnet, die maximal
		3 % sein darf. Wurde ein Ausreisser gefunden, werden
		bis zu 2 zusätzliche Messungen durchgeführt. Nach
		Eliminierung der Ausreisser werden der Mittelwert
		und der Variationskoeffizient berechnet, der <3 %
XX 1 - 1 - 1 - 1	OWA41.2	sein sollte.
Wiederholungsmessung Stickstoffbilanz	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
	QNB1.1	Siehe Anleitung
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1 mit-
		gemessen; erlaubte Abweichung: 5 %

Auswertung/Datendokumentation:

Die gemessenen Nges-Konzentrationen werden in die entsprechenden Datenlisten eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm TOC-Editor bearbeitet (s. Kurzanleitung TOC-DV1.2).

Element Form Gerät		Gerät	Methoden-Nr.	Lapis alt	Seite	
N	Nges	TOC3	NNgesTOC2.1		1	

Datum:

01.12.1999

Elementbestimmungsmethode:

STICKSTOFF gesamt

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1	0,222	0,684	20

geeignet für:

Boden	GBL 1.1, EXT1:2H2O1.1
Humus	
Pflanze	
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN 12260
HFA D58.1.4.1	
HFA-Code	D;8;2;3;4;7;-1

Prinzip der Methode/chem. Reaktionen:

Der anorganische (Nitrat, Nitrit und Ammonium) und der organische Stickstoffanteil einer Probe werden durch katalytische Verbrennung im Sauerstoffstrom in Stickoxide (NO_x x=1-3) umgesetzt. Die Probe wird hierzu in das mit Katalysator (Platin auf einem Trägermaterial und Kupfer-II-oxid auf Bimsstein als Trägermaterial) gefüllte und auf 850 °C aufgeheizte Verbrennungsrohr injiziert:

z.B.
$$2NH_2CH_2COOH +6,5O_2$$
 $\xrightarrow{Pt/CuO-Kat, 850 \, ^{\circ}C}$ $2NO_2 \uparrow + 5H_2O + 4CO_2 \uparrow$

Die Stickoxide (NO_x x=1-3) werden anschließend durch den Trägergasstrom (Sauerstoff) zum Stickstoffdetektor transportiert. Dort werden sie im mit Molybdän (Mb) gefüllten Konverterrohr bei 330 °C vollständig in Stickstoffmonoxid (NO) umgewandelt:

z.B.
$$2 \text{ NO}_2 \xrightarrow{\text{Mb, 330 °C}} 2\text{NO} \uparrow + \text{O}_2 \uparrow$$

Das Stickstoffmonoxid reagiert anschließend mit Ozon (O₃) vollständig zu Stickstoffdioxid (NO₂), welches sofort unter Sauerstoffabspaltung zu Stickstoffmonoxid reagiert. Bei dieser Reaktion, bei der ein Elektronenübergang stattfindet, wird Energie in Form von Licht (rot und nahes Infrarot) frei (Chemilumineszenz). Das Ozon wird aus dem Trägergas Sauerstoff im Ozongenerator durch hohe elektrische Spannung (10 kV) erzeugt:

$$2NO + O_3 \rightarrow 2NO_2 \uparrow + O_2 \uparrow + hv$$

Diese Lichtquanten werden in einem Photomultiplier in ein elektrisches Signal umgewandelt, welches proportional zur Stickstoffmonoxidkonzentration ist.

Gemessen wird die Peakfläche, da unterschiedliche organische und anorganische N-Verbindungen ein unterschiedliches Verbrennungsverhalten haben und dadurch zwar die Fläche der Peaks, nicht jedoch die Höhe der Peaks gleich ist.

Anhang:	<u>Lit.:</u>
Kurzanleitung TOC3.2	Bedienungsanleitung für Dimatoc 100, Fa.
Kurzanleitung TOC-DV1.2	Dimatec, 1998

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC3	NNgesTOC2.1		2

Störungen:

N-haltige organische Verbindungen mit engem C/N-Verhältnis oder Ringsystemen werden nur zu 98 % aufgeschlossen.

Analysengeräte und Zubehör:

TOC-Analysator (Total Organic Carbon) Dimatoc 100, Dimatec

Stickstoffdetektor, Dimatec

Probenehmer Gilson 222 mit Dilutor

Probenrack mit 60 Positionen (6 x 10) von Dimatec

Probengefäße 20 ml aus Glas, mit Schraubdeckel zur Abdeckung der Gläser mit Aluminiumfolie

Chemikalien:

Ammoniumsulfat: $(NH_4)_2SO_4$ (p.a.)

Kaliumnitrat: KNO₃ (p.a.)

Pt-Al-Katalysator für das Verbrennungsrohr (Kugelkatalysator, G3250, Dimatec)

CuO auf Bimssteinträgermaterial (TNb-Katalysatorzusatz G3199, Dimatec)

Quarzwolle (B4070, Dimatec) Platinwolle (R1735, Dimatec)

NO-Konverterfüllung (Molybdän-Verbindungen) (R1850, Dimatec)

Ozonabsorberfüllung (G3197, Dimatec)

Sauerstoff 4.5

Lösungen:

Keine

Eichung/Standards:

Stammlösung:

 NH_4 , NO_3^- : 4,717 g $(NH_4)_2SO_4$ und 7,218 g Kaliumnitrat werden in 1 l H_2O demin. gelöst.

 \Rightarrow 1 g/l NO₃-N und 1g/l NH₄-N

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr.

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	Nges	TOC3	NNgesTOC2.1		3	

Einzelbestimmung:

Mehrelementbestimmung:

1. Standardreihe	Einspritzvol.
	[µ1]
0,2 mg/l N	100
0,4 mg/l N	100
0,6 mg/l N	100
0,8 mg/l N	100
1,0 mg/l N	100
1,2 mg/l N	100
1,4 mg/l N	100
1,6 mg/l N	100
1,8 mg/l N	100
2,0 mg/l N	100

2. Standardreihe	Einspritzvol.
	[µl]
2,0 mg/l N	100
4,0 mg/l N	100
6,0 mg/l N	100
8,0 mg/l N	100
10,0 mg/l N	100
12,0 mg/l N	100
14,0 mg/l N	100
16,0 mg/l N	100
18,0 mg/l N	100
20,0 mg/l N	100

Kont	Kontrollstandards				
N06	0,6 mg/l N				
N1	1,0 mg/l N				
N2	2,0 mg/l N				
N4	4,0 mg/l N				
N6	6,0 mg/l N				
N8	8,0 mg/l N				
N10	10,0 mg/l N				
N20	20,0 mg/l N				

Durchführung:

siehe Gerätekurzanleitung TOC3.2

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	Nges	TOC3	NNgesTOC2.1		4	

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Die Gerätesoftware passt den Eichkurvenverlauf optimal an, indem sie ab 3 Eichpunkten ein Polynom 1ter (linear) oder 2ter (quadratisch) Ordnung durch die Eichpunkte legt. Berechnet werden Verfahrensstandardabweichung, Sollwert: ≤3 % bei Standardreihe 1, ≤ 1% bei Standardreihe 2, Verfahrensvariationskoeffizient, Prüfwert (nur bei linearer Kalibrierfunktion) Sollwert: ≤ Bestimmungsgrenze für Standardreihe 1. Die Eichkurve sollte linear sein.
Kontrollstandard	QKSt.1.1	N06, N1, N2, N4, N6, N8, N10, N20; Messung aller Standards nach der Eichung; alle 10 Proben wird ein Kontrollstandard mit ähnlicher Konzentration wie in den Proben gemessen. Es werden Standards unterschiedlicher Konzentration im Wechsel gemessen; erlaubte Abweichung bei N06, N1 10 %, bei N2-N20 3 %.
Mehrfachmessung	QMM1.1	3-fach-Messung; das Gerät führt einen Grubbs-Test zur Ermittlung von Ausreissern durch. Wurde kein Ausreisser gefunden, wird die prozentuale Abweichung vom Mittelwert berechnet, die maximal 3 % sein darf. Wurde ein Ausreisser gefunden, werden bis zu 2 zusätzliche Messungen durchgeführt. Nach Eliminierung der Ausreisser wird der Mittelwert und der Variationskoeffizient berechnet, der <3 % sein sollte.
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Stickstoffbilanz	QNB1.1	Siehe Anleitung
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1 mitgemessen; erlaubte Abweichung: 5 %

Auswertung/Datendokumentation:

Die gemessenen Nges-Konzentrationen werden in die entsprechenden Datenlisten eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm TOC-Editor bearbeitet (s. Kurzanleitung TOC-DV1.2).

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC3	NNgesTOC2.2		1

Datum:

15.12.2007

Elementbestimmungsmethode:

STICKSTOFF gesamt

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1	0,03	0,099	50

geeignet für:

Boden	GBL 1.1, EXT1:2H2O1.1
Humus	
Pflanze	
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN 12260	
HFA	D58.1.4.1	
HFA-Code	D;8;2;3;4;7;-1	

Prinzip der Methode/chem. Reaktionen:

Der anorganische (Nitrat, Nitrit und Ammonium) und der organische Stickstoffanteil einer Probe werden durch katalytische Verbrennung im Sauerstoffstrom in Stickoxide (NO_x x=1-3) umgesetzt. Die Probe wird hierzu in das mit Katalysator (Platin auf einem Trägermaterial und Kupfer-II-oxid auf Bimsstein als Trägermaterial) gefüllte und auf 850 °C aufgeheizte Verbrennungsrohr injiziert:

z.B.
$$2NH_2CH_2COOH +6,5O_2$$
 $\xrightarrow{Pt/CuO-Kat, 850 \, ^{\circ}C}$ $2NO_2 \uparrow + 5H_2O + 4CO_2 \uparrow$

Die Stickoxide (NO_x x=1-3) werden anschließend durch den Trägergasstrom (Sauerstoff) zum Stickstoffdetektor transportiert. Dort werden sie im mit Molybdän (Mb) gefüllten Konverterrohr bei 330 °C vollständig in Stickstoffmonoxid (NO) umgewandelt:

z.B.
$$2 \text{ NO}_2 \xrightarrow{\text{Mb, 330 °C}} 2\text{NO} \uparrow + \text{O}_2 \uparrow$$

Das Stickstoffmonoxid reagiert anschließend mit Ozon (O₃) vollständig zu Stickstoffdioxid (NO₂), welches sofort unter Sauerstoffabspaltung zu Stickstoffmonoxid reagiert. Bei dieser Reaktion, bei der ein Elektronenübergang stattfindet, wird Energie in Form von Licht (rot und nahes Infrarot) frei (Chemilumineszenz). Das Ozon wird aus dem Trägergas Sauerstoff im Ozongenerator durch hohe elektrische Spannung (10 kV) erzeugt:

$$2NO + O_3 \rightarrow 2NO_2 \uparrow + O_2 \uparrow + hv$$

Diese Lichtquanten werden in einem Photomultiplier in ein elektrisches Signal umgewandelt, welches proportional zur Stickstoffmonoxidkonzentration ist.

Gemessen wird die Peakfläche, da unterschiedliche organische und anorganische N-Verbindungen ein unterschiedliches Verbrennungsverhalten haben und dadurch zwar die Fläche der Peaks, nicht jedoch die Höhe der Peaks gleich ist.

Anhang:	<u>Lit.:</u>
Kurzanleitung TOC3.2	Bedienungsanleitung für Dimatoc 100, Fa.
	Dimatec, 1998

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC3	NNgesTOC2.2		2

Störungen:

N-haltige organische Verbindungen mit engem C/N-Verhältnis oder Ringsystemen werden nur zu 98 % aufgeschlossen.

Analysengeräte und Zubehör:

TOC-Analysator (Total Organic Carbon) Dimatoc 100, Fa. Dimatec

Stickstoffdetektor, Dimatec

Probenehmer Gilson 222 mit Dilutor

Probenrack mit 60 Positionen (6 x 10) von Fa.Dimatec

Probengefäße 20 ml aus Glas, mit Schraubdeckel zur Abdeckung der Gläser mit Aluminiumfolie

Chemikalien:

Ammoniumsulfat: $(NH_4)_2SO_4$ (p.a.)

Kaliumnitrat: KNO₃ (p.a.)

Pt-Al-Katalysator für das Verbrennungsrohr (Kugelkatalysator, G3250, Dimatec)

CuO auf Bimssteinträgermaterial (TNb-Katalysatorzusatz G3199, Dimatec)

Quarzwolle (B4070, Dimatec) Platinwolle (R1735, Dimatec)

NO-Konverterfüllung "Molybdän-Verbindungen, (R1850, Dimatec)

Ozonabsorberfüllung (G3197, Dimatec)

Sauerstoff 4.5

Lösungen:

Keine

Eichung/Standards:

Stammlösung:

 NH_4 , NO_3^- : 4,717 g $(NH_4)_2SO_4$ und 7,218 g Kaliumnitrat werden in 1 l H_2O demin. gelöst.

 \Rightarrow 1 g/l NO₃-N und 1g/l NH₄-N

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr.

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC3	NNgesTOC2.2		3

Einzelbestimmung:

Mehrelementbestimmung:

1. Standardreihe	Einspritzvol.
	[µ1]
0,2 mg/l N	200
0,4 mg/l N	200
0,6 mg/l N	200
0,8 mg/l N	200
2,0 mg/l N	200
2,2 mg/l N	200
2,4 mg/l N	200
2,6 mg/l N	200
2,8 mg/l N	200
2,0 mg/l N	200

2. Standardreihe	Einspritzvol.
	[μl]
2,0 mg/l N	200
4,0 mg/l N	200
6,0 mg/l N	200
8,0 mg/l N	200
20,0 mg/l N	200
22,0 mg/l N	200
24,0 mg/l N	200
26,0 mg/l N	200
28,0 mg/l N	200
20,0 mg/l N	200

<u>Kontrollstandards</u>			
N06	0,6 mg/l N		
N1	1,0 mg/l N		
N2	2,0 mg/l N		
N4	4,0 mg/l N		
N6	6,0 mg/l N		
N8	8,0 mg/l N		
N10	10,0 mg/l N		
N20	20,0 mg/l N		

Durchführung:

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC3	NNgesTOC2.2		4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Die Gerätesoftware passt den Eichkurvenverlauf optimal an, indem sie ab 3 Eichpunkten ein Polynom 1ter (linear) oder 2ter (quadratisch) Ordnung durch die Eichpunkte legt. Berechnet werden Verfahrensstandardabweichung, Sollwert: ≤3 % bei Standardreihe 1, ≤ 1% bei Standardreihe 2; Verfahrensvariationskoeffizient, Prüfwert (nur bei linearer Kalibrierfunktion) Sollwert: ≤ Bestimmungsgrenze für Standardreihe 1. Die Eichkurve sollte linear sein.
Kontrollstandard	QKSt.1.1	N06, N1, N2, N4, N6, N8, N10, N20; Messung aller Standards nach der Eichung. Alle 10 Proben wird ein Kontrollstandard mit ähnlicher Konzentration wie in den Proben gemessen; es werden Standards unterschiedlicher Konzentration im Wechsel gemessen; erlaubte Abweichung bei N06, N1 10 %, bei N2-N20 3 %.
Mehrfachmessung	QMM1.1	3-fach-Messung: Das Gerät führt einen Grubbs-Test zur Ermittlung von Ausreissern durch. Wurde kein Ausreisser gefunden, wird die prozentuale Abweichung vom Mittelwert berechnet, die maximal 3 % sein darf. Wurde ein Ausreisser gefunden, werden bis zu 2 zusätzliche Messungen durchgeführt. Nach Eliminierung der Ausreisser wird der Mittelwert und der Variationskoeffizient berechnet, der <3 % sein sollte.
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Stickstoffbilanz	QNB1.2	Siehe Anleitung
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1 mitgemessen; erlaubte Abweichung: 5 %.

Auswertung/Datendokumentation:

Die gemessenen Nges-Konzentrationen werden in die entsprechenden Datenlisten eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm Relaqs bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC3	NNgesTOC3.1		1

Datum:

28.08.2008

Elementbestimmungsmethode:

STICKSTOFF gesamt

Untersuchungsmethode	NG	BG	OMG
CNMIK1.1, CNMIKF1.1	0,052	0,172	50

geeignet für:

Boden	CNMIK1.1, CNMIKF1.1
Humus	CNMIK1.1, CNMIKF1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN 12260	
HFA	D58.1.4.1	
HFA-Code	D;8;2;3;4;7;-1	

Prinzip der Methode/chem. Reaktionen:

Der anorganische (Nitrat, Nitrit und Ammonium) und der organische Stickstoffanteil einer Probe wird durch katalytische Verbrennung im Sauerstoffstrom in Stickoxide (NO_x , x =1-3) umgesetzt. Die Probe wird hierzu in das mit Katalysator (Platin auf einem Trägermaterial und Kupfer-II-oxid auf Bimsstein als Trägermaterial) gefüllte, und auf 850 °C aufgeheizte Verbrennungsrohr injiziert:

z.B.
$$2NH_2CH_2COOH +6,5O_2$$
 $\xrightarrow{Pt/CuO-Kat, 850 \, ^{\circ}C}$ $2NO_2 \uparrow + 5H_2O + 4CO_2 \uparrow$

Die Stickoxide (NO_x , x =1-3) werden anschließend durch den Trägergasstrom (Sauerstoff) zum Stickstoffdetektor transportiert. Dort werden sie im mit Molybdän (Mb) gefüllten Konverterrohr bei 330 °C vollständig in Stickstoffmonoxid (NO) umgewandelt:

z.B.
$$2 \text{ NO}_2 \xrightarrow{\text{Mb, 330 °C}} 2\text{NO} \uparrow + \text{O}_2 \uparrow$$

Das Stickstoffmonoxid reagiert anschließend mit Ozon (O₃) vollständig zu Stickstoffdioxid (NO₂), welches sofort unter Sauerstoffabspaltung zu Stickstoffmonoxid reagiert. Bei dieser Reaktion, bei der ein Elektronenübergang stattfindet, wird Energie in Form von Licht (rot und nahes Infrarot) frei (Chemilumineszenz). Das Ozon wird aus dem Trägergas Sauerstoff im Ozongenerator durch hohe elektrische Spannung (10 kV) erzeugt:

$$2NO + O_3 \rightarrow 2NO_2 \uparrow + O_2 \uparrow + hv$$

Diese Lichtquanten werden in einem Photomultiplier in ein elektrisches Signal umgewandelt, welches proportional zur Stickstoffmonoxidkonzentration ist.

Gemessen wird die Peakfläche, da unterschiedliche organische und anorganische N-Verbindungen ein unterschiedliches Verbrennungsverhalten haben, und dadurch zwar die Fläche der Peaks, nicht jedoch die Höhe der Peaks gleich ist.

Anhang:	<u>Lit.:</u>
Kurzanleitung TOC4.1	Bedienungsanleitung für Dimatoc 100, Fa.
	Dimatec, 1998

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC3	NNgesTOC3.1		2

Störungen:

N-haltige organische Verbindungen mit engem C/N-Verhältnis oder Ringsystemen werden nur zu 98 % aufgeschlossen.

Analysengeräte und Zubehör:

TOC-Analysator (Total Organic Carbon) Dimatoc 2000, Fa. Dimatec

Stickstoffdetektor, Fa. Dimatec

Probenehmer Dimatoc 2000 mit Dilutor, Fa. Dimatec

Probenrack mit 60 Positionen (6 x 10), Fa. Dimatec

Probengefäße 20 ml aus Glas mit Schraubdeckel zur Abdeckung der Gläser, mit Aluminiumfolie

Chemikalien:

Pt-Al-Katalysator für das Verbrennungsrohr (Kugelkatalysator, G3195, Fa. Dimatec)

CuO auf Bimssteinträgermaterial (TNb-Kombinationskatalysator G3198, Fa. Dimatec)

Quarzwolle (B4070, Fa. Dimatec)

NO-Konverterfüllung (Molybdän-Verbindungen) (R1850, Fa. Dimatec)

Ozonabsorberfüllung (G3197, Fa. Dimatec)

Sauerstoff 4.5

Lösungen:

0,25M K₂SO₄-Lösung: 43,57 g K₂SO₄ in 800 ml H₂O demin. lösen und auf 1 l auffüllen.

Eichung/Standards:

Stammlösung:

TNb-Standard 1000 mg/l N (LAB 2010, Fa. Dimatec)

Haltbarkeit:

Stammlösung: Geschlossen im Kühlschrank; ein halbes Jahr.

Die Standards aus den Stammlösungen sollten für jede Eichung frisch angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Eichstandards:

Die Standards für die Eichung werden mit demin. Wasser angesetzt.

Kontrollstandards:

Die Kontrollstandards werden mit 0,25M K_2SO_4 -Lösung angesetzt.

Die Kontrollstandards müssen täglich frisch angesetzt werden!

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC3	NNgesTOC3.1		3

Einzelbestimmung:

Mehrelementbestimmung:

1. Standardreihe	Einspritzvol.
	[µ1]
0,2 mg/l N	200
0,4 mg/l N	200
0,6 mg/l N	200
0,8 mg/l N	200
1,0 mg/l N	200
1,2 mg/l N	200
1,4 mg/l N	200
1,6 mg/l N	200
1,8 mg/l N	200
2,0 mg/l N	200

	1
2. Standardreihe	Einspritzvol.
	[µl]
2,0 mg/l N	200
4,0 mg/l N	200
6,0 mg/l N	200
8,0 mg/l N	200
10,0 mg/l N	200
12,0 mg/l N	200
14,0 mg/l N	200
16,0 mg/l N	200
18,0 mg/l N	200
20,0 mg/l N	200

Kontrollstandards		
N08	0,8 mg/l N	
N1	1,0 mg/l N	
N2	2,0 mg/l N	
N4	4,0 mg/l N	
N6	6,0 mg/l N	
N8	8,0 mg/l N	
N10	10,0 mg/l N	
N20	20,0 mg/l N	

Durchführung:

siehe Gerätekurzanleitung TOC4.1

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	Nges	TOC3	NNgesTOC3.1		4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Die Gerätesoftware paßt den Eichkurvenverlauf opti-
		mal an, indem sie ab 3 Eichpunkten ein Polynom 1ter
		(linear) oder 2ter (quadratisch) Ordnung durch die
		Eichpunkte legt. Berechnet werden Verfahrensstan-
		dardabweichung, Sollwert: ≤3 % bei Standardreihe 1,
		≤ 1% bei Standardreihe 2, Verfahrensvariationskoeffi-
		zient, Prüfwert (nur bei linearer Kalibrierfunktion)
		Sollwert: ≤ Bestimmungsgrenze für Standardreihe 1.
		Die Eichkurve sollte linear sein.
Kontrollstandard	QKSt.1.1	N06, N1, N2, N4, N6, N8, N10, N20; Messung aller
		Standards nach der Eichung. Alle 10 Proben wird ein
		Kontrollstandard mit ähnlicher Konzentration wie in
		den Proben gemessen. Es werden Standards unter-
		schiedlicher Konzentration im Wechsel gemessen;
		erlaubte Abweichung bei N06, N1 10 %, bei N2-N20
		3 %.
Mehrfachmessung	QMM1.1	3-fach-Messung: das Gerät führt einen Grubbs-Test
		zur Ermittlung von Ausreissern durch. Wurde kein
		Ausreisser gefunden, wird die prozentuale
		Abweichung vom Mittelwert berechnet, die maximal
		3 % sein darf. Wurde ein Ausreisser gefunden, werden
		bis zu 2 zusätzliche Messungen durchgeführt. Nach
		Eliminierung der Ausreisser wird der Mittelwert und
		der Variationskoeffizient berechnet, der <3 % sein
		sollte.
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die gemessenen Nges-Konzentrationen werden in die entsprechenden Datenlisten eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm Relaqs bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	ALLIANCE	NNH4CFC3.2	-	1

Datum:

01.12.1999

Elementbestimmungsmethode:

AMMONIUM

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1	0,114	0,363	7

geeignet für:

Boden	GBL1.1, EXT1:2H2O1.1
Pflanze	
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11732
HFA	D58.3.4.2
HFA-Code	D;9;2;-1;1;2;1

Prinzip der Methode/chem. Reaktionen:

Grundlage der Ammoniumbestimmung ist die Berthelot-Reaktion, bei der Indophenole aus Phenolen und Ammoniak gebildet werden. Im konkreten Fall wird Ammonium im Alkalischen mit Hypochlorit zu Chloramin umgesetzt:

$$NH_3 + OCl^- \rightarrow NH_2Cl + OH^-$$

Chloramin wird bei Hypochlorit-Überschuss mit Natriumsalicylat und mit Nitroprussidnatrium als $\ \underline{\textbf{N}}$ Katalysator zum grün gefärbten Indophenolderivat umgesetzt:

$$NH_{2}Cl + 2OCl^{-} + 2 \bigcirc OH \longrightarrow HO \longrightarrow N = \bigcirc COOH \longrightarrow + 3Cl^{-} + 2H_{2}O$$

Das so gebildete grüne Indophenolderivat wird photometrisch bei 660 nm gemessen.

Das Spektrum des gebildeten Indophenolderivats ist in Anhang 1 abgebildet. Der Aufbau der Cont.-Flow-Reaktionseinheit ist im Anhang 2 abgebildet.

Störungen:

Manche Elemente können bei diesem hohen pH-Wert (> 12,3) als Hydroxide ausfallen. Dies kann gegebenenfalls durch EDTA- bzw. Citrat-Zusatz behoben werden.

Die Reaktion ist temperaturabhängig. Durch ein Heizbad ist Temperaturkonstanz herstellbar.

Anhang:	<u>Lit.:</u>
Anhang 1: Spektrum des Farbstoffes	Walinga et al: Soil and Plant Analysis Part 5,
Anhang 2: ContFlow-Flußdiagramm	Wageningen Agricultural University, Syllabus
Kurzanleitung ALLIANCE3.1	1989, S. 9-8 ff
Kurzanleitung TRAACS-DV2.2	Analyst 105 N 1249, 1980, S.305 ff
	Water Research 12, 1977, S. 399 ff
	Landw. Forschung Bd 40, 1987, Heft 4

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	ALLIANCE	NNH4CFC3.2	-	2

Analysengeräte und Zubehör:

Alliance Evolution cont.-flow-Gerät mit xyz-Probennehmer (Bran&Luebbe), Software CFS Skalar

Chemikalien:

Ammoniumsulfat: (NH₄)₂SO₄

Brij-35 (30%)

Natriumcitrat: $Na_3C_6H_5O_7 * 2 H_2O$

Natriumhydroxid: NaOH

Natriumhypochlorit-Lösung (techn., 13 % aktives Chlor): NaOCl

Natriumsalicylat: NaC₇H₅O₃

Nitroprussidnatrium (Dinatriumpentacyanonitrosylferrat(III)): Na₂[Fe(CN)₅NO] * 2 H₂O

Lösungen:

1. Konzentrierte Lösungen:

A (20 %ige NaOH-Lösung): 200 g NaOH in 800 ml H₂O demin. lösen und auf 1 l auffüllen.

2. Reagenzlösungen:

I (Salicylat): In einem 1 l-Kolben werden 100 g Natriumsalicylat und 100 g Natrium-

citrat eingewogen und mit H₂O demin. auf 1 l aufgefüllt. Anschließend

werden 2 ml Brij-35 zugesetzt.

II (Hypochlorit): In einem 500 ml-Kolben werden je 200 ml von Lösung A, 100 ml Hypo-

chlorit-Lösung und 100 ml H₂O demin. gemischt.

III (Nitroprussid): In einem 500 ml-Kolben wird 1 g Nitroprussidnatrium eingewogen und

mit H₂O demin. auf 500 ml aufgefüllt.

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen
	offen	geschlossen	
	(am Gerät)	(im Kühlschrank)	
I	2 Wochen	/	bei Trübung filtrieren
II	2 Wochen	/	/
III	4 Wochen	/	lichtgeschützt

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	NH4	ALLIANCE	NNH4CFC3.2	-	3	

Eichung/Standards:

Stammlösungen:

NH₄: 4,717 g Ammoniumsulfat werden mit H₂O demin. auf 1 l aufgefüllt.

 $=> 1 \text{ g NH}_4-\text{N/l}$

NH₄, NO₃: In einen 1 l-Kolben 4,717 g Ammoniumsulfat ((NH₄)₂SO₄) und 7,218 g

Kaliumnitrat (KNO₃) einwiegen und mit H₂O demin. auf 1 l auffüllen.

 \Rightarrow 1 g/l NO₃-N und NH₄-N

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr.

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Einzelbestimmung:

Mehrelementbestimmung:

<u>Standardreihe</u>					
S8:	7 mg/l NH ₄ -N				
S7:	6 mg/l NH ₄ -N				
S6:	5 mg/l NH ₄ -N				
S5:	$4 \text{ mg/l NH}_4\text{-N}$				
S4:	$3 \text{ mg/l NH}_4\text{-N}$				
S3:	$2 \text{ mg/l NH}_4\text{-N}$				
S2:	1 mg/l NH ₄ -N				
S1:	$0.5 \text{ mg/l NH}_4\text{-N}$				
S0:	$0 \text{ mg/l NH}_4\text{-N}$				

NH ₄ -N	NO ₃ -N	ges-N	Cl
[mg/l]	[mg/l]	[mg/l]	[mg/l]
7	7	14	15
6	6	12	13
5	5	10	11
4	4	8	9
3	3	6	7
2	2	4	5
1	1	2	3
0.5	0.5	1	1
0	0	0	0

<u>Koı</u>	<u>ntrollstandard</u>
KSK1:	1,0 mg/l NH ₄ -N
KSK2:	3,0 mg/l NH ₄ -N
KSK3:	5,0 mg/l NH ₄ -N

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung ALLIANCE3.1 beschrieben.

Durchführung:

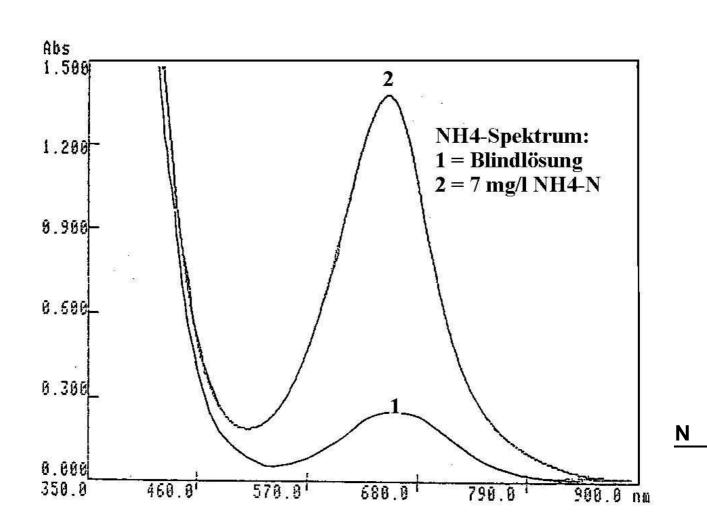
Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ALLIANCE3.1 beschrieben.

Achtung: Es ist darauf zu achten, dass bei der Art der Eichkurvenauswertung im Method-setup-Bildschirm Berechnungen 1. Order (linear) eingegeben wird.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	NH4	ALLIANCE	NNH4CFC3.2	-	4	

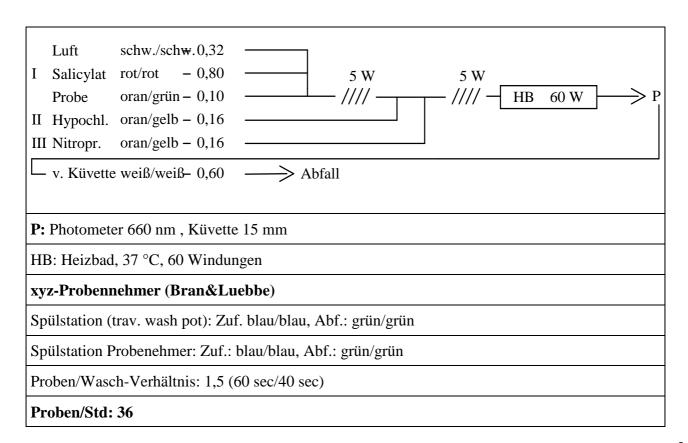
Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

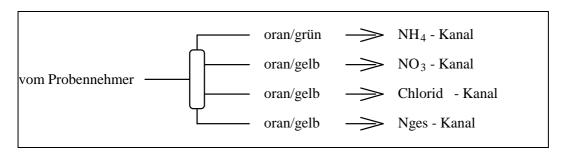

Qualitätskontrolle	Methode	Durchführung
Basislinienkontrolle	QBL1.1	Lineare Basislinienkorrektur durch Messen der Höhe
		der Basislinie am Anfang, nach jeweils 15 Proben,
		und am Ende eines Laufs.
Driftkontrolle	QDK1.1	Lineare Driftkorrektur mit 2 Drift-Standards (1.
		DRIFT IGNORE, 2. DRIFT) am Anfang, nach der
		Kalibrierung, nach jedem Kontrollstandardblock und
		am Ende eines Laufes mit dem jeweils höchsten
		Standard der Eichreihe. Die Messung von DRIFT
		IGNORE wird in die Berechnung der Drift nicht mit
		einbezogen.
Eichkurvenkontrolle	QEK1.2	Lineare Anpassung der Eichkurve; Bestimmtheits-
		mass ≥0,9998
Ionenbilanz IBW	QIB1.1	s. Methodenbeschreibung
Kontrollstandard	QKSt1.1	KSK1 (1,0 mg/l), KSK2 (3,0 mg/l N), KSK3 (5,0 mg/l
		N) Messung nach der Eichung, alle 15 Proben; er-
		laubte Abweichung 5 %.
Stickstoffbilanz	QNB1.1	s. Methodenbeschreibung
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die NH_4 -N-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm TRAACSED (siehe Kurzanleitung TRAACS-DV2.2) zu bearbeiten.


Anhang Nr. 1 für N NH₄ Alliance NNH4CFC3.2

Spektrum des Farbstoffes:



Anhang Nr. 2 für N NH₄ Alliance NNH4CFC3.2

Aufbau der Reaktionseinheit zur NH₄-Bestimmung:

Kopplung mit NO₃- ,Chlorid und Nges-Messung:

01.06.1999

Datum:

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC4.1	-	1

Elementbestimmungsmethode:

AMMONIUM

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1		(0,15)	7

geeignet für:

<u> </u>	
Boden	GBL1.1, EXT1:2H2O1.1
Humus	
Pflanze	
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11732	
HFA	D58.3.4.2	
HFA-Code	D;9;2;-1;1;-1;1	

Prinzip der Methode/chem. Reaktionen:

Grundlage der Ammoniumbestimmung ist die Berthelot-Reaktion, bei der Indophenole aus Phenolen und Ammoniak gebildet werden. Im konkreten Fall wird Ammonium im Alkalischen mit Hypochlorit zu Chloramin umgesetzt:

$$NH_3 + OCl$$
 \rightarrow $NH_2Cl + OH$

Chloramin wird bei Hypochlorit-Überschuss mit Natriumsalicylat und mit Nitroprussidnatrium als Katalysator zum grün gefärbten Indophenol-Derivat umgesetzt:

$$NH_2Cl + 2OCl + 2 \bigcirc COO \longrightarrow HO \longrightarrow N = \bigcirc COOH \longrightarrow + 3Cl + 2H_2O$$

Das so gebildete grüne Indophenolderivat wird photometrisch bei 660 nm gemessen. Das Spektrum des gebildeten Indophenolderivats ist in Anhang 1 abgebildet. Der Aufbau der Cont.-Flow-Reaktionseinheit ist im Anhang 2 abgebildet.

Störungen:

Manche Elemente können bei diesem hohen pH-Wert (> 12,3) als Hydroxide ausfallen. Dies kann gegebenenfalls durch EDTA- bzw. Citrat-Zusatz behoben werden.

Die Reaktion ist temperaturabhängig. Durch ein Heizbad ist Temperaturkonstanz herstellbar.

Anhang:	<u>Lit.:</u>
Anhang 1: Spektrum des Farbstoffes	Walinga et al: Soil and Plant Analysis Part 5,
Anhang 2: ContFlow-Flußdiagramm	Wageningen Agricultural University, Syllabus
Kurzanleitung SKALAR1.1	1989, S. 9-8 ff
Kurzanleitung TRAACS-DV2.2	Analyst 105 N 1249, 1980, S.305 ff
	Water Research 12, 1977, S. 399 ff
	Landw. Forschung Bd 40, 1987, Heft 4

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC4.1	-	2

Analysengeräte und Zubehör:

4-Kanal-Continuous-Flow-System SAN PLUS mit automatischem Probennehmer SA1070, online-Dilutor, automatischen Spülventilen und Systemkontroller, Fa. Skalar

Chemikalien:

Ammoniumsulfat: $(NH_4)_2SO_4$

Brij-35 (30%)

Natriumcitrat: Na₃C₆H₅O₇ * 2 H₂O

Natriumhydroxid: NaOH

Natriumhypochlorit-Lösung (techn., 13 % aktives Chlor): NaOCl

Natriumsalicylat: NaC₇H₅O₃

Nitroprussidnatrium (Dinatriumpentacyanonitrosylferrat(III)): Na₂[Fe(CN)₅NO] * 2 H₂O

Lösungen:

1. Konzentrierte Lösungen:

A (20 %ige NaOH-Lösung): 200 g NaOH in 800 ml H₂O demin. lösen und auf 1 l auffüllen.

2. Reagenzlösungen:

I (Salicylat): In einem 1 l-Kolben werden 100 g Natriumsalicylat und 100 g Natrium-

citrat eingewogen und mit H₂O demin. auf 1 l aufgefüllt. Anschliessend

werden 2 ml Brij-35 zugesetzt.

II (Hypochlorit): In einem 500 ml-Kolben werden je 200 ml von Lösung A, 100 ml

Hypochlorit-Lösung, und 100 ml H₂O demin. gemischt.

III (Nitroprussid): In einem 500 ml-Kolben wird 1 g Nitroprussidnatrium eingewogen und

mit H₂O demin. auf 500 ml aufgefüllt.

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen
	offen	geschlossen	
	(am Gerät)	(im Kühlschrank)	
I	2 Wochen	/	bei Trübung filtrieren
II	2 Wochen	/	/
III	4 Wochen	/	lichtgeschützt

Eichung/Standards:

Stammlösungen:

NH₄: 4,717 g Ammoniumsulfat werden mit H₂O demin. auf 1 l aufgefüllt.

 $=> 1 \text{ g NH}_4-\text{N/l}$

NH₄, NO₃: In einen 1 l-Kolben 4,717 g Ammoniumsulfat ((NH₄)₂SO₄) und 7,218 g

Kaliumnitrat (KNO₃) einwiegen und mit H₂O demin. auf 1 l auffüllen.

 \Rightarrow 1 g/l NO₃-N und NH₄-N

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC4.1	-	3

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr.

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Einzelbestimmung:

<u>Standardreihe</u>				
S8:	7 mg/l NH ₄ -N			
S7:	6 mg/l NH ₄ -N			
S6:	5 mg/l NH ₄ -N			
S5:	$4 \text{ mg/l NH}_4\text{-N}$			
S4:	$3 \text{ mg/l NH}_4\text{-N}$			
S3:	$2 \text{ mg/l NH}_4\text{-N}$			
S2:	1 mg/l NH ₄ -N			
S1:	0.5 mg/l NH4-N			
S0:	$0 \text{ mg/l NH}_4\text{-N}$			

Koi	ntrollstandard
KSK1:	0.5 mg/l NH4-N
KSK5:	2.0 mg/l NH4-N
KSK6:	5.0 mg/l NH ₄ -N

Mehrelementbestimmung:

NH ₄ -N	NO ₃ -N	ges-N	Cl
[mg/l]	NO ₃ -N [mg/l]	ges-N [mg/l]	[mg/l]
7	7	14	15
6	6	12	13
5	5	10	11
4	4	8	9
3	3	6	7
2	2	4	5
1	1	2	3
0.5	0.5	1	1
0	0	0	0

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.1 beschrieben.

Durchführung:

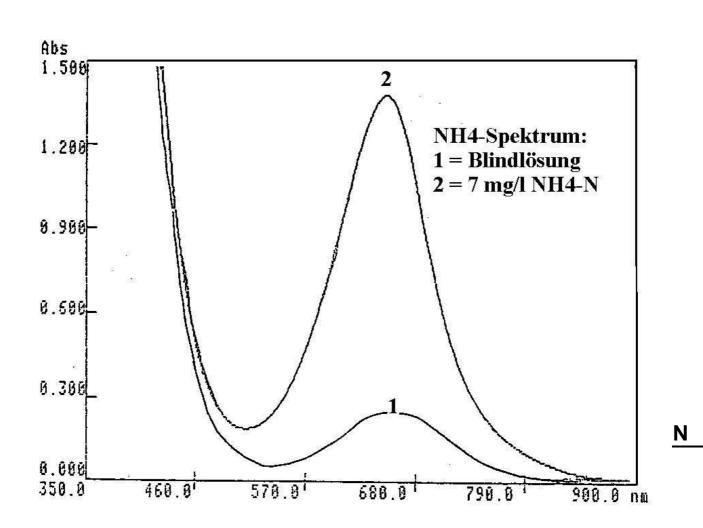
Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.1 beschrieben.

Achtung: Es ist darauf zu achten, dass bei der Art der Eichkurvenauswertung im Method-setup-Bildschirm Berechnungen 1. Order (linear) eingegeben wird.

E	Clement	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
	N	NH4	SKALAR	NNH4CFC4.1	•	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

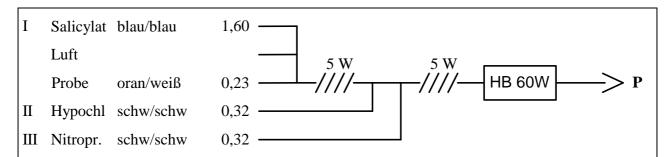

Qualitätskontrolle	Methode	Durchführung
Basislinienkontrolle	QBL1.1	Basislinienkontrollproben nach der Eichung und alle
		15 Proben (erlaubte Abweichung +/- 0,01 Ext.)
Driftkontrolle	QDK1.1	Driftkontrollproben nach der Eichung und alle 15
		Proben (erlaubte Abweichung +/- 0,02 Ext.)
Eichkurvenkontrolle	QEK1.2	Lineare Anpassung der Eichkurve; Bestimmtheits-
		mass ≥0,9998
Ionen/Leitfähigkeitsbilanz	QIB1.1	Siehe Methodenbeschreibung
IBW		
Kontrollstandard	QKSt1.1	KSK1 (0,5 mg/l), KSK5 (2 mg/l N), KSK6 (5 mg/l N)
		Messung nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 %
Stickstoffbilanz	QNB1.1	s. Methodenbeschreibung
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die NH_4 -N-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm TRAACSED (siehe Kurzanleitung TRAACS-DV2.2) zu bearbeiten.

