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Abstract
1.	 Tree regeneration is a key process for long-term forest dynamics, determining 

changes in species composition and shaping successional trajectories. While tree 
regeneration is a highly stochastic process, tree regeneration studies often cover 
narrow environmental gradients only, focusing on specific forest types or species 
in distinct regions. Thus, the larger-scale effects of temperature, water availability, 
and stand structure on tree regeneration are poorly understood.

2.	 We investigated these effects in respect of tree recruitment (in-growth) along 
wide environmental gradients using forest inventory data from Flanders (Belgium), 
northwestern Germany, and Switzerland covering more than 40 tree species. We 
employed generalized linear mixed models to capture the abundance of tree re-
cruitment in response to basal area, stem density, shade casting ability of a forest 
stand as well as site-specific degree-day sum (temperature), water balance, and 
plant-available water holding capacity. We grouped tree species to facilitate com-
parisons between species with different levels of tolerance to shade and drought.

3.	 Basal area and shade casting ability of the overstory had generally a negative 
impact on tree recruitment, but the effects differed between levels of shade 
tolerance of tree recruitment in all study regions. Recruitment rates of very shade-
tolerant species were positively affected by shade casting ability. Stem density 
and summer warmth (degree-day sum) had similar effects on all tree species and 
successional strategies. Water-related variables revealed a high degree of uncer-
tainty and did not allow for general conclusions. All variables had similar effects 
independent of the varying diameter thresholds for tree recruitment in the differ-
ent data sets.

4.	 Synthesis: Shade tolerance and stand structure are the main drivers of tree recruit-
ment along wide environmental gradients in temperate forests. Higher tempera-
ture generally increases tree recruitment rates, but the role of water relations and 
drought tolerance remains uncertain for tree recruitment on cross-regional scales.
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1  | INTRODUC TION

Forest succession is defined as the shift in species composition and 
vegetation physiognomy over time at the level of a site, assuming 
that climatic conditions are constant and no major disturbance 
events occur (Finegan,  1984). Current climate change alters the 
growing conditions of trees at every spatial scale (IPCC, 2014). Thus, 
the probability of shifts in tree species composition in forest eco-
systems increases (Boisvert-Marsh et al., 2019; Ibáñez et al., 2008; 
Kroiss & HilleRisLambers,  2015). Successional trajectories that 
shape the structure and composition of future forest ecosystems 
are, along with mortality and tree growth, largely determined by 
tree regeneration (Fisher et al., 2018; Huber et al., 2018). However, 
our quantitative understanding of the main drivers of tree regen-
eration is limited, particularly under climate change. Thus, we must 
consider the interaction of successional properties of tree species 
and environmental factors. Furthermore, we need to search for gen-
eral patterns of tree regeneration that help us to generate a better 
understanding of these highly stochastic processes under changing 
climate. Thus, studying tree regeneration on cross-regional scales 
with observational data is of key importance.

Tree regeneration can be decomposed into several subprocesses, 
starting with seed production followed by seed dispersal, seed stor-
age, germination, establishment of seedlings, growth of seedlings 
and saplings, and finally the recruitment of small trees that exceed 
a certain measurement threshold (cf. Price et al., 2001). Many stud-
ies have demonstrated the complexity of tree regeneration and the 
multidimensionality of the driving factors (Canham & Murphy, 2016, 
2017; Collet & Chenost, 2006; Frei et al., 2018; Kramer et al., 2014; 
Kupferschmid et al., 2019). Temperature modulates the occurrence 
of tree regeneration to some extent. Canham and Murphy (2016, 
2017) identified species-specific responses to temperature and pre-
cipitation in eastern North America, but no general patterns among 
species for the survival of saplings could be detected. Collet and 
Chenost (2006) show that light availability is an important driver of 
seedling growth. Furthermore, they identified species-specific re-
sponses to temperature and precipitation, but no general patterns 
among species. Kramer et al. (2014) demonstrate the importance of 
disturbances for tree regeneration, and Kupferschmid et al.  (2019) 
showed that browsing drastically affects regeneration success. Frei 
et al. (2018) analyzed biotic and abiotic drivers of seedling mortality 
at the lower and upper ends of an elevational gradient and found 
that biotic factors are limiting at lower elevations and abiotic fac-
tors are limiting at higher elevation. This finding is also supported 
by extensive studies on an elevational gradient in northwestern 
USA (Ettinger et al., 2011; Ettinger & HilleRisLambers, 2013, 2017). 
Consequently, the variety of driving factors and their interactions 
renders tree regeneration a highly stochastic process, and predicting 

this process along large environmental gradients is challenging 
(cf. Clark et  al.,  1999; Lett & Dorrepaal,  2018; Price et  al.,  2001; 
Schupp, 1995; Shoemaker et al., 2020).