Anhang Nr. 1 für N NH₄ SKALAR NNH4CFC4.1

Spektrum des Farbstoffes:


2

 $N \mid NH_4$

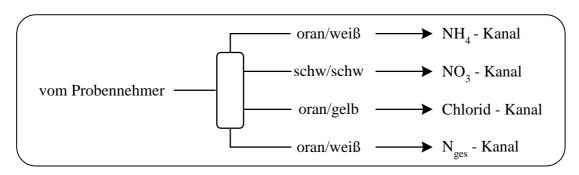
SKALAR

Aufbau der Reaktionseinheit zur NH₄-Bestimmung:

für

P: Photometer 660 nm, Küvette 15 mm

HB: Heizbad, 37 °C, 60 Windungen


Probenehmer SA1070 (Skalar)

Spülstation Probenehmer: Zul.: rot/rot, Abl.: rot/rot

Proben/Wasch-Verhältnis: 50 s Probe/ 60 s Wasch

Proben/Std: 32

Kopplung mit NO₃- ,Chlorid und Nges-Messung:

N

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC4.2	-	1

Datum:

01.12.1999

Elementbestimmungsmethode:

AMMONIUM

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1	0,061	0,201	7

geeignet für:

0 0				
Boden	GBL1.1, EXT1:2H2O1.1			
Humus				
Pflanze				
Wasser	ANULL			

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11732	
HFA	D58.3.4.2	
HFA-Code	D;9;2;-1;1;-1;1	

Prinzip der Methode/chem. Reaktionen:

Grundlage der Ammoniumbestimmung ist die Berthelot-Reaktion, bei der Indophenole aus Phenolen und Ammoniak gebildet werden. Im konkreten Fall wird Ammonium im Alkalischen mit Hypochlorit zu Chloramin umgesetzt:

$$NH_3 + OCl^- \rightarrow NH_2Cl + OH^-$$

Chloramin wird bei Hypochlorit-Überschuss mit Natriumsalicylat und mit Nitroprussidnatrium als Katalysator zum grün gefärbten Indophenolderivat umgesetzt:

$$NH_2Cl + 2OCl^- + 2 \bigcirc OH \longrightarrow OOC \longrightarrow N = COOH + 3Cl^- + 2H_2O$$

Das so gebildete grüne Indophenolderivat wird photometrisch bei 660 nm gemessen.

Das Spektrum des gebildeten Indophenolderivats ist in Anhang 1 abgebildet. Der Aufbau der Cont.-Flow-Reaktionseinheit ist im Anhang 2 abgebildet.

Störungen:

Manche Elemente können bei diesem hohen pH-Wert (> 12,3) als Hydroxide ausfallen. Dies kann gegebenenfalls durch EDTA- bzw. Citrat-Zusatz behoben werden.

Die Reaktion ist temperaturabhängig. Durch ein Heizbad ist Temperaturkonstanz herstellbar.

Anhang:	<u>Lit.:</u>
Anhang 1: Spektrum des Farbstoffes	Walinga et al: Soil and Plant Analysis Part 5,
Anhang 2: ContFlow-Flußdiagramm	Wageningen Agricultural University, Syllabus
Kurzanleitung SKALAR1.2 + 1.3	1989, S. 9-8 ff
Kurzanleitung TRAACS-DV2.2	Analyst 105 N 1249, 1980, S.305 ff
	Water Research 12, 1977, S. 399 ff
	Landw. Forschung Bd 40, 1987, Heft 4

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC4.2	-	2

Analysengeräte und Zubehör:

4-Kanal-Continuous-Flow-System SAN PLUS mit automatischem Probennehmer SA1070, online-Dilutor, automatischen Spülventilen und Systemkontroller, Fa. Skalar

Chemikalien:

Ammoniumsulfat: (NH₄)₂SO₄

Brij-35 (30%)

Natriumcitrat: $Na_3C_6H_5O_7 * 2 H_2O$

Natriumhydroxid: NaOH

Natriumhypochlorit-Lösung (techn., 13 % aktives Chlor): NaOCl

Natriumsalicylat: NaC₇H₅O₃

Nitroprussidnatrium (Dinatriumpentacyanonitrosylferrat(III)): Na₂[Fe(CN)₅NO] * 2 H₂O

Lösungen:

1. Konzentrierte Lösungen:

A (20 %ige NaOH-Lösung): 200 g NaOH in 800 ml H₂O demin. lösen und auf 1 l auffüllen.

2. Reagenzlösungen:

I (Salicylat): In einem 1 l-Kolben werden 100 g Natriumsalicylat und 100 g Natrium-

citrat eingewogen und mit H₂O demin. auf 1 l aufgefüllt. Anschließend

werden 2 ml Brij-35 zugesetzt.

II (Hypochlorit): In einem 500 ml-Kolben werden je 200 ml von Lösung A, 100 ml Hypo-

chlorit-Lösung und 100 ml H₂O demin. gemischt.

III (Nitroprussid): In einem 500 ml-Kolben wird 1 g Nitroprussidnatrium eingewogen und

mit H₂O demin. auf 500 ml aufgefüllt.

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen
	offen	geschlossen	
	(am Gerät)	(im Kühlschrank)	
I	2 Wochen	/	bei Trübung filtrieren
II	2 Wochen	/	/
III	4 Wochen	/	lichtgeschützt

Eichung/Standards:

Stammlösungen:

NH₄: 4,717 g Ammoniumsulfat werden mit H₂O demin. auf 1 l aufgefüllt.

 $=> 1 \text{ g NH}_4-\text{N/l}$

NH₄, NO₃: In einen 1 l-Kolben 4,717 g Ammoniumsulfat ((NH₄)₂SO₄) und 7,218 g Kaliumnitrat

(KNO₃) einwiegen und mit H₂O demin. auf 1 l auffüllen.

 \Rightarrow 1 g/l NO₃-N und NH₄-N

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	NH4	SKALAR	NNH4CFC4.2	-	3	

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr.

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Einzelbestimmung:

Standardreihe				
S8:	$7 \text{ mg/l NH}_4\text{-N}$			
S7:	$6 \text{ mg/l NH}_4\text{-N}$			
S6:	$5 \text{ mg/l NH}_4\text{-N}$			
S5:	$4 \text{ mg/l NH}_4\text{-N}$			
S4:	$3 \text{ mg/l NH}_4\text{-N}$			
S3:	$2 \text{ mg/l NH}_4\text{-N}$			
S2:	1 mg/l NH ₄ -N			
S1:	0.5 mg/l NH4-N			
S0:	$0 \text{ mg/l NH}_4\text{-N}$			

Koı	ntrollstandard
KSK1.	1.0 mg/l NH4-N
KSK2:	3.0 mg/l NH4-N
KSK3:	5.0 mg/l NH ₄ -N

Mehrelementbestimmung:

NH ₄ -N	NO ₃ -N	Cl
[mg/l]	[mg/l]	[mg/l]
7	7	15
6	6	13
5	5	11
4	4	9
3	3	7
2	2	5
1	1	3
0.5	0.5	1
0	0	0

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung SKALAR 1.2 + 1.3 beschrieben.

Durchführung:

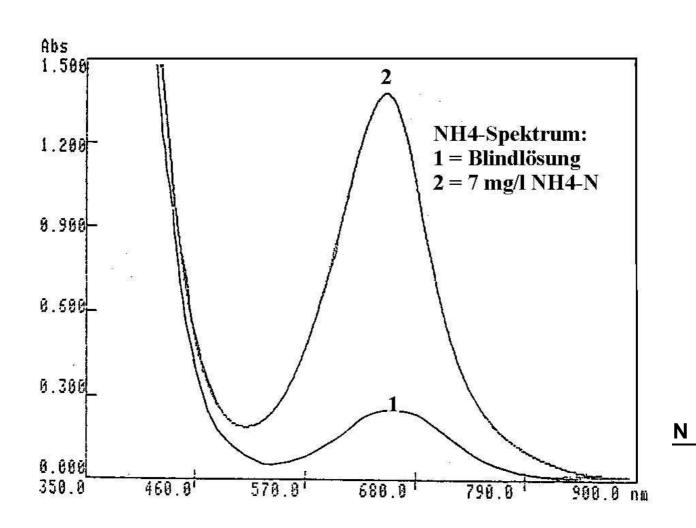
Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.2 +1.3 beschrieben.

Achtung: Es ist darauf zu achten, daß bei der Art der Eichkurvenauswertung im Method-setup-Bildschirm *Berechnungen 1. Order (linear)* eingegeben wird.

_	Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
	N	NH4	SKALAR	NNH4CFC4.2	•	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):


Qualitätskontrolle	Methode	Durchführung
Basislinienkontrolle	QBL1.1	Basislinienkontrollproben: nach der Eichung und alle
		15 Proben (erlaubte Abweichung +/- 0,01 Ext.).
Driftkontrolle	QDK1.1	Driftkontrollproben: nach der Eichung und alle 15
		Proben (erlaubte Abweichung +/- 0,02 Ext.).
Eichkurvenkontrolle	QEK1.2	Lineare Anpassung der Eichkurve; Bestimmtheits-
		mass ≥0,9998
Ionen/Leitfähigkeitsbilanz	QIB1.1	Siehe Methodenbeschreibung
IBW		
Kontrollstandard	QKSt1.1	KSK1 (1 mg/l), KSK2 (3 mg/l N), KSK3 (5 mg/l N)
		Messung nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 %.
Stickstoffbilanz	QNB1.1	s. Methodenbeschreibung
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

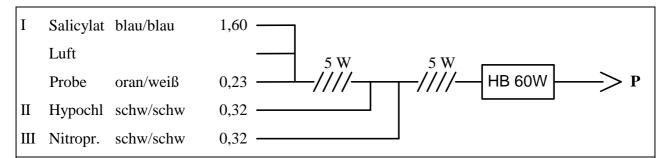
Die NH₄-N-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm TRAACSED (siehe Kurzanleitung TRAACS- N DV2.2) zu bearbeiten.

Anhang Nr. 1 für N NH₄ SKALAR NNH4CFC4.2

Spektrum des Farbstoffes:

Anhang Nr.

2


für

 \mathbf{NH}_4

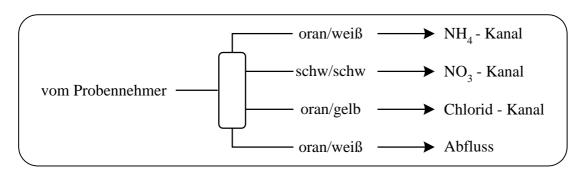
N

SKALAR

Aufbau der Reaktionseinheit zur NH₄-Bestimmung:

P: Photometer 660 nm, Küvette 15 mm

HB: Heizbad, 37 °C, 60 Windungen


Probenehmer SA1070 (Skalar)

Spülstation Probenehmer: Zul.: rot/rot, Abl.: rot/rot

Proben/Wasch-Verhältnis: 50 s Probe/ 60 s Wasch

Proben/Std: 32

Kopplung mit NO₃- ,Chlorid und Nges-Messung:

N

Elemen	t Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC4.3	-	1

Datum:

15.01.2006

Elementbestimmungsmethode:

AMMONIUM

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1	0,02	0,066	5

geeignet für:

<u> </u>	
Boden	GBL1.1, EXT1:2H2O1.1
Humus	
Pflanze	
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11732	
HFA	D58.3.4.2	
HFA-Code	D;9;2;-1;1;-1;1	

Prinzip der Methode/chem. Reaktionen:

Grundlage der Ammoniumbestimmung ist die Berthelot-Reaktion, bei der Indophenole aus Phenolen und Ammoniak gebildet werden. Im konkreten Fall wird Ammonium im Alkalischen mit Hypochlorit zu Chloramin umgesetzt:

$$NH_3 + OCl^- \rightarrow NH_2Cl + OH^-$$

Chloramin wird bei Hypochlorit-Überschuss mit Natriumsalicylat und mit Nitroprussidnatrium als Katalysator zum grün gefärbten Indophenolderivat umgesetzt:

$$NH_2Cl + 2OCl + 2 \bigcirc COO \longrightarrow HO \longrightarrow N = COOH + 3Cl + 2H_2O$$

Das so gebildete grüne Indophenolderivat wird photometrisch bei 660 nm gemessen.

Das Spektrum des gebildeten Indophenolderivats ist in Anhang 1 abgebildet. Der Aufbau der Cont.-Flow-Reaktionseinheit ist im Anhang 2 abgebildet.

Störungen:

Manche Elemente können bei diesem hohen pH-Wert (> 12,3) als Hydroxide ausfallen. Dies kann gegebenenfalls durch EDTA- bzw. Citrat-Zusatz behoben werden.

Die Reaktion ist temperaturabhängig. Durch ein Heizbad ist Temperaturkonstanz herstellbar.

Anhang:	<u>Lit.:</u>
Anhang 1: Spektrum des Farbstoffes	Walinga et al: Soil and Plant Analysis Part 5,
Anhang 2: ContFlow-Flußdiagramm	Wageningen Agricultural University, Syllabus
Kurzanleitung: SKALAR1.4	1989, S. 9-8 ff
	Analyst 105 N 1249, 1980, S.305 ff
	Water Research 12, 1977, S. 399 ff
	Landw. Forschung Bd 40, 1987, Heft 4

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC4.3	-	2

Analysengeräte und Zubehör:

4-Kanal-Continuous-Flow-System SAN PLUS mit automatischem Probennehmer SA1070, online-Dilutor, automatischen Spülventilen und Systemkontroller, Fa. Skalar

Chemikalien:

Ammoniumsulfat: (NH₄)₂SO₄

Brij-35 (30%)

Natriumcitrat: $Na_3C_6H_5O_7 * 2 H_2O$

Natriumhydroxid: NaOH

Natriumhypochlorit-Lösung (techn., 13 % aktives Chlor): NaOCl

Natriumsalicylat: NaC₇H₅O₃

Nitroprussidnatrium (Dinatriumpentacyanonitrosylferrat(III)): Na₂[Fe(CN)₅NO] * 2 H₂O

Lösungen:

1. Konzentrierte Lösungen:

A (20 %ige NaOH-Lösung): 200 g NaOH in 800 ml H₂O demin. lösen und auf 1 l auffüllen.

2. Reagenzlösungen:

I (Salicylat): In einem 1 l-Kolben werden 100 g Natriumsalicylat und 100 g Natrium-

citrat eingewogen und mit H₂O demin. auf 1 l aufgefüllt. Anschliessend

werden 2 ml Brij-35 zugesetzt.

II (Hypochlorit): In einem 500 ml-Kolben werden je 200 ml von Lösung A, 100 ml Hypo-

chlorit-Lösung und 100 ml H₂O demin. gemischt.

III (Nitroprussid): In einem 500 ml-Kolben wird 1 g Nitroprussidnatrium eingewogen und

mit H₂O demin. auf 500 ml aufgefüllt.

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen
	offen	geschlossen	
	(am Gerät)	(im Kühlschrank)	
I	2 Wochen	/	bei Trübung filtrieren
II	2 Wochen	/	/
III	4 Wochen	/	lichtgeschützt

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	NH4	SKALAR	NNH4CFC4.3	-	3	

Eichung/Standards:

Stammlösungen:

NH₄: 4,717 g Ammoniumsulfat werden mit H₂O demin. auf 1 l aufgefüllt.

 $=> 1 \text{ g NH}_4-\text{N/l}$

NH₄, NO₃: In einen 1 l-Kolben 4,717 g Ammoniumsulfat ((NH₄)₂SO₄) und 7,218 g

Kaliumnitrat (KNO₃) einwiegen und mit H₂O demin. auf 1 l auffüllen.

 \Rightarrow 1 g/l NO₃-N und NH₄-N

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr.

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Einzelbestimmung:

	<u>Standardreihe</u>		
S8:	0 mg/l NH ₄ -N		
S7:	$0.2 \text{ mg/l NH}_4\text{-N}$		
S6:	$0.3 \text{ mg/l NH}_4\text{-N}$		
S5:	$0,5 \text{ mg/l NH}_4\text{-N}$		
S4:	1 mg/l NH ₄ -N		
S3:	$2 \text{ mg/l NH}_4\text{-N}$		
S2:	$3 \text{ mg/l NH}_4\text{-N}$		
S1:	4 mg/l NH4-N		
S0:	5 mg/l NH ₄ -N		

<u>Koi</u>	<u>ntrollstandard</u>
KSK1:	1.0 mg/l NH4-N
KSK2:	3.0 mg/l NH4-N
KSK3:	5.0 mg/l NH ₄ -N

Mehrelementbestimmung:

NH ₄ -N	NO ₃ -N	Cl
[mg/l]	[mg/l]	[mg/l]
0	0	15
0,2	0,2	13
0,3	0,3	11
0,5	0,5	9
1	1	7
2	2	5
3	3	3
4	4	1
5	5	0

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung SKALAR 1.4 beschrieben.

Durchführung:

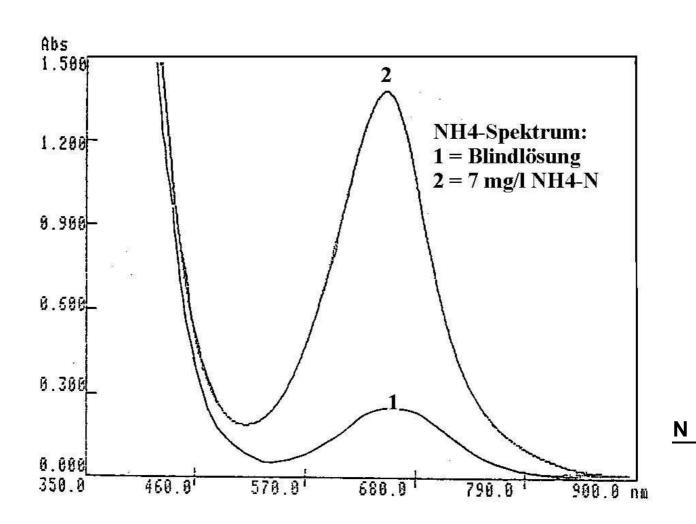
Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.4 beschrieben.

Achtung: Es ist darauf zu achten, dass bei der Art der Eichkurvenauswertung im Method-setup-Bildschirm Berechnungen 1. Order (linear) eingegeben wird.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC4.3	-	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

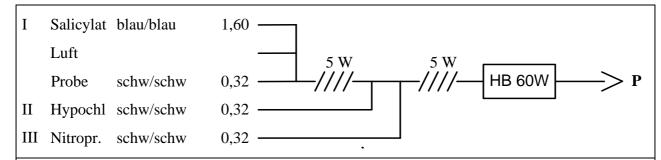

Qualitätskontrolle	Methode	Durchführung
Basislinienkontrolle	QBL2.1	Basislinienkontrollproben: nach der Eichung und alle
		15 Proben (erlaubte Abweichung +/- 0,01 Ext.).
Driftkontrolle	QDK2.1	Driftkontrollproben: nach der Eichung und alle 15
		Proben (erlaubte Abweichung +/- 0,02 Ext.).
Eichkurvenkontrolle	QEK1.2	Lineare Anpassung der Eichkurve; Bestimmtheitsmaß
		≥0,9998
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung
Kontrollstandard	QKSt1.1	KSK1 (1 mg/l), KSK2 (3 mg/l N), KSK3 (5 mg/l N)
		Messung nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 %.
Stickstoffbilanz	QNB1.2	s. Methodenbeschreibung
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1 mit-
		gemessen; erlaubte Abweichung 5 %.

Auswertung/Datendokumentation:

Die NH_4 -N-Konzentrationen sind mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten oder in die entsprechenden Datenlisten einzutragen.

Anhang Nr. 1 für N NH4 SKALAR NNH4CFC4.3

Spektrum des Farbstoffes:



für

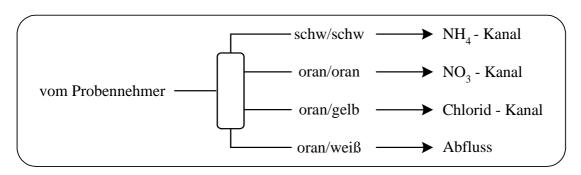
N NH4

SKALAR

Aufbau der Reaktionseinheit zur NH₄-Bestimmung:

P: Photometer 660 nm, Küvette 30 mm

HB: Heizbad, 37 °C, 60 Windungen


Probenehmer SA1070 (Skalar)

Spülstation Probenehmer: Zul.: rot/rot, Abl.: rot/rot

Proben/Wasch-Verhältnis: 50 s Probe/ 60 s Wasch

Proben/Std: 32

Kopplung mit NO₃- und Chlorid-Messung:

N

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC5.1	-	1

Datum:

01.11.2004

Elementbestimmungsmethode:

AMMONIUM

Untersuchungsmethode	NG	BG	OMG
NMin1.1		(0,25)	7

geeignet für:

Boden	NMin1.1
Humus	NMin1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11732	
HFA	D58.3.5.2	
HFA-Code	D;9;2;-1;1;-1;1	

Prinzip der Methode/chem. Reaktionen:

Grundlage der Ammoniumbestimmung ist die Berthelot-Reaktion, bei der Indophenole aus Phenolen und Ammoniak gebildet werden. Im konkreten Fall wird Ammonium im Alkalischen mit Hypochlorit zu Chloramin umgesetzt:

$$NH_3 + OCl^- \rightarrow NH_2Cl + OH^-$$

Chloramin wird bei Hypochlorit-Überschuss mit Natriumsalicylat und mit Nitroprussidnatrium als Katalysator zum grün gefärbten Indophenolderivat umgesetzt:

$$NH_2Cl + 2OCl + 2 \bigcirc OH$$
 $\longrightarrow OOC \bigcirc N = COOH + 3Cl + 2H_2O$

Das so gebildete grüne Indophenolderivat wird photometrisch bei 660 nm gemessen.

Das Spektrum des gebildeten Indophenolderivats ist in Anhang 1 abgebildet. Der Aufbau der Continuous-Flow-Reaktionseinheit ist im Anhang 2 abgebildet.

Störungen:

Manche Elemente können bei diesem hohen pH-Wert (> 12,3) als Hydroxide ausfallen. Dies kann gegebenenfalls durch EDTA- bzw. Citrat-Zusatz behoben werden.

Die Reaktion ist temperaturabhängig. Durch ein Heizbad ist Temperaturkonstanz herstellbar.

Anhang:	<u>Lit.:</u>
Anhang 1: Spektrum des Farbstoffes	Walinga et al: Soil and Plant Analysis Part 5,
Anhang 2: ContFlow-Flußdiagramm	Wageningen Agricultural University, Syllabus
Kurzanleitung SKALAR1.3 + 1.4	1989, S. 9-8 ff
	Analyst 105 N 1249, 1980, S.305 ff
	Water Research 12, 1977, S. 399 ff
	Landw. Forschung Bd 40, 1987, Heft 4

w

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC5.1	-	2

Analysengeräte und Zubehör:

4-Kanal-Continuous-Flow-System SAN PLUS mit automatischem Probennehmer SA1070, online-Dilutor, automatischen Spülventilen und Systemkontroller, Fa. Skalar

Chemikalien:

Ammoniumsulfat: (NH₄)₂SO₄

Brij-35 (30%) Kaliumchlorid: KCl

Natriumcitrat: Na₃C₆H₅O₇ * 2 H₂O

Natriumhydroxid: NaOH

Natriumhypochlorit-Lösung (techn., 13 % aktives Chlor): NaOCl

Natriumsalicylat: NaC₇H₅O₃

Nitroprussidnatrium (Dinatriumpentacyanonitrosylferrat(III)): Na₂[Fe(CN)₅NO] * 2 H₂O

Lösungen:

1. Konzentrierte Lösungen:

A (20 %ige NaOH-Lösung): 200 g NaOH in 800 ml H₂O demin. lösen und auf 1 l auffüllen.

2. Reagenzlösungen:

I (Salicylat): In einem 1 l-Kolben werden 100 g Natriumsalicylat und 100 g Natrium-

citrat eingewogen und mit H₂O demin. auf 1 l aufgefüllt. Anschliessend

werden 2 ml Brij-35 zugesetzt.

II (Hypochlorit): In einem 500 ml-Kolben werden je 200 ml von Lösung A, 100 ml Hypo-

chlorit-Lösung und 100 ml H₂O demin. gemischt.

III (Nitroprussid): In einem 500 ml-Kolben wird 1 g Nitroprussidnatrium eingewogen und

mit H₂O demin. auf 500 ml aufgefüllt.

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen
	offen	geschlossen	
	(am Gerät)	(im Kühlschrank)	
I	2 Wochen	/	bei Trübung filtrieren
II	2 Wochen	/	/
III	4 Wochen	/	lichtgeschützt

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	NH4	SKALAR	NNH4CFC5.1	-	3	1

Eichung/Standards:

Stammlösungen:

NH₄: 4,717 g Ammoniumsulfat werden mit H₂O demin. auf 1 l aufgefüllt.

 $=> 1 \text{ g NH}_4-\text{N/l}$

NH₄, NO₃: In einen 1 l-Kolben 4,717 g Ammoniumsulfat ((NH₄)₂SO₄) und 7,218 g

Kaliumnitrat (KNO₃) einwiegen und mit H₂O demin. auf 1 l auffüllen.

 \Rightarrow 1 g/l NO₃-N und NH₄-N

Standards:

Die Standards werden mit 0,5 M KCl-Lösung angesetzt.

Haltbarkeit:

geschlossen im Kühlschrank: ein halbes Jahr.

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Einzelbestimmung:

	<u>Standardreihe</u>
S8:	7 mg/l NH ₄ -N
S7:	6 mg/l NH ₄ -N
S6:	5 mg/l NH ₄ -N
S5:	4 mg/l NH ₄ -N
S4:	$3 \text{ mg/l NH}_4\text{-N}$
S3:	$2 \text{ mg/l NH}_4\text{-N}$
S2:	1 mg/l NH ₄ -N
S1:	$0.5 \text{ mg/l NH}_4\text{-N}$
S0:	0 mg/l NH ₄ -N

<u>Kor</u>	<u>ntrollstandard</u>
KSK1:	1.0 mg/l NH ₄ -N
KSK2:	3.0 mg/l NH ₄ -N
KSK3:	5.0 mg/l NH ₄ -N

Mehrelementbestimmung:

NH ₄ -N	NO ₃ -N	Cl
[mg/l]	[mg/l]	[mg/l]
7	7	15
6	6	13
5	5	11
4	4	9
3	3	7
2	2	5
1	1	3
0.5	0.5	1
0	0	0

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.3 +1.4 beschrieben.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC5.1	-	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.3 + 1.4 beschrieben.

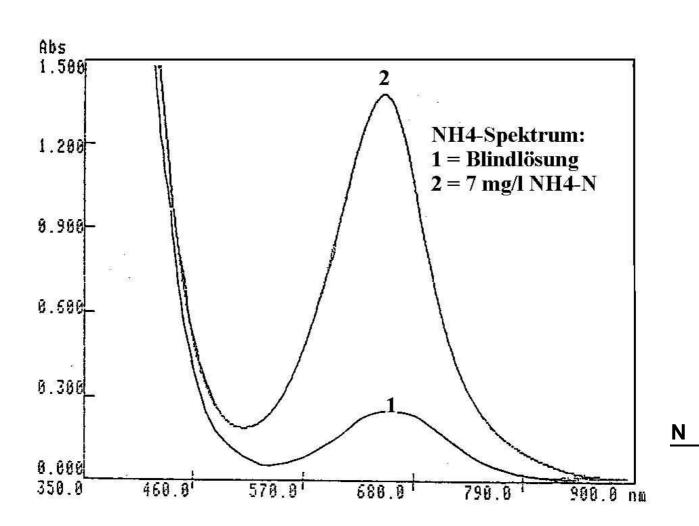
Spüllösung:

Als Spüllösung wird 0,5 M KCl-Lösung mit 50 µl/l Brij-35 verwendet.

Achtung: Es ist darauf zu achten, dass bei der Art der Eichkurvenauswertung im Method-setup-Bildschirm Berechnungen 1. Order (linear) eingegeben wird.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

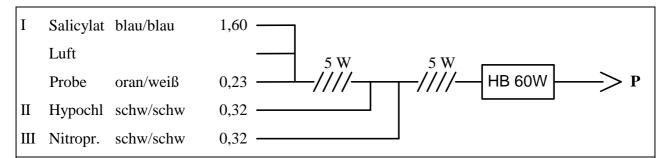

Qualitätskontrolle	Methode	Durchführung
Basislinienkontrolle	QBL2.1	Basislinienkontrollproben: nach der Eichung und alle
		15 Proben (erlaubte Abweichung +/- 0,01 Ext.).
Driftkontrolle	QDK2.1	Driftkontrollproben: nach der Eichung und alle 15
		Proben (erlaubte Abweichung +/- 0,02 Ext.).
Eichkurvenkontrolle	QEK1.2	Lineare Anpassung der Eichkurve; Bestimmtheitsmaß
		≥0,9998
Kontrollstandard	QKSt1.1	KSK1 (1 mg/l), KSK2 (3 mg/l N), KSK3 (5 mg/l N)
		Messung nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 %.
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die NH₄-N-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm Relaqs zu bearbeiten.

Anhang Nr. 1 für N NH4 SKALAR NNH4CFC5.1

Spektrum des Farbstoffes:



für

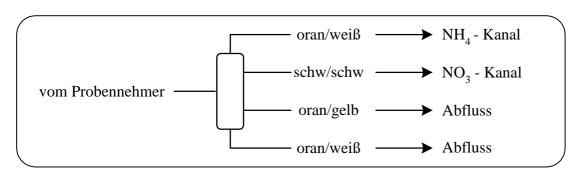
N NH4

SKALAR

Aufbau der Reaktionseinheit zur NH₄-Bestimmung:

P: Photometer 660 nm, Küvette 15 mm

HB: Heizbad, 37 °C, 60 Windungen


Probenehmer SA1070 (Skalar)

Spülstation Probenehmer: Zul.: rot/rot, Abl.: rot/rot

Proben/Wasch-Verhältnis: 50 s Probe/ 60 s Wasch

Proben/Std: 32

Kopplung mit NO₃- und Chlorid-Messung:

N

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC6.1	-	1

Datum:

01.03.2007

Elementbestimmungsmethode:

AMMONIUM

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1	0,017	0,056	5

geeignet für:

<u> </u>					
Boden	GBL1.1, EXT1:2H2O1.1				
Humus					
Pflanze					
Wasser	ANULL				

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11732
HFA	D58.3.4.2
HFA-Code	D;9;2;1;1;-1;1

Prinzip der Methode/chem. Reaktionen:

Grundlage der Ammoniumbestimmung ist die Berthelot-Reaktion, bei der Ammonium zunächst bei pH 12,6 durch Hypochlorid zu Chloramin chloriert wird. Dabei entstehen die Hypochloridionen durch hydrolytische Spaltung des Dichlorisocyanurats. Als Katalysator dient Natriumnitroprussid:

$$NH_3 + OCl^- \rightarrow NH_2Cl + OH^-$$

Das Chloramin lagert sich dann unter Abspaltung des Chloridions mit Natriumsalicylat zum 5-Aminosalicylat um, aus dem sich nach Oxidation mit Hypochlorid und einer Kupplungsreaktion ein grün gefärbtes Indophenol-Derivat bildet. Hierbei dient wiederum Natriumnitroprussid als Katalysator:

$$NH_{2}Cl + 2OCl^{-} + 2 \bigcirc COO^{-} \longrightarrow HO \longrightarrow N = COOH + 3Cl^{-} + 2H_{2}O$$

Das so gebildete grüne Indophenolderivat wird photometrisch bei 660 nm gemessen. Das Spektrum des gebildeten Indophenolderivats ist in Anhang 1, der Aufbau der Cont.-Flow-Reaktionseinheit in Anhang 2 abgebildet.

Anhang:	<u>Lit.:</u>
Anhang 1: Spektrum des Farbstoffes	Walinga et al: Soil and Plant Analysis Part 5,
Anhang 2: ContFlow-Flußdiagramm	Wageningen Agricultural University, Syllabus
Kurzanleitung SKALAR1.5	1989, S. 9-8 ff
	Analyst 105 N 1249, 1980, S.305 ff
	Water Research 12, 1977, S. 399 ff
	Landw. Forschung Bd 40, 1987, Heft 4

Element	Form	Gerät	Gerät Methoden-Nr.		Seite
N	NH4	SKALAR	NNH4CFC6.1	-	2

Störungen:

Manche Elemente können bei diesem hohen pH-Wert (> 12,3) als Hydroxide ausfallen. Dies kann gegebenenfalls durch EDTA- bzw. Citrat-Zusatz behoben werden.

Die Reaktion ist temperaturabhängig. Durch ein Heizbad ist Temperaturkonstanz herstellbar.

Analysengeräte und Zubehör:

4-Kanal-Continuous-Flow-System SAN PLUS mit automatischem Probennehmer SA1070, online-Dilutor, automatischen Spülventilen und Systemkontroller, Fa. Skalar

Chemikalien:

Ammoniumsulfat: (NH₄)₂SO₄

Brij-35 (30%)

Kaliumnatriumtartrat C₄H₄KNa *4 H₂O Natriumcitrat: Na₃C₆H₅O₇ * 2 H₂O

Natiumdichlorisocyanurat C₃N₃O₃Cl₂Na * 2 H₂O

Natriumhydroxid: NaOH Natriumsalicylat: C₇H₅NaO₃

Natriumnitroprussid (Dinatriumpentacyanonitrosylferrat(III)): Na₂[Fe(CN)₅NO] * 2 H₂O

Lösungen:

1. Reagenzlösungen:

I (Puffer): In einem 5 l-Kolben werden 165 g Kaliumnatriumtartrat und 120 g

Natriumcitrat eingewogen und mit H_2O demin. auf 5 l aufgefüllt. Den pH-Wert mit HCl auf 5.2 ± 0.1 einstellen. 1.5 l des Reagenzes vor der Messung

mit 2 ml Brij-35 versetzen.

II(Natriumsalicylat): In einem 1 l Kolben werden 25 g Natriumhydroxid eingewogen und vorsichtig

mit Wasser auf ca. 800 ml aufgefüllt. Anschliessend werden 80 g

Natriumsalicylat zugegeben und auf 1 l aufgefüllt.

III (Na-Dic.): In einem 1 l-Kolben werden 2 g Natriumdichlorisocyanurat eingewogen und

auf 1 l aufgefüllt.

IV (Nitroprussid): In einem 1 l-Kolben wird 1 g Nitroprussidnatrium eingewogen und mit H₂O

demin. auf 1 l aufgefüllt.

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen
	offen	geschlossen	
	(am Gerät)	(im Kühlschrank)	
I	2 Wochen	/	bei Trübung filtrieren
II	1 Woche	/	in dunkler Flasche lagern
III	1 Woche	/	in dunkler Flasche lagern
IV	1 Woche	/	in dunkler Flasche lagern

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	NH4	SKALAR	NNH4CFC6.1	-	3	

Eichung/Standards:

Stammlösungen:

 NH_4 : 4,717 g Ammoniumsulfat ($(NH_4)_2SO_4$) werden mit H_2O demin. auf 1 l aufgefüllt.

 $=> 1 \text{ g NH}_4-\text{N/l}$

NH₄, NO₃: In einen 1 l-Kolben 4,717 g Ammoniumsulfat ((NH₄)₂SO₄) und 7,218 g Kaliumnitrat

(KNO₃) einwiegen und mit H₂O demin. auf 1 l auffüllen.

 \Rightarrow 1 g/l NO₃-N und NH₄-N

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr.

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Einzelbestimmung:

Mehrelementbestimmung:

<u>Standardreihe</u>				
S8:	5 mg/l NH ₄ -N			
S7:	$4 \text{ mg/l NH}_4\text{-N}$			
S6:	$3 \text{ mg/l NH}_4\text{-N}$			
S5:	$2 \text{ mg/l NH}_4\text{-N}$			
S4:	$1 \text{ mg/l NH}_4\text{-N}$			
S3:	0,5 mg/l NH ₄ -N			
S2:	0,3 mg/l NH ₄ -N			
S1:	0.1 mg/l NH ₄ -N			
S0:	$0 \text{ mg/l NH}_4\text{-N}$			

NH ₄ -N	NO ₃ -N	Cl
[mg/l]	[mg/l]	[mg/l]
5	5	15
4	4	13
3	3	11
2	2	9
1	1	7
0,5	0,5	5
0,3	0,3	3
0,1	0,1	1
0	0	0

<u>Ko</u>	ntrollstandard
KSK1:	0,25 mg/l NH ₄ -N
KSK2:	1,5 mg/l NH ₄ -N
KSK3:	4,0 mg/l NH ₄ -N

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.5 beschrieben.

Durchführung:

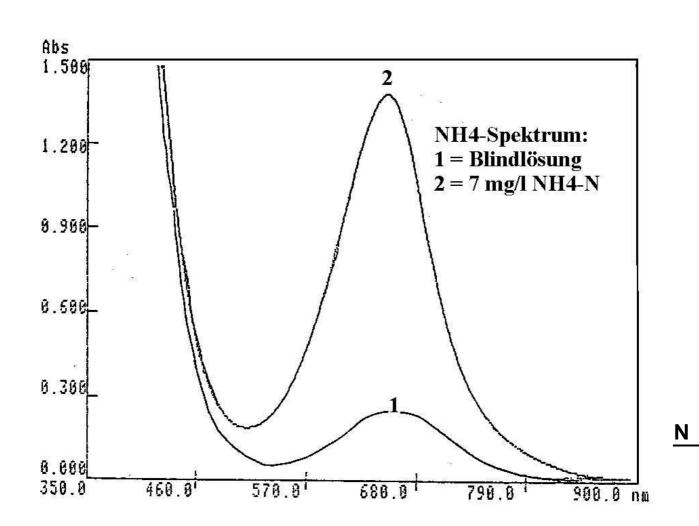
Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.5 beschrieben.

Achtung: Es ist darauf zu achten, dass bei der Art der Eichkurvenauswertung im Method-setup-Bildschirm Berechnungen 1. Order (linear) eingegeben wird.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC6.1	-	4

Qualitätskontrolle:

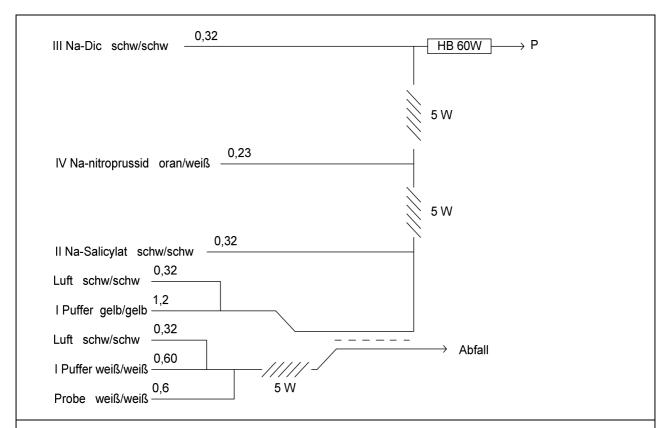
Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):


Qualitätskontrolle	Methode	Durchführung
Basislinienkontrolle	QBL2.1	Lineare Basislinienkorrektur durch Messen der Höhe
		der Basislinie, am Anfang, nach jeweils 15 Proben,
		und am Ende eines Laufs.
Driftkontrolle	QDK2.1	Lineare Driftkontrolle mit 2 Drift-Standards (1.
		DRIFT IGNORE, 2. DRIFT), nach der Kalibrierung,
		nach jedem Kontrollstandardblock, und am Ende
		eines Laufes mit dem jeweils höchsten Standard der
		Eichreihe. Die Messung von DRIFT IGNORE wird in
		die Berechnung der Drift nicht mit einbezogen.
Eichkurvenkontrolle	QEK1.2	Lineare Anpassung der Eichkurve; Bestimmtheitsmaß
		≥0,9998
Ionenbilanz IBW	QIB1.2	s. Methodenbeschreibung
Ionenbilanz NFV	QIB2.1	s. Methodenbeschreibung
Ionenbilanz NFV ohne ALK	QIB3.1	s. Methodenbeschreibung
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung
Stickstoffbilanz	QNB1.2	s. Methodenbeschreibung
Kontrollstandard	QKSt1.1	KSK1 (0,25 mg/l), KSK2 (1,5 mg/l N), KSK3 (4,0
		mg/l N) Messung nach der Eichung, alle 15 Proben;
		erlaubte Abweichung 5 %
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1
		mitgemessen; erlaubte Abweichung 5 %
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die NH_4 -N-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm Relaqs zu bearbeiten.

Anhang Nr. 1 für N NH4 SKALAR NNH4CFC6.1


Spektrum des Farbstoffes:

N NH4

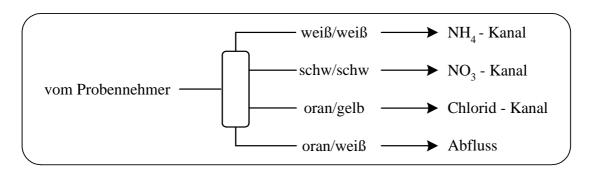
SKALAR

Aufbau der Reaktionseinheit zur NH₄-Bestimmung:

P: Photometer 660 nm, Küvette 50 mm

HB: Heizbad, 37 °C, 60 Windungen

DB: Dialyseblock 700 mm, doppelt gewendelt, Ober- u. Unterstrom in gleicher Richtung laufend


Probenehmer SA1070 (Skalar)

Spülstation Probenehmer: Zul.: rot/rot, Abl.: rot/rot

Proben/Wasch-Verhältnis: 50 s Probe/ 70 s Wasch

Proben/Std: 30

Kopplung mit NO₃- und Chlorid-Messung:

N

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC7.1	-	1

Datum:

01.03.2007

Elementbestimmungsmethode:

AMMONIUM

Untersuchungsmethode	NG	BG	OMG
NMin1.1		(0,25)	5

geeignet für:

Boden	NMin1.1
Humus	NMin1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 14255
HFA	D58.3.5.2
HFA-Code	D;9;2;1;1;-1;1

Prinzip der Methode/chem. Reaktionen:

Grundlage der Ammoniumbestimmung ist die Berthelot-Reaktion, bei der Ammonium zunächst bei pH 12,6 durch Hypochlorid zu Chloramin chloriert wird. Dabei entstehen die Hypochloridionen durch hydrolytische Spaltung des Dichlorisocyanurats. Als Katalysator dient Natriumnitroprussid:

$$NH_3 + OCl^- \rightarrow NH_2Cl + OH^-$$

Das Chloramin lagert sich dann unter Abspaltung des Chloridions mit Natriumsalicylat zum 5-Aminosalicylat um, aus dem sich nach Oxidation mit Hypochlorid und einer Kupplungsreaktion ein grün gefärbtes Indophenol-Derivat bildet. Hierbei dient wiederum Natriumnitroprussid als Katalysator:

$$NH_{2}Cl + 2OCl^{-} + 2 \bigcirc COO^{-} \longrightarrow HO \longrightarrow N = COOH + 3Cl^{-} + 2H_{2}O$$

Das so gebildete grüne Indophenolderivat wird photometrisch bei 660 nm gemessen. Das Spektrum des gebildeten Indophenolderivats ist in Anhang 1, der Aufbau der Cont.-Flow-Reaktionseinheit in Anhang 2 abgebildet.

Anhang:	<u>Lit.:</u>
Anhang 1: Spektrum des Farbstoffes	Walinga et al: Soil and Plant Analysis Part 5,
Anhang 2: ContFlow-Flußdiagramm	Wageningen Agricultural University, Syllabus
Kurzanleitung SKALAR1.5	1989, S. 9-8 ff
	Analyst 105 N 1249, 1980, S.305 ff
	Water Research 12, 1977, S. 399 ff
	Landw. Forschung Bd 40, 1987, Heft 4

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC7.1	-	2

Störungen:

Manche Elemente können bei diesem hohen pH-Wert (> 12,3) als Hydroxide ausfallen. Dies kann gegebenenfalls durch EDTA- bzw. Citrat-Zusatz behoben werden.

Die Reaktion ist temperaturabhängig. Durch ein Heizbad ist Temperaturkonstanz herstellbar.

Analysengeräte und Zubehör:

4-Kanal-Continuous-Flow-System SAN PLUS mit automatischem Probennehmer SA1070, online-Dilutor, automatischen Spülventilen und Systemkontroller, Fa. Skalar

Chemikalien:

Ammoniumsulfat: (NH₄)₂SO₄

Brij-35 (30%) Kaliumchlorid: KCl

Kaliumnatriumtartrat $C_4H_4KNa *4 H_2O$ Natriumcitrat: $Na_3C_6H_5O_7 *2 H_2O$

Natiumdichlorisocyanurat C₃N₃O₃Cl₂Na * 2 H₂O

Natriumhydroxid: NaOH Natriumsalicylat: C₇H₅NaO₃

Natriumnitroprussid (Dinatriumpentacyanonitrosylferrat(III)): Na₂[Fe(CN)₅NO] * 2 H₂O

Lösungen:

1. Reagenzlösungen:

I (Puffer): In einem 5 l-Kolben werden 165 g Kaliumnatriumtartrat und 120 g

Natriumcitrat eingewogen und mit H_2O demin auf 5 l aufgefüllt. Den pH-Wert mit HCl auf 5.2 ± 0.1 einstellen. 1.5 l des Reagenzes vor der Messung

mit 2 ml Brij-35 versetzen.

II (Natriumsalicylat): In einem 1 l-Kolben werden 25 g Natriumhydroxid eingewogen und vorsichtig

mit Wasser auf ca. 800 ml aufgefüllt. Anschliessend werden 80 g

Natriumsalicylat zugegeben und auf 1 l aufgefüllt.

III (Na-Dic): in einem 1 l-Kolben werden 2 g Natriumdichlorisocyanurat eingewogen und

auf 1 l aufgefüllt.

IV (Nitroprussid): In einem 1 l-Kolben wird 1 g Nitroprussidnatrium eingewogen und mit H₂O

demin. auf 1 l aufgefüllt.

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen
	offen	geschlossen	
	(am Gerät)	(im Kühlschrank)	
I	2 Wochen	/	bei Trübung filtrieren
II	1 Woche	/	in dunkler Flasche lagern
III	1 Woche	/	in dunkler Flasche lagern
IV	1 Woche	/	in dunkler Flasche lagern

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC7.1	-	3

Eichung/Standards:

Stammlösungen:

 NH_4 : 4,717 g Ammoniumsulfat ($(NH_4)_2SO_4$) werden mit H_2O demin. auf 1 l aufgefüllt.

 $=> 1 \text{ g NH}_4-\text{N/l}$

NH₄, NO₃: In einen 1 l-Kolben 4,717 g Ammoniumsulfat ((NH₄)₂SO₄) und 7,218 g Kaliumnitrat

(KNO₃) einwiegen und mit H₂O demin. auf 1 l auffüllen.

=> 1 g/l NO₃-N und NH₄-N

Standards:

Die Standards werden mit 0,5 M KCl-Lösung angesetzt.

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr.

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Einzelbestimmung:

<u>Mehre</u>	<u>lement</u>	<u>bestin</u>	<u>nmung:</u>

3	<u>Standardreihe</u>			
S8:	5 mg/l NH ₄ -N			
S7:	$4 \text{ mg/l NH}_4\text{-N}$			
S6:	$3 \text{ mg/l NH}_4\text{-N}$			
S5:	$2 \text{ mg/l NH}_4\text{-N}$			
S4:	1 mg/l NH ₄ -N			
S3:	0,5 mg/l NH ₄ -N			
S2:	0,3 mg/l NH ₄ -N			
S1:	0.1 mg/l NH ₄ -N			
S0:	$0 \text{ mg/l NH}_4\text{-N}$			

NH ₄ -N	NO ₃ -N	Cl
[mg/l]	[mg/l]	[mg/l]
5	5	15
4	4	13
3	3	11
2	2	9
1	1	7
0,5	0,5	5
0,3	0,3	3
0,1	0,1	1
0	0	0

Kontrollstandard					
KSK1:	0,25 mg/l NH ₄ -N				
KSK2:	1,5 mg/l NH ₄ -N				
KSK3:	4,0 mg/l NH ₄ -N				

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.5 beschrieben.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH4	SKALAR	NNH4CFC7.1	-	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.5 beschrieben.

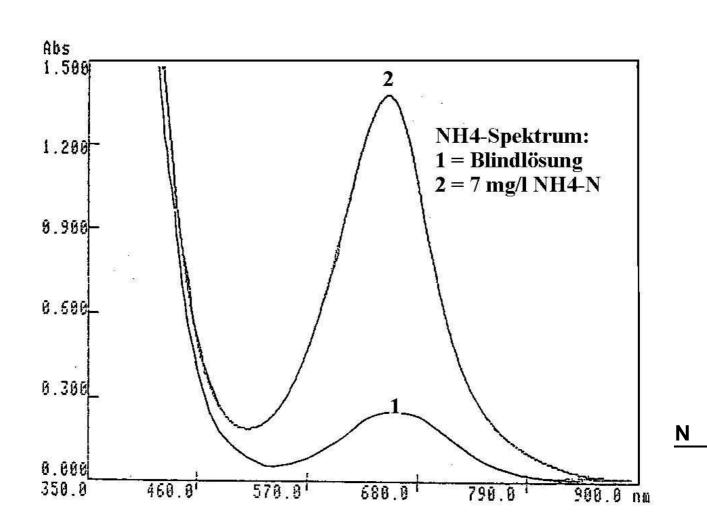
Spüllösung:

Als Spüllösung wird 0,5 M KCl-Lösung mit 50 µl/l Brij-35 verwendet.

Achtung: Es ist darauf zu achten, dass bei der Art der Eichkurvenauswertung im Method-setup-Bildschirm Berechnungen 1. Order (linear) eingegeben wird.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

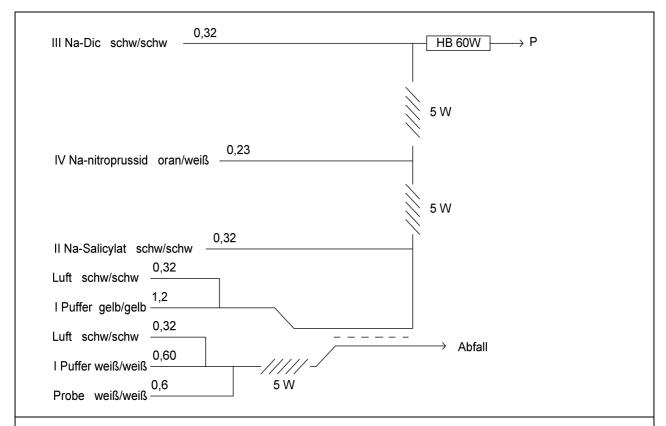

Qualitätskontrolle	Methode	Durchführung
Basislinienkontrolle QBL2.1		Lineare Basislinienkorrektur durch Messen der Höhe
		der Basislinie am Anfang, nach jeweils 15 Proben,
		und am Ende eines Laufs.
Driftkontrolle	QDK2.1	Lineare Driftkontrolle mit 2 Drift-Standards (1.
		DRIFT IGNORE, 2. DRIFT), nach der Kalibrierung,
		nach jedem Kontrollstandardblock, und am Ende
		eines Laufes mit dem jeweils höchsten Standard der
		Eichreihe.Die Messung von DRIFT IGNORE wird in
		die Berechnung der Drift nicht mit einbezogen.
Eichkurvenkontrolle	QEK1.2	Lineare Anpassung der Eichkurve; Bestimmtheitsmaß
		≥0,9998
Kontrollstandard	QKSt1.1	KSK1 (0,25 mg/l), KSK2 (1,5 mg/l N), KSK3 (4,0
		mg/l N) Messung nach der Eichung, alle 15 Proben;
		erlaubte Abweichung 5 %
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die NH₄-N-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm Relaqs zu bearbeiten.

Anhang Nr. 1 für N NH4 SKALAR NNH4CFC7.1

Spektrum des Farbstoffes:



für

N NH4

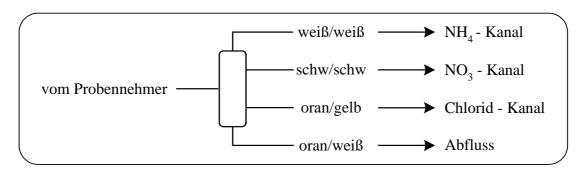
SKALAR

Aufbau der Reaktionseinheit zur NH₄-Bestimmung:

P: Photometer 660 nm, Küvette 50 mm

HB: Heizbad, 37 °C, 60 Windungen

DB: Dialyseblock 700 mm, doppelt gewendelt, Ober- u. Unterstrom in gleicher Richtung laufend


Probenehmer SA1070 (Skalar)

Spülstation Probenehmer: Zul.: rot/rot, Abl.: rot/rot

Proben/Wasch-Verhältnis: 50 s Probe/ 70 s Wasch

Proben/Std: 30

Kopplung mit NO₃- und Chlorid-Messung:

N

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH ₄	IC	NNH4IC2.1	-	1

Datum:

15.12.2007

Elementbestimmungsmethode:

AMMONIUM

Untersuchungsmethode			BG	OMG
ANULLIC		0,004	0,013	5,0
geeignet für:				
Boden				
Humus				
Pflanze				
Wasser	ANULLIC			
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 14911			
HFA	D58.3.4.1			
HFA-Code	D;7;1;3;4;-1;1			

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Kationen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Kationen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit Carboxylgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine verdünnte Salpetersäurelösung verwendet. Diese hat eine außerordentlich hohe Ionenäquivalentleitfähigkeit. Daher nimmt auf Grund der geringeren Ionenäquivalentleitfähigkeit der getrennten Kationen die Leitfähigkeit ab, wenn die Kationen die Trennsäule mit dem Eluenten verlassen und in die Leitfähigkeitsdetektorzelle gelangen. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Kations geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 0,25 ppm Ammonium) wird das Kationen-Chromatogramm doppelt aufgenommen und mit unterschiedlichen Eichkurven für den hohen Messbereich (= linear durch Null) und den niedrigen Messbereich (= linear) ausgewertet. In dem 2-Kanal-System werden Anund Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Säule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC2.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S17.1: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Sammelanhang SIC1.1: Grundeichung	
Gerätekurzanleitung IC2.1	

N

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NH_4	IC	NNH4IC2.1	-	2

Analysengeräte und Zubehör:

- 2-Kanal-IC-Anlage Fa. Metrohm, bestehend aus:
- 2 IC-Pumpen 818
- 2 Leitfähigkeitsdetektoren 819

IC-Separation-Center 820 mit Säulenofen

IC-Liquid-Handling-Einheit 833

2 Pulsationsdämpfer

IC-Eluent-Degaser 837

IC-Probengeber 838

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5

b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen:

a. Anionen: 20 µl

b. Kationen: 50 µl

Software:

a. zur Anlagensteuerung: IC-Net

b. zur Chromatogrammauswertung: MagIC-Net

Chemikalien:

Salpetersäure, HNO₃, 1 M

Lösungen:

Eluent-Kationen: In einen 2 l-Messkolben werden 10 ml 1 M Salpetersäure gegeben und mit

H₂O demin. reinst auf 2 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

1 g/l NH₄: 1 g/l Ammonium als NH₄Cl \Rightarrow 1 g/l NH₄

Stammlösung II: Je 1 ml K-, NH₄-, Na-, Ca-, und Mg-Stammlösung werden in einen 100 ml-

Messkolben mit H₂O demin. reinst auf 100 ml aufgefüllt.

 \Rightarrow 0,01 g/l K, NH₄, Na, Ca, Mg.

Haltbarkeit:

Die Stammlösung II ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	NH_4	IC	NNH4IC2.1	-	3	

	Kontrollstandard
K1IC:	1,555 mg/l NH ₄ -N
K2IC:	0,0777 mg/l NH ₄ -N

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S17.1) mit insgesamt 19 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung II und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

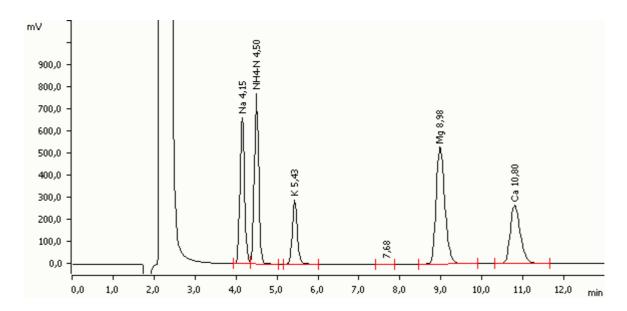
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC2.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard QKSt1.1		K1IC (1,555 mg/l N), K2IC (0,0777 mg/l N),	
		Messung nach der Eichung, alle 15 Proben; erlaubte	
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).	
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial QStM1.1		Alle 50 Proben wird der Standard Wasser HE1IC mit	
		gemessen; erlaubte Abweichung 5 %.	


Auswertung/Datendokumentation:

Im Anschluß an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Ammoniumkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr. 1 für N NH ₄ IC NNH4IC2.1	Anhang Nr.	NH ₄ IC	für N	NNH4IC2.1
---	------------	--------------------	-------	-----------

Chromatogramm der Kationenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_2	IC	NNO2IC2.1	-	1

Datum:

01.01.2008

Elementbestimmungsmethode:

NITRIT

Untersuchungsmethode			BG	OMG
ANULLIC			0,004	33
geeignet für:				
Boden				
Humus				
Pflanze				
Wasser	ANULLIC			
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 10304-1			
HFA	D58.5.4.1			
HFA-Code	D;7;1;4;1;-1;2			

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Anionen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Anionen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit quartären Ammoniumgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine Natriumcarbonat/ Hydrogencarbonatlösung verwendet. Wegen der hohen Grundleitfähigkeit des Eluenten wird vor der Leitfähigkeitsdetektion ein sogenannter Supressor zwischengeschaltet, der durch Austausch der Na-Ionen gegen Protonen das stark leitende Natriumhydrogencarbonat in die wenig dissoziierte Kohlensäure, und die Natriumsalze der zu bestimmenden Anionen in deren stark leitende Mineralsäuren umwandelt. Diese stark leitenden Mineralsäuren der zu bestimmenden Anionen werden sehr empfindlich in einer Leitfähigkeitsmesszelle detektiert. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Anions geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 0,25 ppm Nitrit) wird das Anionen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich (= quadratisch) und den niedrigen Messbereich (= linear) ausgewertet. In dem 2-Kanal-System werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Anionensäule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC2.1

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S17.1: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC2.1	

V

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_2	IC	NNO2IC2.1	-	2

Analysengeräte und Zubehör:

- 2-Kanal-IC-Anlage Fa. Metrohm, bestehend aus:
- 2 IC-Pumpen 818
- 2 Leitfähigkeitsdetektoren 819

IC-Separation-Center 820 mit Säulenofen und Suppressor

IC-Liquid-Handling-Einheit 833

2 Pulsationsdämpfer

IC-Eluent-Degaser 837

IC-Probengeber 838

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5

b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen:

a. Anionen: 20 µl

b. Kationen: 50 μl

Software:

a. zur Anlagensteuerung: IC-Net

b. zur Chromatogrammauswertung: MagIC-Net

Chemikalien:

Natriumhydrogencarbont, NaHCO₃

Natriumcarbonat, Na₂CO₃

Schwefelsäure, H₂SO₄ konz.

Lösungen:

Eluent-Anionen: In einem 2 l-Messkolben werden 0,678 g Na₂CO₃ ,sowie 0,168 g Na₂HCO₃

eingewogen und mit H₂O demin. reinst auf 2 l aufgefüllt.

Suppressor-Lösung: 1 Liter H₂O demin. reinst werden mit 3 ml H₂SO₄ konz. versetzt.

Eichung/Standards:

Stammlösungen:

1 g/l NO₂: 1 g/l Nitrit als Natriumnitrit \Rightarrow 1 g/l NO₂

Stammlösung I: Je 1 ml SO₄-, NO₃-, NO₂-, und PO₄-Stammlösung und je 0,5 ml Cl- und F-

Stammlösung werden in einen 100 ml-Messkolben mit H₂O demin. auf 100

ml aufgefüllt.

=> 0,01 g/l SO₄, NO₃, NO₂, PO₄, und 0,005 g/l Cl, F

Haltbarkeit:

Die Stammlösung I ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_2	IC	NNO2IC2.1	-	3

	Kontrollstandards
K1IC:	1,824 mg/l NO ₂ -N
K2IC:	0,076 mg/l NO ₂ -N

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S17.1) mit insgesamt 19 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung I und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

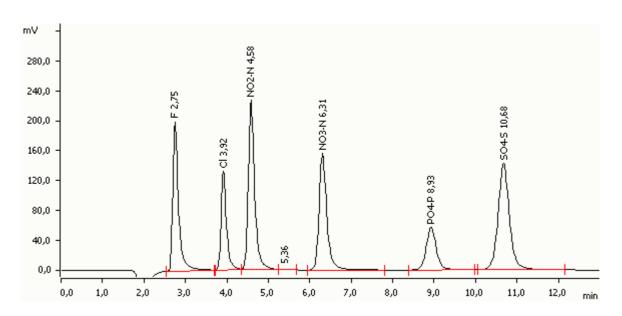
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC2.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (1,824 mg/l N), K2IC (0,076 mg/l N), Messung
		nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1IC mit-
		gemessen; erlaubte Abweichung 5 %.


Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Nitritkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr. 1 fü	r N	NO ₂	IC	NNO2IC2.1
-----------------	-----	-----------------	----	-----------

Chromatogramm der Anionenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO3	ALLIANCE	NNO3CFC4.2	-	1

Datum:

01.12.1999

Elementbestimmungsmethode:

NITRAT

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1	0,087	0,281	7

geeignet für:

<u> </u>					
Boden	GBL1.1, EXT1:2H2O1.1				
Humus					
Pflanze					
Wasser	ANULL				

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 13395
HFA	D58.4.4.2
HFA-Code	D;9;2;1;1;2;0

Prinzip der Methode/chem. Reaktionen:

Nitrat wird in einer Cadmium-Säule mit Kupfersulfat als Katalysator zu Nitrit reduziert:

$$\begin{array}{cccc} Cd + Cu^{2+} & \rightarrow & Cu + Cd^{2+} \\ Cu + NO_3^- + 2H^+ & \rightarrow & Cu^{2+} + NO_2^- + H_2O \end{array}$$

Nitrit reagiert mit Sulfanilamid unter Bildung eines Diazoniumsalzes:

$$NO_{2}^{-} + NH_{2}^{-}SO_{2} - \bigcirc NH_{2} + 2H^{+} \rightarrow NH_{2}^{-}SO_{2} - \bigcirc NH_{2}^{+} \equiv N| + 2H_{2}^{-}O$$

Durch Azokupplung mit α -Naphthylethyldiamindihydrochlorid bildet sich ein rot-violetter Azofarbstoff:

$$NH_2-SO_2 - \bigcirc - N_2^+ + NH-CH_2-CH_2-NH_2 * 2HC1 \longrightarrow NH-CH_2-CH_2-NH_2 * 2HC1 + H^+$$

$$\bigcirc \bigcirc \bigcirc - N_2^+ + NH-CH_2-CH_2-NH_2 * 2HC1 - MH-CH_2-CH_2-NH_2 * 2HC1 + H^+$$

$$\bigcirc \bigcirc - N_2^+ - NH-CH_2-CH_2-NH_2 * 2HC1 - MH-CH_2-CH_2-NH_2 * 2HC1 - MH-CH_2-CH_2 * 2HC1 - MH-CH_2-CH_2 * 2HC1 - MH-CH_2-CH_2 * 2HC1 - MH-2-CH_2 * 2HC1$$

Der so gebildete rot-violette Farbstoff wird photometrisch bei 520 nm gemessen. Das Spektrum des gebildeten Farbstoffes ist in Anhang 1 abgebildet. Die Reagenzienzumischung zur Probe erfolgt im continuous-flow-Verfahren. Der Aufbau der Reaktionseinheit ist im Anhang Nr. 2 abgebildet.

Störungen:

Huminstoffe und andere organische Substanzen können die Oberfläche der Cd-Säule belegen, und so die NO₃-Reduktion vermindern oder stören. Diese Störung kann durch eine Dialyse der

Anhang:	<u>Lit.:</u>
Anhang 1: Spektrum des Farbkomplexes	Analyst 95, 1970, S. 514 ff
Anhang 2: ContFlow-Flußdiagramm	Talanta 23, 1976, S. 349 ff
Kurzanleitung ALLIANCE3.1	Walinga et al: Plant Analysis Procedures, Part
Kurzanleitung TRAACS-DV2.2	7, Wageningen Agricultural University,
	Syllabus 1989, S. 197 ff
	Standard Methods for the Examination of Water
	and Wastewater, 16.Ed., 1985, S. 394 ff

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO3	ALLIANCE	NNO3CFC4.2	-	2

Probelösung zur Abtrennung der Huminstoffe beseitigt werden. Auch hohe Fe- und Cu-Konzentrationen beeinflussen die Reduktion. Durch EDTA-Zusatz kann diese Störung behoben werden.

Analysengeräte und Zubehör:

Alliance Evolution cont.-flow-Gerät mit xyz-Probennehmer (Bran&Luebbe), Software CFS Skalar

Chemikalien:

Aceton: C₃H₆O Brij-35 (30%) Imidazol: C₃H₄N₂ Kaliumnitrat: KNO₃

Kupfersulfat: $CuSO_4 * 5H_2O$

 α -Naphthylethylendiamindihydrochlorid: $C_{12}H_{14}N_2 * 2$ HCl

Natriumnitrit: NaNO₂ Phosphorsäure: H₃PO₄ Salpetersäure: HNO₃

Salzsäure: HCl

Sulfanilamid: C₆H₈O₂N₂S

Lösungen:

1. Konzentrierte Lösungen:

A (Imidazol): 6,81 g Imidazol werden mit H₂O dest. auf 11 aufgefüllt und der pH-Wert

der Lösung mit HCl auf 7,5 durch Titration eingestellt (sinnvollerweise

werden jeweils 5 l Lösung hergestellt).

B1 (0,01 M CuSO₄): 2,5 g CuSO₄ * $5H_2O$ werden mit H_2O dest. auf 1 l aufgefüllt. B2 (0,001 M CuSO₄): 10 ml von B1 werden mit H_2O dest. auf 100 ml aufgefüllt.

2. Reagenzlösungen:

I (Imidazol): 250 ml von Lösung A und 2,5 ml von Lösung B2 werden mit H₂O dest. auf 500 ml

aufgefüllt und 1,5 ml Brij-35 (30%) versetzt.

IV (Color): 20 g Sulfanilamid und 1,0 g α-Naphthylethylendiamindihydrochlorid und 200 ml

konz. Phosphorsäure werden mit H₂O dest. auf 2 l aufgefüllt. (Im Kühlschrank auf-

bewahren, nicht im Ultraschallbad lösen!)

3. Lösungen zur Vorbereitung, Grundaktivierung und Reduktions-Aktivierung der Cd-Säule:

V (Aceton): Aceton, 20 ml AI (HNO₃): 2 n HNO₃, 1 ml AII (HCl): HCl 37%, 20 ml

BI (HCl): 2 n HCl

BII (CuSO₄): 50 ml Lösung B1 und 50 ml H₂O dest. und 200 μl Brij-35 werden gemischt.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	NO3	ALLIANCE	NNO3CFC4.2	-	3	ı

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen
	offen	geschlossen	
	(am Gerät)	(im Kühlschrank)	
A	/	1/2 Jahr	/
B1	/	1/2 Jahr	/
B2	/	1/2 Jahr	/
I	2 Tage	1/2 Jahr	CO ₂ -Aufnahme
II	2-3 Tage	4 Wochen	/

Eichung/Standards:

Stammlösungen:

NO₃: 7,218 g Kaliumnitrat werden mit H_2O dest. auf 1 l aufgefüllt => 1 g NO₃-N/l NO₂: 4,928 g Natriumnitrit werden mit H_2O dest. auf 1 l aufgefüllt => 1 g NO₂-N/l NO₃, NH₄: In einem 1 l-Kolben 4,717 g Ammoniumsulfat ((NH₄)₂SO₄) und 7,218 g Kaliumnitet ((NH₄)₂SO₄) in H_2O in H_3O in H_4O i

trat (KNO $_3$) einwiegen und mit $\mathrm{H}_2\mathrm{O}$ demin. auf 1 l auffüllen.

 \Rightarrow 1 g/l NO₃-N und NH₄-N

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr (NO₂: 4 - 8 Wochen).

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Einzelbestimmung:

	Standardreihe
S8:	7 mg/l NO ₃ -N
S7:	$6 \text{ mg/l NO}_3\text{-N}$
S6:	$5 \text{ mg/l NO}_3\text{-N}$
S5:	$4 \text{ mg/l NO}_3\text{-N}$
S4:	$3 \text{ mg/l NO}_3\text{-N}$
S3:	$2 \text{ mg/l NO}_3\text{-N}$
S2:	1 mg/l NO ₃ -N
S1:	$0.5 \text{ mg/l NO}_3\text{-N}$
S0:	$0 \text{ mg/l NO}_3\text{-N}$

NH ₄ -N	NO_3 -N	ges-N	Cl
[mg/l]	[mg/l]	[mg/l]	[mg/l]
7	7	14	15
6	6	12	13
5	5	10	11
4	4	8	9
3	3	6	7
2	2	4	5
1	1	2	3
0.5	0.5	1	1
0	0	0	0

Kon	<u>itrollstandard</u>
KSK1:	1,0 mg/l NO ₃ -N
KSK2:	3,0 mg/l NO ₃ -N
KSK3:	5,0 mg/l NO ₃ -N

<u>Ni</u>	<u>tritstandard</u>
KNIT:	7,0 mg/l NO ₂ -N

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung ALLIANCE3.1 beschrieben.

_	Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
	N	NO3	ALLIANCE	NNO3CFC4.2	•	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ALLIANCE3.1 beschrieben.

Achtung: Es ist darauf zu achten, dass bei der Art der Eichkurvenauswertung im Method-setup-Bildschirm *Berechnungen 1. Order (linear)* eingegeben wird.

<u>Neue Cd-Säule:</u> Bei Einbau einer neuen Cd-Säule muss diese zur Benutzung vorbereitet werden. Zuerst wird sie fettfrei gewaschen, indem vorsichtig mit Vakuum 20 ml Aceton (Reagenz V) durch die Säule gesaugt werden.

Die Grundaktivierung der Cd-Säule wird (einmalig, bei neuen Cd-Coils) wie folgt 'durchgeführt:

1 ml HNO_3 (Reagenz AI) wird mit Vakuum vorsichtig durch die Säule gesaugt und zwar so, dass das Ende der Säule gerade die Oberfläche der Flüssigkeit berührt. Danach wird abwechselnd 5 ml HCl (Reagenz AII) und 5 ml H_2O dest. mit Vakuum durch die Säule gesaugt, bis die 20 ml HCl verbraucht sind. Anschließend 20 ml H_2O dest. durch die Säule saugen. Die Säule wird verschlossen.

Die Reduktions-Aktivierung der Cd-Säule wird, wie folgt (einmal wöchentlich) durchgeführt:

Die Coil wird in die Einheit eingebaut, wenn die Imidazollösung eingelaufen ist. Lufteintritt vermeiden! Danach ca. 2 Minuten 2N HCl (Reagenz BI), 4 Min. CuSO₄-Lösung (Reagenz BII) und 10 Min. wiederum mit 2N HCl über die Imidazolleitung in die analytische Einheit pumpen. (siehe Anhang 1, Abb. 1)

Nach der Aktivierung den Reagenzien-Ansaugschlauch wieder in die Imidazollösung stecken und den Puffer etwa 5-10 Minuten laufen lassen, bevor das System gestartet wird.

Kontrolle der Reduktionsleistung der Cd-Säule:

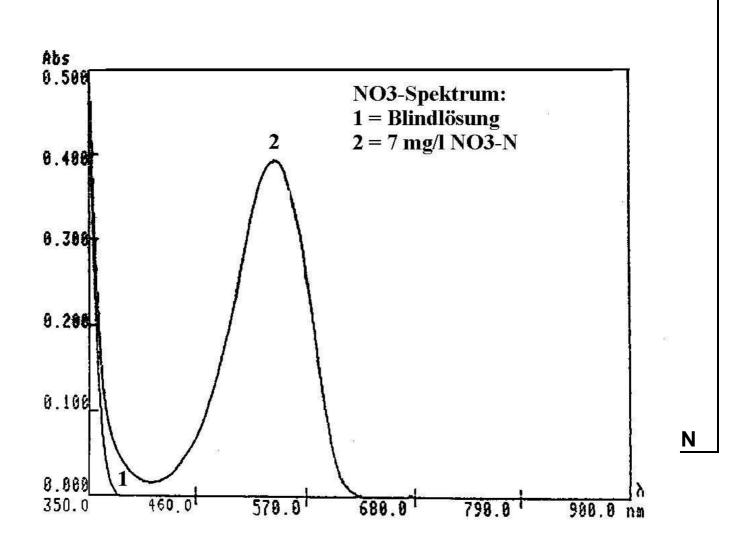
Der mitlaufende Nitrit-Standard (Ni, 7 ppm) sollte stets zwischen 6,7 und 7,3 liegen. Steigt der gemessene Wert über 7,3 ppm, sehen die Peaks spitzer als üblich aus oder geht der Zwischenwasch zwischen den einzelnen Peaks nicht mehr weit genug herunter, so muss die Reduktionsaktivierung der Cd-Säule wiederholt werden. Tritt danach keine Besserung ein, muss sowohl die Grundaktivierung mit HNO_3 , als auch die Reduktionsaktivierung wiederholt werden. Hilft auch dies nicht, so muss die Säule ausgetauscht werden.

<u>Achtung:</u> Abends sollte die Säule nicht mit H_2O gespült werden, sondern vorher mit der Imidazollösung sofort abgeklemmt werden.

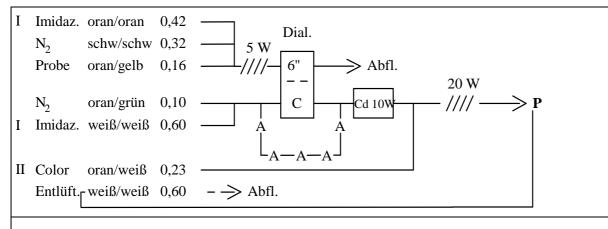
Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO3	ALLIANCE	NNO3CFC4.2	-	5

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):


Qualitätskontrolle	Methode	Durchführung
Basislinienkontrolle	QBL1.1	Lineare Basislinienkorrektur durch Messen der Höhe
		der Basislinie am Anfang, nach jeweils 15 Proben,
		und am Ende eines Laufs.
Driftkontrolle	QDK1.1	Lineare Driftkorrektur mit 2 Drift-Standards (1.
		DRIFT IGNORE, 2. DRIFT) am Anfang, nach der
		Kalibrierung, nach jedem Kontrollstandardblock und
		am Ende eines Laufes; mit dem jeweils höchsten
		Standard der Eichreihe. Die Messung von DRIFT
		IGNORE wird in die Berechnung der Drift nicht mit
		einbezogen.
Eichkurvenkontrolle	QEK1.2	Lineare Anpassung der Eichkurve; Bestimmtheits-
		mass ≥0,9998
Ionen/Leitfähigkeitsbilanz	QIB1.1	s. Methodenbeschreibung
IBW		
Kontrollstandard	QKSt1.1	KSK1 (1 mg/l), KSK2 (3 mg/l N), KSK3 (5 mg/l),
		Messung nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 %.
Kontrollstandard Nitrit	QKStNit1.1	s. Methodenbeschreibung
Stickstoffbilanz	QNB1.1	s. Methodenbeschreibung
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:


Die Nitrat-N-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm TRAACSED (siehe Kurzanleitung TRAACS-DV2.2) zu bearbeiten.

Anhang Nr. 1 für N NO3 ALLIANCE NNO3CFC4.2

Spektrum des Azofarbstoffes:

Aufbau der Reaktionseinheit zur NO₃-Bestimmung:

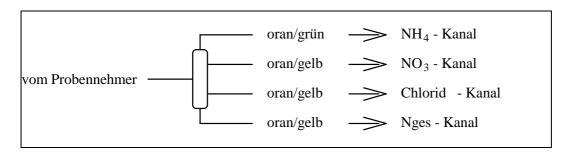
P: Photometer 540 nm, Küvette 15 mm

Achtung: Für die Blasensegmentierung ist Stickstoff zu verwenden!

Cd = Cadmiumspirale für die Reduktion (2 x 165-0301-01)

-A-A- = Überbrückung der Dialyse für Cd-Aktivierung, I = Aktiv-Lsg.

xyz-Probenehmer (Bran&Luebbe)


Spülstation (trav. wash pot): Zuf. blau/blau, Abf.: grün/grün

Spülstation Probenehmer: Zuf.: blau/blau, Abf.: grün/grün

Proben/Wasch-Verhältnis: 1,5 (60 sec/40 sec)

Proben/Std: 36

Kopplung mit NH₄- ,Chlorid und Nges-Messung:

Anhang Nr. 2 für N NO3 ALLIANCE NNO3CFC4.2

01.06.1999

Datum:

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₃	SKALAR	NNO3CFC5.1	-	1

Elementbestimmungsmethode:

NITRAT

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1		(0,15)	7

geeignet für:

Boden	GBL1.1, EXT1:2H2O1.1
Humus	
Pflanze	
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 13395 / DIN ISO 14255
HFA	D58.4.4.2
HFA-Code	D;9;2;1;1;-1;0

Prinzip der Methode/chem. Reaktionen:

Nitrat wird in einem mit Cadmiumgranulat gefüllten U-Glasrohr mit Kupfersulfat als Katalysator zu Nitrit reduziert:

$$\begin{array}{ccc} Cd + Cu^{2+} & \to & Cu + Cd^{2+} \\ Cu + NO_3^- + 2H^+ & \to & Cu^{2+} + NO_2^- + H_2O \\ Nitrit\ reagiert\ mit\ Sulfanilamid\ unter\ Bildung\ eines\ Diazoniumsalzes: \end{array}$$

$$NO_{2}^{-} + NH_{2}-SO_{2} - \bigcirc - NH_{2} + 2H^{+} \rightarrow NH_{2}-SO_{2} - \bigcirc - \stackrel{+}{N} \equiv N| + 2H_{2}O$$

Durch Azokupplung mit α-Naphthylethyldiamindihydrochlorid bildet sich ein rot-violetter Azofarbstoff:

Der so gebildete rot-violette Farbstoff wird photometrisch bei 540 nm gemessen. Das Spektrum des gebildeten Farbstoffes ist in Anhang 1 abgebildet. Die Reagenzienzumischung zur Probe erfolgt im continuous-flow-Verfahren. Der Aufbau der Reaktionseinheit ist im Anhang Nr. 2 abgebildet.

Anhang:	<u>Lit.:</u>
Anhang 1: Spektrum des Farbkomplexes	Analyst 95, 1970, S. 514 ff
Anhang 2: ContFlow-Flußdiagramm	Talanta 23, 1976, S. 349 ff
Kurzanleitung SKALAR1.1	Walinga et al: Plant Analysis Procedures, Part
Kurzanleitung TRAACS-DV2.2	7, Wageningen Agricultural University,
	Syllabus 1989, S. 197 ff
	Standard Methods for the Examination of Water
	and Wastewater, 16.Ed., 1985, S. 394 ff

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_3	SKALAR	NNO3CFC5.1	•	2

Störungen:

Huminstoffe und andere organische Substanzen können die Oberfläche der Cd-Säule belegen und so die NO₃-Reduktion vermindern oder stören. Diese Störung kann durch eine Dialyse der Probelösung zur Abtrennung der Huminstoffe beseitigt werden.

Auch hohe Fe- und Cu-Konzentrationen beeinflussen die Reduktion. Durch EDTA-Zusatz kann diese Störung behoben werden.

Analysengeräte und Zubehör:

4-Kanal-Continuous-Flow-System SAN PLUS mit automatischem Probennehmer SA1070, online-Dilutor, automatischen Spülventilen und Systemkontroller, Fa. Skalar

Chemikalien:

Brij-35 (30%) Imidazol: C₃H₄N₂ Kaliumnitrat: KNO₃

Kupfersulfat: CuSO₄ * 5H₂O

 α -Naphthylethylendiamindihydrochlorid: $C_{12}H_{14}N_2 * 2 HCl$

Natriumnitrit: NaNO₂ Phosphorsäure: H₃PO₄ 85%

Salzsäure: HCl 25%

Sulfanilamid: $C_6H_8O_2N_2S$

Cadmiumgranulat aktiviert, Skalar Best.-Nr. 13913

Lösungen:

1. Konzentrierte Lösungen:

A (Imidazol): 6,81 g Imidazol werden mit H₂O demin. auf 11 aufgefüllt und der pH-

Wert der Lösung mit HCl auf 7,5 durch Titration eingestellt (sinnvoller-

weise werden jeweils 5 l Lösung hergestellt).

B1 (0,01 M CuSO₄): 2,5 g CuSO₄ * 5H₂O werden mit H₂O demin. auf 1 l aufgefüllt. 10 ml von B1 werden mit H₂O dest. auf 100 ml aufgefüllt.

2. Reagenzlösungen:

I (Imidazol): 250 ml von Lösung A und 2,5 ml von Lösung B2 werden mit H₂O dest.

auf 500 ml aufgefüllt und 1,5 ml Brij-35 (30%) versetzt.

II (Color): 20 g Sulfanilamid und 1,0 g α-Naphthylethylendiamindihydrochlorid und

200 ml konz. Phosphorsäure werden mit H₂O demin. auf 2 l aufgefüllt.

(Im Kühlschrank aufbewahren, nicht im Ultraschallbad lösen!)

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_3	SKALAR	NNO3CFC5.1	-	3

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen	
	offen geschlossen			
	(am Gerät)	(im Kühlschrank)		
A	/	1/2 Jahr	/	
B1, B2	/	1/2 Jahr	/	
I	2 Tage	1/2 Jahr	CO ₂ -Aufnahme	
II	2-3 Tage	4 Wochen	/	

Eichung/Standards:

Stammlösungen:

NO₃: 7,218 g Kaliumnitrat werden mit H_2O dest. auf 1 l aufgefüllt. => 1 g NO₃-N/l NO₂: 4,928 g Natriumnitrit werden mit H_2O dest. auf 1 l aufgefüllt. => 1 g NO₂-N/l NO₃, NH₄: In einem 1 l-Kolben 4,717 g Ammoniumsulfat ((NH₄)₂SO₄) und 7,218 g Kaliumni-

trat (KNO₃) einwiegen und mit H₂O demin. auf 1 l auffüllen.

 \Rightarrow 1 g/l NO₃-N und NH₄-N

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr (NO₂: 4 - 8 Wochen).

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Einzelbestimmung:

Mehrelementbestimmung:

<u>Standardreihe</u>					
Standard1:	7 mg/l NO ₃ -N				
Standard2:	6 mg/l NO ₃ -N				
Standard3:	5 mg/l NO ₃ -N				
Standard4:	$4 \text{ mg/l NO}_3\text{-N}$				
Standard5:	$3 \text{ mg/l NO}_3\text{-N}$				
Standard6:	$2 \text{ mg/l NO}_3\text{-N}$				
Standard7:	$1 \text{ mg/l NO}_3\text{-N}$				
Standard8:	$0.5 \text{ mg/l NO}_3\text{-N}$				
Standard9:	0 mg/l NO ₃ -N				

NH ₄ -N	NO_3-N	ges-N	Cl
[mg/l]	[mg/l]	[mg/l]	[mg/l]
7	7	14	15
6	6	12	13
5	5	10	11
4	4	8	9
3	3	6	7
2	2	4	5
1	1	2	3
0.5	0.5	1	1
0	0	0	0

<u>Kontrollstandard</u>					
KSK1:	0.5 mg/l NO ₃ -N				
KSK5:	2.0 mg/l NO ₃ -N				
KSK6:	5.0 mg/l NO3-N				
KINT:	4.0 mg/l NO3-N				

Nitritstandard

KNIT: $7.0 \text{ mg/l NO}_2\text{-N}$

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_3	SKALAR	NNO3CFC5.1	-	4

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.1 beschrieben.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.1 beschrieben.

Achtung: Es ist darauf zu achten, dass bei der Art der Eichkurvenauswertung im Method-setup-Bildschirm *Berechnungen 1. Order (linear)* eingegeben wird.

<u>Neue Cd-Säule:</u> Bei Einbau einer neuen Cd-Säule muss diese zur Benutzung vorbereitet werden. Hierzu muss ein U-Glasrohr mit aktiviertem Cadmiumgranulat befüllt werden.

Das Granulat mithilfe eines Trichters in das vollständig mit H₂O demin. gefüllte Glasrohr rieseln lassen, bis an jeder Seite 5 mm ungefüllt sind. In die Enden ein Stück Schlauch (ca. 5 mm lang) stecken um zu verhindern, dass Granulat in das System gelangen kann. Auf jeden Fall vermeiden, dass Luft in die Säule gelangt. Anschliessend die Säule entweder verschliessen oder in das System einbauen. Nach dem Einbau der Cd-Säule in das System, die Säule durch Messen von 10 hohen (20 mg/l N) Nitratstandards konditionieren.

Kontrolle der Reduktionsleistung der Cd-Säule:

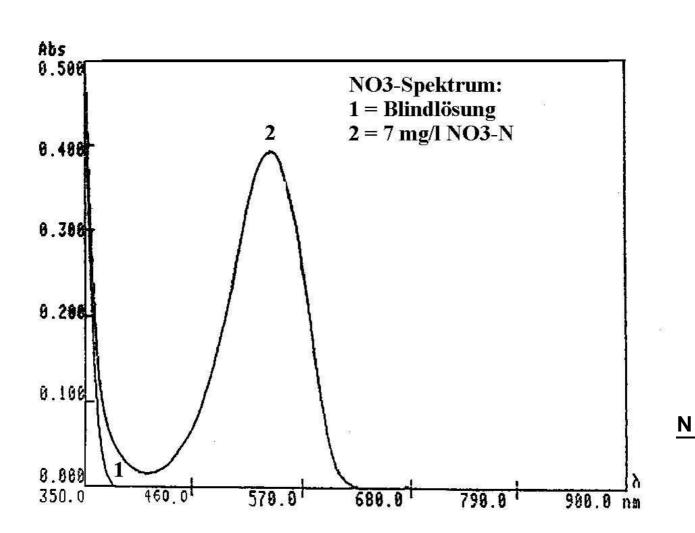
Der mitlaufende Nitrit-Standard (Ni, 7 ppm) sollte stets zwischen 6,7 und 7,3 liegen. Steigt der gemessene Wert über 7,3 ppm, sehen die Peaks spitzer als üblich aus oder geht der Zwischenwasch zwischen den einzelnen Peaks nicht mehr weit genug herunter, so muss die Cd-Säule gegen eine neue ausgetauscht werden.