Most recent studies on the relationship between environmen-
tal drivers and tree regeneration compared tree species based on 
a range of traits that relate to different processes in complex for-
est ecosystems (Grime,  2006; Grubb,  1998; Lortie et  al.,  2004). 
Functional traits are assigned to tree species (Kattge et al., 2020), ei-
ther by arranging them along a continuous gradient (Lai et al., 2020; 
Seagle & Liang,  2001) or by classifying them in groups of similar 
species (Halpern,  1989; Rüger et  al.,  2020). Thus, various studies 
showed that plant traits related to specific processes (e.g., shade 
tolerance or drought tolerance) can be useful for studying forest 
ecosystem dynamics and at least to some extent tree regenera-
tion (Rüger et al., 2020; Walters & Reich, 2000). Specifically, Rüger 
et al.  (2020) showed that shade tolerance and trade-offs between 
fast-growing and slow-growing tree species are important drivers of 
tree recruitment in tropical forest ecosystems. Walters and Reich 
(2000) found that shade tolerance is more important for tree growth 
and survival of older seedlings than nitrogen supply or seedling mass 
by comparing early tree growth among species with different levels 
of shade tolerance.

While the term tree regeneration comprises multiple subpro-
cesses, tree recruitment includes trees that exceed a given diameter 
at breast height (DBH) threshold for the first time in a defined time 
interval, also called “in-growth” in forest science. Tree recruitment 
can thus serve as a proxy for successful regeneration. Tree recruit-
ment and its relationship to the environment and stand structure 
have been studied for various species in different regions (Klopcic 
et  al.,  2012, 2014; Mugasha et  al.,  2017; Vanclay,  1992; Yang & 
Huang, 2015; Zell et al., 2019). All these studies on tree recruitment 
showed that measures of stand density (e.g., basal area or mean di-
ameter at breast height) are important drivers of tree recruitment in 
temperate forest ecosystems. Compared to small-scale experimen-
tal studies (Frei et al., 2018; Kroiss & HilleRisLambers, 2015), which 
for logistical reasons usually are restricted to a few sites, observa-
tional studies on tree recruitment allow for more general analyses 
over larger environmental gradients. Nevertheless, comparisons 
among these studies are difficult as they often use different analyt-
ical approaches, and assessment methods are restricted to certain 
regions and focus on different species. These difficulties result in 
three major limitations.

First, due to different analytical approaches, statistical effects 
of the environment and stand structure on tree recruitment cannot 
be compared across studies. For example, basal area seems to be 
negatively correlated with tree recruitment in most studies (Klopcic 
et al., 2012; Mathys et al., 2021; Vanclay, 1992; Zell et al., 2019) which 
indicates that general patterns exist. However, general statements 
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regarding species-specific differences in the relationship between 
stand structure, the environment, and tree recruitment across re-
gions are impeded by the heterogeneity in explanatory variables and 
models between studies.

Second, because individual study regions differ substantially in 
site conditions, management regimes, and the extent of environmen-
tal coverage, it is unclear whether environmental effects and effects 
of stand structure on tree recruitment only apply to one forest type 
in one region or if observations are valid across regions with differ-
ent climates or management regimes. Furthermore, climatic effects 
on tree recruitment have been addressed inconsistently across stud-
ies (Klopcic et al., 2012; Vayreda et al., 2013; Zell et al., 2019), which 
adds to the difficulties when comparing studies on tree recruitment.

Third, these studies usually focus on the abundant tree species 
and observations of less abundant species are aggregated based 
on the total abundance of several species (e.g., “other species” or 
“other deciduous”) instead of the ecological properties of a species 
(cf. Klopcic et al., 2012; Zell et al., 2019). This impedes systematic 
comparisons regarding successional strategies or species traits (e.g., 
shade or drought tolerance). For instance, studies on tree recruit-
ment rarely focus explicitly on the relevance of shade tolerance (cf. 
Klopcic et al., 2014). There is little empirical evidence on how the tol-
erance to shade or drought modulates the response of tree recruit-
ment to climate and stand structure at larger scales (Hanberry, 2019; 
Klopcic et al., 2014), although the importance of shade or drought 
tolerance for tree recruitment is beyond doubt from a qualitative 
and process-based perspective (Leuschner & Ellenberg, 2017; Price 
et al., 2001; Shen & Nelson, 2018).

In order to address these limitations of previous studies on tree 
recruitment, we aim to analyze (a) how tree recruitment is related 
to stand structure and environment, and (b) how it changes with 
different levels of shade tolerance and drought tolerance across a 
wide range of environmental and forest stand conditions. We group 

species from an ecological point of view that allows for assessing the 
recruitment of all species in four data sets covering managed and un-
managed forests in Flanders (Belgium), northwestern Germany, and 
Switzerland. Furthermore, we consistently use one unified method 
across all data sets to study patterns of tree recruitment at differ-
ent environmental ranges. This includes the verification of results 
from previous studies on tree recruitment across different regions 
and the quantification of qualitatively known patterns regarding 
successional strategies defined by the shade and drought tolerance 
of European temperate tree species. Specifically, we address three 
research questions.

1.	 What are the effects of basal area, stem density, and shade 
casting ability (SCA) of a forest stand as well as of degree-
day sum, water balance, and plant-available soil water holding 
capacity on the recruitment rate? We expect that basal area, 
stem density, and shade casting ability determine the overall 
recruitment rate, while degree-day sum, water balance, and 
plant-available soil water holding capacity modulate the re-
cruitment rate. Thus, effects of stand structure are expected 
to be stronger than climatic effects.

2.	 Do these effects act differently on groups of species with vary-
ing levels of shade and drought tolerance? Thus, effects of stand 
structure are expected to differ between shade-tolerant and 
shade-intolerant tree species. Specifically, increased basal area 
along with high stem density and high values of SCA should have 
strong negative effects in general with shade-tolerant tree spe-
cies less affected than light-demanding species. Furthermore, we 
expect low water availability to have negative effects on tree spe-
cies with low drought tolerance and less negative or positive ef-
fects for species with high drought tolerance.

3.	 What are the implications of using heterogeneous data sets for 
analyzing the abundance of recruitment in different regions and 

F I G U R E  1   Map of the location of 
forest inventory plots projected with 
WGS 84 coordinates. Inventories are 
separated for National Forest Inventories 
(red) and Forest Reserves (blue). While 
for the National Forest Inventories all 
sample plots are shown in the large map, 
the locations of the Forest Reserves can 
contain multiple close plots (inset map)
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environmental settings? We expect different effects and levels of 
uncertainty between regions and data sets caused by the charac-
teristics of each data set, for example, due to differences in forest 
types, environmental gradients, and sampling designs within each 
data set.

2  | METHODS

2.1 | Forest inventory data

Analyzing tree recruitment across different regions (Figure  1) and 
environmental scales requires a method to deal with heterogene-
ous data, which is most likely a key reason for the lack of large-scale 
studies on tree recruitment based on multiple data sets. We selected 
four data sets that cover a wide range of forest types and inventory 
designs. These data sets specifically differ in sampling design, num-
ber of plots, plot size, the extent of the environmental gradient being 
covered, and the share of undisturbed natural forests (Tables 1 and 2).

The tree recruitment rates and variables related to stand structure 
were derived from forest inventories in Flanders (northern Belgium), 
northwestern Germany, and Switzerland (Figure  1). The National 
Forest Inventories (NFIs) from Flanders (Wouters et al., 2008) and 
Switzerland (Abegg et  al.,  2014; Fischer & Traub,  2019) are sub-
sequently referred to as “FLAN NFI” and “CH NFI,” respectively. 
Furthermore, two data sets from strict forest reserves (FRs, sensu 
Parviainen et al., 2000) in Germany (Meyer,  2005; Meyer et  al., 
2006, 2015) and Switzerland (Brang et al., 2011) are referred to as 
“GER FR” and “CH FR.” While the forest reserves consist entirely of 
unmanaged forests, the NFIs based on a gridded sampling plot inven-
tory covering a very large region are dominated by managed forest 
but also consist of a representative fraction of undisturbed forests 
in Flanders and Switzerland (Sabatini et al., 2018). Specifically for the 
CH NFI, the fraction of unmanaged forests is 6% (Abegg et al., 2014; 
Portier et al., 2020). This is only mentioned here to raise awareness 
about the characteristics of the data sets. For the analysis, we used 
the whole NFI data sets including managed and unmanaged forests.

The two Swiss data sets cover the largest environmental gradient 
in our study due to the large elevational gradient in this country. Zell 
et al. (2019) present an analysis of tree recruitment with the Swiss 
NFI data. The Flemish (Belgian) data set mainly represents deciduous 
forests with similar climatic conditions between plots. The German 
data set complements the Flemish and Swiss forests with sandy soil 
conditions plus the sub-montane forests of northwestern Germany.

2.2 | Variable calculation

The annual recruitment rate was defined as the number of trees per 
ha and species that exceeded the calipering threshold (DBH thresh-
old) for the first time between two consecutive inventories (Table 1). 
Tree species recruitment is not strongly correlated with nonrecruit-
ment trees (i.e., local abundance, cf. Appendix S1: Figure  A4 and TA
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Table  A3). This suggests that the differentiation between tree re-
cruitment and abundance of tree species is reasonable and the re-
sponse variable can be considered a measure of recruitment and not 
species abundance.

Stand structure was characterized by the variables total basal 
area [m2/ha], stem density [ha−1], and shade casting ability (SCA) 
[value between 1 and 5] of the second census (i.e., the census in which 
recruits were observed for the first time). All trees that already had 
been defined as recruitment trees were not considered for the calcu-
lation of these variables. SCA is a species-specific trait related to the 
ability of a species to cast shade, ranging from 1 (very low) to 5 (very 
high). It is based on factors such as leaf size, leaf angle, leaf density, 
and phenological aspects (see p. 185 in Leuschner & Ellenberg, 2017). 
The SCA values provided by Leuschner and Ellenberg (2017) were 
expanded to all species in our data set on a qualitative basis, consid-
ering the factors mentioned above. Overall for 15 out of 40 species, 
SCA values were not defined in Leuschner and Ellenberg (2017) and 
had to be complemented (see Appendix S1: Section A1, Table  A1 
for details). SCA at the plot level was defined as the mean of the 
SCA weighted by the share of each species with respect to stand 
basal area (cf. Depauw et al., 2021). Thus, SCA describes the effect 
of species composition on the light availability within a forest stand. 
The actual light availability depends on the variables basal area, stem 
density, and SCA. But none of these variables is an exclusive proxy 
for the available light and can only be interpreted together to infer on 
processes where light availability plays a role.