<u>Achtung:</u> Die Säule sollte nicht mit Spülwasser gespült werden. Hierzu den Hebel des blauen Ventils so stellen, dass die Säule kurzgeschlossen ist, d.h. dass das Spülwasser nicht durch die Säule fließt. Die Säule wird dadurch immer in Imidazolpuffer gelagert.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Basislinienkontrolle	QBL1.1	Basislinienkontrollproben nach der Eichung, und alle	
		15 Proben (erlaubte Abweichung +/- 0,01 Ext.).	
Driftkontrolle	QDK1.1	Driftkontrollproben nach der Eichung, und alle 15	
		Proben (erlaubte Abweichung +/- 0,02 Ext.).	
Eichkurvenkontrolle	QEK1.2	Lineare Anpassung der Eichkurve; Bestimmtheits-	
		mass ≥0,9998	
Ionen/Leitfähigkeitsbilanz	QIB1.1	Siehe Methodenbeschreibung	
IBW			
Kontrollstandard	QKSt1.1	KSK1 (0,5 mg/l), KSK5 (2 mg/l N), KINT (4 mg/l),	
		KSK6 (5 mg/l N) Messung nach der Eichung, alle 15	
		Proben; erlaubte Abweichung 5 %	
Kontrollstandard Nitrit	QKStNit1.1	s. Methodenbeschreibung	
Stickstoffbilanz	QNB1.1	s. Methodenbeschreibung	
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	

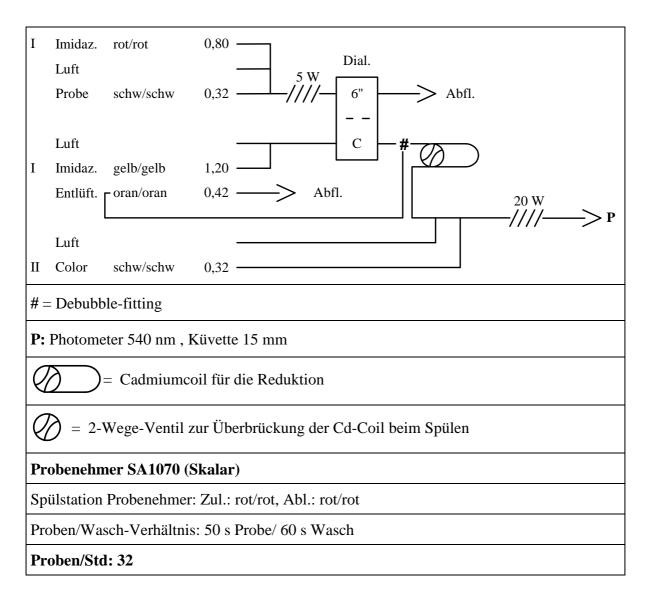

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_3	SKALAR	NNO3CFC5.1	-	5

Auswertung/Datendokumentation:

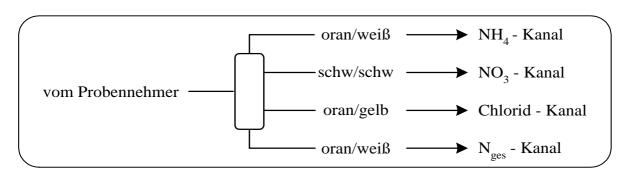
Die Nitrat-N-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm TRAACSED (siehe Kurzanleitung TRAACS-DV2.2) zu bearbeiten.

Anhang Nr. 1 für N NO₃ SKALAR NNO3CFC5.1

Spektrum des Azofarbstoffes:



N


 NO_3

SKALAR

Aufbau der Reaktionseinheit zur NO₃-Bestimmung:

Kopplung mit NH₄- ,Chlorid und Nges-Messung:

Ν

Anhang Nr. 2 für N NO₃ SKALAR NNO3CFC5.1

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₃	SKALAR	NNO3CFC5.2	-	1

Datum:

01.12.1999

Elementbestimmungsmethode:

NITRAT

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1	0,116	0,369	7

geeignet für:

Boden	GBL1.1, EXT1:2H2O1.1
Humus	
Pflanze	
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 13395 / DIN ISO 14255
HFA	D58.4.4.2
HFA-Code	D;9;2;1;1;-1;0

Prinzip der Methode/chem. Reaktionen:

Nitrat wird in einem mit Cadmiumgranulat gefüllten U-Glasrohr mit Kupfersulfat als Katalysator zu Nitrit reduziert:

$$\begin{array}{ccc} Cd + Cu^{2+} & \rightarrow & Cu + Cd^{2+} \\ Cu + NO_3^- + 2H^+ & \rightarrow & Cu^{2+} + NO_2^- + H_2O \\ \text{Nitrit reagiert mit Sulfanilamid unter Bildung eines Diazoniumsalzes:} \end{array}$$

$$NO_{2}^{-} + NH_{2}^{-}SO_{2} - \bigcirc - NH_{2} + 2H^{+} \rightarrow NH_{2}^{-}SO_{2} - \bigcirc - NH_{2}^{+} = N| + 2H_{2}O$$

Durch Azokupplung mit α-Naphthylethyldiamindihydrochlorid bildet sich ein rot-violetter Azofarbstoff:

$$NH_2-SO_2 - \bigcirc - N_2^+ + NH-CH_2-CH_2-NH_2 * 2HC1 \longrightarrow NH-CH_2-CH_2-NH_2 * 2HC1 + H^+$$

$$\bigcirc \bigcirc \bigcirc - N_2^+ + NH-CH_2-CH_2-NH_2 * 2HC1 - MH-CH_2-CH_2-NH_2 * 2HC1 + H^+$$

$$\bigcirc \bigcirc - N_2^+ - NH-CH_2-CH_2-NH_2 * 2HC1 - MH-CH_2-CH_2-NH_2 * 2HC1 - MH-CH_2-CH_2 * 2HC1 - MH-CH_2-CH_2 * 2HC1 - MH-CH_2 * 2HC1 - MH-CH$$

Der so gebildete rot-violette Farbstoff wird photometrisch bei 540 nm gemessen. Das Spektrum des gebildeten Farbstoffes ist in Anhang 1 abgebildet. Die Reagenzienzumischung zur Probe erfolgt im continuous-flow-Verfahren. Der Aufbau der Reaktionseinheit ist im Anhang Nr. 2 abgebildet.

Anhang:	<u>Lit.:</u>
Anhang 1: Spektrum des Farbkomplexes	Analyst 95, 1970, S. 514 ff
Anhang 2: ContFlow-Flußdiagramm	Talanta 23, 1976, S. 349 ff
Kurzanleitung SKALAR1.2 + 1.3	Walinga et al: Plant Analysis Procedures, Part
Kurzanleitung TRACCS-DV2.2	7, Wageningen Agricultural University,
	Syllabus 1989, S. 197 ff
	Standard Methods for the Examination of Water
	and Wastewater, 16.Ed., 1985, S. 394 ff

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_3	SKALAR	NNO3CFC5.2	-	2

Störungen:

Huminstoffe und andere organische Substanzen können die Oberfläche der Cd-Säule belegen und so die NO₃-Reduktion vermindern oder stören. Diese Störung kann durch eine Dialyse der Probelösung zur Abtrennung der Huminstoffe beseitigt werden.

Auch hohe Fe- und Cu-Konzentrationen beeinflussen die Reduktion. Durch EDTA-Zusatz kann diese Störung behoben werden.

Analysengeräte und Zubehör:

4-Kanal-Continuous-Flow-System SAN PLUS mit automatischem Probennehmer SA1070, online-Dilutor, automatischen Spülventilen und Systemkontroller, Fa. Skalar

Chemikalien:

Brij-35 (30%) Imidazol: C₃H₄N₂ Kaliumnitrat: KNO₃

Kupfersulfat: CuSO₄ * 5H₂O

 α -Naphthylethylendiamindihydrochlorid: $C_{12}H_{14}N_2 * 2 HCl$

Natriumnitrit: NaNO₂ Phosphorsäure: H₃PO₄ 85%

Salzsäure: HCl 25%

Sulfanilamid: C₆H₈O₂N₂S

Cadmiumgranulat aktiviert, Skalar Best.-Nr. 13913

Lösungen:

1. Konzentrierte Lösungen:

A (Imidazol): 6,81 g Imidazol werden mit H₂O demin. auf 11 aufgefüllt und der pH-

Wert der Lösung mit HCl auf 7,5 durch Titration eingestellt (sinnvoller-

weise werden jeweils 5 l Lösung hergestellt).

B1 (0,01 M CuSO₄): 2,5 g CuSO₄ * 5H₂O werden mit H₂O demin. auf 1 l aufgefüllt. 10 ml von B1 werden mit H₂O dest. auf 100 ml aufgefüllt.

2. Reagenzlösungen:

I (Imidazol): 250 ml von Lösung A und 2,5 ml von Lösung B2 werden mit H₂O dest.

auf 500 ml aufgefüllt und 1,5 ml Brij-35 (30%) versetzt.

II (Color): 20 g Sulfanilamid und 1,0 g α-Naphthylethylendiamindihydrochlorid und

200 ml konz. Phosphorsäure werden mit H₂O demin. auf 2 l aufgefüllt.

(Im Kühlschrank aufbewahren, nicht im Ultraschallbad lösen!)

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	NO_3	SKALAR	NNO3CFC5.2	-	3	

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen
	offen	geschlossen	
	(am Gerät)	(im Kühlschrank)	
A	/	1/2 Jahr	/
B1, B2	/	1/2 Jahr	/
I	2 Tage	1/2 Jahr	CO ₂ -Aufnahme
II	2-3 Tage	4 Wochen	/

Eichung/Standards:

Stammlösungen:

NO₃: 7,218 g Kaliumnitrat werden mit H_2O dest. auf 1 l aufgefüllt. => 1 g NO₃-N/l NO₂: 4,928 g Natriumnitrit werden mit H_2O dest. auf 1 l aufgefüllt. => 1 g NO₂-N/l NO₃, NH₄: In einem 1 l-Kolben 4,717 g Ammoniumsulfat ((NH₄)₂SO₄) und 7,218 g Kaliumni-

trat (KNO₃) einwiegen und mit H₂O demin. auf 1 l auffüllen.

 \Rightarrow 1 g/l NO₃-N und NH₄-N

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr (NO₂: 4 - 8 Wochen).

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Einzelbestimmung:

Mehrelementbestimmung:

	<u>Standardreihe</u>					
Standard1:	7 mg/l NO ₃ -N					
Standard2:	$6 \text{ mg/l NO}_3\text{-N}$					
Standard3:	5 mg/l NO ₃ -N					
Standard4:	$4 \text{ mg/l NO}_3\text{-N}$					
Standard5:	$3 \text{ mg/l NO}_3\text{-N}$					
Standard6:	$2 \text{ mg/l NO}_3\text{-N}$					
Standard7:	$1 \text{ mg/l NO}_3\text{-N}$					
Standard8:	$0.5 \text{ mg/l NO}_3\text{-N}$					
Standard9:	$0 \text{ mg/l NO}_3\text{-N}$					

NH ₄ -N	NO ₃ -N	Cl
[mg/l]	[mg/l]	[mg/l]
7	7	15
6	6	13
5	5	11
4	4	9
3	3	7
2	2	5
1	1	3
0.5	0.5	1
0	0	0

<u>Kontrollstandard</u>				
KSK1:	1 mg/l NO ₃ -N			
KSK2:	3 mg/l NO3-N			
KSK3:	5 mg/l NO3-N			

<u>Nit</u>	ritstandard
KNIT:	7 mg/l NO ₂ -N

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₃	SKALAR	NNO3CFC5.2	-	4

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.2 + 1.3 beschrieben.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.2 + 1.3 beschrieben.

Achtung: Es ist darauf zu achten, dass bei der Art der Eichkurvenauswertung im Method-setup-Bildschirm Berechnungen 1. Order (linear) eingegeben wird.

<u>Neue Cd-Säule:</u> Bei Einbau einer neuen Cd-Säule muss diese zur Benutzung vorbereitet werden. Hierzu muss ein U-Glasrohr mit aktiviertem Cadmiumgranulat befüllt werden.

Das Granulat mithilfe eines Trichters in das vollständig mit H₂O demin. gefüllte Glasrohr rieseln lassen, bis an jeder Seite 5 mm ungefüllt sind. In die Enden ein Stück Schlauch (ca. 5 mm lang) stecken, um zu verhindern das Granulat in das System gelangen kann. Auf jeden Fall vermeiden, dass Luft in die Säule gelangt. Anschliessend die Säule entweder verschliessen oder in das System einbauen. Nach dem Einbau der Cd-Säule in das System, die Säule durch Messen von 10 hohen (20 mg/l N) Nitratstandards konditionieren.

Kontrolle der Reduktionsleistung der Cd-Säule:

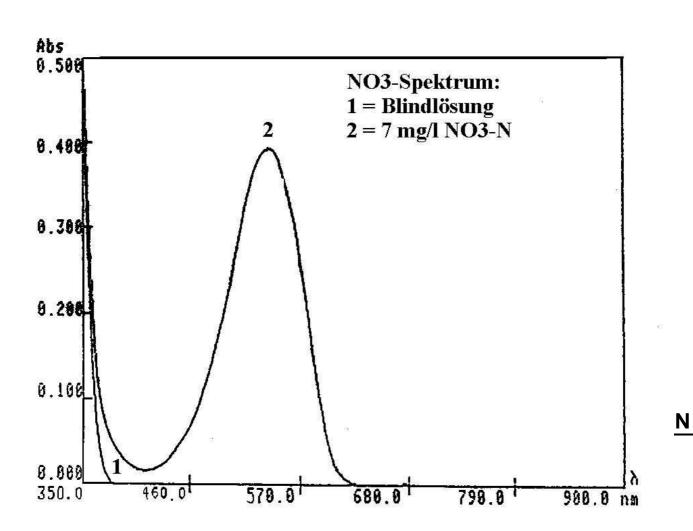
Der mitlaufende Nitrit-Standard (Ni, 7 ppm) sollte stets zwischen 6,7 und 7,3 liegen. Steigt der gemessene Wert über 7,3 ppm, sehen die Peaks spitzer als üblich aus, oder geht der Zwischenwasch zwischen den einzelnen Peaks nicht mehr weit genug herunter, so muss die Cd-Säule gegen eine neue ausgetauscht werden.

Achtung: Die Säule sollte nicht mit Spülwasser gespült werden. Hierzu den Hebel des blauen Ventils so stellen, dass die Säule kurzgeschlossen ist, d.h. das das Spülwasser nicht durch die Säule fliesst. Die Säule wird dadurch immer in Imidazolpuffer gelagert.

_	Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
	N	NO_3	SKALAR	NNO3CFC5.2	•	5

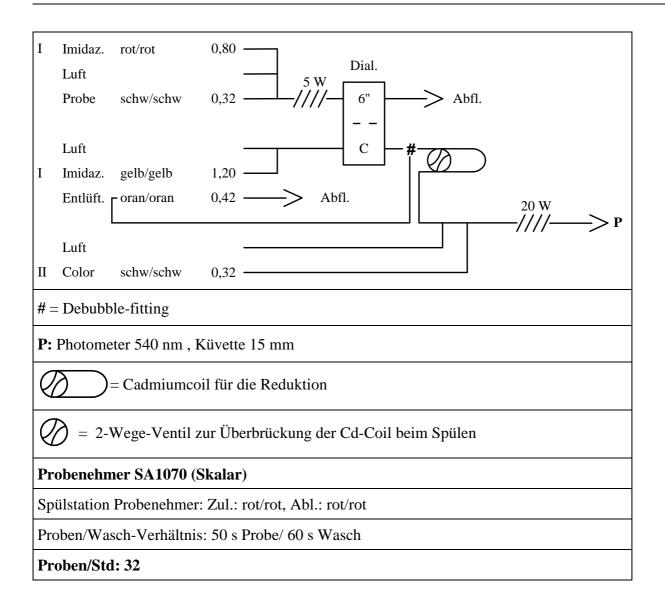
Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

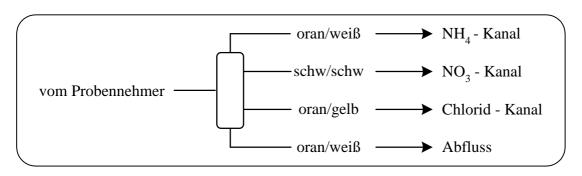

Qualitätskontrolle	Methode	Durchführung
Basislinienkontrolle	QBL1.1	Basislinienkontrollproben nach der Eichung, und alle
		15 Proben (erlaubte Abweichung +/- 0,01 Ext.)
Driftkontrolle	QDK1.1	Driftkontrollproben nach der Eichung, und alle 15
		Proben (erlaubte Abweichung +/- 0,02 Ext.)
Eichkurvenkontrolle	QEK1.2	Lineare Anpassung der Eichkurve; Bestimmtheits-
		mass ≥0,9998
Ionen/Leitfähigkeitsbilanz	QIB1.1	Siehe Methodenbeschreibung
IBW		
Kontrollstandard	QKSt1.1	KSK1 (1 mg/l), KSK2 (3 mg/l N), KSK3 (5 mg/l),
		Messung nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 %
Kontrollstandard Nitrit	QKStNit1.1	s. Methodenbeschreibung
Stickstoffbilanz	QNB1.1	s. Methodenbeschreibung
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die Nitrat-N-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem ${f N}$ Datenverarbeitungs- und Übertragungsprogramm TRAACSED (siehe Kurzanleitung TRACCS-DV2.2) zu bearbeiten.


Anhang Nr. 1 für N NO₃ SKALAR NNO3CFC5.2

Spektrum des Azofarbstoffes:



N

für

Kopplung mit NH₄- und Chlorid-Messung:

N

Anhang Nr. 2 für N NO₃ SKALAR NNO3CFC5.2

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_3	SKALAR	NNO3CFC5.3	-	1

Datum:

15.01.2006

Elementbestimmungsmethode:

NITRAT

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1	0,026	0,0898	5

geeignet für:

Boden	GBL1.1, EXT1:2H2O1.1
Humus	
Pflanze	
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 13395 / DIN ISO 14255
HFA	D58.4.4.2
HFA-Code	D;9;2;1;1;-1;0

Prinzip der Methode/chem. Reaktionen:

Nitrat wird in einem mit Cadmiumgranulat gefüllten U-Glasrohr mit Kupfersulfat als Katalysator zu Nitrit reduziert:

$$\begin{array}{ccc} Cd + Cu^{2+} & \to & Cu + Cd^{2+} \\ Cu + NO_3^- + 2H^+ & \to & Cu^{2+} + NO_2^- + H_2O \\ Nitrit\ reagiert\ mit\ Sulfanilamid\ unter\ Bildung\ eines\ Diazoniumsalzes: \end{array}$$

$$NO_{2}^{-} + NH_{2}^{-}SO_{2} - \bigcirc NH_{2} + 2H^{+} \rightarrow NH_{2}^{-}SO_{2} - \bigcirc NH_{2}^{+} = N| + 2H_{2}^{-}O$$

Durch Azokupplung mit α-Naphthylethyldiamindihydrochlorid bildet sich ein rot-violetter Azofarbstoff:

Der so gebildete rot-violette Farbstoff wird photometrisch bei 540 nm gemessen. Das Spektrum des gebildeten Farbstoffes ist in Anhang 1 abgebildet. Die Reagenzienzumischung zur Probe erfolgt im continuous-flow-Verfahren. Der Aufbau der Reaktionseinheit ist im Anhang Nr. 2 abgebildet.

Anhang:	<u>Lit.:</u>
Anhang 1: Spektrum des Farbkomplexes	Analyst 95, 1970, S. 514 ff
Anhang 2: ContFlow-Flußdiagramm	Talanta 23, 1976, S. 349 ff
Kurzanleitung SKALAR1.4	Walinga et al: Plant Analysis Procedures, Part
	7, Wageningen Agricultural University,
	Syllabus 1989, S. 197 ff
	Standard Methods for the Examination of Water
	and Wastewater, 16.Ed., 1985, S. 394 ff

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_3	SKALAR	NNO3CFC5.3	-	2

Störungen:

Huminstoffe und andere organische Substanzen können die Oberfläche der Cd-Säule belegen und so die NO₃-Reduktion vermindern oder stören. Diese Störung kann durch eine Dialyse der Probelösung zur Abtrennung der Huminstoffe beseitigt werden. Auch hohe Fe- und Cu-Konzentrationen beeinflussen die Reduktion. Durch EDTA-Zusatz kann diese Störung behoben werden.

Analysengeräte und Zubehör:

4-Kanal-Continuous-Flow-System SAN PLUS mit automatischem Probennehmer SA1070, online-Dilutor, automatischen Spülventilen und Systemkontroller, Fa. Skalar

Chemikalien:

Brij-35 (30%) Imidazol: C₃H₄N₂ Kaliumnitrat: KNO₃

Kupfersulfat: CuSO₄ * 5H₂O

 α -Naphthylethylendiamindihydrochlorid: $C_{12}H_{14}N_2 * 2$ HCl

Natriumnitrit: NaNO₂ Phosphorsäure: H₃PO₄ 85%

Salzsäure: HCl 25% Sulfanilamid: C₆H₈O₂N₂S

Cadmiumgranulat aktiviert, Skalar Best.-Nr. 13913

Lösungen:

1. Konzentrierte Lösungen:

A (Imidazol): 6,81 g Imidazol werden mit H₂O demin. auf 11 aufgefüllt, und der pH-

Wert der Lösung mit HCl auf 7,5 durch Titration eingestellt (sinnvoller-

weise werden jeweils 5 l Lösung hergestellt).

B1 (0,01 M CuSO₄): 2,5 g CuSO₄ * $5H_2O$ werden mit H_2O demin. auf 1 l aufgefüllt. B2 (0,001 M CuSO₄): 10 ml von B1 werden mit H_2O dest. auf 100 ml aufgefüllt.

2. Reagenzlösungen:

I (Imidazol): 250 ml von Lösung A und 2,5 ml von Lösung B2 werden mit H₂O dest.

auf 500 ml aufgefüllt und 1,5 ml Brij-35 (30%) versetzt.

II (Color): 20 g Sulfanilamid und 1,0 g α-Naphthylethylendiamindihydrochlorid und

200 ml konz. Phosphorsäure werden mit H₂O demin. auf 2 l aufgefüllt.

(Im Kühlschrank aufbewahren, nicht im Ultraschallbad lösen!)

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	NO_3	SKALAR	NNO3CFC5.3	-	3	

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen
	offen	geschlossen	
	(am Gerät)	(im Kühlschrank)	
A	/	1/2 Jahr	/
B1, B2	/	1/2 Jahr	/
I	2 Tage	1/2 Jahr	CO ₂ -Aufnahme
II	2-3 Tage	4 Wochen	/

Eichung/Standards:

Stammlösungen:

NO₃: 7,218 g Kaliumnitrat werden mit H_2O dest. auf 1 l aufgefüllt. => 1 g NO₃-N/l NO₂: 4,928 g Natriumnitrit werden mit H_2O dest. auf 1 l aufgefüllt. => 1 g NO₂-N/l NO₃, NH₄: In einem 1 l-Kolben 4,717 g Ammoniumsulfat ((NH₄)₂SO₄) und 7,218 g Kaliumni-

trat (KNO₃) einwiegen und mit H₂O demin. auf 1 l auffüllen.

 \Rightarrow 1 g/l NO₃-N und NH₄-N

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr (NO₂: 4 - 8 Wochen).

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Einzelbestimmung:

Mehrelementbestimmung:

	<u>Standardreihe</u>
Standard1:	0 mg/l NO N
Standard2:	0 mg/l NO ₃ -N 0,1 mg/l NO ₃ -N
Standard2:	0.3 mg/1 NO_3 -N
Standard4:	$0.5 \text{ mg/l NO}_3\text{-N}$
Standard5:	$1 \text{ mg/l NO}_3\text{-N}$
Standard6:	$2 \text{ mg/l NO}_3\text{-N}$
Standard7:	$3 \text{ mg/l NO}_3\text{-N}$
Standard8:	$4 \text{ mg/l NO}_3\text{-N}$
Standard9:	5 mg/l NO ₃ -N

NH ₄ -N	NO ₃ -N	Cl
[mg/l]	[mg/l]	[mg/l]
0	0	0
0,1	0,1	1
0,3	0,3	3
0,5	0,5	5
1	1	7
2	2	9
3	3	11
4	4	13
5	5	15

	Kontrollstandard
KSK1:	0,2 mg/l NO ₃ -N
KSK2:	1,5 mg/l NO3-N
KSK3:	4 mg/l NO3-N

Nitritstandard

NIT: 4,26 mg/l NO₂-N

v
•

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_3	SKALAR	NNO3CFC5.3	-	4

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.4 beschrieben.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.4 beschrieben.

Achtung: Es ist darauf zu achten, dass bei der Art der Eichkurvenauswertung im Method-setup-Bildschirm Berechnungen 1. Order (linear) eingegeben wird.

<u>Neue Cd-Säule:</u> Bei Einbau einer neuen Cd-Säule muss diese zur Benutzung vorbereitet werden. Hierzu muss ein U-Glasrohr mit aktiviertem Cadmiumgranulat befüllt werden.

Das Granulat mithilfe eines Trichters in das vollständig mit H_2O demin. gefüllte Glasrohr rieseln lassen, bis an jeder Seite 5 mm ungefüllt sind. In die Enden ein Stück Schlauch (ca. 5 mm lang) stecken, um zu verhindern, dass Granulat in das System gelangen kann. Auf jeden Fall vermeiden, dass Luft in die Säule gelangt. Anschliessend die Säule entweder verschliessen, oder in das System einbauen. Nach dem Einbau der Cd-Säule in das System, die Säule durch Messen von 10 hohen (20 mg/l N) Nitratstandards konditionieren.

Kontrolle der Reduktionsleistung der Cd-Säule:

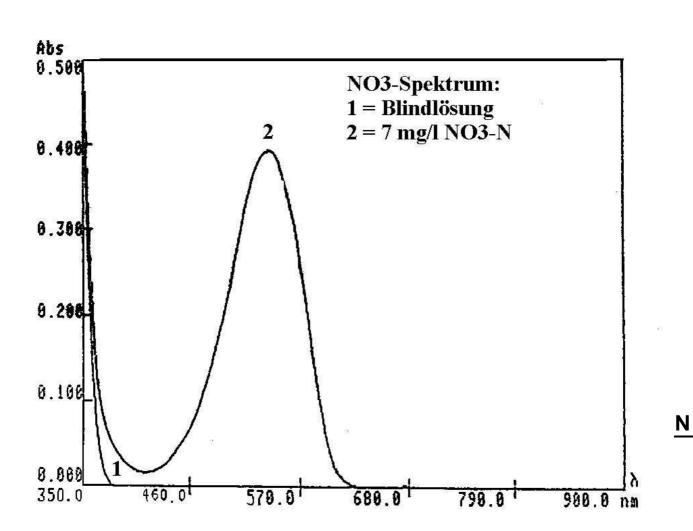
Der mitlaufende Nitrit-Standard (NIT 4,26 ppm) sollte stets zwischen 4,0 und 4,5 liegen. Steigt der gemessene Wert über 4,5 ppm, sehen die Peaks spitzer als üblich aus oder geht der Zwischenwasch zwischen den einzelnen Peaks nicht mehr weit genug herunter, so muss die Cd-Säule gegen eine neue ausgetauscht werden.

<u>Achtung:</u> Die Säule sollte nicht mit Spülwasser gespült werden. Hierzu den Hebel des blauen Ventils so stellen, dass die Säule kurzgeschlossen ist, d.h. dass das Spülwasser nicht durch die Säule fliesst. Die Säule wird dadurch immer in Imidazolpuffer gelagert.

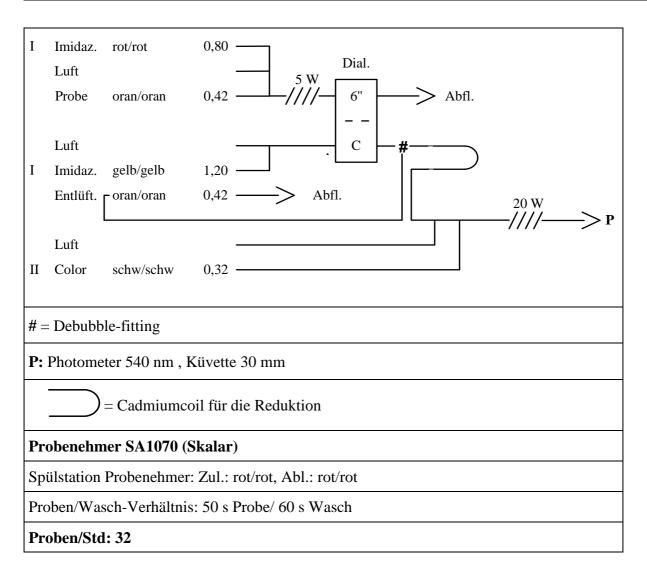
Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_3	SKALAR	NNO3CFC5.3	-	5

Qualitätskontrolle:

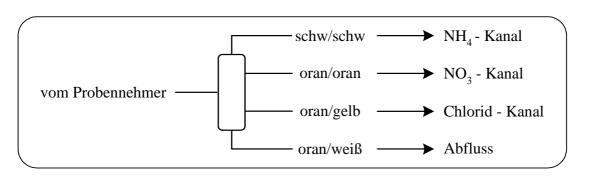
Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):


Qualitätskontrolle	Methode	Durchführung
Basislinienkontrolle	QBL2.1	Basislinienkontrollproben nach der Eichung, und alle
		15 Proben (erlaubte Abweichung +/- 0,01 Ext.).
Driftkontrolle	QDK2.1	Driftkontrollproben nach der Eichung, und alle 15
		Proben (erlaubte Abweichung +/- 0,02 Ext.).
Eichkurvenkontrolle	QEK1.2	Lineare Anpassung der Eichkurve; Bestimmtheitsmaß
		≥0,9998
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung
Kontrollstandard	QKSt1.1	KSK1 (0,2 mg/l), KSK2 (1,5 mg/l N), KSK3 (4 mg/l),
		Messung nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 %
Kontrollstandard Nitrit	QKStNit1.1	s. Methodenbeschreibung
Stickstoffbilanz	QNB1.2	s. Methodenbeschreibung
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1 mit-
		gemessen; erlaubte Abweichung 5 %

Auswertung/Datendokumentation:


Die Nitrat-N-Konzentrationen sind mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten oder in die entsprechenden Datenlisten einzutragen.

Anhang Nr. 1 für N NO₃ SKALAR NNO3CFC5.3


Spektrum des Azofarbstoffes:

Aufbau der Reaktionseinheit zur NO₃-Bestimmung:

Kopplung mit NH₄- und Chlorid-Messung:

Anhang Nr. 2 für N NO₃ SKALAR NNO3CFC5.3

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₃	SKALAR	NNO3CFC5.4	-	1

Datum:

1.03.2007

Elementbestimmungsmethode:

NITRAT

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL 1.1	0,014	0,047	5

geeignet für:

0 0	
Boden	GBL1.1, EXT1:2H2O1.1
Humus	
Pflanze	
Wasser	ANULL

Methodenverweise:

Norm	Anlehnung an DIN EN ISO 13395 / DIN ISO 14255		
HFA	D58.4.4.2		
HFA-Code	D;9;2;1;1;-1;0		

Prinzip der Methode/chem. Reaktionen:

Nitrat wird in einem mit Cadmiumgranulat gefüllten U-Glasrohr mit Kupfersulfat als Katalysator zu Nitrit reduziert:

$$\begin{array}{ccc} Cd+Cu^{2+} & \to & Cu+Cd^{2+} \\ Cu+NO_3^-+2H^+ & \to & Cu^{2+}+NO_2^-+H_2O \\ Nitrit\ reagiert\ mit\ Sulfanilamid\ unter\ Bildung\ eines\ Diazoniumsalzes: \end{array}$$

$$NO_{2}^{-} + NH_{2}^{-}SO_{2} - \bigcirc - NH_{2} + 2H^{+} \rightarrow NH_{2}^{-}SO_{2} - \bigcirc - NH_{2}^{+} = N| + 2H_{2}O$$

Durch Azokupplung mit α-Naphthylethyldiamindihydrochlorid bildet sich ein rot-violetter Azofarbstoff:

$$NH_2-SO_2 - \bigcirc - N_2^+ + NH-CH_2-CH_2-NH_2 * 2HC1 \longrightarrow NH-CH_2-CH_2-NH_2 * 2HC1 + H^+$$

$$\bigcirc \bigcirc \bigcirc - N_2^+ + NH-CH_2-CH_2-NH_2 * 2HC1 \longrightarrow NH-CH_2-CH_2-NH_2 * 2HC1 + H^+$$

$$\bigcirc \bigcirc \bigcirc - N_2^+ + NH-CH_2-CH_2-NH_2 * 2HC1 \longrightarrow NH-CH_2-CH_2-NH_2 * 2HC1 + H^+$$

Der so gebildete rot-violette Farbstoff wird photometrisch bei 520 nm gemessen. Das Spektrum des gebildeten Farbstoffes ist in Anhang 1 abgebildet. Die Reagenzienzumischung zur Probe erfolgt im continuous-flow-Verfahren. Der Aufbau der Reaktionseinheit ist im Anhang Nr. 2 abgebildet.

Anhang:	<u>Lit.:</u>
Anhang 1: Spektrum des Farbkomplexes	Analyst 95, 1970, S. 514 ff
Anhang 2: ContFlow-Flußdiagramm	Talanta 23, 1976, S. 349 ff
Kurzanleitung SKALAR1.5	Walinga et al: Plant Analysis Procedures, Part
	7, Wageningen Agricultural University,
	Syllabus 1989, S. 197 ff
	Standard Methods for the Examination of Water
	and Wastewater, 16.Ed., 1985, S. 394 ff

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_3	SKALAR	NNO3CFC5.4	-	2

Störungen:

Huminstoffe und andere organische Substanzen können die Oberfläche der Cd-Säule belegen und so die NO₃-Reduktion vermindern oder stören. Diese Störung kann durch eine Dialyse der Probelösung zur Abtrennung der Huminstoffe beseitigt werden.

Auch hohe Fe- und Cu-Konzentrationen beeinflussen die Reduktion. Durch EDTA-Zusatz kann diese Störung behoben werden.

Analysengeräte und Zubehör:

4-Kanal-Continuous-Flow-System SAN PLUS mit automatischem Probennehmer SA1070, online-Dilutor, automatischen Spülventilen und Systemkontroller, Fa. Skalar

Chemikalien:

Brij-35 (30%) Imidazol: C₃H₄N₂

Kaliumnitrat: KNO₃-Lösung 1 g NO₃-N/l

Kupfersulfat: CuSO₄ * 5H₂O

 α -Naphthylethylendiamindihydrochlorid: $C_{12}H_{14}N_2 * 2 HCl$

Natriumnitrit: NaNO₂-Lösung 1 g NO₂-N/l

Phosphorsäure: H₃PO₄ 85%

Salzsäure: HCl 25%

Sulfanilamid: C₆H₈O₂N₂S

Cadmiumgranulat aktiviert, Skalar Best.-Nr. 13913

Lösungen:

1. Konzentrierte Lösungen:

A (Imidazol): 34,05 g Imidazol werden mit H₂O demin. auf 51 aufgefüllt und der pH-Wert

der Lösung mit HCl auf 7,5 durch Titration eingestellt.

B1 (0,01 M CuSO₄): 2,5 g CuSO₄ * $5H_2O$ werden mit H_2O demin. auf 1 l aufgefüllt. B2 (0,001 M CuSO₄): 10 ml von B1 werden mit H_2O demin. auf 100 ml aufgefüllt.

2. Reagenzlösungen:

I (Imidazol): 1000 ml von Lösung A werden mit 1000 ml H₂O demin. versetzt und 10 ml von

Lösung B2 und 5 ml Brij-35 (30%) zugegeben.

II (Color): 20 g Sulfanilamid und 1,0 g α-Naphthylethylendiamindihydrochlorid und 200 ml

konz. Phosphorsäure werden mit H₂O demin. auf 2 l aufgefüllt. (Im Kühlschrank aufbewahren, nicht im Ultraschallbad lösen!). Von der Lösung 500 ml in eine

dunkle Glasflasche abfüllen und als Reagenz bei der Messung benutzen.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	NO_3	SKALAR	NNO3CFC5.4	-	3	

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltb	Bemerkungen	
	offen	geschlossen	
	(am Gerät)	(im Kühlschrank)	
A	/	1/2 Jahr	/
B1, B2	/	1/2 Jahr	/
I	2 Tage	1/2 Jahr	CO ₂ -Aufnahme
II	2-3 Tage	4 Wochen	/

Eichung/Standards:

Stammlösungen:

NO₂: Fertige Lösung NO₂-N 1 g/l, von dieser Lösung 7 ml in einen 500 ml Kolben

pipettieren und mit H₂O demin. auf 500 ml auffüllen (4,26 mg/l N).

NO₃, NH₄: In einem 1 l-Kolben 4,717 g Ammoniumsulfat ((NH₄)₂SO₄) und 7,218 g Kaliumni-

trat (KNO $_3$) einwiegen und mit $\mathrm{H}_2\mathrm{O}$ demin. auf 1 l auffüllen.

 \Rightarrow 1 g/l NO₃-N und NH₄-N

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr (NO₂: 4 - 8 Wochen).

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Einzelbestimmung:

Mehrelementbestimmung:

	<u>Standardreihe</u>			
S8:	5 mg/l NO ₃ -N			
S7:	$4 \text{ mg/l NO}_3\text{-N}$			
S6:	$3 \text{ mg/l NO}_3\text{-N}$			
S5:	$2 \text{ mg/l NO}_3\text{-N}$			
S4:	$1 \text{ mg/l NO}_3\text{-N}$			
S3:	$0.5 \text{ mg/l NO}_3\text{-N}$			
S2:	$0.3 \text{ mg/l NO}_3\text{-N}$			
S 1:	$0.1 \text{ mg/l NO}_3\text{-N}$			
S0:	$0 \text{ mg/l NO}_3\text{-N}$			

NH ₄ -N	NO ₃ -N	Cl
[mg/l]	[mg/l]	[mg/l]
5	5	15
4	4	13
3	3	11
2	2	9
1	1	7
0,5	0,5	5
0,3	0,3	3
0,1	0,1	1
0	0	0

Kontrollstandard				
KSK1:	0,25 mg/l NO ₃ -N			
KSK2:	1,5 mg/l NO ₃ -N			
KSK3:	4,0 mg/l NO ₃ -N			

T	٠.		•				1		1
	11	tr	11	C	ta.	n	А	21	rd
					ш		٠ı		

KNIT: $4,26 \text{ mg/l NO}_2\text{-N}$

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_3	SKALAR	NNO3CFC5.4	-	4

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.5 beschrieben.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.5 beschrieben.

Achtung: Es ist darauf zu achten, dass bei der Art der Eichkurvenauswertung im Method-setup-Bildschirm Berechnungen 1. Order (linear) eingegeben wird.

Neue Cd-Säule: Bei Einbau einer neuen Cd-Säule muss diese zur Benutzung vorbereitet werden. Hierzu muss ein U-Glasrohr mit aktiviertem Cadmiumgranulat befüllt werden.

Das Granulat mithilfe eines Trichters in das vollständig mit H₂O demin. gefüllte Glasrohr rieseln lassen, bis an jeder Seite 5 mm ungefüllt sind. In die Enden des Glasrohres ein Stück Schlauch (ca. 5 mm lang) stecken, um zu verhindern, dass Granulat in das System gelangen kann. Hierbei vermeiden, dass Luft in die Säule gelangt. Anschliessend die Säule entweder verschliessen oder in das System einbauen. Nach dem Einbau der Cd-Säule in das System, die Säule durch Messen von 10 hohen (20 mg/l N) Nitratstandards konditionieren.

Kontrolle der Reduktionsleistung der Cd-Säule:

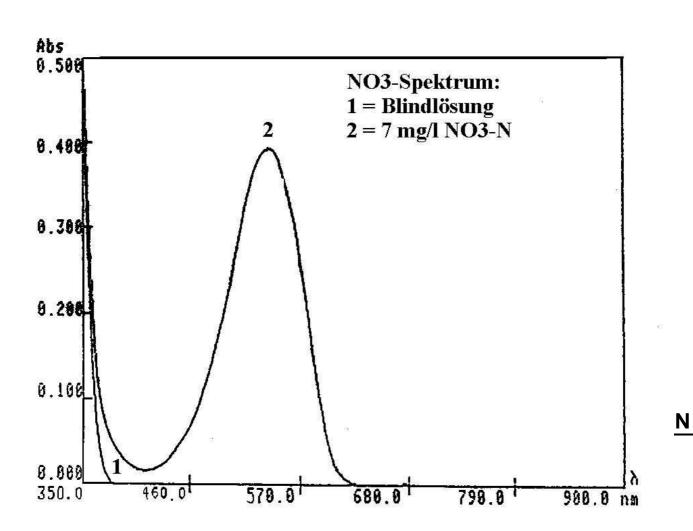
Der mitlaufende Nitrit-Standard (KNIT, 4,26 mg N/l) sollte stets zwischen 4,0 und 4,5 liegen. Steigt der gemessene Wert über 4,5 mg/l,sehen die Peaks spitzer als üblich aus. Geht der Zwischenwasch zwischen den einzelnen Peaks nicht mehr weit genug herunter, so muss die Cd-Säule gegen eine neue ausgetauscht werden.

Achtung: Die Säule sollte nicht mit Spülwasser gespült werden. Hierzu die Säule aus dem System entfernen und die offenen Enden im System mit einem Schlauch verbinden. Die Säule wird dadurch immer in Imidazolpuffer gelagert.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_3	SKALAR	NNO3CFC5.4	•	5

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

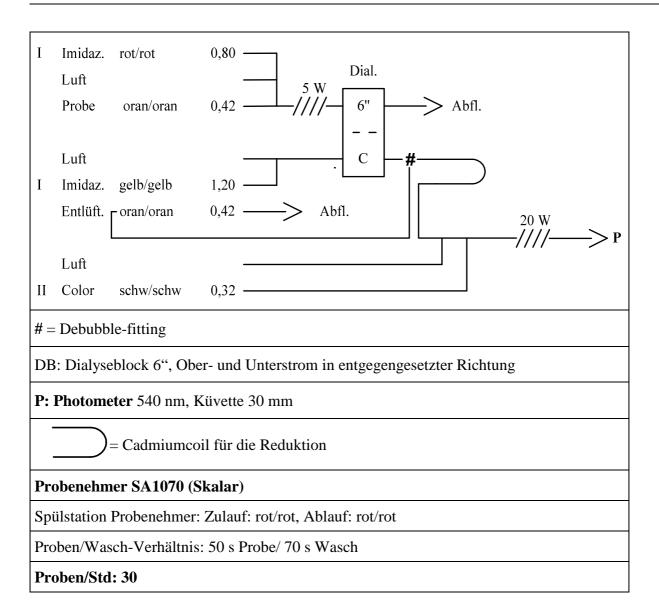

Qualitätskontrolle	Methode	Durchführung
Basislinienkontrolle	QBL2.1	Lineare Basislinienkorrektur durch Messen der Höhe
		der Basislinie am Anfang, nach jeweils 15 Proben,
		und am Ende eines Laufs.
Driftkontrolle	QDK2.1	lineare Driftkorrektur mit 2 Drift-Standards (1. DRIFT
		IGNORE, 2. DRIFT), nach der Kalibrierung, nach
		jedem Kontrollstandardblock, und am Ende eines
		Laufes mit dem jeweils höchsten Standard der
		Eichreihe. Die Messung von DRIFT IGNORE wird in
		die Berechnung der Drift nicht mit einbezogen.
Eichkurvenkontrolle	QEK1.2	Lineare Anpassung der Eichkurve; Bestimmtheitsmaß
		≥0,9998
Ionenbilanz IBW	QIB1.2	s. Methodenbeschreibung
Ionenbilanz NFV	QIB2.1	s. Methodenbeschreibung
Ionenbilanz NFV ohne	QIB3.1	s. Methodenbeschreibung
ALK		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung
Kontrollstandard	QKSt1.1	KSK1 (0,25 mg/l), KSK2 (1,5 mg/l N), KSK3 (4,0
		mg/l), Messung nach der Eichung, alle 15 Proben;
		erlaubte Abweichung 5 %
Kontrollstandard Nitrit	QKStNit1.1	s. Methodenbeschreibung
Stickstoffbilanz	QNB1.2	s. Methodenbeschreibung
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1 mit-
		gemessen; erlaubte Abweichung 5 %

Auswertung/Datendokumentation:

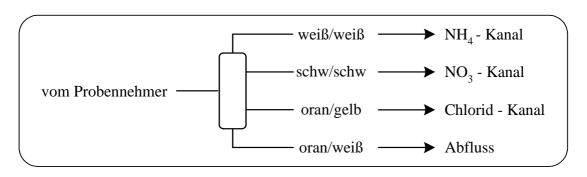
Die Nitrat-N-Konzentrationen mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS bearbeiten, bzw. in die entsprechenden Datenlisten eintragen.

Anhang Nr. 1 für N NO₃ SKALAR NNO3CFC5.4

Spektrum des Azofarbstoffes:



 NO_3


N

SKALAR

Aufbau der Reaktionseinheit zur NO₃-Bestimmung:

Kopplung mit NH₄- und Chlorid-Messung:

N

Anhang Nr. 2 für N NO₃ SKALAR NNO3CFC5.4

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_3	SKALAR	NNO3CFC6.1	-	1

Datum:

01.11.2004

Elementbestimmungsmethode:

NITRAT

Untersuchungsmethode			BG	OMG	
NMin1.1			(0,15)	7	
geeignet für:					
Boden	NMin1.1				
Humus	NMin1.1				
Pflanze	flanze				
Wasser					
Methodenverweise:					
Norm	In Anlehnung an DIN EN ISO 13395 / DIN ISO 14255				
HFA	FA D58.4.5.2				

Prinzip der Methode/chem. Reaktionen:

D;9;2;1;1;-1;0

Nitrat wird in einem mit Cadmiumgranulat gefüllten U-Glasrohr mit Kupfersulfat als Katalysator zu Nitrit reduziert:

$$\begin{array}{ccc} Cd + Cu^{2+} & \rightarrow & Cu + Cd^{2+} \\ Cu + NO_3^- + 2H^+ & \rightarrow & Cu^{2+} + NO_2^- + H_2O \\ Nitrit\ reagiert\ mit\ Sulfanilamid\ unter\ Bildung\ eines\ Diazoniumsalzes: \end{array}$$

$$NO_{2}^{-} + NH_{2}^{-}SO_{2} - \bigcirc NH_{2} + 2H^{+} \rightarrow NH_{2}^{-}SO_{2} - \bigcirc NH_{2}^{+} = N| + 2H_{2}^{-}O$$

Durch Azokupplung mit α-Naphthylethyldiamindihydrochlorid bildet sich ein rot-violetter Azofarbstoff:

Der so gebildete rot-violette Farbstoff wird photometrisch bei 520 nm gemessen. Das Spektrum des gebildeten Farbstoffes ist in Anhang 1 abgebildet. Die Reagenzienzumischung zur Probe erfolgt im continuous-flow-Verfahren. Der Aufbau der Reaktionseinheit ist im Anhang Nr. 2 abgebildet.

Störungen:

HFA-Code

Huminstoffe und andere organische Substanzen können die Oberfläche der Cd-Säule belegen und so die NO₃-Reduktion vermindern oder stören. Diese Störung kann durch eine Dialyse der Probelösung

Anhang:	<u>Lit.:</u>
Anhang 1: Spektrum des Farbkomplexes	Analyst 95, 1970, S. 514 ff
Anhang 2: ContFlow-Flußdiagramm	Talanta 23, 1976, S. 349 ff
Kurzanleitung Skalar1.3 + 1.4	Walinga et al: Plant Analysis Procedures, Part
	7, Wageningen Agricultural University,
	Syllabus 1989, S. 197 ff
	Standard Methods for the Examination of Water
	and Wastewater, 16.Ed., 1985, S. 394 ff

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₃	SKALAR	NNO3CFC6.1	-	2

zur Abtrennung der Huminstoffe beseitigt werden. Auch hohe Fe- und Cu-Konzentrationen beeinflussen die Reduktion. Durch EDTA-Zusatz kann diese Störung behoben werden.

Analysengeräte und Zubehör:

4-Kanal-Continuous-Flow-System SAN PLUS mit automatischem Probennehmer SA1070, online-Dilutor, automatischen Spülventilen und Systemkontroller, Fa. Skalar

Chemikalien:

Brij-35 (30%) Imidazol: C₃H₄N₂ Kaliumchlorid: KCl Kaliumnitrat: KNO₃

Kupfersulfat: CuSO₄ * 5H₂O

 α -Naphthylethylendiamindihydrochlorid: $C_{12}H_{14}N_2*2$ HCl

Nitrit-Standardlösung 1g/l, Merck-Nr. 119899.0500

Phosphorsäure: H₃PO₄ 85%

Salzsäure: HCl 25% Sulfanilamid: C₆H₈O₂N₂S

Cadmiumgranulat aktiviert, Skalar Best.-Nr. 13913

Lösungen:

1. Konzentrierte Lösungen:

A (Imidazol): 6,81 g Imidazol werden mit H₂O demin. auf 11 aufgefüllt, und der pH-

Wert der Lösung mit HCl auf 7,5 durch Titration eingestellt (sinnvoller-

weise werden jeweils 5 l Lösung hergestellt).

B1 (0,01 M CuSO₄): 2,5 g CuSO₄ * $5H_2O$ werden mit H_2O demin. auf 1 l aufgefüllt. B2 (0,001 M CuSO₄): 10 ml von B1 werden mit H_2O dest. auf 100 ml aufgefüllt.

2. Reagenzlösungen:

I (Imidazol): 250 ml von Lösung A und 2,5 ml von Lösung B2 werden mit H₂O dest.

auf 500 ml aufgefüllt und 1,5 ml Brij-35 (30%) versetzt.

II (Color): 20 g Sulfanilamid und 1,0 g α-Naphthylethylendiamindihydrochlorid und

200 ml konz. Phosphorsäure werden mit H₂O demin. auf 2 l aufgefüllt.

(Im Kühlschrank aufbewahren, nicht im Ultraschallbad lösen!)

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltbarkeit		Bemerkungen	
	offen	geschlossen		
	(am Gerät)	(im Kühlschrank)		
A	/	1/2 Jahr	/	
B1, B2	/	1/2 Jahr	/	
I	2 Tage	1/2 Jahr	CO ₂ -Aufnahme	
II	2-3 Tage	4 Wochen	/	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	NO_3	SKALAR	NNO3CFC6.1	-	3	

Eichung/Standards:

Stammlösungen:

NO₃: 7,218 g Kaliumnitrat werden mit H_2O dest. auf 1 l aufgefüllt. => 1 g NO₃-N/l NO₂: 1000 mg/l Nitritfertigstandardlösung => 1 g NO₂-N/l

NO₃, NH₄: In einem 1 l-Kolben 4,717 g Ammoniumsulfat ((NH₄)₂SO₄) und 7,218 g Kaliumni-

trat (KNO₃) einwiegen und mit H₂O demin. auf 1 l auffüllen.

 $=> 1 \text{ g/l NO}_3\text{-N und NH}_4\text{-N}$

Standards:

Die Standards werden mit 0,5 M KCl-Lösung angesetzt.

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr (NO₂: 4 - 8 Wochen).

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Einzelbestimmung:

<u>S</u>	tandardreihe
Standard1:	$7 \text{ mg/l NO}_3\text{-N}$
Standard2:	6 mg/l NO ₃ -N
Standard3:	5 mg/l NO ₃ -N
Standard4:	$4 \text{ mg/l NO}_3\text{-N}$
Standard5:	$3 \text{ mg/l NO}_3\text{-N}$
Standard6:	$2 \text{ mg/l NO}_3\text{-N}$
Standard7:	1 mg/l NO ₃ -N
Standard8:	$0.5 \text{ mg/l NO}_3\text{-N}$
Standard9:	$0 \text{ mg/l NO}_3\text{-N}$

Mehrelementbestimmung:

NH ₄ -N	NO ₃ -N	Cl
[mg/l]	[mg/l]	[mg/l]
7	7	15
6	6	13
5	5	11
4	4	9
3	3	7
2	2	5
1	1	3
0.5	0.5	1
0	0	0

<u>Kontrollstandard</u>				
KSK1:	1 mg/l NO ₃ -N			
KSK2:	3 mg/l NO3-N			
KSK3:	5 mg/l NO3-N			

<u>Nitritstandard</u>				
KNIT:	6,09 mg/l NO ₂ -N (10 ml/500 ml)			

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.3 + 1.4 beschrieben.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.3 +1.4 beschrieben.

Spüllösung:

Als Spüllösung wird 0,5 M KCl-Lösung mit 50 µl/l Brij-35 verwendet.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₃	SKALAR	NNO3CFC6.1	-	4

Achtung: Es ist darauf zu achten, dass bei der Art der Eichkurvenauswertung im Method-setup-Bildschirm *Berechnungen 1. Order (linear)* eingegeben wird.

<u>Neue Cd-Säule:</u> Bei Einbau einer neuen Cd-Säule muss diese zur Benutzung vorbereitet werden. Hierzu muss ein U-Glasrohr mit aktiviertem Cadmiumgranulat befüllt werden.

Das Granulat mithilfe eines Trichters in das vollständig mit H₂O demin. gefüllte Glasrohr rieseln lassen, bis an jeder Seite 5 mm ungefüllt sind. In die Enden ein Stück Schlauch (ca. 5 mm lang) stecken, um zu verhindern, dass Granulat in das System gelangen kann. Auf jeden Fall vermeiden, dass Luft in die Säule gelangt. Anschliessend die Säule entweder verschliessen, oder in das System einbauen. Nach dem Einbau der Cd-Säule in das System, die Säule durch Messen von 10 hohen (20 mg/l N) Nitratstandards konditionieren.

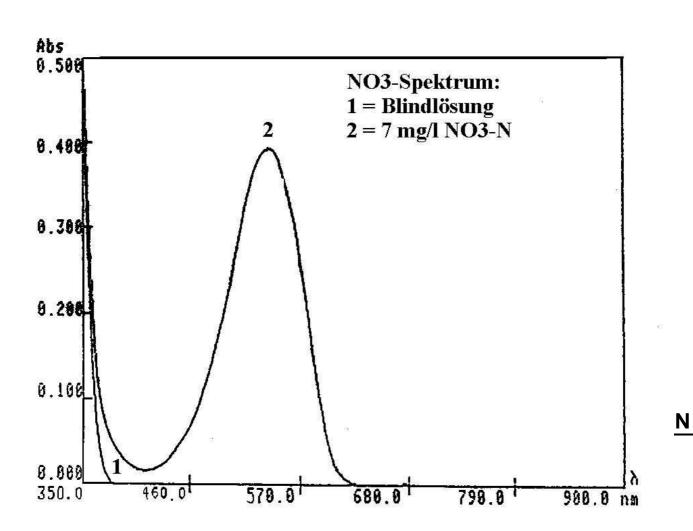
Kontrolle der Reduktionsleistung der Cd-Säule:

Der mitlaufende Nitrit-Standard (6,09 mg/l N) sollte stets zwischen 5,79 und 6,395 liegen ($\pm 5\%$). Steigt der gemessene Wert über 7,3 ppm, sehen die Peaks spitzer als üblich aus, oder geht der Zwischenwasch zwischen den einzelnen Peaks nicht mehr weit genug herunter, so muss die Cd-Säule gegen eine neue ausgetauscht werden.

<u>Achtung:</u> Die Säule sollte nicht mit Spülwasser gespült werden. Hierzu den Hebel des blauen Ventils so stellen, dass die Säule kurzgeschlossen ist, d.h. das das Spülwasser nicht durch die Säule fliesst. Die Säule wird dadurch immer in Imidazolpuffer gelagert.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

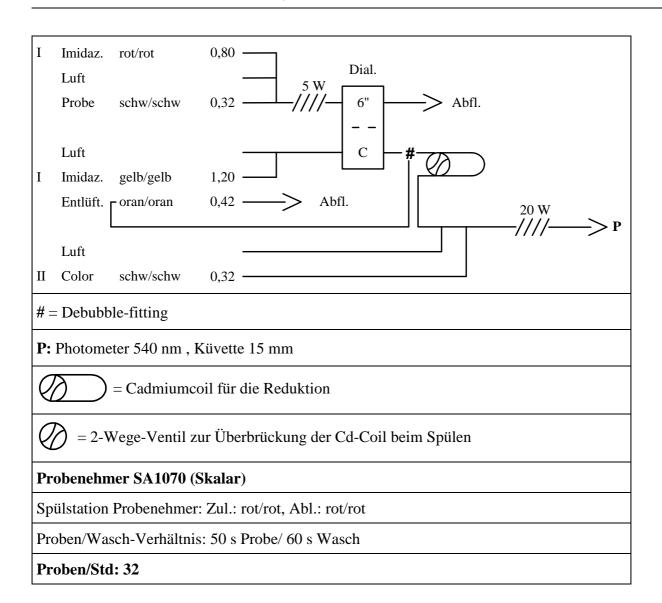

Qualitätskontrolle	Methode	Durchführung	
Basislinienkontrolle	QBL2.1	Basislinienkontrollproben nach der Eichung und alle	
		15 Proben (erlaubte Abweichung +/- 0,01 Ext.).	
Driftkontrolle	QDK2.1	Driftkontrollproben nach der Eichung und alle 15	
		Proben (erlaubte Abweichung +/- 0,02 Ext.).	
Eichkurvenkontrolle	QEK1.2	Lineare Anpassung der Eichkurve; Bestimmtheitsmaß	
		≥0,9998	
Kontrollstandard QKSt1.1		KSK1 (1 mg/l), KSK2 (3 mg/l N), KSK3 (5 mg/l),	
		Messung nach der Eichung, alle 15 Proben; erlaubte	
		Abweichung 5 %	
Kontrollstandard Nitrit QKStNit1.1		s. Methodenbeschreibung	
		Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	

Auswertung/Datendokumentation:

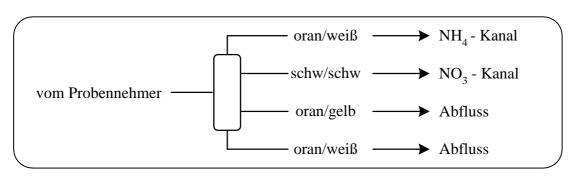
Die Nitrat-N-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm Relags zu bearbeiten.

Anhang Nr. 1 für N NO₃ SKALAR NNO3CFC6.1

Spektrum des Azofarbstoffes:


N

 NO_3


SKALAR

Aufbau der Reaktionseinheit zur NO₃-Bestimmung:

für

Kopplung mit NH₄- und Chlorid-Messung:

N

Eleme	ent Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO ₃	SKALAR	NNO3CFC6.2	-	1

Datum:

01.03.2007

Elementbestimmungsmethode:

NITRAT

Untersuchungsmethode			NG	BG	OMG
NMin1.1				(0,15)	5
geeignet für:					
Boden NMin1.1					
Humus NMin1.1					
Pflanze					
Wasser					
Methodenverweise:					

Norm	In Anlehnung an DIN EN ISO 13395 / DIN ISO 14255			
HFA	D58.4.5.2			
HFA-Code	D;9;2;1;1;-1;0			

Prinzip der Methode/chem. Reaktionen:

Nitrat wird in einem mit Cadmiumgranulat gefüllten U-Glasrohr mit Kupfersulfat als Katalysator zu Nitrit reduziert:

$$\begin{array}{ccc} Cd + Cu^{2+} & \rightarrow & Cu + Cd^{2+} \\ Cu + NO_3^- + 2H^+ & \rightarrow & Cu^{2+} + NO_2^- + H_2O \\ Nitrit\ reagiert\ mit\ Sulfanilamid\ unter\ Bildung\ eines\ Diazoniumsalzes: \end{array}$$

$$NO_{2}^{-} + NH_{2}^{-}SO_{2} - \bigcirc - NH_{2} + 2H^{+} \rightarrow NH_{2}^{-}SO_{2} - \bigcirc - NH_{2}^{+} = N| + 2H_{2}^{-}O$$

Durch Azokupplung mit α-Naphthylethyldiamindihydrochlorid bildet sich ein rot-violetter Azo-

$$NH_2-SO_2 - \bigcirc - N_2^+ + NH-CH_2-CH_2-NH_2 * 2HC1 \longrightarrow NH-CH_2-CH_2-NH_2 * 2HC1 + H^+$$

$$\bigcirc \bigcirc - N_2^+ + NH-CH_2-CH_2-NH_2 * 2HC1 + H^+$$

$$\bigcirc \bigcirc - N_2^+ + NH-CH_2-CH_2-NH_2 * 2HC1 - H^+$$

$$\bigcirc - N_2^+ - NH_2^- - NH_2^- + NH-CH_2^- - NH_2^- - NH$$

Der so gebildete rot-violette Farbstoff wird photometrisch bei 520 nm gemessen. Das Spektrum des gebildeten Farbstoffes ist in Anhang 1 abgebildet. Die Reagenzienzumischung zur Probe erfolgt im continuous-flow-Verfahren. Der Aufbau der Reaktionseinheit ist im Anhang Nr. 2 abgebildet.

Störungen:

Huminstoffe und andere organische Substanzen können die Oberfläche der Cd-Säule belegen und so die NO₃-Reduktion vermindern oder stören. Diese Störung kann durch eine Dialyse der Probelösung

Anhang:	<u>Lit.:</u>	
Anhang 1: Spektrum des Farbkomplexes	Analyst 95, 1970, S. 514 ff	
Anhang 2: ContFlow-Flußdiagramm	Talanta 23, 1976, S. 349 ff	
Kurzanleitung Skalar1.5	Walinga et al: Plant Analysis Procedures, Part	
-	7, Wageningen Agricultural University,	
	Syllabus 1989, S. 197 ff	
	Standard Methods for the Examination of Water	
	and Wastewater, 16.Ed., 1985, S. 394 ff	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_3	SKALAR	NNO3CFC6.2	-	2

zur Abtrennung der Huminstoffe beseitigt werden. Auch hohe Fe- und Cu-Konzentrationen beeinflussen die Reduktion. Durch EDTA-Zusatz kann diese Störung behoben werden.

Analysengeräte und Zubehör:

4-Kanal-Continuous-Flow-System SAN PLUS mit automatischem Probennehmer SA1070, online-Dilutor, automatischen Spülventilen und Systemkontroller, Fa. Skalar

Chemikalien:

Brij-35 (30%) Imidazol: C₃H₄N₂ Kaliumchlorid: KCl Kaliumnitrat: KNO₃

Kupfersulfat: CuSO₄ * 5H₂O

 α -Naphthylethylendiamindihydrochlorid: $C_{12}H_{14}N_2*2$ HCl

Nitrit-Standardlösung 1g/l, Merck-Nr. 119899.0500

Phosphorsäure: H₃PO₄ 85%

Salzsäure: HCl 25%

Sulfanilamid: C₆H₈O₂N₂S

Cadmiumgranulat aktiviert, Skalar Best.-Nr. 13913

Lösungen:

1. Konzentrierte Lösungen:

A (Imidazol): 6,81 g Imidazol werden mit H₂O demin. auf 11 aufgefüllt, und der pH-

Wert der Lösung mit HCl auf 7,5 durch Titration eingestellt (sinnvoller-

weise werden jeweils 5 l Lösung hergestellt).

B1 (0,01 M CuSO₄): 2,5 g CuSO₄ * $5H_2O$ werden mit H_2O demin. auf 1 l aufgefüllt. B2 (0,001 M CuSO₄): 10 ml von B1 werden mit H_2O dest. auf 100 ml aufgefüllt.

2. Reagenzlösungen:

I (Imidazol): 250 ml von Lösung A und 2,5 ml von Lösung B2 werden mit H₂O dest.

auf 500 ml aufgefüllt und 1,5 ml Brij-35 (30%) versetzt.

II (Color): 20 g Sulfanilamid und 1,0 g α-Naphthylethylendiamindihydrochlorid und

200 ml konz. Phosphorsäure werden mit H₂O demin. auf 2 l aufgefüllt.

(Im Kühlschrank aufbewahren, nicht im Ultraschallbad lösen!)

Haltbarkeit der verschiedenen Lösungen:

Reagenz:	Haltb	Bemerkungen	
	offen	geschlossen	
	(am Gerät)	(im Kühlschrank)	
A	/	1/2 Jahr	/
B1, B2	/	1/2 Jahr	/
I	2 Tage	1/2 Jahr	CO ₂ -Aufnahme
II	2-3 Tage	4 Wochen	/

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
N	NO_3	SKALAR	NNO3CFC6.2	-	3	

Eichung/Standards:

Stammlösungen:

NO₃: 7,218 g Kaliumnitrat werden mit H_2O dest. auf 1 l aufgefüllt. => 1 g NO_3 -N/l NO₂: 1000 mg/l Nitritfertigstandardlösung => 1 g NO_2 -N/l

NO₃, NH₄: In einem 1 l-Kolben 4,717 g Ammoniumsulfat ((NH₄)₂SO₄) und 7,218 g Kaliumni-

trat (KNO₃) einwiegen und mit H₂O demin. auf 1 l auffüllen.

 $=> 1 \text{ g/l NO}_3\text{-N und NH}_4\text{-N}$

Standards:

Die Standards werden mit 0,5 M KCl-Lösung angesetzt.

Haltbarkeit:

Geschlossen im Kühlschrank: ein halbes Jahr (NO₂: 4 - 8 Wochen).

Die Standards aus den Stammlösungen sollten für jede Serie frisch, mindestens jedoch nach einer Woche neu angesetzt werden. Die Aufbewahrung erfolgt in den Messkolben.

Einzelbestimmung:

<u>S</u>	<u>Standardreihe</u>
Standard1:	7 mg/l NO ₃ -N
Standard2:	$6 \text{ mg/l NO}_3\text{-N}$
Standard3:	$5 \text{ mg/l NO}_3\text{-N}$
Standard4:	$4 \text{ mg/l NO}_3\text{-N}$
Standard5:	$3 \text{ mg/l NO}_3\text{-N}$
Standard6:	$2 \text{ mg/l NO}_3\text{-N}$
Standard7:	$1 \text{ mg/l NO}_3\text{-N}$
Standard8:	$0.5 \text{ mg/l NO}_3\text{-N}$
Standard9:	$0 \text{ mg/l NO}_3\text{-N}$

				. •	
N	1eh	relen	nentb	estin	nmung:

NH ₄ -N	NO ₃ -N	Cl
[mg/l]	[mg/l]	[mg/l]
7	7	15
6	6	13
5	5	11
4	4	9
3	3	7
2	2	5
1	1	3
0.5	0.5	1
0	0	0

	Kontrollstandard
KSK1:	1 mg/l NO ₃ -N
KSK2:	3 mg/l NO3-N
KSK3:	5 mg/l NO3-N

<u>Nitritstandard</u>				
KNIT:	4,26 mg/l NO ₂ -N (7 ml/500 ml)			

Die Eichung des Gerätes für die Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.5 beschrieben.

_	Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
	N	NO ₃	SKALAR	NNO3CFC6.2	-	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung SKALAR1.5 beschrieben.

Spüllösung:

Als Spüllösung wird 0,5 M KCl-Lösung mit 50 μl/l Brij-35 verwendet.

Achtung: Es ist darauf zu achten, dass bei der Art der Eichkurvenauswertung im Method-setup-Bildschirm *Berechnungen 1. Order (linear)* eingegeben wird.

<u>neue Cd-Säule:</u> Bei Einbau einer neuen Cd-Säule muss diese zur Benutzung vorbereitet werden. Hierzu muss ein U-Glasrohr mit aktiviertem Cadmiumgranulat befüllt werden.

Das Granulat mithilfe eines Trichters in das vollständig mit H₂O demin. gefüllte Glasrohr rieseln lassen, bis an jeder Seite 5 mm ungefüllt sind. In die Enden ein Stück Schlauch (ca. 5 mm lang) stecken, um zu verhindern, dass Granulat in das System gelangen kann. Auf jeden Fall vermeiden, dass Luft in die Säule gelangt. Anschliessend die Säule entweder verschliessen, oder in das System einbauen. Nach dem Einbau der Cd-Säule in das System, die Säule durch Messen von 10 hohen (20 mg/l N) Nitratstandards konditionieren.

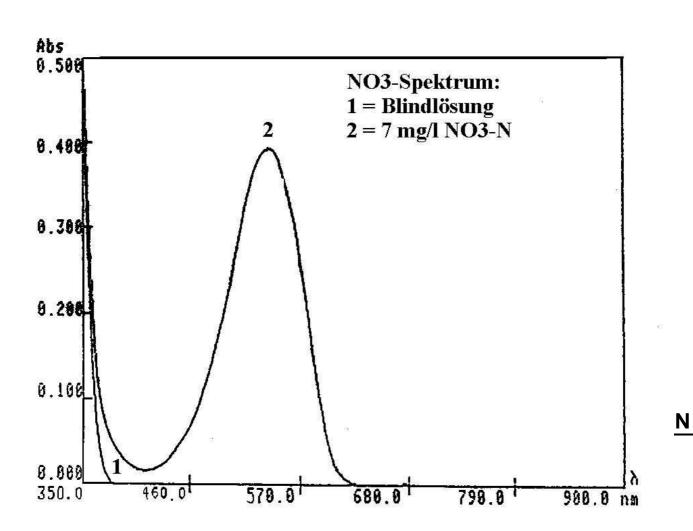
Kontrolle der Reduktionsleistung der Cd-Säule:

Der mitlaufende Nitrit-Standard (6,09 mg/l N) sollte stets zwischen 5,79 und 6,395 liegen (±5%). Steigt der gemessene Wert über 7,3 ppm, sehen die Peaks spitzer als üblich aus, oder geht der Zwischenwasch zwischen den einzelnen Peaks nicht mehr weit genug herunter, so muss die Cd-Säule gegen eine neue ausgetauscht werden.

<u>Achtung:</u> Die Säule sollte nicht mit Spülwasser gespült werden. Hierzu den Hebel des blauen Ventils so stellen, dass die Säule kurzgeschlossen ist, d.h. dass das Spülwasser nicht durch die Säule fliesst. Die Säule wird dadurch immer in Imidazolpuffer gelagert.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

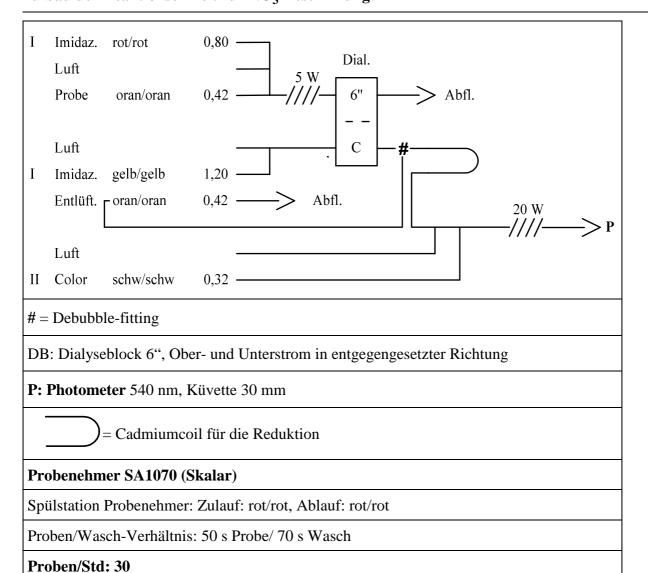

Qualitätskontrolle	Methode	Durchführung
Basislinienkontrolle	QBL2.1	Basislinienkontrollproben nach der Eichung und alle
		15 Proben (erlaubte Abweichung +/- 0,01 Ext.).
Driftkontrolle	QDK2.1	Driftkontrollproben nach der Eichung und alle 15
		Proben (erlaubte Abweichung +/- 0,02 Ext.).
Eichkurvenkontrolle	QEK1.2	Lineare Anpassung der Eichkurve; Bestimmtheitsmaß
		≥0,9998
Kontrollstandard	QKSt1.1	KSK1 (1 mg/l), KSK2 (3 mg/l N), KSK3 (5 mg/l),
		Messung nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 %
Kontrollstandard Nitrit	QKStNit1.1	s. Methodenbeschreibung
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1 mit-
		gemessen; erlaubte Abweichung 5 %

Auswertung/Datendokumentation:

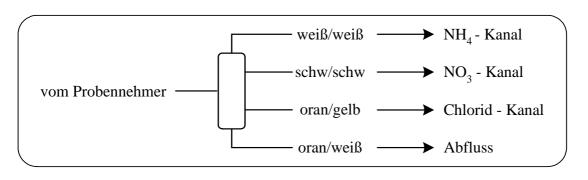
Die Nitrat-N-Konzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm Relaqs zu bearbeiten.

Anhang Nr. 1 für N NO₃ SKALAR NNO3CFC6.2

Spektrum des Azofarbstoffes:


N

 NO_3


SKALAR

Aufbau der Reaktionseinheit zur NO₃-Bestimmung:

für

Kopplung mit NH₄- und Chlorid-Messung:

N

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_3	IC	NNO3IC2.1	-	1

Datum:

15.12.2007

Elementbestimmungsmethode:

NITRAT

Untersuchun	gsmethode	NG	BG	OMG	
ANULLIC		0,003	0,010	50	
geeignet für:					
Boden				·	
Humus					
Pflanze		-			
Wasser ANULLIC					
Methodenver	weise:				
Norm	In Anlehnung an DIN EN ISO 10304-1				
HFA D58.4.4.1					
HFA-Code	D;7;1;4;1;-1;2				

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Anionen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Anionen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit quartären Ammoniumgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine Natriumcarbonat/ Hydrogencarbonatlösung verwendet. Wegen der hohen Grundleitfähigkeit des Eluenten wird vor der Leitfähigkeitsdetektion ein sogenannter Supressor zwischengeschaltet, der durch Austausch der Na-Ionen gegen Protonen das stark leitende Natriumhydrogencarbonat in die wenig dissoziierte Kohlensäure, und die Natriumsalze der zu bestimmenden Anionen in deren stark leitende Mineralsäuren umwandelt. Diese stark leitenden Mineralsäuren der zu bestimmenden Anionen werden sehr empfindlich in einer Leitfähigkeitsmesszelle detektiert. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Anions geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 0,25 ppm Nitrat) wird das Anionen-Chromatogramm doppelt aufgenommen, und mit unterschiedlichen Eichkurven für den hohen Messbereich (= quadratisch) und den niedrigen Messbereich (= linear) ausgewertet. In dem 2-Kanal-System werden An- und Kationen parallel bestimmt.

Anhang:	<u>Lit.:</u>
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,
zeiten	1991
Sammelanhang S17.1: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987
Gerätekurzanleitung IC2.1	

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
N	NO_3	IC	NNO3IC2.1	-	2

Störungen:

Huminstoffe können durch Adsorption auf der Anionensäule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC2.1

Analysengeräte und Zubehör:

- 2-Kanal-IC-Anlage Fa. Metrohm, bestehend aus:
- 2 IC-Pumpen 818
- 2 Leitfähigkeitsdetektoren 819
- IC-Separation-Center 820 mit Säulenofen und Suppressor
- IC-Liquid-Handling-Einheit 833
- 2 Pulsationsdämpfer
- IC-Eluent-Degaser 837
- IC-Probengeber 838

Probenröhrchen mit Durchstichdeckel

Säulen:

- a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5
- b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard
- 2 Metrosep RP-Guard

Probenschleifen:

- a. Anionen: 20 µl
- b. Kationen: 50 µl

Software:

- a. zur Anlagensteuerung: IC-Net
- b. zur Chromatogrammauswertung: MagIC-Net

Chemikalien:

Natriumhydrogencarbont, NaHCO₃ Natriumcarbonat, Na₂CO₃

Schwefelsäure, H₂SO₄ konz.

Lösungen:

Eluent-Anionen: In einem 2 l-Messkolben werden 0,678 g Na₂CO₃ , sowie 0,168 g Na₂HCO₃

eingewogen und mit H₂O demin. reinst auf 2 l aufgefüllt.

Suppressor-Lösung: 1 Liter H₂O demin. reinst werden mit 3 ml H₂SO₄ konz. versetzt.

Eichung/Standards:

Stammlösungen:

1 g/l NO₃: 1 g/l Nitrat als Natriumnitrat \Rightarrow 1 g/l NO₃

Stammlösung I: Je 1 ml SO_4 -, NO_3 -, NO_2 -, und PO_4 -Stammlösung und je 0,5 ml Cl- und F-

Stammlösung werden in einen 100 ml-Messkolben mit H₂O demin. auf 100

ml aufgefüllt.

 \Rightarrow 0,01 g/l SO₄, NO₃, NO₂, PO₄, und 0,005 g/l Cl, F

Element	Form	Gerät	Methoden-Nr.		Seite	
N	NO_3	IC	NNO3IC2.1	-	3	

Haltbarkeit:

Die Stammlösung I ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

<u>Kontrollstandards</u>		
K1IC:	1,354 mg/l NO ₃ -N	
K2IC:	0,0564 mg/l NO3-N	

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S17.1) mit insgesamt 19 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung I und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt werden, oder eine neue Grundeichung durchgeführt werden.

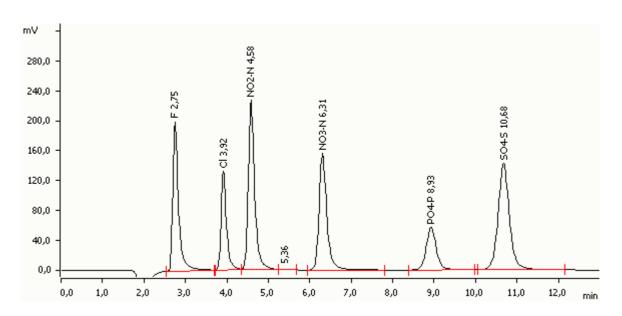
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC2.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (1,354 mg/l N), K2IC (0,0564 mg/l N),
		Messung nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1IC mit-
		gemessen; erlaubte Abweichung 5 %.


Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Nitratkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr. 1 für N NO ₃ IC	NNO3IC2.1
---------------------------------------	-----------

Chromatogramm der Anionenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

01.11.2001

Datum:

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	AAS(Fl)	NaNagesAAS6.1	1

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode	NG	BG	OMG
ANULL, GBL1.1, EXT12H2O1.1	0,007	0,022	6

geeignet für:

Boden	GBL1.1, EXT12H2O1.1		
Pflanze			
Humus			
Wasser	ANULL		

Methodenverweise:

Norm	In Anlehnung an DIN 38406-14
HFA	D30.1.4.2
HFA-Code	D;1;1;2;-1;3;0

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einer Luft/Acetylen-Flamme auf ca. 2300 °C erhitzt. Dadurch wird ein möglichst großer Teil des zu bestimmenden Elements in den atomaren Zustand überführt. Mit einer Hohlkathodenlampe wird elementspezifisches Licht erzeugt und durch die Flamme geführt. Die Atome im Grundzustand können dieses Licht einer spezifischen Wellenlänge absorbieren und gehen für kurze Zeit in einen angeregten Zustand über. Aus der Messung der Intensitäten des eingestrahlten und des um die absorbierte Lichtmenge reduzierten, austretenden Lichts kann auf die Elementkonzentration in der Lösung geschlossen werden.

Störungen:

Na wird in der Luft/Acetylen-Flamme teilweise ionisiert. Diese Störung kann durch CsCl/La-Zusatz (Schinkel-Lösung) beseitigt werden.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenparameter	B. Welz: Atomabsorptionsspektroskopie,
Kurzanleitung AAS(Fl) 4.1	Weinheim, 1983
Kurzanleitung AAS-DV2.1	H. Schinkel: Fresenius Z. Anal. Chem. 317
-	S. 10-26, 1984

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	AAS(Fl)	NaNagesAAS6.1	2

Analysengeräte und Zubehör:

Atomabsorptionsspektrometer AAS Vario 6 Probengeber AS 52 Injektionsschalter IS5 Lachgas Brennerkopf

Chemikalien:

Cäsiumchlorid-Lanthanchlorid-Pufferlösung nach Schinkel (Fa. Merck). Enthält 10 g/l CsCl und 100 g/l La.

Lösungen:

-

Eichung/Standards:

Stammlösungen:

Na: AAS-Standard (Fa. B. Kraft) => 5 g/l

Al, Ca, Fe, K, Mg, Mn: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Stammlösung Standard ANULL, GBL1.1, EXT12H2O1.1: In einen 250 ml-Glaskolben werden je

2,5 ml Na, Fe, K, Mg und Mn sowie je 5 ml Al und Ca der 5 g/l enthaltenden Stammlösungen gegeben, mit 5 ml Schinkel-Lösung versetzt und mit H₂O bidemin. aufgefüllt.

Na

=>100 mg/l Al und Ca, 50 mg/l Fe, K, Mg, Mn und Na.

Einzelbestimmung: Mehrelementbestimmung:

Untersuchungsmethode: ANULL, GBL1.1, EXT12H2O1.1

Standardreihe		
	[mg/l]	
Blank:	0,0	
S1:	1,5	
S2:	3,0	
S3:	4,5	
S4:	6,0	
S5:		
Rekalibrations-	4,5	
standard		

	Na	K	Al	Ca	Fe	Mg	Mn
	[mg/l]						
Blank:	0,0	0,0	0,0	0,0	0,0	0,0	0,0
S1:	1,5	2,0	5,0	4,0	2,0	1,0	1,0
S2:	3,0	4,0	10,0	8,0	4,0	2,0	2,0
S3:	4,5	6,0	15,0	12,0	6,0	3,0	4,0
S4:	6,0	8,0	20,0	16,0	8,0	4,0	6,0
S5:			25,0	20,0	10,0	5,0	8,0

<u>Kontrollstandard</u>					
K30 (QC 1)	4,0 mg/l Na				

]	Kalibrier-Daten				
\mathbb{R}^2	0,999				
Char. Konz.	0,03 mg/l / 1% A				

Element	Form	Gerät	Methoden-Nr.	Seite	
Na	Nages	AAS(Fl)	NaNagesAAS6.1	3	

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung AAS (Fl) 4.1 beschrieben. Die Geräteparameter werden am AAS-Gerät durch Laden der Methode NaNagesAAS6.1 eingestellt. Sie sind im Anhang 1 zusammengestellt.

Wegen der hohen Empfindlichkeit der Na-Messung muss der Brennerkopf um 15 Grad (1,5 Teilstriche) quergestellt werden.

Der Blank, der Stammlösungs-Standard, der Kontrollstandard, die Verdünnungslösung am Probengeber und die Proben werden im Verhältnis 1:50 mit Cäsiumchlorid-Lanthanchlorid-Pufferlösung nach Schinkel versetzt. In die Probengefässe wird zuerst die notwendige Menge Schinkel-Lösung pipettiert und anschließend die Probe zugegeben. Als Verdünnungsfaktor muss in der Probentabelle 1.02 eingegeben werden.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Eichkurvenkontrolle	QEK1.2	Quadratische Anpassung der Eichkurve;
		Bestimmtheitsmass ≥0,999
Kontrollstandard	QKSt.1.1	K30 (QC1); Messung nach der Eichung, alle 15
		Proben und nach jeder Rekalibration; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Der Standard Wasser HE1 wird alle 50 Proben
		mitgemessen; erlaubte Abweichung: 5 %
Al-Bilanz	QAlB1.1	Siehe Methodenbeschreibung
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU	Siehe Methodenbeschreibung
Na/Cl-Bilanz	QNaCl1.1	Siehe Methodenbeschreibung

Auswertung/Datendokumentation:

Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter des LIMS eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung AAS-DV 2.1) bearbeitet.

Geräteparameter AAS(Fl) Analytic Jena Vario6

Spektrometer

Linie	589.0 nm	Spalt	0.8 nm
Lampen-Typ	M-HKL	Lampenstrom	7.0 mA
Integrations-Art	wiederh. Mittelw.	Integr. Zeit	1.5 s
PMT	310.0 V	D2HKL-Strom	
AZ-Zeit	5.0 s	Peak-Glättung	8/19
Verzögerung	5.0 s	Betriebsart	Einstrahl
HC/BC-Verst.		HC/BC-Tastverh.	

Flamme

Flamme	C2H2/Luft		
Brenngas-Fluss	70 NL/h	Ges. Ox.	500 NL/h
Brennertyp	50 mm		
Br.Höhe	5 mm	Br.Winkel	15°
Zerstäuber-Rate	5.0 ml/min		

Probengeber

Probengeber	AS52	Teller-Typ	89 Positionen
Arbeitsweise	manuell	Spülen	nach jeder Probe
Spülzeit	5 s		
Injekt.Schalter	aktiv	Ladezeit	
Injekt.Zeit		Probenvolumen	10 mL
Verdünnung	automat. Verdünn.	Zugabe IonPuffer	keine Zugabe
vor Verdünnung	keine Wdh.	Mischgefäß spülen	1 mal
Zugabe IonPuffer	aus		

QC-Parameter

QC-Art	KonzKontrolle		
QC Kontrollpr.1	QC 1	QC Kontrollpr.2	
Konz.	4.000 mg/L	Konz.	
Fehlergrenze	±3%	Fehlergrenze	
Messwiederh.	aus	Reaktion	Rekalib.+Fortsetz.
Kalibr.Std. Nr.	1	Erwart. Blindw. Ex.	
		Reaktion	Marke + Fortsetz.
QC Präzision	ein	Fehlergrenzen	
R%-Kontrolle	markieren	RSD-Grenze	3.0 %
		R%-Grenze	4.0

Na

Anhang Nr. 1 für Na Nages AAS(Fl) NaNagesAAS6.1

Kalibrations-Bedingungen

Kalib.Verfahren	Standard-Kalibr.	KalibEinheit	mg/L
Anzahl Std.	4	Umrechnungs-Fak.	1
Art d. RefProben		Herstellung Std.	durch Sampier
		Blindwertkorr.	aus
		Abgl.vor Bezugslösg.	aus
		Rekalibrier-Std. Nr.	3
Ausgabe-Einheit	mg/L	Umrechnungs-Fak.	1
Kalib.Statistik	Mittelwert	Messzyklen	4
		Leerzyklen	1
Stammlösung 1	50.000 mg/L	Stammlösung 2	
Stammlösung 3		Stammlösung 4	
Typ d. Kal.Kurve	nichtlinear	Achsenabschnitt	berechnen
Wichtung	aus	Grubbs-Stat.	ein (Mark.!)
Prüf. d. Kal. Kurve	1 x neu vermessen		

Proben-Statistik

Stat.Art	Mittelwert	Messzyklen	4
Sign.Niveau	95.4 %	Leerzyklen	1
Grubbs-Stat.	ein (Mark.!)		

Anhang Nr.	1	für	Na	Nages	AAS(Fl)	NaNagesAAS6.1
------------	---	-----	----	-------	---------	---------------

Na

Element	Form	Gerät	Gerät Methoden-Nr.	
Na	Nages	AAS(Fl)	NaNagesAAS7.1	1

Datum:

15.11.2001

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode	NG	BG	OMG
AKE1.1, AKEG2.1	0,005	0,016	2

geeignet für:

2 0	
Boden	AKE1.1, AKEG2.1
Pflanze	
Humus	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN 38406-14	
HFA	D39.1.5.2	
HFA-Code	D;1;1;2;-1;3;0	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einer Luft/Acetylen-Flamme auf ca. 2300 °C erhitzt. Dadurch wird ein möglichst großer Teil des zu bestimmenden Elements in den atomaren Zustand überführt. Mit einer Hohlkathodenlampe wird elementspezifisches Licht erzeugt, und durch die Flamme geführt. Die Atome im Grundzustand können dieses Licht einer spezifischen Wellenlänge absorbieren, und gehen für kurze Zeit in einen angeregten Zustand über. Aus der Messung der Intensitäten des Na eingestrahlten und des um die absorbierte Lichtmenge reduzierten, austretenden Lichts kann auf die Elementkonzentration in der Lösung geschlossen werden.