For the CH NFI and CH NFR inventory plots, environmental 
variables were calculated based on the swissALTI3D elevation data 
with a spatial resolution of 5 m (Federal Office of Topography, 2019) 
and interpolated climate data with a spatial resolution of approxi-
mately 1  km by MeteoSwiss (Federal Office of Meteorology and 
Climatology). Specifically, for precipitation the RhiresD data set (ver-
sion 1.0) and for temperature the TabsD, TminD, and TmaxD data 
sets (all version 1.2) from MeteoSwiss were used. Climate data for 
the German and Flemish inventory plots originated from spatially 
downscaled gridded climate data with a resolution of 1 km based on 
the E-OBS and WorldClim data sets (Moreno & Hasenauer, 2016). 
For the German and Flemish inventory plots, variables based on ele-
vation data were taken from the EU-DEM version 1.1 with a spatial 
resolution of 25 m (EU-DEM, 2020).

Seasonal soil water balance was calculated according to the 
Thornthwaite method (Thornthwaite & Mather, 1957) for all months 
from April to October as the difference between monthly precipi-
tation and monthly potential evapotranspiration (PET). Finally, the 
mean of the soil water balance from the years 1971 to 2017 was 
used as an explanatory variable. PET in the Thornthwaite model is 
based on the approach explained in detail by Bugmann (1994) and 
Fischlin et al. (1994) and was corrected for aspect and slope with

where kSlAsp ranges from −2 to 2 and was calculated from a variable s 
based on the slope [°] with

Subsequently, s was multiplied by −1 for north facing slopes and by 1 
for south facing slopes in order to calculate kSlAsp.

The seasonal degree-day sum refers to the annual sum of daily 
mean temperatures above 5.5°C for the months April to October, 
here averaged for the period 1971 to 2017. It was calculated for each 
plot with

(Allen, 1976). Calculations were performed for each year from 1971 
to 2017. The average from all years was taken as a variable repre-
senting plot conditions.

Maximum soil water holding capacity (“bucket size”, BS) is based 
on soil depth, plant-available water capacity, and coarse volumetric 
fraction. The calculation was adapted from Henne et al. (2011) and 
defined as:

where SDR is soil depth to the bedrock for the R horizon with a maxi-
mum of 2 m, AWC refers to theoretical plant-available soil water capac-
ity based on the different soil compartments, and CFV is the volumetric 
fraction of coarse fragments. All soil information was derived from the 
ISRIC Soilgrid250 data set (Hengl et al., 2017). Qualitative evaluation of 
the bucket size revealed that absolute values were generally too high. 
Nevertheless, we decided to use the calculated bucket size because we 
assumed that the relative differences on larger scales are sufficient to 
represent a drought gradient.

2.3 | Species groups

We defined six species groups according to their tolerance to shade 
and drought to differentiate between levels of shade tolerance and 
drought tolerance. These groups were subsequently treated as an at-
tribute of a species, thus enabling the analysis of differences related 
to shade tolerance and drought tolerance without losing information 
(i.e., data) at the species level. The grouping was based on shade tol-
erance and drought tolerance values from the Functional Ecology of 
Trees (FET) data set (Niinemets & Valladares, 2006) and was derived 
from the TRY database (Kattge et al., 2020). We used shade toler-
ance values for juvenile trees, whereas the drought tolerance val-
ues were irrespective of the size or age of a tree species (Niinemets 
& Valladares, 2006). The definition of species groups was done in 
three steps. First, the trait values were standardized so that both val-
ues had a standard deviation of approximately two and an average 

(1)PET�

m,y
= kPMod ⋅ PETm,y

(2)
kPMod =

⎧
⎪⎨⎪⎩

1+kSlAsp×0.125, kSlAsp>0

1+kSlAsp×0.063, else

(3)s = MIN

(
slope

45
× 2, 2

)
.

(4)DDSy =

Oct 31st∑
d=Apr 1st

MAX
(
Td,y − 5.5, 0

)
,

(5)BS = SDR × AWC × (1 − CFV),
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value of zero across all species. Second, six initial points were de-
fined in the two-dimensional space spanned by the trait values of 
shade tolerance and drought tolerance (Figure 2). These initial val-
ues were defined by visual inspection of possible clusters and under 
consideration of ecologically plausible groups. This resulted in four 
trait groups on a diagonal from very shade-tolerant to very drought-
tolerant and two trait groups for drought-intolerant species with me-
dium and low shade tolerance. Third, the species were grouped using 
the k-means clustering algorithm (Hartigan & Wong, 1979). Detailed 
results on the final composition of trait groups are given in Appendix 
S1: Section A3, Figure A5, and Table A4. Some observations con-
tained information at the genus level only. In these cases, the aver-
age trait values over all species within the FET database were used. 
For this reason, the trait values between genus and species might 
differ.