Störungen:

Na wird in der Luft/Acetylen-Flamme teilweise ionisiert. Diese Störung kann durch CsCl/La-Zusatz (Schinkel-Lösung) beseitigt werden.

Um das schlechte Fliessverhalten, die ungleichmäßige Aerosolbildung und den hohen Na-Blindwert der NH₄Cl-Lösung zu reduzieren, werden alle Proben vor dem Messen mit H₂O bidemin. 1:5 verdünnt.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenparameter	B. Welz: Atomabsorptionsspektroskopie,
Kurzanleitung AAS(Fl) 4.1	Weinheim, 1983
Kurzanleitung AAS-DV2.1	H. Schinkel: Fresenius Z. Anal. Chem. 317
	S. 10-26, 1984

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	AAS(Fl)	NaNagesAAS7.1	2

Analysengeräte und Zubehör:

Atomabsorptionsspektrometer AAS Vario 6 Probengeber AS 52 Injektionsschalter IS5 Lachgas-Brennerkopf, modifizierte Form

Chemikalien:

Cäsiumchlorid-Lanthanchlorid-Pufferlösung nach Schinkel (Fa. Merck). Enthält 10 g/l CsCl und 100 g/l La.

Konditionierungslösung 1%-ig der Fa. Analytik Jena (Tenside, Gelantine und weitere Inhaltsstoffe)

Lösungen:

Eichung/Standards:

Stammlösungen:

Na: AAS-Standard (Fa. B. Kraft) => 5 g/l

Al, Ca, Fe, K, Mg, M: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Na

Stammlösung Standard AKE1.1: In einen 250 ml-Glaskolben werden je 0,5 ml der Mg- und Na-, je

1 ml der Fe-, Mg- und K-, 2,5 ml der Ca-, sowie 5 ml der Al - Stammlösungen gegeben. Dazu kommen 5 ml Schinkel-Lösung. Es wird mit 1 n NH₄Cl-Lösung (unbedingt gleiche Lösung wie im Perkolations-

lauf verwenden) bis zur Eichmarke aufgefüllt.

=>100 mg/l Al, 50 mg/l Ca, 20 mg/l Fe, K und Mn, 10 mg/l Mg und Na.

Achtung: Standard, Blanklösung und Kontrollstandard müssen nach der Her-

stellung in Polyethylenflaschen aufbewahrt werden.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	AAS(Fl)	NaNagesAAS7.1	3

Einzelbestimmung:

Mehrelementbestimmung:

Untersuchungsmethode: AKE1.1, AKEG1.1

Standardreihe		
	[mg/l]	
Blank:	0,0	
S1:	0,2	
S2:	0,4	
S3:	0,6	
S4:	0,8	
S5:	1,0	
Rekalibrations-	0,8	
Standard		

	Al	Ca	Fe	K	Mg	Mn	Na
	[mg/l]						
Blank:	0,0	0,0	0,0	0,0	0,0	0,0	0,0
S1:	5,0	2,5	1,0	0,4	0,5	1,0	0,5
S2:	10,0	5,0	2,0	0,8	1,0	2,0	1,0
S3:	15,0	7,5	3,0	1,2	1,5	3,0	1,5
S4:	20,0	10,0	4,0	1,6	2,0	4,0	2,0
S5:	25,0	12,5		2,0			

Kontrollstandard	
K30 (QC1) 1,5 mg/l Na	

<u>K</u> a	<u>llibrierdaten</u>
\mathbb{R}^2	0,999
Char. Konz.	0,010 mg/l / 1% A

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung AAS (Fl) 4.1 beschrieben. Die Geräteparameter werden am AAS-Gerät durch Laden der Methode NaNagesAAS7.1 eingestellt. Sie sind im Anhang 1 zusammengestellt.

Der Blank und der Stammlösungsstandard werden an die entsprechenden Positionen des Probengebertellers gestellt. Die Einzelstandards werden durch den Probengeber hergestellt.

Der Blank, der Kontrollstandard, die Verdünnungslösung des Probengebers und die Proben werden im Verhältnis 1:50 mit Cäsiumchlorid-Lanthanchlorid-Pufferlösung nach Schinkel, sowie im gleichen Verhältnis mit 1 %-iger Konditionierungslösung versetzt. In die Probengefässe wird zuerst die notwendige Menge Schinkel-Lösung und Konditionierungslösung pipettiert und anschliessend die Probe zugegeben. Als Verdünnungsfaktor muß in der Probentabelle 1,04 eingegeben werden.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K30 (QC1); Messung nach der Eichung, alle 15
		Proben und nach jeder Rekalibration; erlaubte
		Abweichung 3 %.
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter des LIMS eingetragen.

Geräteparameter AAS(Fl) Analytic Jena Vario 6

Spektrometer

Linie	589.0 nm	Spalt	0.8 nm
Lampen-Typ	M-HKL	Lampenstrom	10.0 mA
Integrations-Art	wiederh. Mittelw.	Integr. Zeit	2.5 s
PMT	330.0 V	D2HKL-Strom	
AZ-Zeit	5 s	Peak-Glättung	4/11
Verzögerung	7.0 s	Betriebsart	Einstrahl
HC/BC-Verst.		HC/BC-Tastverh.	

Flamme

Flamme	C2H2/Luft		
Brenngas-Fluss	55 NL/h	Ges. Ox.	450 NL/h
Brennertyp	50 mm		
Br.Höhe	5 mm	Br.Winkel	0°
Zerstäuber-Rate	5.0 ml/min		

Probengeber

Probengeber	AS52	Teller-Typ	53 Positionen
Arbeitsweise	manuell	Spülen	nach jeder Probe
Spülzeit	10 s		
Injekt.Schalter	Aktiv	Ladezeit	
Injekt.Zeit		Probenvolumen	10 mL
Verdünnung	automat. Verdünn.	Zugabe IonPuffer	keine Zugabe
vor Verdünnung	keine Wdh.	Mischgefäß spülen	1 mal
Zugabe IonPuffer	aus		

QC-Parameter

QC-Art	KonzKontrolle		
QC Kontrollpr.1	QC 1	QC Kontrollpr.2	
Konz.	0.8 mg/L	Konz.	
Fehlergrenze	±3%	Fehlergrenze	
Messwiederh.	aus	Reaktion	Rekalib.+Fortsetz.
Kalibr.Std. Nr.	1	Erwart. Blindw. Ex	
		Reaktion	Marke + Fortsetz.
QC Präzision	ein	Fehlergrenzen	
R%-Kontrolle	markieren	RSD-Grenze	3.0 %
		R%-Grenze	4.0

Na

Anhang Nr. 1 für Na Nages AAS(Fl) NaNagesAAS7.1

Kalibrations-Bedingungen

Kalib.Verfahren	Standard-Kalibr.	KalibEinheit	mg/L
Anzahl Std.	4	Umrechnungs-Fak.	1
Art d. RefProben		Herstellung Std.	durch Sampier
		Blindwertkorr.	aus
		Abgl. vor Bezugslösg.	aus
		Rekalibrier-Std. Nr.	1
Ausgabe-Einheit	mg/L	Umrechnungs-Fak.	1
Kalib.Statistik	Mittelwert	Messzyklen	4
		Leerzyklen	1
Stammlösung 1	10.0 mg/L	Stammlösung 2	
Stammlösung 3		Stammlösung 4	
Typ d. Kal.Kurve	linear	Achsenabschnitt	berechnen
Wichtung	aus	Grubbs-Stat.	ein (Mark.!)
Prüf. d. Kal. Kurve	1 x neu vermessen		

Proben-Statistik

Stat.Art	Mittelwert	Messzyklen	4
Sign.Niveau	95.0 %	Leerzyklen	1
Grubbs-Stat.	ein (Mark.!)		

Anhang Nr.	1	für	Na	Nages	AAS(Fl)	NaNagesAAS7.1
------------	---	-----	----	-------	---------	---------------

Na

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	AAS(Fl)	NaNagesAAS7.2	1

Datum:

01.03.2003

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode	NG	BG	OMG
AKE1.1	0,01	0,03	1

geeignet für:

<i>66</i>	
Boden	AKE1.1
Pflanze	
Humus	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN 38406-13
HFA	D30.1.5.2
HFA-Code	D;1;1;2;-1;3;0

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einer Luft/Acetylenflamme auf ca. 2300 °C erhitzt. Dadurch wird ein möglichst großer Teil des zu bestimmenden Elements in den atomaren Zustand überführt. Mit einer Hohlkathodenlampe wird elementspezifisches Licht erzeugt und durch die Flamme geführt. Die Atome im Grundzustand können dieses Licht einer spezifischen Wellenlänge absorbieren und gehen für kurze Zeit in einen angeregten Zustand über. Aus der Messung der Intensitäten des eingestrahlten und des um die absorbierte Lichtmenge reduzierten, austretenden Lichts kann auf die Elementkonzentration in der Lösung geschlossen werden.

Störungen:

Na wird in der Luft/Acetylenflamme teilweise ionisiert. Diese Störung kann durch CsCl/La-Zusatz (Schinkel-Lösung) beseitigt werden.

Um das schlechte Fliessverhalten, die ungleichmäßige Aerosolbildung und den hohen Na-Blindwert der NH₄Cl-Lösung zu reduzieren, werden alle Proben vor dem Messen mit H₂O bidemin. 1:5 verdünnt.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenparameter	B. Welz: Atomabsorptionsspektroskopie,
Kurzanleitung AAS(Fl) 4.1	Weinheim, 1983
Kurzanleitung AAS-DV2.1	H. Schinkel: Fresenius Z. Anal. Chem. 317
	S. 10-26, 1984

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	AAS(Fl)	NaNagesAAS7.2	2

Analysengeräte und Zubehör:

Atomabsorptionsspektrometer AAS Vario 6 Probengeber AS 52 Injektionsschalter SFS5 Lachgas-Brennerkopf, modifizierte Form Dilutor Microlab plus 1000 der Fa. Hamilton

Chemikalien:

Cäsiumchlorid-Lanthanchlorid-Pufferlösung nach Schinkel (Fa. Merck). Enthält 10 g/l CsCl und 100 g/l La.

Lösungen:

_

Eichung/Standards:

Stammlösungen:

Na: AAS-Standard (Fa. B. Kraft) => 5 g/l K: AAS-Standard (Fa. B. Kraft) => 5 g/l

Standardlösungen:

Stammlösung Standard AKE1.1: In einen 250 ml-Glaskolben werden 1 ml K und 0.5 ml Na der

5 g/l enthaltenden Stammlösungen gegeben und mit der vorher 1:5 verdünnten und mit 20 ml Schinkel-Lösung pro Liter versetzten 1 normalen NH₄Cl-Lösung (unbedingt gleiche Lösung wie im Perkolationslauf verwenden) aufgefüllt.

=>20 mg/l K, 10 mg/l Na.

Achtung: Standard, Blank-Lösung und Kontrollstandard müssen nach der Her-

stellung in Polyethylenflaschen aufbewahrt werden.

Einzelbestimmung: Mehrelementbestimmung:

Untersuchungsmethode: AKE

<u>Standardreihe</u>		
	[mg/l]	
Blank:	0,0	
S1:	0,2	
S2:	0,4	
S3:	0,6	
S4:	0,8	
S5:	1,0	
Rekalibrations-	0,8	
standard		

	Na	K
	[mg/l]	[mg/l]
Blank:	0,0	0,0
S1:	0,2	0,4
S2:	0,4	0,8
S3:	0,6	1,2
S4:	0,8	1,6
S5:	1,0	2,0

Na

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	AAS(Fl)	NaNagesAAS7.2	3

<u>Kontrollstandard</u>		<u>]</u>	<u>Kalibrier-Daten</u>	
		\mathbb{R}^2	0,999	
QC 1	0,5 mg/l Na	Char. Konz.	0,023 mg/l / 1% A	

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung AAS (Fl) 4.1 beschrieben. Die Geräteparameter werden am AAS-Gerät durch Laden der Methode NaNagesAAS7.2 eingestellt. Sie sind im Anhang 1 zusammengestellt.

Der Blank, die Standardlösungen bzw. der Stammlösungs-Standard und die Kontrollprobe werden im Verhältnis 1:50 mit Cäsiumchlorid-Lanthanchlorid-Pufferlösung nach Schinkel versetzt.

Alle Proben werden mit dem Dilutor 1:5 verdünnt Als Verdünnungslösung wird 1:50 verdünnte Schinkel-Lösung verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K5; Messung nach der Eichung, alle 15 Proben und
		nach jeder Rekalibration; erlaubte Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Na

Auswertung/Datendokumentation:

Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter des LIMS eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung AAS-DV 2.1) bearbeitet.

für

Na Nages

AAS(Fl)

Geräteparameter AAS(Fl) Analytic Jena Vario6

Spektrometer

Linie	589.0 nm	Spalt	0.8 nm
Lampen-Typ	M-HKL	Lampenstrom	8.0 mA
Integrations-Art	wiederh. Mittelw.	Integr. Zeit	1.2 s
PMT	209.0 V	D2HKL-Strom	
AZ-Zeit	2.0 s	Peak-Glättung	4/11
Verzögerung	5.0 s	Betriebsart	Zweistrahl
HC/BC-Verst.		HC/BC-Tastverh.	

Flamme

Flamme	C2H2/Luft		
Brenngas-Fluss	75 NL/h	Ges. Ox.	540 NL/h
Brennertyp	50 mm		
Br.Höhe	5 mm	Br.Winkel	0°
Zerstäuber-Rate	5.0 ml/min		

Probengeber

<u>Na</u>

Probengeber	AS52	Teller-Typ	53 Positionen
Arbeitsweise	kontinuierlich	Spülen	nach jeder Probe
Spülzeit	10 s		
Injekt.Schalter	Aktiv		
Injekt.Zeit		Füllstand Mischgef.	20000 µl
Verdünnung	automat. Verdünn.	Zugabe IonPuffer	keine Zugabe
vor Verdünnung	keine Wdh.	Mischgefäß spülen	1 mal
Zugabe Reagenz	aus		

QC-Parameter

QC-Art	KonzKontrolle		
QC Kontrollpr.1	QC 1	QC Kontrollpr.2	QC 1
Konz.	0.800 mg/L	Konz.	0.800 mg/L
Fehlergrenze	±5%	Fehlergrenze	±5%
Messwiederh.	aus	Reaktion	Rekalib.+Fortsetz.

Anhang Nr. 1 für Na Nages AAS(Fl) NaNagesAAS7.2

Kalibrations-Bedingungen

Kalib.Verfahren	Standard-Kalibr.	KalibEinheit	mg/L
			ilig/L
Anzahl Std.	5	Umrechnungs-Fak.] 1
Art d. RefProben		Herstellung Std.	durch Sampler
		Blindwertkorr.	aus
		Abgl.vor Bezugslösg.	aus
		Rekalibrier-Std. Nr.	4
Ausgabe-Einheit	mg/L	Umrechnungs-Fak.	1
Kalib.Statistik	Mittelwert	Messzyklen	4
		Leerzyklen	1
Stammlösung 1	10.000 mg/L	Stammlösung 2	
Stammlösung 3		Stammlösung 4	
Typ d. Kal.Kurve	automatisch	Achsenabschnitt	berechnen
Wichtung	aus	Grubbs-Stat.	aus
Prüf. d. Kal. Kurve	1 x neu vermessen		

Proben-Statistik

Stat.Art	Mittelwert	Messzyklen	4
Sign.Niveau	95.0 %	Leerzyklen	1
Grubbs-Stat.	ein (Mark.!)		

Na

Anhang Nr.	1	für	Na	Nages	AAS(Fl)	NaNagesAAS7.2
------------	---	-----	----	-------	---------	---------------

Na

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Na	Nages	IC	NaNagesIC2.1	-	1

Datum:

15.12.2007

Elementbestimmungsmethode:

NATRIUM

Untersuchun	gsmethode	NG	BG	OMG
ANULLIC		0,003	0,010	7,5
geeignet für:				·
Boden				·
Humus				
Pflanze				
Wasser	ANULLIC			·
Methodenver	weise:			
Norm	In Anlehnung an DIN EN ISO 14911			·
HFA	D39.1.4.6			
HFA-Code	D:7:1:3:4:-1:1			

Prinzip der Methode/chem. Reaktionen:

Bei der Ionenchromatographie werden zunächst die Kationen über eine Austauschersäule getrennt, und anschließend über eine Leitfähigkeitsmessung detektiert und quantifiziert. Die Trennung der Kationen erfolgt durch Ionenaustausch zwischen einer stationären Phase und einer mobilen Phase. Die stationäre Phase in der Austauschersäule besteht in diesem Fall aus einem Polyvinylalkohol mit Carboxylgruppen als funktionellen Gruppen, an die entsprechende Gegenionen gebunden sind. Diese können gegen die zu trennenden Ionen der Probelösung, die in die mobile Phase eingespritzt wird, ausgetauscht werden. Der Austauschprozess ist für jedes Ion durch ein entsprechendes Ionenaustauschgleichgewicht charakterisiert, das die Verteilung zwischen mobiler und stationärer Phase bestimmt. Die verschiedenen ionischen Komponenten einer Probe wandern deshalb aufgrund ihrer unterschiedlichen Affinität zur stationären Phase unterschiedlich schnell durch die Säule und werden so getrennt. Als Eluent (= mobile Phase) wird hier eine verdünnte Salpetersäurelösung verwendet. Diese hat eine außerordentlich hohe Ionenäquivalentleitfähigkeit. Daher nimmt auf Grund der geringeren Ionenäquivalentleitfähigkeit der getrennten Kationen die Leitfähigkeit ab, wenn die Kationen die Trennsäule mit dem Eluenten verlassen und in die Leitfähigkeitsdetektorzelle gelangen. Über eine Integration der Peakfläche des gemessenen Leitfähigkeitspeaks kann auf die Konzentration des jeweiligen Kations geschlossen werden. Zur genaueren Erfassung des niedrigen Messbereichs (bis 0,25 ppm) wird das Kationen-Chromatogramm doppelt aufgenommen und mit unterschiedlichen Eichkurven für den hohen Messbereich (= linear durch Null) und den niedrigen Messbereich (= linear) ausgewertet. In dem 2-Kanal-System werden An- und Kationen parallel bestimmt.

Störungen:

Huminstoffe können durch Adsorption auf der Säule die Trenneigenschaften der Säule verändern. Weitere Störungen: siehe Gerätekurzanleitung IC2.1

Anhang:	<u>Lit.:</u>	
Anhang 1: Chromatogramm mit Retentions-	Weiß, J. Ionenchromatographie, VCH Verlag,	
zeiten	1991	
Sammelanhang S17.1: Grundeichung +	Gjerde, D.T.; Fritz, J.S. Ion Chromatography,	
Geräteparameter	2nd Edition, Hüchtig Verlag, 1987	
Gerätekurzanleitung IC2.1		

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite
Na	Nages	IC	NaNagesIC2.1	-	2

Analysengeräte und Zubehör:

- 2-Kanal-IC-Anlage Fa. Metrohm, bestehend aus:
- 2 IC-Pumpen 818
- 2 Leitfähigkeitsdetektoren 819

IC-Separation-Center 820 mit Säulenofen

IC-Liquid-Handling-Einheit 833

2 Pulsationsdämpfer

IC-Eluent-Degaser 837

IC-Probengeber 838

Probenröhrchen mit Durchstichdeckel

Säulen:

a. Anionen-Säule: Metrosep A Supp 5 -100 mit Vorsäule Metrosep A Supp 4/5

b. Kationen-Säule: Metrosep C3 -250 mit Vorsäule Metrosep C3 S Guard

2 Metrosep RP-Guard

Probenschleifen:

a. Anionen: 20 µl

b. Kationen: 50 µl

Software:

a. zur Anlagensteuerung: IC-Net

b. zur Chromatogrammauswertung: MagIC-Net

Chemikalien:

Salpetersäure, HNO₃, 1 M

Na

Lösungen:

Eluent-Kationen: In einen 2 l-Messkolben werden 10 ml 1 M Salpetersäure gegeben und mit

H₂O demin. reinst auf 2 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

1 g/l Na: 1 g/l Natrium als Natriumnitrat \Rightarrow 1 g/l Na

Stammlösung II: Je 1 ml K-, NH₄-, Na-, Ca-, und Mg-Stammlösung werden in einen 100 ml-

Messkolben mit H₂O demin. reinst auf 100 ml aufgefüllt.

 \Rightarrow 0,01 g/l K, NH₄, Na, Ca, Mg.

Element	Form	Gerät	Methoden-Nr.	Lapis alt	Seite	
Na	Nages	IC	NaNagesIC2.1	-	3	

Haltbarkeit:

Die Stammlösung II ist ca. 1 Monat geschlossen im Kühlschrank haltbar.

	Kontrollstandard
K1IC:	2,0 mg/l Na
K2IC:	0,1 mg/l Na

Das Gerät wird durch eine aufwendige Grundeichung (siehe Sammelanhang S17.1) mit insgesamt 19 Standards für 2 Eichbereiche geeicht. Die Standards für den niedrigen Messbereich werden mit der Stammlösung II und für den hohen Messbereich mit den 1 g/l-Lösungen hergestellt. Diese Grundeichung wird durch die Kontrollstandards K1IC und K2IC vor jeder Messung geprüft. Bei Abweichungen von mehr als 5 % (K1IC), bzw. 10 % (K2IC) muss die Ursache für die zu hohe Abweichung gefunden und abgestellt, oder eine neue Grundeichung durchgeführt werden.

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung IC2.1 beschrieben.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt1.1	K1IC (2,0 mg/l Na), K2IC (0,1 mg/l Na), Messung
		nach der Eichung, alle 15 Proben; erlaubte
		Abweichung 5 % (K1IC), bzw. 10 % (K2IC).
Wiederholungsmessungen	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1IC mit-
		gemessen; erlaubte Abweichung 5 %.

Auswertung/Datendokumentation:

Im Anschluss an die Messung müssen alle Chromatogramme daraufhin kontrolliert werden, ob die automatische Flächenintegration richtig durchgeführt wurde. Gegebenenfalls muss eine Nachintegrationen vorgenommen werden.

Die Natriumkonzentrationen sind in die entsprechenden Datenlisten einzutragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS zu bearbeiten.

Anhang Nr. 1 für Na Nages IC NaNagesIC2.1

Chromatogramm der Kationenmessung mit Retentionszeiten:

Chromatogramm des Kontrollstandards K1IC

	Element	Form	Gerät	Methoden-Nr.	Seite
	Na	Nages	ICP(sim)	NaNagesICP5.1	1
]	Elementbe	<u>stimmun</u>	gsmethode:	Datum:	1.7.2000

NATRIUM

Untersuchungsmethode	NG	BG	OMG
AKT2.1	0,15	0,51	15

geeignet für:

Boden	AKT2.1
Humus	
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D39.1.5.4
HFA-Code	D;4;2;2;-1;-1;1

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000 °C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit verschiedenen Photozellen gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Um eine möglichst hohe Messempfindlichkeit zu erreichen, wird eine axial gestellte Argonplasmafackel eingesetzt, was zu einer 2-5-fach höheren Signalintensität führt (günstigeres Signal-Rausch-Verhältnis).

Störungen:

Durch Matrixeinflüsse kommt es zu Verschiebungen des Untergrundes. Diese werden durch Setzen eines Untergrundkorrekturpunktes an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:		<u>Lit.:</u>
Anhang 1: Linienstörungen und	ihre Korrektur	Montaser, Golightly: Inductively Coupled
Sammelanhang S9.3: Gerätepa	rameter für ver-	Plasmas in Analytical Atomic Spectrometry;
schiedene	e Methoden	Weinheim, 1987
Kurzanleitung ICP2.1		
Kurzanleitung ICP-DV1.2/2.1		

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP5.1	2

ICAP 61E Trace Analyser der Fa. Thermo Jarrell Ash mit axialer Plasmafackel Zyklonmischkammer und Meinhard-Zerstäuber Argonbefeuchter der Fa. Thermo Jarrell Ash Probengeber TJA 300 (Proben - Rack Typ 70) Rechner mit Software Thermospec (Version 6.0) Multipette der Fa. Eppendorf

Chemikalien:

-

Lösungen:

-

Eichung/Standards:

Stammlösungen:

Na: AAS-Standard (Fa. B. Kraft) => 5 g/l

Ca, K, Mg: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Na

Standardlösung AKT2: In einen 250 ml-Glaskolben werden 2,5 ml Ca-, jeweils 1 ml Mg- und K-

sowie 0,5 ml Na- der 5 g/l enthaltenden Stammlösungen gegeben und mit der Perkolationslösung (unbedingt gleiche Lösung wie im Perkola-

tionslauf verwenden) auf 250 ml aufgefüllt.

=> 50 mg/l Ca, 20 mg/l Mg, 20 mg/l K, 10 mg/l Na.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP5.1	3

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Na auch andere Elemente enthalten (siehe Sammelanhang S9.3), für die verschiedenen Methoden verwendet:

<u>Standards</u>	
Blank	0 mg/l Na
AKT2	10 mg/l Na

	Kontrollstandard
K5	10 mg/l Na

Methode:	AKT
Linie:	Na
Wellenlänge:	588.995
Messbereich [mg/l]:	BG – OMG
<u>Standards:</u>	Blank
	AKT2
Bemerkungen:	Peak Offset
	Position
	+11
	Untergrund-
	korrektur:
	-24

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP2.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S9.3 zusammengestellt.

Die Messung der Proben erfolgt ohne Y als internem Standard, weil sich die Y- und die Barium-Triäthanollösung schlecht mischen. Deshalb wird der für andere Methoden nötige Ansaugschlauch für die Y-Lösung abgeklemmt.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K5; Messung nach der Eichung, alle 24 Proben	
		nach jeder Eichungswiederholung; erlaubte Abwei-	
		chung 5 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP5.1	4

Auswertung/Datendokumentation:

Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm ICPUNKER bzw. RELAQS (siehe Kurzanleitung ICP-DV1.2 bzw. 2.1) bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP7.1	1

15.02.2003

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL1.1, UFBL1.1, DAN1.1, DAN2.2	0,008	0,027	30

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1, UFBL1.1
Humus	
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885		
HFA	D39.1.4.4 / D39.1.6.4		
HFA-Code	D;4;1;2;2;-1;0		

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen Na kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Gesamtmatrixstörungen werden durch CsCl-Zusatz minimiert. Viskositätsschwankungen aufgrund unterschiedlicher Gesamtsalzkonzentrationen werden durch Messung mit internem Standard ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenvergleich	Nölte: ICP Emissionsspektroskopie für
Sammelanhang S13.1: Geräteparameter für ver-	Praktiker; Weinheim, 2002
schiedene Methoden	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP3.1	Plasmas in Analytical Atomic Spectrometry;
Kurzanleitung ICP-DV2.1	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP7.1	2

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Standard-Injektorrohr 1,5 mm für wässrige und salpetersaure Lösungen Zyklonmischkammer und Meinhard-Zerstäuber Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva Mischsystem für internen Standard und Matrixanpassung Multipette der Fa. Eppendorf

Chemikalien:

Cäsiumchlorid (CsCl) p.a. Salpetersäure (HNO₃), 65 %, p.a Scandium (Sc) Standardlösung 1 g/l für ICP in HNO₃ 2 mol/l

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Scandium/Cäsium-Lösung: 1,26 g CsCl werden in einem 1 l-Glaskolben eingewogen, mit 10 ml

Scandium-Standardlösung sowie 30 ml konz. HNO₃ versetzt und mit H₂O

demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Na: AAS-Standard (Fa B. Kraft) => 5 g/l Na Al, Fe, K, Mg, Mn, P, S: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung HE10: In einen 250 ml-Glaskolben werden 0,25 ml der Mn-, je 0,5 ml der Fe-

und Mg-, sowie je 1 ml der K-, Na-, P- und S-Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO_3 65 % p.a. versetzt und mit H_2O

bidemin. auf 250 ml aufgefüllt.

=> 5 mg/l Mn, 10 mg/l Fe und Mg, 20 mg/l K, Na, P und S.

Standardlösung HE20: In einen 250 ml-Glaskolben werden jeweils 1 ml der Al-, Ca-, Mg- und

Mn-Stammlösungen gegeben. Es werden 7,5 ml HNO₃ 65 % p.a. zugege-

ben und mit H₂O bidemin. auf 250 ml aufgefüllt.

=> 20 mg/l Al, Ca, Mg und Mn.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP7.1	3

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Na auch andere Elemente enthalten (siehe Sammelanhang S13.1), für die verschiedenen Methoden verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Na
HE10	20,0 mg/l Na
HE20	0,0 mg/l Na

	Kontrollstandard
K1	10,0 mg/l Na

Methode:	ANULL
	EXT1:2H2O1.1
	GBL1.1
	UFBL1.1
	DAN1.1Pflanze
	DAN2.2Pflanze
Linie:	Na
Wellenlänge:	589.592
Meßbereich [mg/l]:	BG – OMG
<u>Standards:</u>	Blank
	HE10
Bemerkungen:	<u>Untergrund-</u>
	Korrektur:
	Pos. links: 5
	Pixelanzahl:2
	Pos. rechts: 17
	Pixelanzahl:2

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml HNO₃ 65 %, p.a. in 250 ml).

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S13.1 zusammengestellt.

Die Messung der Proben erfolgt mit Zusatz von CsCl zur Erhöhung der Salzkonzentration und Vereinheitlichung der Probenmatrix sowie mit Zusatz von Sc als internem Standard. Dazu wird über ein T-Stück und einen 2. Kanal der Schlauchpumpe zur Probenzuführung die Scandium/Cäsium-Lösung im Verhältnis Probe:Lösung von 10:1 der Probe kontinuierlich zudosiert und über eine Glasrohrspirale mit 5 Windungen gemischt.

Wässrige Proben werden vor dem Messen mit 225 µl HNO₃ konz. pro 7,5 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

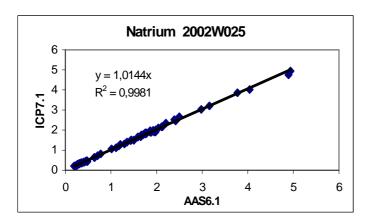
Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP7.1	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 16 Proben und
		nach jeder Eichungswiederholung; erlaubte Abwei-
		chung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		, and the second
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1
		mitgemessen; erlaubte Abweichung 5 %
Na/Cl-Bilanz	QNaCl1.1	Siehe Methodenbeschreibung

Auswertung/Datendokumentation:


Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Anhang Nr. 1 für Na Nages ICP(sim) NaNagesICP7
--

Methodenvergleich ICP ICAP61E mit ICP Iris Advantage

Im folgenden sind Vergleichsmessungen zwischen der AAS-Methode NaNagesAAS6.1 und der hier beschriebenen Methode dargestellt.

5.) Zusammenfassung der Vergleichsmessungen von ca. 70 Proben einer Wasserserie: Die Grafik zeigt den Vergleich zwischen der AAS6.1-Messung mit der ICP7.1-Messung. Die Vergleichbarkeit der beiden Messungen ist gut. Die Abweichung liegt bei maximal 1,5 %.

Anhang Nr.	1	für	Na	Nages	ICP(sim)	NaNagesICP7.1
------------	---	-----	----	-------	----------	---------------

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP7.2	1

1.03.2006

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL1.1, UFBL1.1, DAN1.1, DAN2.2	0,004	0,012	30

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1, UFBL1.1
Humus	
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D39.1.4.4 / D39.1.6.4
HFA-Code	D;4;1;2;-1;-1;0

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen Na kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:		<u>Lit.:</u>
Sammelanhang S13.:	Geräteparameter für ver-	Nölte: ICP Emissionsspektroskopie für
	schiedene Methoden	Praktiker; Weinheim, 2002
Kurzanleitung ICP3.1		Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP-DV	72.1	Plasmas in Analytical Atomic Spectrometry;
		Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP7.2	2

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Standard-Injektorrohr 1,5 mm für wässrige und salpetersaure Lösungen Zyklonmischkammer und Meinhard-Zerstäuber Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva Multipette der Fa. Eppendorf

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Na: ICP-Standard (Fa. B. Kraft => 1 g/l Na
Na: AAS-Standard (Fa. B. Kraft) => 5 g/l Na
Al, Ca, Fe, K, Mg, Mn: ICP-Standard (Fa. B. Kraft) => jeweils 1 g/l
Al, Ca, Fe, K, Mg, Mn, P, S: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

in, ou, ro, ri, rig, rim, r, or rin is standards (rui B. rinut) > jowens o g

Standardlösungen:

Standardlösung HE1: In einen 500 ml-Glaskolben werden je 0,5 ml der K- und Na, sowie je

0,25 ml der Al, Ca, Fe, Mg und Mn enthaltenden ICP-Stammlösungen gegeben. Dazu kommen je 0,1 ml der P- und S- AAS-Stammlösungen. Der Kolben wird mit 15 ml HNO $_3$ 65 % p.a. versetzt und mit H $_2$ O

bidemin. auf 500 ml aufgefüllt.

=>0,5 mg/l Al, Ca, Fe, Mg und Mn, 1 mg/l K, Na, P und S.

Standardlösung HE10: In einen 500 ml-Glaskolben werden 0,5 ml der Mn-, je 1 ml der Fe- und

Mg-, sowie je 2 ml der K-, Na-, P- und S - AAS-Stammlösungen gegeben. Der Kolben wird mit 15 ml HNO_3 65 % p.a. versetzt und mit

H₂O bidemin. auf 500 ml aufgefüllt.

=> 5 mg/l Mn, 10 mg/l Fe und Mg, 20 mg/l K, Na, P und S.

Standardlösung HE20: In einen 500 ml-Glaskolben werden jeweils 2 ml der Al-, Ca-, Mg- und

Mn- AAS-Stammlösungen gegeben. Es werden 15 ml HNO₃ 65 % p.a.

zugegeben und mit H₂O bidemin. auf 500 ml aufgefüllt.

=> 20 mg/l Al, Ca, Mg und Mn.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP7.2	3

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Na auch andere Elemente enthalten (siehe Sammelanhang S13.2), für die verschiedenen Methoden verwendet:

	<u>Standards</u>		
Blank	0,0 mg/l Na		
HE1	1,0 mg/l Na		
HE10	20,0 mg/l Na		
HE20	0,0 mg/l Na		

	Kontrollstandard
K1	10,0 mg/l Na

Methode:	ANULL	ANULL
<u>Methode.</u>		· -
	EXT1:2H2O1.1	EXT1:2H2O1.1
	GBL1.1	GBL1.1
	UFBL1.1	UFBL1.1
	DAN1.1Pflanze	DAN1.1Pflanze
	DAN2.2Pflanze	DAN2.2Pflanze
Linie:	Na	Na
Wellenlänge:	589.592	589.592
Messbereich [mg/l]:	BG – 1	1 – OMG
<u>Standards:</u>	Blank	Blank
	HE1	HE10
Bemerkungen:	Untergrund-	Untergrund-
	Korrektur:	Korrektur:
	Pos. links: 5	Pos. links: 5
	Pixelanzahl:2	Pixelanzahl:2
	Pos. rechts: 17	Pos. rechts: 17
	Pixelanzahl:2	Pixelanzahl:2

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml HNO₃ 65 %, p.a. in 250 ml).

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S13.2 zusammengestellt.

Wässrige Proben werden vor dem Messen mit 225 µl HNO₃ konz. pro 7,5 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

Element	nt Form Gerät Methoden-Nr.		Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP7.2	4

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 16 Proben und	
		nach jeder Eichungswiederholung; erlaubte Abweichung 3 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung	
IBW			
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung	
NFV			
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung	
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung	
Standardmaterial QStM1.1		Alle 50 Proben wird der Standard Wasser HE1	
		mitgemessen; erlaubte Abweichung 5 %	
Na/Cl-Bilanz	QNaCl1.1	Siehe Methodenbeschreibung	

Auswertung/Datendokumentation:

Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Element Form		Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP7.3	1

1.03.2008

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode	NG	BG	OMG
ANULL, EXT1:2H2O1.1, GBL1.1, UFBL1.1, DAN1.1, DAN2.2	0,004	0,012	30

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1, UFBL1.1
Humus	
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D39.1.4.4 / D39.1.6.4
HFA-Code	D;4;1;2;-1;-1;0

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen Na kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>	
Sammelanhang S13.3: Geräteparameter für ver-	Nölte: ICP Emissionsspektroskopie für	
schiedene Methoden	Praktiker; Weinheim, 2002	
Kurzanleitung ICP3.1	Montaser, Golightly: Inductively Coupled	
Kurzanleitung ICP-DV2.1	Plasmas in Analytical Atomic Spectrometry;	
	Weinheim, 1987	

Element	Form	Form Gerät Methoden-Nr.		Seite
Na	Nages	ICP(sim)	NaNagesICP7.3	2

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Zyklonmischkammer und Meinhard-Zerstäuber Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva Multipette der Fa. Eppendorf

Chemikalien:

Salpetersäure (HNO₃), 65 %, p.a

Lösungen:

30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt. Spülsäure:

Eichung/Standards:

Stammlösungen:

Na: Standard (Fa. B. Kraft) => 5 g/l Na

Al, Ca, Fe, K, Mg, Mn, P, S: Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

In einen 1000 ml Glas-Kolben werden je 0,1 ml der Al-, Mg-, Mn-, Na-Standardlösung HE 0.5:

und S-, 1 ml der K-, 2 ml der Fe-, sowie je 4 ml der Ca- und P-Stammlösungen gegeben. Der Kolben wird mit 30 ml HNO₃ 65 % p.a.

versetzt und mit H₂O bidemin. auf 1000 ml aufgefüllt.

=> 0,5 mg/l Al, Mg, Mn, Na und S, 5 mg/l K, 10 mg/l Fe, 20 mg/l Ca

und P.

Standardlösung HE 2.5: In einen 1000 ml-Glaskolben werden je 0,5 ml der Al-, Ca-, Fe-, K-, Mn-

> und S-, je 2 ml der Mg- und P-, sowie 4 ml der Na-Stammlösungen gegeben. Der Kolben wird mit 30 ml HNO₃ 65 % p.a. versetzt und mit

H₂O bidemin. auf 1000 ml aufgefüllt.

=> 2,5 mg/l Al, Ca, Fe, K, Mn und S, 10 mg/l Mg und P, 20 mg/l Na.

In einen 1000 ml-Glaskolben werden je 0,1 ml der Ca-, Fe- und K-, je 1 Standardlösung HE 5:

> ml der Mn-, Na-, P- und S-, sowie jeweils 4 ml der Al- und Mg-Stammlösungen gegeben. Es werden 30 ml HNO₃ 65 % p.a. zugegeben

und mit H₂O bidemin. auf 1000 ml aufgefüllt.

=> 0.5 mg/l Ca, Fe und K, 5 mg/l Mn, Na, P und S, 20 mg/l Al und Mg.

Standardlösung HE 10: In einen 1000 ml-Glaskolben werden 0,1 ml der P-, 0,5 ml der Mg-, je 1

> ml der Al- und Fe, je 2 ml der Ca-, K-, Mn- und Na-, sowie 4 ml der S -Stammlösungen gegeben. Es werden 30 ml HNO₃ 65 % p.a. zugegeben

und mit H₂O bidemin. auf 1000 ml aufgefüllt.

=> 0,5 mg/l P, 2,5 mg/l Mg, 5 mg/l Al und Fe, 10 mg/l Ca, K, Mn und

Na, 20 mg/l S

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP7.3	3

Standardlösung HE 20:

In einen 1000 ml-Glaskolben werden je 0,5 ml der Na- und P-, je 1 ml der Ca- und Mg-, 1,5 ml der Fe-, je 2 ml der Al- und S-, sowie jeweils 4 ml der K- und Mn-Stammlösungen gegeben. Es werden 30 ml HNO $_3$ 65 % p.a. zugegeben und mit H $_2$ O bidemin. auf 1000 ml aufgefüllt. => 2,5 mg/l Na und P, 5 mg/l Ca und Mg, 7,5 mg/l Fe, 10 mg/l Al und S, 20 mg/l K und Mn.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Na auch andere Elemente enthalten (siehe Sammelanhang S13.3), für die verschiedenen Methoden verwendet:

<u>Standards</u>		
Blank	0.0 mg/l No	
	0,0 mg/l Na	
HE 0.5	1,0 mg/l Na	
HE 2.5	20,0 mg/l Na	
HE 5	5,0 mg/l Na	
HE 10	10,0 mg/l Na	
HE 20	2,5 mg/l Na	

<u>Kontrollstandard</u>	
K1	10,0 mg/l Na

		ı
Methode:	ANULL	ANULL
	EXT1:2H2O1.1	EXT1:2H2O1.1
	GBL1.1	GBL1.1
	UFBL1.1	UFBL1.1
	DAN1.1Pflanze	DAN1.1Pflanze
	DAN2.2Pflanze	DAN2.2Pflanze
Element:	Na	Na
Wellenlänge:	589.592	589.592
Messbereich [mg/l]:	BG – 2,5	2,5 – OMG
Standards:	Blank	HE 2.5
	HE 0.5	HE 5
	HE 20	HE 10
		HE 20
Bemerkungen:	Untergrund-	Untergrund-
	Korrektur	Korrektur
	Pos. links: 5	Pos. links: 5
	Pixelanzahl:2	Pixelanzahl:2
	Pos. rechts: 17	Pos. rechts: 17
	Pixelanzahl:2	Pixelanzahl:2

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml HNO₃ 65 %, p.a. in 250 ml).

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP7.3	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S13.3 zusammengestellt.

Wässrige Proben werden vor dem Messen mit 180 µl HNO₃ konz. pro 6 ml Probe versetzt.

Achtung: Wegen der Säurezugabe bei wässrigen Proben beträgt der Verdünnungsfaktor 1,03.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 20 Proben und
		nach jeder Eichungswiederholung; erlaubte Abwei-
		chung 3 %.
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Ionen/Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen/Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser HE1
		mitgemessen; erlaubte Abweichung 5 %
Na/Cl-Bilanz	QNaCl1.1	Siehe Methodenbeschreibung

Auswertung/Datendokumentation:

Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP8.1	1

10.03.2003

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode	NG	BG	OMG
DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1	0,008	0,027	30

geeignet für:

Boden	DAN1.1, DAN2.2, DANF1.1, OAKW1.1
Humus	DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885		
HFA	D39.1.6.4		
HFA-Code	D;4;1;2;2;-1;0		

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen Na kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Gesamtmatrixstörungen werden durch CsCl-Zusatz minimiert. Viskositätsschwankungen aufgrund unterschiedlicher Gesamtsalzkonzentrationen werden durch Messung mit internem Standard ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S14.1: Geräteparameter für ver-	Nölte: ICP Emissionsspektroskopie für
schiedene Methoden	Praktiker; Weinheim, 2002
Kurzanleitung ICP3.1	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP-DV2.1	Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP8.1	2

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Standard-Injektorrohr 1,5 mm für wässrige und salpetersaure Lösungen Zyklonmischkammer und Meinhard-Zerstäuber

Zykioiiiiisciikaiiiiiei uliu Meiiliaiu-Zeis

Probengeber 222 XL der Fa. Gilson

Rechner mit Software Teva

Mischsystem für internen Standard und Matrixanpassung

Multipette der Fa. Eppendorf

Chemikalien:

Cäsiumchlorid (CsCl) p.a.

Salpetersäure (HNO₃), 65 %, p.a.