2.4 | Modeling of tree recruitment

Our modeling procedure was applied to all data sets separately and 
resulted in four separate model fits. In addition, we fitted three 
models based on an artificially increased DBH threshold (12 cm) for 
CH FR, GER FR, and FLAN NFI to assess the implications of using 
different DBH thresholds between models. All variables except plot 
size and period length were transformed to be on the same scale 
and make the coefficients comparable (see Appendix S1: Section 
A2; Figure A1). The response variable “number of recruited trees” 
contains many incidences without recruitment (number of recruited 
trees = 0) that is, the data are zero-inflated. Zero-inflation can vio-
late model assumptions if the probability distribution does not allow 

for frequent zeros. Most previous studies dealt with zero-inflation 
using a two-stage modeling approach, that is, a hurdle model 
where the zero-producing process (the occurrence of recruitment) 
and the count process (number of recruited trees) are separated 
(Klopcic et al., 2012; Mugasha et al., 2017; Vanclay, 1992; Yang & 
Huang,  2015). This is achieved by modeling a binary process and 
using zero-truncated probability distributions. Others argued that 
zeroes originate from both processes and hence cannot be separated 
entirely (Fortin & DeBlois, 2007; Zell et al., 2019; Zhang et al., 2012). 
They also advocated the use of a binary and a count probability dis-
tribution but allowed for zeroes in the probability distribution for 
the counts.

We evaluated several probability distributions such as negative 
binomial and Poisson with and without zero-inflation or as hurdle 
models. All distributions allow for a large number of zeroes but 
based on the assessment of scaled residuals (Hartig, 2020) the neg-
ative binomial distribution proved to be the best choice. Specifically, 
we visually inspected the expected values versus the observed val-
ues and chose the distribution with the least systematic deviations 
(Appendix S2: Figure  B1). Nevertheless, although the negative bi-
nomial distribution still did not fit the data perfectly for the largest 
response values, it constituted the best compromise for identifying 
one probability distribution suitable for all data sets.

We aimed to include the most important environmental fac-
tors for modeling tree recruitment and considered different vari-
ables such as slope, aspect, temperature, radiation, precipitation, 
plant-available water capacity, soil compartments, and soil depth. 
However, we decided against a systematic model selection to fa-
cilitate the comparisons among the four models. Instead, we eval-
uated the ecological relevance, interpretability, and the ecological 

F I G U R E  2   Grouping of species that 
occurred over all data sets using z-scaled 
trait values. The large colored dots with 
black outline refer to the initial values 
used for the k-mean clustering algorithm. 
Each trait group represents a group of 
species with similar tolerance to shade 
and drought. The contribution of different 
species within a trait group for the 
individual data sets is shown in Appendix 
S1: Figure A5 and Table A4
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relationship between all variables. As a result, slope, aspect, precip-
itation, and temperature were combined to calculate the seasonal 
water balance. The soil-related variables were summarized in the 
“bucket size” variable. Subsequently, we assessed the collinearity be-
tween these variables by calculating Variance Inflation Factors (VIF, 
Naimi et al., 2014), resulting in the final set of variables for which the 
VIFs were below the critical threshold of 10 (cf. Dormann et al., 2013 
and Appendix S1: Table  A2). Only the variable water balance was 
removed from the GER FR data set because of the high correlation 
with the degree-day sum (cf. Table A2). Otherwise, we applied the 
same model structure with the same variables to all four data sets.

Two interactions were included for variables where the interpre-
tation of the ecological relationship is straightforward. Basal area 
and stem density interact by describing the actual available space in 
a forest stand. High basal area and low stem density describe stands 
with some very large trees (mostly older trees) but high basal with 
high stem density describes stands with many smaller trees (mostly 
younger trees). It is important that the model can differentiate be-
tween such cases. Water balance and bucket size interact by deter-
mining the actual available water at a site. If one of these variables is 
low, the other variable may compensate and contributes to a higher 
level of water availability at a site. We did not include further inter-
actions among stand structure or climate although they might lead 
to significant results because these interactions involve various pro-
cesses and feedbacks that impede inferring on causal relationships.

All observations were treated at the species level to account 
for species-specific differences inside trait groups, but trait groups 
were used as grouping variable for the statistical analysis. For each 
plot observation, plot size [ha] and the period length defined by the 
number of years between two consecutive inventories were used to 
account for systematic offsets in the models.

The model was defined as

where we assumed that the observed number of recruitment trees Y 
per plot i, year t, and species j followed a negative binomial distribution 
(NB) defined and parameterized by the mean μ and dispersion parame-
ter ϕ according to chapter 14.2. in the function references of the Stan 
documentation (Stan Development Team, 2018).