Scandium (Sc)-Standardlösung 1 g/l für ICP in HNO₃ 2 mol/l

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Scandium/Cäsium-Lösung: 1,26 g CsCl werden in einem 1 l-Glaskolben eingewogen, mit 10 ml

Scandium-Standardlösung sowie 30 ml konz. HNO₃ versetzt und mit H₂O

demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Na: AAS-Standard (Fa B. Kraft) => 5 g/l Na

Al, Ca, Fe, K, Mg, Mn, P, S: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung A1: In einen 250 ml-Glaskolben werden 0,25 ml der Mn, je 0,5 ml der Fe-

und Mg-, sowie je 1 ml der Na-, P-, und S-Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % p.a. versetzt und mit H₂O bidemin.

aufgefüllt.

=> 5 mg/l Mn, 10 mg/l Fe und Mg, 20 mg/l Na, P und S.

Standardlösung A2: In einen 250 ml-Glaskolben werden je 1 ml der Al-, K- und Mn- sowie

0,5 ml der Ca-Stammlösung gegeben. Der Kolben wird mit 7,5 ml HNO₃

65 % p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 20 mg/l Al, K und Mn, 10 mg/l Ca.

Standardlösung A3: In einen 250 ml-Glaskolben werden jeweils 2,5 ml der Al-, Ca-, Fe-, K-

und Mg-Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO₃

65 % p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 50 mg/l Al, Ca, Fe, K und Mg.

Standardlösung A4: In einen 250 ml-Glaskolben werden jeweils 5 ml der Al-, Ca- und Fe-

Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % p.a.

versetzt und mit H_2O bidemin. aufgefüllt.

=> 100 mg/l Al, Ca und Fe.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP8.1	3

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Na auch andere Elemente enthalten (siehe Sammelanhang S14.1), für die verschiedenen Methoden verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Na
A1	20,0 mg/l Na
A2	0,0 mg/l Na
A3	0,0 mg/l Na
A4	0,0 mg/l Na

	Kontrollstandard
K1	10,0 mg/l Na

Methode:	DAN1.1Humus
	DAN2.2Humus
	DANF1.1Boden
	DANF1.1Humus
	OAKW1.1Boden
	OAKW1.1Humus
	OAKWEG1.1
Linie:	Na
Wellenlänge:	589.592
Messbereich [mg/l]:	BG - OMG
Standards:	Blank
	A1
Bemerkungen:	Untergrund-
	Korrektur:
	Pos. links: 5
	Pixelanzahl:2
	Pos. rechts: 17
	Pixelanzahl:2

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml HNO₃ 65 %, p.a. in 250 ml).

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S14.1 zusammengestellt.

Die Messung der Proben erfolgt mit Zusatz von CsCl zur Erhöhung der Salzkonzentration und Vereinheitlichung der Probenmatrix sowie mit Zusatz von Sc als internem Standard. Dazu wird über ein T-Stück und einen 2. Kanal der Schlauchpumpe zur Probenzuführung die Scandium/Cäsium-Lösung im Verhältnis Probe:Lösung von 10:1 der Probe kontinuierlich zudosiert und über eine Glasrohrspirale mit 5 Windungen gemischt.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP8.1	4

Königswasseraufschluss-Lösungen (OAKW) werden vor dem Messen mit einem Dilutor 1:5 verdünnt.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K1; Messung nach der Eichung, alle 16 Proben un nach jeder Eichungswiederholung; erlaubte Abwe	
		chung 3 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial	QStM1.1	Messung der Standardaufschlusslösungen ISE974-	
		LösungDANF und ISE974LösungKöWa; erlaubte	
		Abweichung bei HE 5 %, bei SM 10 % vom Sollwert	

Auswertung/Datendokumentation:

Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP8.2	1

01.05.2005

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode	NG	BG	OMG
DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1	0,008	0,027	30

geeignet für:

Boden	DAN1.1, DAN2.2, DANF1.1, OAKW1.1
Humus	DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885	
HFA	D39.1.6.4	
HFA-Code	D;4;1;2;-1;-1;0	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen Na kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Gesamtmatrix-Störungen werden durch CsCl-Zusatz minimiert.

Anhang:	<u>Lit.:</u>
Sammelanhang S14.2: Geräteparameter für	ver- Nölte: ICP Emissionsspektroskopie für
schiedene Methoden	Praktiker; Weinheim, 2002
Kurzanleitung ICP3.1	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP-DV2.1	Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP8.2	2

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Standard-Injektorrohr 1,5 mm für wässrige und salpetersaure Lösungen

Zyklonmischkammer und Meinhard-Zerstäuber

Probengeber 222 XL der Fa. Gilson

Rechner mit Software Teva

Mischsystem für internen Standard und Matrixanpassung

Multipette der Fa. Eppendorf

Dilutor der Fa. Hamilton Microlab plus 1000

Chemikalien:

Cäsiumchlorid (CsCl) p.a.

Salpetersäure (HNO₃), 65 %, p.a.

Salpetersäure (HNO₃), 65 %, suprapur.

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Cäsium-Lösung: 1,26 g CsCl werden in einem 1 l-Glaskolben eingewogen, mit 30 ml

konz. HNO₃ versetzt und mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Na: AAS-Standard (Fa B. Kraft) => 5 g/l Na

Al, Ca, Fe, K, Mg, Mn, P, S: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Ti, Zn: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Standardlösungen:

Standardlösung A1SM: In einen 250 ml PFA-Kolben werden je 2,5 ml der Al- und Mg-, 0,25 ml

der Cd-, Co-, Cr-, Cu- und Ni- sowie 0,5 ml der Zn-ICP-Stammlösungen, sowie je 1 ml der Na-, P- und S - AAS-Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO_3 65 %, suprapur versetzt und mit H_2O

bidemin. aufgefüllt.

=> 20 ppm Na, P und S, 10 ppm Al und Mg, je 1000 ppb Cd, Co, Cr, Cu

und Ni, 2000 ppb Zn.

Standardlösung A2SM: In einen 250 ml PFA-Kolben werden je 2,5 ml der Ca- und Fe-, je 1 ml

der Mn- und Ba- und 0,5 ml der Pb - ICP-Stammlösungen, sowie 0,5 ml der 5 g/l K- AAS-Stammlösung gegeben. Der Kolben wird mit 7,5 ml

HNO₃ 65 % suprapur versetzt und mit H₂O bidemin. aufgefüllt.

=> 10 ppm Ca, Fe und K, 4 ppm Mn und Ba, 2000 ppb Pb.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP8.2	3

Standardlösung A3SM: In einen 250 ml-Glaskolben werden jeweils 2,5 ml der Al-, Ca-, Fe-, K-

und Mg- und 1 ml der Mn - AAS-Stammlösungen, sowie 2,5 ml der 1 g/l Ti- ICP-Stammlösung gegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 %

p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 50 mg/l Al, Ca, Fe, K und Mg 20 ppm Mn, 10 ppm Ti.

Standardlösung A4: In einen 250 ml-Glaskolben werden jeweils 5 ml der Al-, Ca- und Fe-

AAS-Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 %

p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 100 mg/l Al, Ca und Fe.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Na auch andere Elemente enthalten (siehe Sammelanhang S14.2), für die verschiedenen Methoden verwendet:

<u>Standards</u>		
Blank	0,0 mg/l Na	
A1SM	20,0 mg/l Na	
A2SM	0,0 mg/l Na	
A3SM	0,0 mg/l Na	
A4	0,0 mg/l Na	

	Kontrollstandard
K24	10,0 mg/l Na

Methode:	DAN1.1Humus
	DAN2.2Humus
	DAN1.1Boden
	DANF1.1Boden
	DANF1.1Humus
	OAKW1.1Boden
	OAKW1.1Humus
	OAKWEG1.1
Linie:	Na
Wellenlänge:	589.592
Messbereich [mg/l]:	BG - OMG
Standards:	Blank
	A1SM
Bemerkungen:	Untergrund-
	korrektur:
	Pos. links: 5
	Pixelanzahl:2
	Pos. rechts: 17
	Pixelanzahl:2

Der Blank wird in 2 %-iger HNO_3 angesetzt (= 7,5 ml HNO_3 65 %, suprapur in 250 ml).

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP8.2	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S14.2 zusammengestellt.

Die Messung der Proben erfolgt mit Zusatz von CsCl zur Erhöhung der Salzkonzentration Standard. Dazu wird über ein T-Stück und einen 2. Kanal der Schlauchpumpe zur Probenzuführung die Cäsiumlösung im Verhältnis Probe : Lösung von 10:1 der Probe kontinuierlich zudosiert und über eine Glasrohrspirale mit 5 Windungen gemischt.

Königswasseraufschlusslösungen (OAKW) werden vor dem Messen mit einem Dilutor 1:5 verdünnt.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
		K24; Messung nach der Eichung, alle 16 Proben und nach jeder Eichungswiederholung; erlaubte Abwei-
		chung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Messung der Standardaufschlusslösungen ISE974-
		LösungDANF und ISE974LösungKöWa; erlaubte
		Abweichung bei HE 5 %, bei SM 10 % vom Sollwert

Auswertung/Datendokumentation:

Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP10.1	1

01.01.2004

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode	NG	BG	OMG
AKE1.1, AKEG1.1, AKEG2.1	0,050	0,154	15

geeignet für:

Boden	AKE1.1, AKEG1.1, AKEG2.1
Humus	AKEG1.1, AKEG2
Pflanze	
Wasser	

Methodenverweise:

Norm	n Anlehnung an DIN EN ISO 11885		
HFA	39.1.5.4		
HFA-Code	D;4;1;2;-1;-1;0		

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen Na kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Methodenvergleich	Nölte: ICP Emissionsspektroskopie für
Sammelanhang S15.1: Geräteparameter für ver-	Praktiker; Weinheim, 2002
schiedene Methoden	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP3.1	Plasmas in Analytical Atomic Spectrometry;
Kurzanleitung ICP-DV2.1	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP10.1	2

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Zyklonmischkammer und Meinhard-Zerstäuber Injektorrohr 2 mm für stark salzhaltige Lösungen Argonbefeuchter der Fa. Thermo Elemental Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva Multipette der Fa. Eppendorf

Chemikalien:

keine

Lösungen:

keine

Eichung/Standards:

Stammlösungen:

Na: AAS-Standard (Fa B. Kraft) => 5 g/l Na Al, Ca, Fe, K, Mg, Mn: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung AKE, AKEG: In einen 250 ml-Glaskolben werden 0,25 ml der Mn-Stammlösung, je 0,5 ml der Fe-, K, Mg- und Na-Stammlösungen, 1 ml der Al- und 2,5 ml der Ca-Stammlösung gegeben. Der Kolben wird mit der jeweiligen Perkolationslösung (unbedingt gleiche Lösungen wie im Perkolationslauf verwenden) bis zur Eichmarke aufgefüllt.

=> 20 mg/l Al, 50 mg/l Ca, 10 mg/l Fe, K, Mg und Na, 5 mg/l Mn.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Na auch andere Elemente enthalten (siehe Sammelanhang S15.1), für die verschiedenen Methoden verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Na
AKE	10,0 mg/l Na
AKEG	_

	Kontrollstandard
K5	10,0 mg/l Na

Methode:	AKE
	AKEG
Linie:	Na
Wellenlänge:	589.592
Meßbereich [mg/l]:	BG – OMG
Standards:	Blank
	AKE
	AKEG
Bemerkungen:	Untergrund-
	Korrektur:
	Pos. links: 5
	Pixelanzahl: 2
	Pos. rechts: 16
	Pixelanzahl: 2

Der Blank wird in der jeweiligen Perkolationslösung angesetzt.

Durchführung:

Den Argonbefeuchter sowie das 2 mm-Injektorrohr installieren.

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

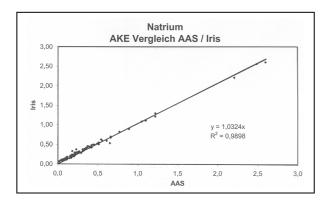
Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S15.1 zusammengestellt.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K5; Messung nach der Eichung, alle 16 Proben und
		nach jeder Eichungswiederholung; erlaubte Abwei-
		chung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:


Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Anhang Nr. 1 für Na Nages ICP(sim) NaNagesICP10.1

Methodenvergleich AAS Vario 6 mit ICP Iris Advantage:

Im folgenden sind Vergleichsmessungen zwischen der AAS-Methode NaNagesAAS6.1 und der hier beschriebenen Methode dargestellt.

6.) Zusammenfassung der Vergleichsmessungen von ca. 80 Proben einer Boden-Serie: Die Grafik zeigt den Vergleich zwischen der AAS6.1-Messung mit der ICP10.1-Messung. Die Vergleichbarkeit der beiden Messungen ist gut. Die Abweichung liegt bei maximal 3,5 %.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP13.1	1

01.03.2004

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode	NG	BG	OMG
AKT2.1	0,017	0,054	30

geeignet für:

0 0	
Boden	AKT2.1
Humus	
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885	
HFA	D39.1.5.4	
HFA-Code D;4;1;2;-1;-1;1		

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen Na kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S16.1: Geräteparameter für ver-	Nölte: ICP Emissionsspektroskopie für
schiedene Methoden	Praktiker; Weinheim, 2002
Kurzanleitung ICP3.1	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP-DV2.1	Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Form	Gerät	Methoden-Nr.	Seite	
Nages	ICP(sim)	NaNagesICP13.1	2	

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Zyklonmischkammer und Meinhard-Zerstäuber Injektorrohr 2 mm für stark salzhaltige Lösungen Argonbefeuchter der Fa. Thermo Elemental Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva Multipette der Fa. Eppendorf

Chemikalien:

Element Na

keine

Lösungen:

keine

Eichung/Standards:

Stammlösungen:

Na: AAS-Standard (Fa B. Kraft) => 5 g/l Na Ca, K, Mg: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung AKT1: In einen 250 ml-Glaskolben werden 0,5 ml der Na- sowie je 1 ml der Ca-

K- und Mg-Stammlösungen und mit der Perkolationslösung (unbedingt gleiche Lösungen wie im Perkolationslauf verwenden) bis zur Eichmarke

aufgefüllt.

10 mg/l Na, 20 mg/l Ca, K und Mg.

Standardlösung AKT2: In einen 250 ml-Glaskolben werden 5 ml der Ca-Stammlösung gegeben

und mit der Perkolationslösung (unbedingt gleiche Lösungen wie im Per-

kolationslauf verwenden) bis zur Eichmarke aufgefüllt.

100 mg/l Ca

_	Element	Form	Gerät	Methoden-Nr.	
	Na	Nages	ICP(sim)	NaNagesICP13.1	3

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Na auch andere Elemente enthalten (siehe Sammelanhang S16.1), für die verschiedenen Methoden verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Na
AKT1	10,0 mg/l Na
AKT2	0,0 mg/l Na

	Kontrollstandard
K30	10,0 mg/l Na

Methode:	AKT2.1
Linie:	Na
Wellenlänge:	588.995
Messbereich [mg/l]:	BG – OMG
<u>Standards:</u>	Blank
	AKT1
Bemerkungen:	Untergrund-
	Korrektur:
	Pos. links: 8
	Pixelanzahl: 1
	Pos. rechts: 14
	Pixelanzahl: 1

Der Blank wird in der jeweiligen Perkolationslösung angesetzt.

Durchführung:

Den Argonbefeuchter sowie das 2 mm-Injektorrohr installieren.

Da Natrium ohne Zusatz von Sc als internem Standard gemessen wird, müssen das T-Stück und die Glasspirale aus dem Probenzuführungssystem entfernt werden.

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S16.1 zusammengestellt.

Element	Form	Gerät	Methoden-Nr.	Seite	
Na	Nages	ICP(sim)	NaNagesICP13.1	4	

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K30; Messung nach der Eichung, alle 16 Proben und nach jeder Eichungswiederholung; erlaubte Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Auswertung/Datendokumentation:

Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP15.1	1

01.10.2006

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode		BG	OMG
ANULL, EXT1:2H2O1.1, GBL1.1, UFBL1.1, DAN1.1, DAN2.2	0,01	0,03	30

geeignet für:

Boden	EXT1:2H2O1.1, GBL1.1, UFBL1.1
Humus	
Pflanze	DAN1.1, DAN2.2
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D39.1.4.4 / D39.1.6.4
HFA-Code	D;4;1;2;-1;-1;0

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

<u>Lit.:</u>	
Nölte: ICP Emissionsspektroskopie für	
Praktiker; Weinheim, 2002	
Montaser, Golightly: Inductively Coupled	
Plasmas in Analytical Atomic	
Spectrometry; Weinheim, 1987	

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP15.1	2

iCAP 6500 der Fa. ThermoFisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Laminar Flow Box FBS der Fa. Spetec, für Probengeber

Szintillationsgefässe, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

Multipette der Fa. Eppendorf

250 ml Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, suprapur Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Na: ICP-Standard (Fa B. Kraft) => 1 g/l Na Na: AAS-Standard (Fa. B. Kraft) => 5 g/l Na

Cd, Co, Cr, Cu, Ni, Pb, Zn:

Lösung A: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Cd, Co, Cr, Cu, Ni, Pb, Zn:

Lösung B: 1:10 Verdünnungen von Lösung A => jeweils 0,1 g/l

Al, Ba, Ca, Fe, K, Mg, Mn, Ti:

ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, P, S:

AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung DAN 1: In einen 250 ml-PFA-Kolben werden 0,05 ml der Cd-, je 0,1 ml der Co-,

Cr- und Ni-, sowie 0,25 ml der Cu - Lösungen B gegeben. Dazu kommen 0,025 ml der Zn-, je 0,25 ml der Fe- und Mn-, sowie 1 ml der Ca - ICP-Standardlösungen. Des Weiteren werden 0,05 ml der P-, je 0,25 ml der K- und S-, sowie je 1 ml der Al-, Mg- und Na - AAS-Standardlösungen zugegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % suprapur versetzt

und mit H₂O bidemin. aufgefüllt.

=> 20 $\mu g/l$ Cd, 40 $\mu g/l$ Co, Cr und Ni, 100 $\mu g/l$ Cu und Zn, 1 mg/l Fe,

Mn und P, 4 mg/l Ca, 5 mg/l K und S, 20 mg/l Al, Mg und Na.

Standardlösung DAN 2: In einen 250 ml PFA-Kolben werden 0,025 ml der Cd-, je 0,05 ml der

Co-, Cr- und Ni-, sowie je 0,5 ml der Cu- und Pb - Lösungen B gegeben. Dazu kommen 0,075 ml der Zn-, je 0,1 ml der Al-, Fe- und Mg-, 0,25 ml

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP15.1	3

der Ba-, sowie je 2,5 ml der Ca- und Mn - ICP-Standardlösungen. Des Weiteren werden je 0,25 ml der Na- und P-, sowie 1,5 ml der K - AAS- Standardlösungen zugegeben. Der Kolben wird mit 7,5 ml HNO $_3$ 65 % suprapur versetzt und mit $_2$ O bidemin. aufgefüllt.

=> 10 μ g/l Cd, 20 μ g/l Co, Cr und Ni, 200 μ g/l Cu und Pb, 300 μ g/l Zn, 0,4 mg/l Al, Fe und Mg, 1 mg/l Ba, 5 mg/l Na und P, 10 mg/l Ca und Mn, 30 mg/l K.

Standardlösung DAN 3:

In einen 250 ml-PFA-Kolben werden 0,075 ml der Cd,- 0,15 ml der Crund Ni-, 0,2 ml der Co- und 0,75 ml der Cu - Lösungen B gegeben. Dazu kommen 0,1 ml der Ca-, 0,15 ml der Zn-, je 0,25 ml der Na- und Ti-, sowie je 0,5 ml der Al-, Fe-, Mg- und Mn - ICP-Standardlösungen. Des Weiteren werden 0,5 ml der P-, je 1 ml der K- und S-, sowie 1,5 ml der Mg - AAS-Standardlösungen zugegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % suprapur versetzt und mit H₂O bidemin. aufgefüllt.

=> 30 μ g/l Cd, 60 μ g/l Cr und Ni, 80 μ g/l Co, 300 μ g/l Cu, 600 μ g/l Zn, 0,4 mg/l Ca, 1 mg/l Na und Ti, 2 mg/l Al, Fe und Mn, 10 mg/l P, 20 mg/l K und S, 30 mg/l Mg.

Standardlösung DAN 4:

In einen 250 ml-PFA-Kolben werden 0,1 ml der Cd-, 0,15 ml der Co-, je 0,2 ml der Cr- und Ni-, sowie je 1 ml der Cu- und Pb - Lösungen B gegeben. Dazu kommen 0,1 ml der Mn- 0,125 ml der K-, 0,25 ml der Zn-, sowie 1 ml der Fe - ICP-Standardlösungen. Des Weiteren werden je 0,5 ml der Al- und Mg-, je 1 ml der Ca- und P-, sowie 1,5 ml der Na - AAS-Standardlösungen zugegeben.

=> 40 μ g/l Cd, 60 μ g/l Co, 80 μ g/l Cr und Ni, 400 μ g/l Cu und Pb, 1000 μ g/l Zn, 0,4 mg/l Mn, 0,5 mg/l K, 4 mg/l Fe, 10 mg/l Al und Mg, 20 mg/l Ca und P, 30 mg/l Na.

Standardlösung DAN 5:

In einen 250 ml-PFA-Kolben werden 0,5 ml der Mn-, sowie 1,5 ml der Fe - ICP-Standardlösungen gegeben. Dazu kommen je 0,25 ml der Alund Mg- und je 0,5 ml der K-, Na- und S-, 0,75 ml der P-, sowie 2 ml der Ca- AAS-Standardlösungen.

=> 2 mg/l Mn, 5 mg/l Al und Mg, 6 mg/l Fe, 10 mg/l K, Na und S, 15 mg/l P, 40 mg/l Ca.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP15.1	4

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Na auch andere Elemente enthalten (siehe Sammelanhang S19.1), verwendet:

<u>Standards</u>		
Blank	0,0 mg/l Na	
DAN 1	20,0 mg/l Na	
DAN 2	5,0 mg/l Na	
DAN 3	1,0 mg/l Na	
DAN 4	30,0 mg/l Na	
DAN 5	10,0 mg/l Na	

<u>Kontrollstandards</u>		
K1	10,0 mg/l Na	
K26	2,0 mg/l Na	

Methode:	ANULL	
	DAN1.1	
	DAN2.2	
	EXT1:2H2O1.1	
	GBL1.1	
	UFBL1.1	
Element:	Na	
Wellenlänge:	589.592	
Plasmabeobachtung:	radial	
Messbereich [mg/l]:	BG – OMG	
Standards:	Blank	
	DAN 1	
	DAN 2	
	DAN 3	
	DAN 4	
	DAN 5	
Bemerkungen:	Pixelbreite: 3	
	Pixelhöhe: 1	
	<u>Untergrundkorrektur:</u>	
	Pos. links: 6	
	Pixelanzahl: 1	
	Pos. rechts: 16	
	Pixelanzahl: 2	

Der Blank wird in 2%-iger HNO₃ angesetzt (7,5 ml HNO₃ 65 %, suprapur in 250 ml H₂O bidemin.)

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP15.1	5

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP4.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S19.1 zusammengestellt.

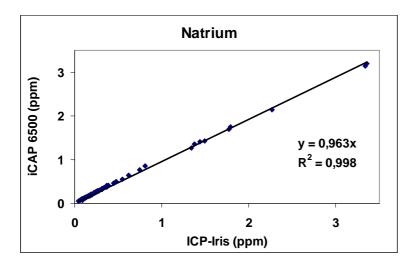
Pflanzenaufschlusslösungen (Untersuchungsmethode DAN2.2) werden direkt aus den säuregespülten Szintillationsgefässen (20 ml, Fa. Sarstedt) gemessen.

Pflanzenaufschlusslösungen (Untersuchungsmethode DAN1.1) werden in 13 mm Proberöhrchen abgefüllt und gemessen.

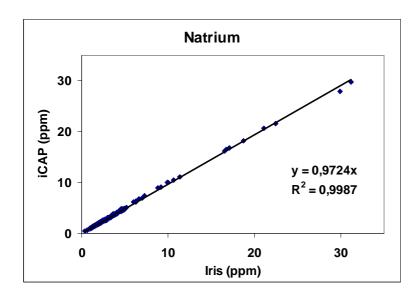
Alle anderen wässrigen Lösungen werden nach dem Abfüllen in 13 mm Proberöhrchen mit 0,2 ml HNO₃, 65 %, p.a. versetzt. Als Verdünnungsfaktor muss in diesem Fall 1,03 in die Probengebertabelle eingegeben werden.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):


Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K1 oder K26; Messung nach der Eichung, alle
		20 Proben und nach jeder Eichungswiederholung;
		erlaubte Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Ionen / Leitfähigkeitsbilanz	QIB1.2	Siehe Methodenbeschreibung
IBW		
Ionen / Leitfähigkeitsbilanz	QIB2.1	Siehe Methodenbeschreibung
NFV		
Ionenbilanz EU	QIBEU1.1	Siehe Methodenbeschreibung
Leitfähigkeitsbilanz EU	QLFEU1.1	Siehe Methodenbeschreibung
Standardmaterial	QStM1.1	NHARZ :erlaubte Abweichung 10 %,
		Wasser HE1, erlaubte Abweichung 5 %

Auswertung/Datendokumentation:


Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Gerätevergleich ICP-Iris / iCAP 6500:

Darstellung einer Vergleichsmessung der Methode KKgesICP7.2 und der hier beschriebenen Methode an der Pflanzenaufschluss-Serie 2006P001 (80 Proben).

Darstellung einer Vergleichsmessung der Methode KKgesICP7.2 und der hier beschriebenen Methode an der Wasserserie 2008W019 (240 Proben).

Na

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP16.1	1

Datum:

01.02.2007

Elementbestimmungsmethode:

NATRIUM

Untersuchungsmethode	NG	BG	OMG
DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1	0,005	0,015	30

geeignet für:

Boden	DANF1.1, OAKW1.1
Humus	DAN1.1, DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885	
HFA	D39.1.6.4	
HFA-Code	D;4;1;2;-1;-1;0	

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen Na kann auf die Elementkonzentrationen in der Probelösung geschlossen werden. Die Plasmabetrachtung erfolgt radial.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S20.1: Geräteparameter für	Nölte: ICP Emissionsspektroskopie für
verschiedene Methoden	Praktiker; Weinheim, 2002
Kurzanleitung ICP4.1	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP-DV2.1	Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Element	Form	Gerat	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP16.1	2

Analysengeräte und Zubehör:

iCAP 6500 der Fa. ThermoFisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Laminar Flow Box FBS der Fa. Spetec, für Probengeber

Szintillationsgefässe, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

Multipette der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Dilutor der Fa. Hamilton, Microlab plus 1000

Chemikalien:

Salpetersäure (HNO₃), 65 %, suprapur Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Na: ICP-Standard (Fa B. Kraft) => 1 g/l Na AAS-Standard (Fa. B. Kraft) => 5 g/l Na Na:

Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K,

Mg, Mn, Ni, Pb, Ti, Zn: Lösung A: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Cd, Co, Cr, Cu, Ni: Lösung B: 1:10 Verdünnungen von Lösung A => jeweils 0,1 g/l

Al, Ca, Fe, K, Mg, Mn, P, S:

AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung GA1:

In einen 250 ml-PFA-Kolben werden 0,125 ml der Cd-, sowie je 0,25 ml der Co-, Cr-, Cu- und Ni-Lösungen B gegeben. Dazu kommen 0,1 ml der Zn-, sowie je 0,5 ml der Al-, Fe-, Mg- Mn- und Na-ICP-Standardlösungen. Des Weiteren werden je 0,1 ml der P- und S, 0,25 ml der Ksowie 1 ml der Ca-AAS-Standardlösungen zugegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % suprapur versetzt und mit H₂O bidemin. aufgefüllt.

=> 50 μg/l Cd, 100 μg/l Co, Cr, Cu und Ni, 400 μg/l Zn, 2 mg/l Al, Fe, Mn, Na, P und S, 4 mg/l Mg, 5 mg/l K, 20 mg/l Ca.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP16.1	3
Standardlös	sung GA2:	0,5 ml der Co-, Cr-, Cu- und I ml der Zn-, 0,25 ml der K-, sowie je 5 ml der Al- und werden je 0,5 ml der Mn-, Na	n werden 0,25 ml der Cd-, sowie Ni-Lösungen B gegeben. Dazu kom je 0,5 ml der Mg- und Pb-, 1 ml Fe-ICP-Standardlösungen. Des und P-, sowie 2 ml der Ca-AAS-S en wird mit 7,5 ml HNO ₃ 65 % aufgefüllt.	der Ba-, Weiteren Standard-
			Cr, Cu und Ni, 800 µg/l Zn, 2000 Ba, 10 mg/l Mn, Na und P, 20 mg/	
Standardlös	sung GA3:	Cu-Lösungen B gegeben. Daz und 2 ml der Ti-ICP-Standard	werden 0,375 ml der Cd- und 0,7 zu kommen 0,25 ml der Ca-, 0,3 ml lösungen. Des Weiteren werden je der Al-, K- und Mg-, sowie 5 ml een.	l der Zn- 1 ml der
		=> 150 μg/l Cd, 300 μg/l Cu, Mn, Na, P und S, 40 mg/l Al ι	1200 μg/l Zn, 1 mg/l Ca, 8 mg/l Ti, and K, 100 mg/l Fe.	, 20 mg/l
Standardlös	sung GA4:	Na- und Mn- sowie 0,5 ml de kommen 0,05 ml der P-, 0,25 der Fe- sowie je 5 ml der	er Ti-ICP-Standardlösungen gegebe 5 ml der S-, je 1 ml der K- und M Al- und Ca-AAS-Standardlösung IO ₃ 65 % suprapur versetzt und	en. Dazu Ig-, 2 ml gen. Der
		=> 500 μg/l As, 1 mg/l Mn, und Mg, 40 mg/l Fe, 100 mg/l	Na und P, 2 mg/l Ti, 5 mg/l S, 20 Al und Ca.) mg/l K
Standardlös	sung GA5:	1 ml der Cr-Lösungen B geg ml der Ti-ICP-Standardlösun	werden je 0,75 ml der Co- und Ngeben. Dazu kommen 0,4 ml der Zgen. Des Weiteren werden je 0,25 e 0,5 ml der Al-, Fe-, K- Mg- und	in- und 4 5 ml der

=> 300 $\mu g/l$ Co und Ni, 400 $\mu g/l$ Cr, 1600 $\mu g/l$ Zn, 5 mg/l Ca, Mn, Na und P, 10 mg/l Al, Fe, Mg, K und S, 16 mg/l Ti.

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP16.1	4

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Na auch andere Elemente enthalten (siehe Sammelanhang S20.1), verwendet:

	<u>Standards</u>
Blank	0,0 mg/l Na
GA1	2,0 mg/l Na
GA2	10,0 mg/l Na
GA3	20,0 mg/l Na
GA4	1,0 mg/l Na
GA5	5,0 mg/l Na

	Kontrollstandard
K24	10,0 mg/l Na

Methode:	DAN1.1Humus
<u>Methode.</u>	DAN2.2Humus
	DANF1.1Boden
	DANF1.1Humus
	OAKW1.1Boden
	OAKW1.1Humus
	OAKWEG1.1
Element:	Na
Wellenlänge:	589.592
Plasmabeobachtung:	radial
Messbereich [mg/l]:	BG – OMG
Standards:	Blank
	GA1
	GA2
	GA3
	GA4
	GA4 GA5
D 1	
Bemerkungen:	Pixelbreite: 3
	Pixelhöhe: 1
	<u>Untergrund-</u>
	Korrektur:
	Pos. links: 5
	Pixelanzahl: 2
	Pos. rechts: 15
	Pixelanzahl: 2

Der Blank wird in 2%-iger HNO_3 angesetzt (7.5 ml HNO_3 65 %, suprapur in 250 ml H_2O bidemin.)

Element	Form	Gerät	Methoden-Nr.	Seite
Na	Nages	ICP(sim)	NaNagesICP16.1	5

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP4.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S20.1 zusammengestellt. Als Probengefässe werden säuregespülte Szintillationsgefässe (20 ml, Fa. Sarstedt) verwendet. Königswasseraufschlusslösungen (OAKW) werden vor dem Messen mit einem Dilutor 1:5 verdünnt.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung	
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und	
		nach jeder Eichungswiederholung; erlaubte	
		Abweichung 3 %	
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie	
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974 Lösung, NFVH;	
		erlaubte Abweichung 10 %	

Auswertung/Datendokumentation:

Die gemessenen Na-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Na

Element	Form	Gerät	Methoden-Nr.	Seite	
Na	Nages	ICP(sim)	NaNagesICP16.1	6	

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)/USN	NiNigesICP3.2	1

Datum:

01.07.2000

Elementbestimmungsmethode:

NICKEL

Untersuchungsmethode	NG	BG	OMG
DANF1.1, DAN2.2, OAKW1.1	0,17	0,54	75

geeignet für:

Boden	OAKW1.1, DANF1.1
Humus	OAKW1.1, DANF1.1, DAN2.2
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D42.1.6.6
HFA-Code	D;4;2;3;1;-1;0

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000 °C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit verschiedenen Photozellen gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Um eine möglichst hohe Messempfindlichkeit zu erreichen, wird eine axial gestellte Argonplasmafackel und ein Ultraschall-Zerstäuber (USN) eingesetzt. Dadurch wird der Plasmafackel eine wesentlich höhere Aerosolkonzentration zugeführt, was zu einer 5-10-fach höheren Signalintensität führt.

Störungen:

Die Elemente Mn und Si stören durch Linienüberlagerung bei hoher Konzentration und die Elemente Co, Mo und Fe stören durch einen strukturierten Untergrund. Werden die im Anhang 1 genannten Konzentrationen der Störelemente überschritten, so sind die gemessenen Ni-Gehalte falsch

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen eines Untergrundkorrekturpunktes an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Gesamtmatrix-Störungen bei der Verwendung eines USN werden durch CsCl-Zusatz minimiert. Viskositätsschwankungen aufgrund unterschiedlicher Gesamtsalzkonzentrationen werden durch Messung mit internem Standard ausgeglichen.

Anhang:	<u>Lit.:</u>	
Anhang 1: Linienstörungen und ihre Korrektur	Montaser, Golightly: Inductively Coupled	
Sammelanhang S10.2: Geräteparameter für ver-	Plasmas in Analytical Atomic Spectrometry;	
schiedene Methoden	Weinheim, 1987	
Kurzanleitung ICP2.1		
Kurzanleitung ICP-DV1.2/2.1		

Element Form		Gerät	Methoden-Nr.	Seite	
Ni	Niges	ICP(sim)/USN	NiNigesICP3.2	2	

Analysengeräte und Zubehör:

ICAP 61E Trace Analyser der Fa. Thermo Jarrell Ash mit axialer Plasmafackel

Probengeber TJA 300 (umgebaut auf 2 Racks mit je 48 Szintillationsgefässen (20 ml, Fa. Sarstedt)) mit Staubabdeckhaube

Rechner mit Software Thermospec (Version 6.0) Ultraschall-Zerstäuber U 5000 AT⁺ der Fa. Cetac

Mischsystem für internen Standard und Matrixanpassung

Multipette der Fa. Eppendorf

Chemikalien:

Cäsiumchlorid (CsCl) p.a.

Salpetersäure (HNO₃), 65 %, suprapur

Salpetersäure (HNO₃), 65 %, p.a

Yttrium (Y) Standardlösung 1000 mg/l für ICP in 5 % HNO₃

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Yttrium/Cäsium-Lösung: 0,63 g CsCl werden in einem 1 l-Glaskolben eingewogen, mit 50 ml

Yttrium-Standardlösung sowie 30 ml konz. HNO₃ versetzt und mit H₂O

demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Ni: ICP-Standard (Fa. B. Kraft) => 1 g/l Cd: ICP-Standard (Fa. B. Kraft) => 1 g/l

1 ml davon wird in einen 100 ml PFA-Kolben gegeben, mit 3 ml HNO₃

65 %, suprapur versetzt und mit H₂O bidemin. aufgefüllt

=> 0.01 g/l Cd

Al, As, Ba, Co, Cr, Cu, Fe, Mn, Pb, Zn: ICP-Standards (Fa. B. Kraft)

=> jeweils 1 g/l

Al, Ca, Fe, Mg, Mn, P, S, Ti: AAS-Standards (Fa. B. Kraft)

=> jeweils 5 g/l

Standardlösungen:

Standardlösung GAUT5: In einen 250 ml PFA-Kolben werden 1,25 ml der 0,01 g/l enthaltenden

Cd-Stammlösung, 0,05 ml Co-, jeweils 0,125 ml Cr-, Cu- und Ni-, jeweils 0,75 ml Pb- und Zn-, sowie jeweils 2,5 ml Mn-, Fe- und Ba- der 1 g/l enthaltenden Stammlösungen gegeben. Es werden 7,5 ml HNO₃ 65 %, suprapur zugegeben und mit H_2O bidemin. auf 250 ml aufgefüllt. => 50 μ g/l Cd, 200 μ g/l Co, 500 μ g/l Cr, 500 μ g/l Cu, 500 μ g/l Ni,

 $3000 \mu g/l Pb$, $3000 \mu g/l Zn$, 10 mg/l Ba, 10 mg/l Fe, 10 mg/l Mn.

Element		Form	Gerät	Methoden-Nr.	Seite
	Ni	Niges	ICP(sim)/USN	NiNigesICP3.2	3

Standardlösung HUGAKWUT7: In einen 250 ml-Glaskolben werden jeweils 2,5 ml Al-, Ca- und Fe-, jeweils 1 ml Mg-, Mn- und Ti-, 0,25 ml P- und 0,5 ml S- der 5 g/l enthaltenden AAS-Standardlösung gegeben. Dazu kommen 0,125 ml der 1g/l enthaltenden As-Stammlösung. Es werden 7,5 ml HNO3 65 %, p.a zugegeben und mit H_2O bidemin. auf 250 ml aufgefüllt. => 50 mg/l Al, 50 mg/l Ca, 50 mg/l Fe, 20 mg/l Mg, 20 mg/l Mn, 5 mg/l P, 10 mg/l S, 20 mg/l Ti und 0,5 mg/l As.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ni auch andere Elemente enthalten (siehe Sammelanhang S10.2), für die verschiedenen Methoden verwendet (Der Standard HUGAKWUT7 wird wegen der Störelemente benötigt. Er enthält kein Ni):

<u>Standards</u>							
Blank:	0,0 μg/l Ni						
GAUT5	500,0 μg/l Ni						
HUGAKWUT7	0,0 μg/l Ni						

<u>Kontrollstandard</u>				
K22	100,0 μg/l Ni			

Methode:	KWUT
	GAUT
	DANHUT
Linie:	Ni
Wellenlänge:	231,604
Messbereich [µg/l]:	BG - OMG
<u>Standards:</u>	Blank
	GAUT5
	HUGAKWUT7
Bemerkungen:	Untergrund-
	Korrektur:
	-22

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml HNO₃ 65 %, suprapur in 250 ml).

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP2.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S10.2 zusammengestellt. Die Messung der Proben erfolgt mit Zusatz von CsCl zur Erhöhung der Salzkonzentration und Vereinheitlichung der Probenmatrix sowie mit Zusatz von Y als internem Standard. Dazu wird über ein T-Stück und einen 2. Kanal der Schlauchpumpe zur Probenzuführung die Yttrium/Cäsium-Lösung im Verhältnis Probe:Lösung von 10:1 der Probe kontinuierlich zudosiert und über eine Glasrohrspirale mit 5 Windungen gemischt.

Element	Form	Gerät	Methoden-Nr.	Seite	
Ni	Niges	ICP(sim)/USN	NiNigesICP3.2	4	l

Als Probengefässe für den umgebauten Probengeber TJA 300 werden säuregespülte Szintillationsgefässe (20 ml, Fa. Sarstedt) verwendet.

Königswasseraufschlußlösungen (KWUT) von Bodenaufschlüssen werden mit einem Dilutor 1:10 verdünnt und anschließend mit einer Multipette 225 µl HNO₃ konz. zugesetzt.

Königswasseraufschlußlösungen (KWUT) von Humusaufschlüssen werden mit einem Dilutor 1:5 verdünnt.

Gesamtaufschlußlösungen (GAUT) von Bodenaufschlüssen werden mit 2 %iger HNO₃ 1:2 verdünnt.

<u>Achtung:</u> Bei KW-Boden- und Humus-, sowie GA-Bodenaufschlüssen müssen beim Erstellen der Autosampler-Table (siehe Gerätekurzanleitung ICP2.1) folgende Verdünnungsfaktoren eingegeben werden:

Probelösung	<u>Faktor</u>
KW-Lsg. Boden	10,15
KW-Lsg. Humus	5,00
GA-Lsg. Boden	2,00

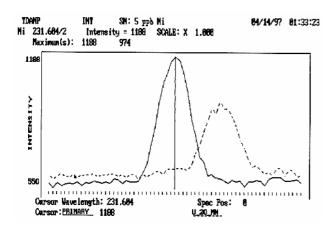
Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung			
Kontrollstandard	QKSt.1.1	K22; Messung nach der Eichung, alle 16 Proben und			
		nach jeder Eichungswiederholung; erlaubte Abwei-			
		chung 5 %			
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie			
Standardmaterial	QStM1.1	Messung der Standardaufschlusslösungen ISE974-			
		LösungDANF und ISE974LösungKöWa; erlaubte			
		Abweichung bei HE 5 %, bei SM 10 % vom Sollwert			

Auswertung/Datendokumentation:

Die gemessenen Ni-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm ICPUNKER bzw. RELAQS (siehe Kurzanleitung ICP-DV1.2 bzw. 2.1) bearbeitet.


Anhang Nr.	1	für	Ni	Niges	ICP(sim)/USN	NiNigesICP3.2
------------	---	-----	----	-------	--------------	---------------

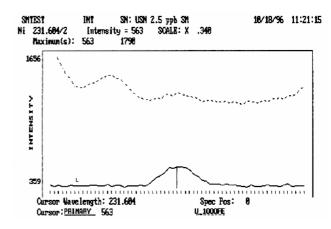
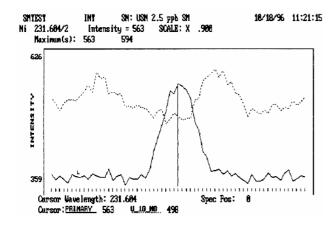

Linienstörungen und ihre Korrektur

Tabelle 1a: Störungen und ihre Korrektur bzw. Bewertung bei der Ni-Messung:

Stör- ele- ment	Spek- trum (Abb.)	Korrekturen:						
		Inter	elementkorr	ektur		rgrund- rektur	Keine Korrektur	
		Faktor- ermittlung (Abb.)	Korrektur- faktor 1	Korrektur- faktor 2	Unter- grund- punkte	Störung ab (ppm):	Störung ab (ppm)	
Mn	1						50	
Fe	2						100	
Mo	3						1	
Co	4						50	
Si	5						10	


Abb. 1: Mn (20 ppm) Störung bei Ni (5 ppb) Abb. 2: Fe (1000 ppm) Störung bei Ni (2,5 ppb)

Anhang Nr.	1	für	Ni	Niges	ICP(sim)/USN	NiNigesICP3.2
------------	---	-----	----	-------	--------------	---------------

Abb. 3: Mo (10 ppm) Störung bei Ni (2,5 ppb) Abb. 4: Co (1 ppm) Störung bei Ni (2,5 ppb)

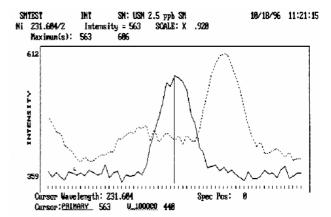
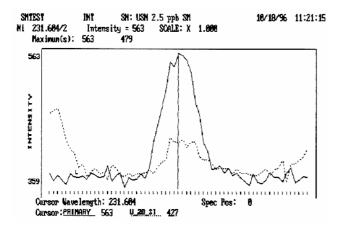



Abb. 5: Si (20 ppm) Störung bei Ni (2,5 ppb)

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP4.1	1

Datum:

01.01.2001

Elementbestimmungsmethode:

NICKEL

Untersuchungsmethode	NG	BG	OMG
EXTEDTA1.1	1,25	4	1500

geeignet für:

<u> </u>	
Boden	EXTEDTA1.1
Humus	
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885		
HFA	D42.1.5.2		
HFA-Code	D;4;2;2;-1;-1;0		

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000 °C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit verschiedenen Photozellen gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzen- Ni trationen in der Probelösung geschlossen werden.