The expected number of recruits was modeled as:

log
(
Ai,t × Δti,t

)
 refers to the model offsets that are based on plot size 

Ai,t and period length Δti,t and � (m)
g

 are the coefficients for each trait 
group g and variable m where Nvars is the number of variables. x(m)

i,t
 is 

the observed value of the explanatory variables m, where the stand 
structure-related variables (i.e., basal area, stem density, and SCA) 
vary between each plot i and year t. The environmental variables 
degree-day sum, water balance, and bucket size varied between 
plots i only. Random intercepts u0Ii,j were added for each ploI i and 

species j and random slopes u(m)
j

 for each species j and variable m to 
account for species-specific differences within trait groups. All ran-
dom effects were assumed to be normally distributed:

Due to the complex random effects, structure, and the large 
number of model coefficients the models did not converge using 
maximum likelihood as implemented in the glmmTMB package 
(Brooks et al., 2017). Thus, the models were implemented using the 
brms package (Bürkner, 2017, 2018; Stan Development Team, 2018) 
with the statistical software R (version 4.0.3, R Core Team, 2020). An 
example of the code used to specify the model is given in Appendix 
S2: Section B1. Coefficients were estimated based on maximum 
likelihood using a Monte Carlo Markov Chain (MCMC) sampling 
algorithm with four chains, each with 5,000 iterations including a 
burn-in phase of 2000 iterations. Detailed information on the results 
of the sampling process is provided in Appendices S2 and S3. We 
assessed model performance by comparing the differences between 
1,000 model simulations and observations and evaluating both 
the number of zeroes and the distribution of the simulated counts. 
The duration for fitting the models was between one and ten days, 
which impeded further model evaluation, that is, calculating R2 or 
conducting a cross-validation. Since the objective of this study was 
inference and not prediction, this constraint is acceptable. To reduce 
autocorrelation of the MCMC samples, we only used 3,000 of the 
12,000 MCMC samples after the burn-in phase to assess the fit of 
all models (cf. Appendix S2: Figure B2). Specifically, we calculated 
credible intervals, the mean as the central tendency (i.e., effect esti-
mate) and simulated the number of recruitment trees for each vari-
able and trait group with the remaining variables set to their mean. 
For these simulations, we considered values within the range of the 
1st to 99th percentile of observations of the explanatory variables 
per trait group (including nonrecruitment trees). The mean and the 
credible intervals were used to assess the response of trait groups to 
the explanatory variables.

3  | RESULTS

All models converged with the Gelman-Rubin diagnostic being 
below the critical threshold of 1.01 for all parameters (Gelman & 
Rubin, 1992), which indicates that all MCMC chains cover the same 
parameter range (i.e., the stationary distribution) and that the varia-
tion between chains is similar to the variation within chains. In combi-
nation with the visual inspection of the MCMC sampling trace plots, 
this indicates good mixing of the parameter samples. Inspection of 
the residual plots (Appendix S2: Figure B1) revealed that the models 
generally overestimated high recruitment rates. Furthermore, plot-
level random effects caused patterns in the residuals. Based on the 
detailed inspection of these patterns in the CH FR data, we found 
that a quadratic effect for shade casting ability (SCA) was missing for 
trait groups D3S4 and D2S5. This implies that the recruitment rate 

(6)Yi,t,j ∼ NB(�i,t,j ,�),

(7)

log(�i,t,j) = log(Ai,t × Δti,t) + �0,g + u0,i + u0,j +
∑

Nvars

m= 1

(
� (m)
g

+ u
(m)

j

)
x
(m)

i,t

(8)u ∼ N(0, �2).
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of very shade-tolerant tree species was positively affected by very 
low and very high values of SCA. However, after testing model fits 
including quadratic effects for SCA, these patterns did not disap-
pear as the quadratic effect did not apply to all trait groups and was 
apparent in the CH FR data set only. We therefore decided not to 
account for this effect within the model and to accept these minor 
inconsistencies in favor of consistent models across the four data 
sets. Fortunately, the comparison between nonzero observed tree 
recruitment rates and simulated tree recruitment rates across trait 
groups and data sets showed that the deviations of the fitted models 
from the observations were acceptable (Figure B1). Also, the number 
of simulated zeroes was close to the expected numbers.

3.1 | Effects of stand structure and climate on tree 
recruitment

Tree recruitment was more affected by basal area, stem density, 
and SCA than by climate, with the latter being subject to substantial 
uncertainty (Figure  3 and Table B1). Furthermore, differences be-
tween trait groups were mostly associated with different levels of 
shade tolerance. However, our results indicated no general differ-
ences between levels of drought tolerance. The models based on 
harmonized DBH thresholds resulted, with few exceptions for basal 
area and stem density, in minor differences only, thus suggesting 
that comparisons among the models are valid. Furthermore, this in-
dicates that the same factors at the same magnitude govern recruit-
ment at DBH thresholds of 4, 7 or 12 cm (Figure 4). Effects related to 
stand structure were consistent across data sets, but climatic effects 
varied between data sets with a considerable degree of uncertainty 
(Figures  3, B6 and B7). The differences between trait groups and 
the similarities between data sets in terms of uncertainty were sur-
prisingly consistent in this respect. The effects of stand structure 
across trait groups were similar for all data sets (Figures  3, 5 and 
6). However, differences emerged when the effects for trait groups 
associated with different levels of shade tolerance were compared 
(Figures 3 and 5), as explained below.