Um eine möglichst hohe Messempfindlichkeit zu erreichen, wird eine axial gestellte Argonplasmafackel eingesetzt, was zu einer 2-5-fach höheren Signalintensität führt (günstigeres Signal-Rausch-Verhältnis).

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen eines Untergrundkorrekturpunktes an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S12.1: Geräteparameter für ver-	Montaser, Golightly: Inductively Coupled
schiedene Methoden	Plasmas in Analytical Atomic Spectrometry;
Kurzanleitung ICP2.1	Weinheim, 1987
Kurzanleitung ICP-DV1.2/2.1	

Element	Form	Gerät	Methoden-Nr.	Seite	
Ni	Niges	ICP(sim)	NiNigesICP4.1	2	

Analysengeräte und Zubehör:

ICAP 61E Trace Analyser der Fa. Thermo Jarrell Ash mit axialer Plasmafackel

Zyklonmischkammer und Meinhard-Zerstäuber

Argonbefeuchter der Fa. Thermo Jarrell Ash

Probengeber TJA 300 (umgebaut auf 2 Racks mit je 48 Szintillationsgefässen (20 ml, Fa. Sarstedt))

mit Staubabdeckhaube

Rechner mit Software Thermospec (Version 6.0)

Multipette der Fa. Eppendorf

Chemikalien:

Na-EDTA (Titriplex III) $(C_{10}H_{14}N_2Na_2O_8 * 2H_2O)$

Lösungen:

0,1m EDTA-Lösung: In einen 1 l-Kolben wird eine Ampulle Titriplex III gegeben und mit H₂O

bidemin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Ni: ICP-Standard (Fa. B. Kraft) \Rightarrow 1 g/l

As, Ba, Cd, Cr, Co, Cu, Pb, Zn: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Al, Fe, Ti: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung EDTA1: In einen 250 ml PFA-Kolben werden jeweils 0,25 ml Cd-, Co-, Cr-, Cu-

und Ni-, 0,5 ml Zn- sowie 2,5 ml Pb- der 1 g/l enthaltenden Stammlösungen gegeben und mit 0,1 molarer EDTA-Lösung auf 250 ml aufge-

füllt.

 $=>1000 \mu g/l Cd$, $1000 \mu g/l Co$, $1000 \mu g/l Cr$, $1000 \mu g/l Cu$, $1000 \mu g/l Ni$,

 $10.000 \mu g/l Pb$, $2000 \mu g/l Zn$.

Standardlösung EDTA2: In einen 250 ml-Glaskolben werden jeweils 1 ml Al-, Fe- und Ti der 5 g/l

enthaltenden AAS-Standardlösungen gegeben. Dazu kommen 0,1 ml Asund 0,5 ml Ba- der 1g/l enthaltenden Stammlösungen. Es wird mit 0,1

molarer EDTA-Lösung auf 250 ml aufgefüllt.

 $=> 20 \text{ mg/l Al}, 20 \text{ mg/l Fe}, 20 \text{ mg/l Ti}, 2 \text{ mg/l Ba}, 400 \mu\text{g/l As}.$

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP4.1	3

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ni auch andere Elemente enthalten (siehe Sammelanhang S12.1), für die verschiedenen Methoden verwendet (Der Standard EDTA2 wird wegen der Störelemente benötigt. Er enthält kein Ni .):

	<u>Standards</u>
Blank	0 μg/l Ni
EDTA1	1000 μg/l Ni
EDTA2	0 μg/l Ni

	Kontrollstandard
K23	400,0 μg/l Ni

Methode:	EDTA
Linie:	Ni
Wellenlänge:	231,604
Messbereich [μg/l]:	BG - OMG
<u>Standards:</u>	Blank
	EDTA1
	EDTA2
Bemerkungen:	Untergrund-
	korrektur:
	-22

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP2.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S12.1 zusammengestellt.

Als Probengefässe für den umgebauten Probengeber TJA 300 werden säuregespülte Szintillationsgefässe (20 ml, Fa. Sarstedt) verwendet.

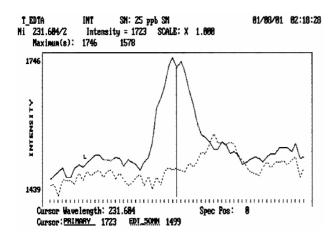
Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K23; Messung nach der Eichung, alle 16 Proben und nach jeder Eichungswiederholung; erlaubte Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP4.1	4

Auswertung/Datendokumentation:


Die gemessenen Ni-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm ICPUNKER bzw. RELAQS (siehe Kurzanleitung ICP-DV1.2 bzw. 2.1) bearbeitet.

Linienstörungen und ihre Korrektur

Tabelle 1a: Störungen und ihre Korrektur bzw. Bewertung bei der Ni-Messung:

Stör- ele- ment	Spek- trum (Abb.)		Korrekturen:				
		Inter	elementkorr	ektur		rgrund- rektur	Keine Korrektur
		Faktor- ermittlung (Abb.)	Korrektur- faktor 1	Korrektur- faktor 2	Unter- grund- punkte	Störung ab (ppm):	Störung ab (ppm)
Mn	1						100

Abb. 1: Mn (50 ppm) Störung bei Ni (25 ppb)

Anhang Nr. 1 fü	Ni	Niges ICP(sim)	NiNigesICP4.1
-----------------	----	----------------	---------------

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP8.1	1

Datum:

10.03.2003

Elementbestimmungsmethode:

NICKEL

Untersuchungsmethode	NG	BG	OMG
DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1	1,8	4,4	1500

geeignet für:

Boden	DAN2.2, DANF1.1, OAKW1.1
Humus	DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885			
HFA	D42.1.6.6			
HFA-Code D;4;1;2;2;-1;0				

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse sowie Störungen durch Linien des Elementes Fe werden durch Setzen von Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Gesamtmatrix-Störungen werden durch CsCl-Zusatz minimiert. Viskositätsschwankungen aufgrund unterschiedlicher Gesamtsalzkonzentrationen werden durch Messung mit internem Standard ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Linienstörungen und ihre Korrektur	Nölte: ICP Emissionsspektroskopie für
Sammelanhang S14.2: Geräteparameter für ver-	Praktiker; Weinheim, 2002
schiedene Methoden	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP3.1	Plasmas in Analytical Atomic Spectrometry;
Kurzanleitung ICP-DV2.1	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP8.1	2

Analysengeräte und Zubehör:

Iris Advantage der Fa. Thermo Elemental mit radialer Plasmafackel Standard-Injektorrohr 1,5 mm für wässrige und salpetersaure Lösungen Zyklonmischkammer und Meinhard-Zerstäuber Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva Mischsystem für internen Standard und Matrixanpassung Multipette der Fa. Eppendorf

Dilutor der Fa. Hamilton Microlab plus 1000

Chemikalien:

Cäsiumchlorid (CsCl) p.a. Salpetersäure (HNO₃), 65 %, p.a. Salpetersäure (HNO₃), 65 %, suprapur.

Lösungen:

Spülsäure: 30 ml konz. HNO₃ werden mit H₂O demin. auf 1 l aufgefüllt.

Scandium/Cäsium-Lösung: 1,26 g CsCl werden in einem 1 l-Glaskolben eingewogen, mit 10 ml Scandium-Standardlösung sowie 30 ml konz. HNO_3 versetzt und mit H_2O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Ni: ICP-Standard (Fa. B. Kraft) => 1 g/l Ni

Al, Ca, Fe, K, Mg, Mn, Na, P, S: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l Al, Ca, Ba, Cd, Co, Cr, Cu, Fe, Mg, Mn, Pb, Ti, Zn: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Standardlösungen:

Standardlösung A1SM: In einen 250 ml PFA-Kolben werden je 2,5 ml der Al- und Mg-, 0,25 ml

der Cd-, Co-, Cr-, Cu- und Ni- sowie 0,5 ml der Zn-ICP-Stammlösungen, sowie je 1 ml der Na-, P- und S - AAS-Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO $_3$ 65 %, suprapur versetzt und mit H_2O

bidemin. aufgefüllt.

=> 20 ppm Na, P und S, 10 ppm Al und Mg, je 1000 ppb Cd, Co, Cr, Cu

und Ni, 2000 ppb Zn.

Standardlösung A2SM: In einen 250 ml PFA-Kolben werden je 2,5 ml der Ca- und Fe-, je 1 ml

der Mn- und Ba- und 0,5 ml der Pb- ICP-Stammlösungen, sowie 0,5 ml der 5 g/l K- AAS-Stammlösung gegeben. Der Kolben wird mit 7,5 ml

HNO₃ 65 % suprapur versetzt und mit H₂O bidemin. aufgefüllt. => 10 ppm Ca, Fe und K, 4 ppm Mn und Ba, 2000 ppb Pb.

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP8.1	3

Standardlösung A3SM: In einen 250 ml-Glaskolben werden jeweils 2,5 ml der Al-, Ca-, Fe-, K-

und Mg- und 1 ml der Mn - AAS-Stammlösungen, sowie 2,5 ml der 1 g/l Ti- ICP-Stammlösung gegeben. Der Kolben wird mit 7,5 ml HNO $_3$ 65 %

p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 50 mg/l Al, Ca, Fe, K und Mg 20 ppm Mn, 10 ppm Ti.

Standardlösung A4: In einen 250 ml-Glaskolben werden jeweils 5 ml der Al-, Ca- und Fe-

AAS-Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 %

p.a. versetzt und mit H₂O bidemin. aufgefüllt.

=> 100 mg/l Al, Ca und Fe.

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ni auch andere Elemente enthalten (siehe Sammelanhang S14.2), für die verschiedenen Methoden verwendet:

	<u>Standards</u>
Blank	0,0 μg/l Ni
A1SM	1000 μg/l Ni
A2SM	0,0 µg/l Ni
A3SM	0,0 µg/l Ni
A4	0,0 µg/l Ni

	Kontrollstandard
K24	100 μg/l Ni

Methode:	DAN2.2Humus
Wethode.	DANF1.1Boden
	DANF1.1Humus
	OAKW1.1Boden
	OAKW1.1Humus
	OAKWEG1.1
Linie:	Ni
Wellenlänge:	231.604
Messbereich [µg/l]:	BG – 1500
<u>Standards:</u>	Blank
	A1SM
Bemerkungen:	<u>Untergrund-</u>
	korrektur:
	Pos. links: -
	Pixelanzahl:-
	Pos. rechts: 16
	Pixelanzahl: 1

Der Blank wird in 2 %-iger HNO₃ angesetzt (= 7,5 ml HNO₃ 65 %, suprapur in 250 ml).

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP8.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S14.2 zusammengestellt.

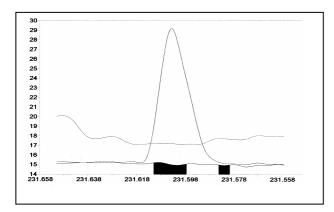
Die Messung der Proben erfolgt mit Zusatz von CsCl zur Erhöhung der Salzkonzentration und Vereinheitlichung der Probenmatrix sowie mit Zusatz von Sc als internem Standard. Dazu wird über ein T-Stück und einen 2. Kanal der Schlauchpumpe zur Probenzuführung die Scandium/Cäsium-Lösung im Verhältnis Probe:Lösung von 10:1 der Probe kontinuierlich zudosiert und über eine Glasrohrspirale mit 5 Windungen gemischt.

Königswasseraufschlusslösungen (OAKW) werden vor dem Messen mit einem Dilutor 1:5 verdünnt.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung		
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 16 Proben und		
		nach jeder Eichungswiederholung; erlaubte Abwei-		
		chung 3 %		
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie		
Standardmaterial	QStM1.1	Messung der Standardaufschlusslösungen ISE974-		
		LösungDANF und ISE974LösungKöWa; erlaubte		
		Abweichung bei HE 5 %, bei SM 10 % vom Sollwert		


Auswertung/Datendokumentation:

Die gemessenen Ni-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Anhang Nr. 1 für Ni Cdges ICP(sim) NiNigesIC	Anhang Nr.	g Nr. 1 für	Ni	Cdges	ICP(sim)	NiNigesICP8.1
--	------------	-----------------	----	-------	----------	---------------

Linienstörungen und ihre Korrektur:

Abb.1 Fe (100 ppm) Störung bei Ni231.604 (100 ppb)

Anhang Nr.	1	für	Ni	Cdges	ICP(sim)	NiNigesICP8.1
------------	---	-----	----	-------	----------	---------------

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP14.1	1

Datum:

01.09.2006

Elementbestimmungsmethode:

NICKEL

Untersuchungsmethode	NG	BG	OMG
ANULL, DAN2.2	0,07	0,22	50

geeignet für:

Boden	
Humus	
Pflanze	DAN2.2
Wasser	ANULL

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D1.1.4.2
HFA-Code	D;4;2;3;1;-1;0

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Um eine möglichst hohe Messempfindlichkeit zu erreichen, werden eine axial gestellte Plasmafackel und ein Ultraschall-Zerstäuber eingesetzt. Dadurch wird der Plasmafackel eine wesentlich höhere Aerosolkonzentration zugeführt, was zu einem 5-10-fach höheren Messsignal führt.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen. Gesamtmatrixstörungen werden durch CsCl-Zusatz minimiert. Schwankungen in Aerosolerzeugung werden durch Messung mit internem Standard beseitigt.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich Trace Analyzer /	Nölte: ICP Emissionsspektroskopie für
iCAP6500	Praktiker; Weinheim, 2002
Sammelanhang S18.1: Geräteparameter für	Montaser, Golightly: Inductively Coupled
verschiedene Methoden	Plasmas in Analytical Atomic Spectrometry;
Gerätekurzanleitung ICP4.1	Weinheim, 1987
Kurzanleitung ICP-DV2.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP14.1	2

Analysengeräte und Zubehör:

iCAP 6500 der Fa. ThermoFisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Ultraschall-Zerstäuber U 5000 AT ⁺ der Fa. Cetac

Standard-Injektorrohr 1,5 mm für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Laminar Flow Box FBS der Fa. Spetec für Probengeber

Szintillationsgefässe (20 ml, Fa. Sarstedt)

Rechner mit Software iTeva

Mischsystem für internen Standard und Matrixanpassung

Multipette der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

1000 ml-Messkolben aus Glas

Chemikalien:

Cäsiumchlorid (CsCl) p.a.

Salpetersäure (HNO₃), 65 %, p.a.

Salpetersäure (HNO₃), 65 %, suprapur

Y-Standardlösung 1000 mg/l für ICP in 5% HNO₃

Lösungen:

Spülsäure: 30 ml 65 % HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Yttrium/Cäsium-Lösung: 0,9 g CsCl werden in einem 1 l-Glaskolben eingewogen, mit 0,4 ml

Yttrium-Standardlösung sowie 30 ml 65 % HNO₃ suprapur versetzt und

mit H₂O bidemin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Ni: Lösung A: ICP-Standard (Fa B. Kraft) => 1 g/l Ni

Ni: Lösung B: 1:10 Verdünnung von Lösung A => 0,1 g/l Ni Cd, Co, Cr, Cu, Pb, Zn: Lösung A: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Cd, Co, Cr, Cu, Pb, Zn: Lösung B: 1:10 Verdünnungen von Lösung A => jeweils 0,1 g/l

Al, Ca, Ti: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Standardlösungen:

Standardlösung SM 1: In einen 250 ml PFA-Kolben werden je 50 µl der Cd-, Co-, Cr- und Ni-,

100 μ l der Cu- und Pb- sowie 625 μ l der Zn- enthaltenden Lösung B sowie 2,5 ml der 1 g/l enthaltenden Ca-ICP-Standardlösung gegeben. Der Kolben wird mit 7,5 ml HNO $_3$ 65 % suprapur versetzt und mit H $_2$ O

bidemin. aufgefüllt.

=> 20 ppb Cd, Co, Cr und Ni, 40 ppb Cu und Pb, 250 ppb Zn, 10 ppm Ca

Standardlösung IEC: In einen 250 ml PFA-Kolben werden je 1 ml der Al- und Ti-ICP-

Stammlösungen gegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 %

suprapur versetzt und mit H₂O bidemin. aufgefüllt.

=> 4 ppm Al und Ti

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP14.1	3

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ni auch andere Elemente enthalten (siehe Sammelanhang S18.1), verwendet:

	<u>Standards</u>
Blank	0,0 μg/l Ni
SM 1	20,0 μg/l Ni
IEC	0,0 µg/l Ni

	Kontrollstandard
K25	20,0 μg/l Ni

Methode:	ANULLSM
	DAN2.2
Element:	Ni
Wellenlänge:	231.604
Messbereich [μg/l]:	BG – 50
<u>Standards:</u>	Blank
	SM 1
Bemerkungen:	Pixelbreite 2
	Pixelhöhe 1
	<u>Untergrundkorrektur:</u>
	Pos. links: 1
	Pixelanzahl: 1
	Pos. rechts: 19
	Pixelanzahl: 2

Der Blank wird in 2%-iger HNO_3 angesetzt (7,5 ml HNO_3 65 %, suprapur in 250 ml H_2O bidemin.)

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP14.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP4.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisionsnummer aufgerufen. Sie sind im Sammelanhang S18.1 zusammengestellt.

Die Messung der Proben erfolgt mit Zusatz von CsCl zur Erhöhung der Salzkonzentration und Vereinheitlichung der Probenmatrix sowie mit Zusatz von Y als internem Standard. Dazu wird über ein T-Stück und einen 2. Kanal der Schlauchpumpe zur Probenzuführung die Yttrium/Cäsium-Lösung im Verhältnis Probe:Lösung von 10:1 der Probe kontinuierlich zudosiert und über eine Glasrohrspirale mit 5 Windungen gemischt.

Als Probengefässe werden säuregespülte Szintillationsgefässe (20 ml, Fa. Sarstedt) verwendet.

Wasserproben werden mit $400~\mu l$ HNO $_3~65~\%$ suprapur pro 20~ml Probe versetzt. Als Verdünnungsfaktor wird in die zu erstellende Probengebertabelle 1,02 eingegeben (siehe Gerätekurzanleitung ICP4.1).

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K25; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Alle 50 Proben wird der Standard Wasser SM1
		mitgemessen; erlaubte Abweichung 10 %


Auswertung/Datendokumentation:

Die gemessenen Ni-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Annang Nr. 1 fur Ni Niges ICP(sim) NiNigesICP14.1	Anhang Nr.	1	für	Ni	Niges	ICP(sim)	NiNigesICP14.1
---	------------	---	-----	----	-------	----------	----------------

Gerätevergleich Trace Analyzer / iCAP 6500

Darstellung einer Vergleichsmessung der Methode NiNigesICP2.2 und der hier beschriebenen Methode an der Serie 2006W042.

Anhang Nr.	1	für	Ni	Niges	ICP(sim)	NiNigesICP14.1
------------	---	-----	----	-------	----------	----------------

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP15.1	1

Datum:

01.10.2006

Elementbestimmungsmethode:

NICKEL

Untersuchungsmethode	NG	BG	OMG
DAN2.2	0,22	0,72	100

geeignet für:

Boden	
Humus	
Pflanze	DAN2.2
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D42.1.6.6
HFA-Code	D;4;2;2;-1;-1;0

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden. Um eine möglichst hohe Messempfindlichkeit zu erreichen, wird eine axiale Plasmabetrachtung gewählt.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich ICP-Trace /	Nölte: ICP Emissionsspektroskopie für
iCAP6500	Praktiker; Weinheim, 2002
Sammelanhang S19.1: Geräteparameter für	Montaser, Golightly: Inductively Coupled
verschiedene Methoden	Plasmas in Analytical Atomic Spectrometry;
Kurzanleitung ICP4.1	Weinheim, 1987
Kurzanleitung ICP-DV2.1	

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP15.1	2

Analysengeräte und Zubehör:

iCAP 6500 der Fa. ThermoFisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Laminar Flow Box FBS der Fa. Spetec, für Probengeber

Szintillationsgefässe, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

Multipette der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Chemikalien:

Salpetersäure (HNO₃), 65 %, suprapur Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Ni: Lösung A: ICP-Standard (Fa B. Kraft) => 1 g/l Ni

Ni: Lösung B: 1:10 Verdünnung von Lösung A => 0,1 g/l Ni

Cd, Co, Cr, Cu, Pb, Zn: Lösung A: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Cd, Co, Cr, Cu, Pb, Zn: Lösung B: 1:10 Verdünnungen von Lösung A => jeweils 0,1 g/l

Al, Ba, Ca, Fe, K, Mg, Mn, Na, Ti:

ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, P, S:

AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung DAN 1: In einen 250 ml-PFA-Kolben werden 0,05 ml der Cd-, je 0,1 ml der Co-,

Cr- und Ni-, sowie 0,25 ml der Cu - Lösungen B gegeben. Dazu kommen 0,025 ml der Zn-, je 0,25 ml der Fe- und Mn-, sowie 1 ml der Ca - ICP-Standardlösungen. Des Weiteren werden 0,05 ml der P-, je 0,25 ml der K- und S-, sowie je 1 ml der Al-, Mg- und Na - AAS-Standardlösungen zugegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % suprapur versetzt

und mit H₂O bidemin. aufgefüllt.

=> 20 μ g/l Cd, 40 μ g/l Co, Cr und Ni, 100 μ g/l Cu und Zn, 1 mg/l Fe,

Mn und P, 4 mg/l Ca, 5 mg/l K und S, 20 mg/l Al, Mg und Na.

Standardlösung DAN 2: In einen 250 ml-PFA-Kolben werden 0,025 ml der Cd-, je 0,05 ml der

Co-, Cr- und Ni-, sowie je 0,5 ml der Cu- und Pb - Lösungen B gegeben. Dazu kommen 0,075 ml der Zn-, je 0,1 ml der Al-, Fe- und Mg-, 0,25 ml der Ba-, sowie je 2,5 ml der Ca- und Mn - ICP-Standardlösungen. Des Weiteren werden je 0,25 ml der Na- und P-, sowie 1,5 ml der K - AAS-

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP15.1	3

Standardlösungen zugegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % suprapur versetzt und mit H₂O bidemin. aufgefüllt.

=> $10~\mu g/l$ Cd, $20~\mu g/l$ Co, Cr und Ni, $200~\mu g/l$ Cu und Pb, $300~\mu g/l$ Zn, 0,4 mg/l Al, Fe und Mg, 1 mg/l Ba, 5 mg/l Na und P, 10~m g/l Ca und Mn, 30~m g/l K.

Standardlösung DAN 3:

In einen 250 ml-PFA-Kolben werden 0,075 ml der Cd,- 0,15 ml der Crund Ni-, 0,2 ml der Co- und 0,75 ml der Cu - Lösungen B gegeben. Dazu kommen 0,1 ml der Ca-, 0,15 ml der Zn-, je 0,25 ml der Na- und Ti-, sowie je 0,5 ml der Al-, Fe-, Mg- und Mn - ICP-Standardlösungen. Des Weiteren werden 0,5 ml der P-, je 1 ml der K- und S-, sowie 1,5 ml der Mg - AAS-Standardlösungen zugegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % suprapur versetzt und mit H₂O bidemin. aufgefüllt.

=> $30 \mu g/l$ Cd, $60 \mu g/l$ Cr und Ni, $80 \mu g/l$ Co, $300 \mu g/l$ Cu, $600 \mu g/l$ Zn, 0.4 mg/l Ca, 1 mg/l Na und Ti, 2 mg/l Al, Fe und Mn, 10 mg/l P, 20 mg/l K und S, 30 mg/l Mg.

Standardlösung DAN 4:

In einen 250 ml-PFA-Kolben werden 0,1 ml der Cd-, 0,15 ml der Co-, je 0,2 ml der Cr- und Ni-, sowie je 1 ml der Cu- und Pb - Lösungen B gegeben. Dazu kommen 0,1 ml der Mn- 0,125 ml der K-, 0,25 ml der Zn-, sowie 1 ml der Fe - ICP-Standardlösungen. Des Weiteren werden je 0,5 ml der Al- und Mg-, je 1 ml der Ca- und P-, sowie 1,5 ml der Na - AAS-Standardlösungen zugegeben.

=> 40 $\mu g/l$ Cd, 60 $\mu g/l$ Co, 80 $\mu g/l$ Cr und Ni, 400 $\mu g/l$ Cu und Pb, 1000 $\mu g/l$ Zn, 0,4 mg/l Mn, 0,5 mg/l K, 4 mg/l Fe, 10 mg/l Al und Mg, 20 mg/l Ca und P, 30 mg/l Na.

Standardlösung DAN 5:

In einen 250 ml-PFA-Kolben werden 0,5 ml der Mn-, sowie 1,5 ml der Fe - ICP-Standardlösungen gegeben. Dazu kommen je 0,25 ml der Alund Mg-, je 0,5 ml der K-, Na- und S-, 0,75 ml der P-, sowie 2 ml der Ca-AAS-Standardlösungen.

=> 2 mg/l Mn, 5 mg/l Al und Mg, 6 mg/l Fe, 10 mg/l K, Na und S, 15 mg/l P, 40 mg/l Ca.

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP15.1	4

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ni auch andere Elemente enthalten (siehe Sammelanhang S19.1), verwendet:

	<u>Standards</u>
Blank	0,0 μg/l Ni
DAN 1	40,0 μg/l Ni
DAN 2	20,0 μg/l Ni
DAN 3	60,0 µg/l Ni
DAN 4	80,0 µg/l Ni
DAN 5	0,0 μg/l Ni

	Kontrollstandard
K26	40,0 µg/l Ni

	1
Methode:	DAN2.2
Element:	Ni
Wellenlänge:	231.604
Plasmabeobachtung:	axial
Messbereich [µg/l]:	BG – OMG
<u>Standards:</u>	Blank
	DAN 1
	DAN 2
	DAN 3
	DAN 4
Bemerkungen:	Pixelbreite: 3
	Pixelhöhe: 1
	<u>Untergrundkorrektur:</u>
	Pos. links: 1
	Pixelanzahl: 2
	Pos. rechts: 19
	Pixelanzahl: 2

Der Blank wird in 2%-iger HNO3 angesetzt (7,5 ml HNO3 65 %, suprapur in 250 ml H2O bidemin.)

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP15.1	5

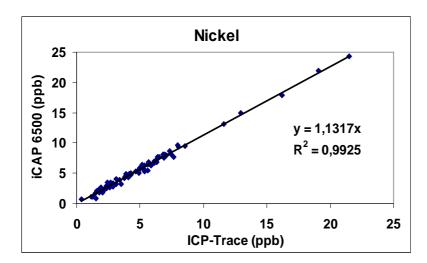
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP4.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S19.1 zusammengestellt. Als Probengefässe werden säuregespülte Szintillationsgefässe (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K26; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 4 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	NHARZ: erlaubte Abweichung 10 %


Auswertung/Datendokumentation:

Die gemessenen Ni-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.

Anhang Nr.	1	für	Ni	Niges	ICP(sim)	NiNigesICP15.1
------------	---	-----	----	-------	----------	----------------

Gerätevergleich Trace-Analyzer / iCAP 6500:

Darstellung einer Vergleichsmessung der Methode NiNigesICP2.2 und der hier beschriebenen Methode an der Pflanzenaufschluss-Serie 2006P001 (80 Proben).

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP16.1	1

Datum:

01.02.2007

Elementbestimmungsmethode:

NICKEL

Untersuchungsmethode		BG	OMG
DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1	0,32	1,02	300

geeignet für:

Boden	DANF1.1, OAKW1.1
Humus	DAN2.2, DANF1.1, OAKW1.1, OAKWEG1.1
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885
HFA	D42.1.6.6
HFA-Code	D;4;2;2;-1;-1;0

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt, und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden. Um eine möglichst hohe Messempfindlichkeit zu erreichen, wird eine axiale Plasmabetrachtung gewählt.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Anhang 1: Gerätevergleich Iris Advantage /	Nölte: ICP Emissionsspektroskopie für
iCAP6500	Praktiker; Weinheim, 2002
Sammelanhang S20.1: Geräteparameter für	Montaser, Golightly: Inductively Coupled
verschiedene Methoden	Plasmas in Analytical Atomic Spectrometry;
Kurzanleitung ICP4.1	Weinheim, 1987
Kurzanleitung ICP-DV2.1	

Ni

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP16.1	2

Analysengeräte und Zubehör:

iCAP 6500 der Fa. ThermoFisher mit axialer und radialer Plasmabetrachtung (DUO-Option)

Standard-Injektorrohr 1,5 mm, für wässrige und salpetersaure Lösungen

Probengeber ASX-520 der Fa. Cetac

Laminar Flow Box FBS der Fa. Spetec, für Probengeber

Szintillationsgefässe, 20 ml, Fa. Sarstedt

Rechner mit Software iTeva

Multipette der Fa. Eppendorf

250 ml und 500 ml-Messkolben aus PFA

Dilutor der Fa. Hamilton, Microlab plus 1000

Chemikalien:

Salpetersäure (HNO₃), 65 %, suprapur Salpetersäure (HNO₃), 65 %, p.a.

Lösungen:

Spülsäure: 30 ml 65 %. HNO₃ p.a. werden mit H₂O demin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Ni: Lösung A: ICP-Standard (Fa B. Kraft) => 1 g/l Ni

Ni: Lösung B: 1:10 Verdünnung von Lösung A => 0,1 g/l Ni

Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K,

Mg, Mn, Na, Pb, Ti, Zn: Lösung A: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l

Cd, Co, Cr, Cu: Lösung B: 1:10 Verdünnungen von Lösung A => jeweils 0,1 g/l

Al, Ca, Fe, K, Mg, Mn, Na, P, S:

AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung GA1:

In einen 250 ml-PFA-Kolben werden 0,125 ml der Cd-, sowie je 0,25 ml der Co-, Cr-, Cu- und Ni-Lösungen B gegeben. Dazu kommen 0,1 ml der Zn-, sowie je 0,5 ml der Al-, Fe-, Mg- Mn- und Na-ICP-Standardlösungen. Des Weiteren werden je 0,1 ml der P- und S, 0,25 ml der K-sowie 1 ml der Ca-AAS-Standardlösungen zugegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % suprapur versetzt und mit H₂O bidemin. aufgefüllt.

=> $50 \mu g/l$ Cd, $100 \mu g/l$ Co, Cr, Cu und Ni, $400 \mu g/l$ Zn, 2 mg/l Al, Fe, Mn, Na, P und S, 4 mg/l Mg, 5 mg/l K, 20 mg/l Ca.

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP16.1	3

Standardlösung GA2:

In einen 250 ml-PFA-Kolben werden 0,25 ml der Cd-, sowie jeweils 0,5 ml der Co-, Cr-, Cu- und Ni-Lösungen B gegeben. Dazu kommen 0,2 ml der Zn-, 0,25 ml der K-, je 0,5 ml der Mg- und Pb-, 1 ml der Ba-, sowie je 5 ml der Al- und Fe-ICP-Standardlösungen. Des Weiteren werden je 0,5 ml der Mn-, Na- und P-, sowie 2 ml der Ca-AAS-Standardlösung zugegeben. Der Kolben wird mit 7,5 ml HNO₃ 65 % suprapur versetzt und mit H₂O bidemin. aufgefüllt.

=> $100~\mu g/l$ Cd, $200~\mu g/l$ Co, Cr, Cu und Ni, $800~\mu g/l$ Zn, $2000~\mu g/l$ Pb, 1~mg/l K, 2~mg/l Mg, 4~mg/l Ba, 10~mg/l Mn, Na und P, 20~mg/l Al und Fe, 40~mg/l Ca.

Standardlösung GA3:

In einen 250 ml-PFA-Kolben werden 0,375 ml der Cd- und 0,75 ml der Cu-Lösungen B gegeben. Dazu kommen 0,25 ml der Ca-, 0,3 ml der Zn- und 2 ml der Ti-ICP-Standardlösungen. Des Weiteren werden je 1 ml der Mn-, Na-, P- und S-, je 2 ml der Al-, K- und Mg-, sowie 5 ml der Fe-AAS-Standardlösungen gegeben.

=> 150 μ g/l Cd, 300 μ g/l Cu, 1200 μ g/l Zn, 1 mg/l Ca, 8 mg/l Ti, 20 mg/l Mn, Na, P und S, 40 mg/l Al und K, 100 mg/l Fe.

Standardlösung GA4:

In einen 250 ml-PFA-Kolben werden 0,125 ml der As-, je 0,25 ml der Na- und Mn- sowie 0,5 ml der Ti-ICP-Standardlösungen gegeben. Dazu kommen 0,05 ml der P-, 0,25 ml der S-, je 1 ml der K- und Mg-, 2 ml der Fe- sowie je 5 ml der Al- und Ca-AAS-Standardlösungen. Der Kolben wird mit 7,5 ml HNO_3 65 % suprapur versetzt und mit H_2O bidemin. aufgefüllt.

=> $500 \mu g/l$ As, 1 mg/l Mn, Na und P, 2 mg/l Ti, 5 mg/l S, 20 mg/l K und Mg, $40 \mu g/l$ Fe, $100 \mu g/l$ Al und Ca.

Standardlösung GA5:

In einen 250 ml-PFA-Kolben werden je 0,75 ml der Co- und Ni- sowie 1 ml der Cr-Lösungen B gegeben. Dazu kommen 0,4 ml der Zn- und 4 ml der Ti-ICP-Standardlösungen. Des Weiteren werden je 0,25 ml der Ca-, Mn-, Na- und P sowie je 0,5 ml der Al-, Fe-, K- Mg- und S-AAS-Standardlösungen gegeben.

=> 300 μ g/l Co und Ni, 400 μ g/l Cr, 1600 μ g/l Zn, 5 mg/l Ca, Mn, Na und P, 10 mg/l Al, Fe, Mg, K und S, 16 mg/l Ti.

Element	Element Form Gerät Methoden-Nr.		Seite	
Ni	Niges	ICP(sim)	NiNigesICP16.1	4

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ni auch andere Elemente enthalten (siehe Sammelanhang S20.1), verwendet:

	Standards
Blank	0,0 μg/l Ni
GA1	100,0 µg/l Ni
GA2	200,0 µg/l Ni
GA3	0,0 µg/l Ni
GA4	0,0 µg/l Ni
GA5	300,0 µg/l Ni

	Kontrollstandard
K24	100,0 μg/l Ni

Methode:	DAN2.2Humus		
	DANF1.1Boden		
	DANF1.1Humus		
	OAKW1.1Boden		
	OAKW1.1Humus		
	OAKWEG1.1		
Element:	Ni		
Wellenlänge:	231.604		
Plasmabeobachtung:	axial		
Messbereich [µg/l]:	BG – OMG		
Standards:	Blank		
	GA1		
	GA2		
	GA5		
Bemerkungen:	Pixelbreite: 3		
	Pixelhöhe: 1		
	<u>Untergrundkorrektur:</u>		
	Pos. links: 6		
	Pixelanzahl: 1		
	Pos. rechts: 15		
	Pixelanzahl: 2		

Der Blank wird in 2%-iger HNO $_3$ angesetzt (7,5 ml HNO $_3$ 65 %, suprapur in 250 ml H $_2$ O bidemin.)

Element	ement Form Gerät Methoden-Nr.		Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP16.1	5

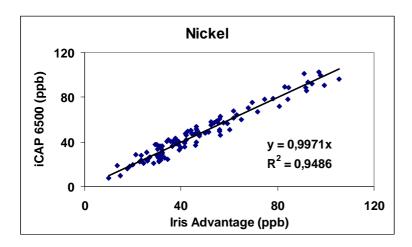
Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP4.1 beschrieben. Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens mit der höchsten Revisions-Nummer aufgerufen. Sie sind im Sammelanhang S20.1 zusammengestellt. Als Probengefässe werden säuregespülte Szintillationsgefässe (20 ml, Fa. Sarstedt) verwendet. Königswasseraufschlusslösungen (OAKW) werden vor dem Messen mit einem Dilutor 1:5 verdünnt.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K24; Messung nach der Eichung, alle 15 Proben und
		nach jeder Eichungswiederholung; erlaubte
		Abweichung 3 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standards ISE974, ISE974 Lösung, NFVH;
		erlaubte Abweichung 10 %


Auswertung/Datendokumentation:

Die gemessenen Ni-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1)bearbeitet.

Ni

Gerätevergleich Iris Advantage / iCAP 6500:

Darstellung einer Vergleichsmessung der Methode NiNigesICP8.1 und der hier beschriebenen Methode an der Königswasseraufschluss-Serie 2007H007.

Element	ement Form Gerät Methoden-Nr.		Seite	
Ni	Niges	ICP(sim)	NiNigesICP17.1	1

Datum:

01.10.2006

Elementbestimmungsmethode:

NICKEL

Untersuchungsmethode	NG	BG	OMG
EXTEDTA1.1	2,8	8,5	3000

geeignet für:

Boden	EXTEDTA1.1
Humus	
Pflanze	
Wasser	

Methodenverweise:

Norm	In Anlehnung an DIN EN ISO 11885			
HFA	042.1.5.2			
HFA-Code	D;4;1;2;-1;-1;0			

Prinzip der Methode/chem. Reaktionen:

Die Probelösung wird in einem induktiv gekoppelten Hochfrequenz-Plasma, das aus ionisiertem Argon besteht, auf bis zu 8000°C erhitzt. Dadurch werden die zu bestimmenden Elemente in einen angeregten atomaren Zustand überführt und emittieren Licht spezifischer Wellenlängen. Das emittierte Licht wird über ein Prisma und ein Gitter spektral zerlegt und die Intensität des Lichtes bei den elementspezifischen Wellenlängen der zu bestimmenden Elemente mit einer speziellen Digitalkamera (CID) gemessen. Durch Vergleich der Intensitäten bei Probe- und Standardlösungen kann auf die Elementkonzentrationen in der Probelösung geschlossen werden.

Störungen:

Verschiebungen des Untergrundes durch Matrixeinflüsse werden durch Setzen von 2 Untergrundkorrekturpunkten an geeigneter Stelle (keine Störung durch Linien anderer Elemente) ausgeglichen.

Anhang:	<u>Lit.:</u>
Sammelanhang S21.1: Geräteparameter für ver-	Nölte: ICP Emissionsspektroskopie für
schiedene Methoden	Praktiker; Weinheim, 2002
Kurzanleitung ICP3.1	Montaser, Golightly: Inductively Coupled
Kurzanleitung ICP-DV2.1	Plasmas in Analytical Atomic Spectrometry;
	Weinheim, 1987

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP17.1	2

Analysengeräte und Zubehör:

Iris Advantage der Fa. Thermo Scientific, mit radialer Plasmafackel Zyklonmischkammer und Meinhard-Zerstäuber Injektorrohr 2 mm, für stark salzhaltige Lösungen Argonbefeuchter der Fa. Thermo Scientific Probengeber 222 XL der Fa. Gilson Rechner mit Software Teva

Chemikalien:

Na-EDTA (Titriplex III) $(C_{10}H_{14}N_2Na_2O_8 * 2H_2O)$

Lösungen:

0,1 m EDTA-Lösung: In einen 1 l-Kolben wird eine Ampulle Titriplex III gegeben und mit H₂O

bidemin. auf 1 l aufgefüllt.

Eichung/Standards:

Stammlösungen:

Ni: ICP-Standard (Fa. B. Kraft) => 1 g/l Ni Cd, Co, Cr,Cu, Pb,Ti, Zn: ICP-Standards (Fa. B. Kraft) => jeweils 1 g/l Al, Fe: AAS-Standards (Fa. B. Kraft) => jeweils 5 g/l

Standardlösungen:

Standardlösung EDTA 1: In einen 250 ml-Glaskolben werden 0,25 ml der Cd-, je 0,5 ml der Co-, Cr-, Cu- und Ni-, 1,25 ml der Zn- und 2,5 ml der Pb-ICP-Stammlösungen

gegeben. Der Kolben wird mit 0,1 m EDTA-Lösung auf 250 ml

aufgefüllt.

 $=> 1000 \mu g/l Cd, 2000 \mu g/l Co, Cr, Cu und Ni, 5000 \mu g/l Zn,$

 $10\ 000\ \mu g/l\ Pb$.

Standardlösung EDTA 2: In einen 250 ml-Glaskolben werden 2,5 ml der Ti-ICP-Standardlösung

gegeben. Dazu kommen je 2,5 ml der Al- und Fe-AAS-

Standardlösungen.

 \Rightarrow 10 mg/l Ti, 50 mg/l Al und Fe.

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP17.1	3

Einzelbestimmung/Mehrelementbestimmung:

Es werden folgende Standardlösungen, die neben Ni auch andere Elemente enthalten (siehe Sammelanhang S21.1), verwendet:

	<u>Standards</u>
Blank	0,0 µg/l Ni
EDTA 1	2000,0 μg/l Ni
EDTA 2	0,0 µg/l Ni

Kontrollstandard		
K23	200,0 μg/l Ni	

Methode:	EXTEDTA1.1
Element:	Ni
Wellenlänge:	231.604
Messbereich [µg/l]:	BG - OG
<u>Standards:</u>	Blank
	EDTA 1
Bemerkungen:	Untergrund-
	Korrektur:
	Pixelhöhe: 2
	Pos. links: 3
	Pixelanzahl:1
	Pos. rechts: 21
	Pixelanzahl:1

Der Blank wird in 0,1 m EDTA-Lösung angesetzt.

Element	Form	Gerät	Methoden-Nr.	Seite
Ni	Niges	ICP(sim)	NiNigesICP17.1	4

Durchführung:

Die Durchführung der Messung erfolgt wie in der Gerätekurzanleitung ICP3.1 beschrieben.

Die Geräteparameter werden am ICP-Gerät durch Eingabe des jeweiligen Methodennamens aufgerufen. Sie sind im Sammelanhang S21.1 zusammengestellt.

Als Probengefässe werden Szintillationsgefässe (20 ml, Fa. Sarstedt) verwendet.

Qualitätskontrolle:

Es werden die nachfolgend aufgelisteten Qualitätskontrollen (siehe Methodenbeschreibungen) durchgeführt (spezielle Hinweise unter "Durchführung"):

Qualitätskontrolle	Methode	Durchführung
Kontrollstandard	QKSt.1.1	K23; Messung nach der Eichung, alle 14 Proben und
		nach jeder Eichungswiederholung; erlaubte Abwei-
		chung 5 %
Wiederholungsmessung	QWM1.2	Ca. 5 % aller Proben; mindestens 3 Proben pro Serie
Standardmaterial	QStM1.1	Für Standard Solling 0-10, erlaubte Abweichung 10 %

Auswertung/Datendokumentation:

Die gemessenen Ni-Konzentrationen werden in die entsprechenden Datenblätter eingetragen, bzw. mit dem Datenverarbeitungs- und Übertragungsprogramm RELAQS (siehe Kurzanleitung ICP-DV2.1) bearbeitet.