Estimates for basal area were negative, but distinctly stronger for 
the light-demanding species of trait groups D2S1 and D5S1, with the 
exception for trait group D2S1 in the CH NFI data set. In addition, 
positive deviations from the mean were apparent for shade-tolerant 
species of trait groups D3S4 and D2S5, again with an exception, this 
time for trait group D3S4. Stem density was positively associated 

with the recruitment rate for all trait groups in all data sets with 
almost no differences between trait groups, with the exception of 
the estimates for trait group D2S3 from the CH FR data set, which 
were negative (Figures 3 and 5). The most likely reason for this ex-
ception was one observation with an exceptionally high abundance 
of Fraxinus excelsior recruitment in combination with the low DBH 
threshold of CH FR (cf. Appendix S2: Figure B8 and random effects 
within this trait group shown in Appendix S3: Figure C3). The inter-
action between basal area and stem density was on average and over 
all trait groups positive, implying that the negative effect of basal 
area was stronger for low values of stem density (Figure 6). Apart 
from the outlier caused by F. excelsior in trait group D2S3 in CH FR 
(cf. above), there were no deviations from the average interaction 
effect between trait groups.

The recruitment response to shade casting was generally nega-
tive, but with strong deviations from the mean over all trait groups, 
especially for light-demanding and shade-tolerant trait groups 
(Figures 3 and 5). While the negative effects of shade casting were 
stronger for the light-demanding species of trait groups D2S1 and 
D5S1, the shade-tolerant species of the trait groups D3S4 and D2S5 
in contrast responded positively to high values of the SCA. These 
deviations were apparent in all inventories and strongest for trait 
groups D5S1 and D2S5, whereas the moderately shade-tolerant 
species of the trait groups D2S3 and D4S3 did not substantially dif-
fer from the average negative response to shade casting.

In contrast, the effects of environmental variables on tree re-
cruitment were less clear and the associated level of uncertainty 
was considerably high, indicated by the large credible intervals or 
the inconsistency in effect sizes across data sets (panels of rows 4, 5, 
and 6 in Figure 3 or Figures B6–B8). Higher degree-day sum was on 
average and over all trait groups positively associated with tree re-
cruitment across all data sets (Figures 3 and 5): Clear deviations from 
the mean were only apparent within the CH FR and the CH NFI data 
for trait group D3S4 (5th column 3rd row Figures 3 and 5) and D2S3 
within the CH FR (3rd column 3rd row in Figures 3 and 5). Effects 
of water-related variables differed between data sets, trait groups, 
and variables (Figure  3). Although the mean estimates for bucket 
size tended to be positive, describing these effects in terms of water 
availability became challenging due to the interaction with water 
balance (Figures  3 and B9) in combination with the large credible 
intervals (Figures 3, B6–B8). Only for some trait groups in the GER 
FR and FLAN NFI data set, there were positive relationships with 
bucket size (Figures 3 and B8). However, given the missing evidence 

F I G U R E  3   Effect estimates drawn from 3,000 posterior samples. Expected mean effect size across all trait groups (open circles) and trait 
group-specific deviation (full circles) with 95% credible intervals (whiskers) are shown. Trait group-specific mean estimates that were larger 
than the mean effect over all trait groups are in blue, whereas negative deviations are in red. For better understanding, the most abundant 
species for each trait group are mentioned after the trait group acronym at the top panels, but all species within one trait group were 
considered in the models (see Figures 2 and A5 or Table A4). For species-specific random effects, see Appendix S3. CH FR, Swiss forest 
reserves; CH NFI, Swiss national forest inventory; FLAN NFI, Flemish (northern Belgium); GER FR, German forest reserves. Note that tree 
recruitment, basal area, and stem density were based on different DBH thresholds for each data set: CH FR ≥ 4 cm, GER FR ≥ 7 cm, FLAN 
NFI ≥ 7 cm, and CH NFI ≥ 12 cm. The vertical axis was transformed using the log-modulus transformation (John & Draper, 1980) to facilitate 
comparisons between trait groups
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for these effects in the other data sets and the lack of consistency 
across trait groups, the main finding for the variables water balance 
and bucket size was that hardly any unifying effects on tree recruit-
ment could be identified.

4  | DISCUSSION

Basal area, stem density, shade casting ability (SCA), and the degree-
day sum influence tree recruitment rates similarly across the four 
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study regions and along wide environmental gradients. Moreover, 
pooling multiple species based on their shade tolerance revealed 
consistent patterns of the relationship between recruitment and 
stand structure. Specifically, basal area along with species’ shade 
casting ability proved to be important stand characteristics for pre-
dicting differences in recruitment between successional strategies 
expressed by shade tolerance. A higher degree-day sum was re-
lated to higher recruitment rates when assessing all trait groups, but 

regarding drought tolerance no evidence for differences between 
trait groups was found in our study. Aspects related to the water bal-
ance of a site turned out to be subject to large uncertainty. Overall, 
our results show that tree recruitment is primarily driven by stand 
attributes such as basal area and stem density as well as by the shade 
casting ability of the constituent species in the overstory. This was 
evident in all four data sets in spite of the large heterogeneity result-
ing from varying assessment methods and environmental ranges.

F I G U R E  4   Comparison of models with modified inventory data. Shown are expected effect sizes (dots) with 95% credible intervals 
(vertical lines). Model fits based on the original data sets without modified DBH are shown in gray. Model fits based on data where the 
DBH threshold for explanatory variables was artificially increased to 12 cm are shown in blue. Model fits based on data sets where both 
explanatory variables and abundance of tree recruitment were calculated with a DBH threshold of 12 cm are shown in red. Note that the 
gray bars correspond to the same values shown in the trait group-specific values shown in Figure 3. For a description of the trait groups 
(D2S1, D5S1, D2S3, D4S3, D3S4, D2S5) see Figure 2, Table A4, and Figure A5
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Recruitment of trees into size classes of ≥4 cm DBH, as in our 
four data sets, represents a relatively late stage of forest regener-
ation. It integrates over sometimes long periods since germination 
and multiple environmental constraints act upon young trees of 
widely different size. This causes the statistical relationships be-
tween stand structure, climate, and tree recruitment to be manifold 
and complex. In the following, we discuss whether our models allow 

to infer on causal relationships for each variable and trait group and 
how underlying ecological processes explain the estimated effects.

In addition, we compare our results to other studies. One of 
these studies is the one from Zell et  al.  (2019) which we briefly 
summarize here because it also analyzed the NFI data with a dif-
ferent analytical approach. Specifically, they modeled the number 
of recruits independent of the species composition of recruits. 

F I G U R E  5   Simulations for each variable with all other variables set to their respective mean. Only values within the range of the 1st 
to 99th percentile for each trait group were considered. Rugs at the bottom axis indicate observations where there is at least one item 
(including nonrecruitment) of a given trait group. We added noise of 5% to the rugs to avoid overlapping of trait groups. Note that we chose 
to exclude water balance and bucket size from this figure due to the large credible intervals associated with these variables (see Figure 3). 
*Tree recruitment, basal area, and stem density were based on different DBH thresholds for each data set. These are given in the title 
above the top panels. The simulation results showing credible intervals and results for variables not included in this figure can be found in 
Appendix S2: Section B4; Figures B3–B9. For a description of the trait groups (D2S1, D5S1, D2S3, D4S3, D3S4, D2S5) see Figure 2, Table 
A4, and Figure A5
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Zell et  al.  (2019) also included climate in their analysis and found 
that temperature and precipitation had minor negative effects on 
the number of recruits, whereas the temperature had strong effects 
on tree recruitment species composition. Furthermore, they identi-
fied that the most dominant species is a very important explanatory 
variable for the species composition. The effects regarding basal 
area and stem density reported by Zell et  al.  (2019) are generally 
confirmed by our findings. More details on the comparison with the 
study from Zell et al. (2019) and other studies are provided through-
out the discussion.

4.1 | Effects of stand structure on tree recruitment

Our findings regarding the relationship between basal area and 
tree recruitment are consistent with previous studies (Klopcic 

et al., 2012; Vanclay, 1992; Zell et al., 2019). Several aspects related 
to competition for resources below- and aboveground may cause a 
negative response of tree recruitment rates to increased stand basal 
area (Casper & Jackson, 1997; Mina et al., 2018) with light availabil-
ity being particularly important in this respect (Adams et al., 2007; 
Monsi, 2004). Altogether, basal area serves as a proxy for the com-
petitive situation in a forest stand resulting from its development 
stage, that is, older stands with large trees tend to have higher val-
ues of basal area (cf. Feldmann et al., 2018; Glatthorn et al., 2018; 
Pretzsch,  2009). Nevertheless, basal area cannot be interpreted 
without considering SCA and the interaction with stem density, be-
cause basal area alone is not a perfect proxy of competition as it in-
tegrates over a wide range of forest stand properties. The consistent 
negative effect of basal area, however, underlines the paramount 
importance of this variable for understanding forest regeneration 
dynamics (Klopcic et al., 2012; Vanclay, 1992; Zell et al., 2019).

F I G U R E  6   Simulated interaction between basal area and stem density. Basal area values range from the 1st to the 99th percentile 
of values where a trait group was observed (both recruitment and nonrecruitment). Stem density is shown for the 10th (very low), 
30th (low), 50th (intermediate), 70th (high), and 90th (very high) percentile. CH FR, Swiss forest reserves; CH NFI, Swiss national forest 
inventory; FLAN NFI, Flemish (northern Belgium) national forest inventory; GER FR, German forest reserves. *Note that Tree recruitment, 
basal area, and stem density were based on different DBH thresholds for each data set: CH FR ≥ 4 cm DBH, GER FR ≥ 7 cm DBH, 
FLAN NFI ≥ 7 cm DBH and CH NFI ≥ 12 cm DBH. Rugs at the bottom axis indicate observations where at least one individual (including 
nonrecruitment) of a certain trait group exists. We added noise of 5% to the rugs to avoid overlapping of trait groups. Figure B9 shows a 
similar graph for water balance and bucket size but is not included in the main text due to the large credible intervals. For a description of the 
trait groups (D2S1, D5S1, D2S3, D4S3, D3S4, D2S5) see Figure 2, Table A4, and Figure A5
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The estimated effects for SCA are, together with basal area, most 
consistent for all models and trait groups. Like basal area, the effect 
estimates reflect a gradient of shade tolerance among trait groups. 
Differences between trait groups are also considerably larger than 
those for basal area, which is what we expected when considering 
the ecological processes determining these variables. In contrast to 
basal area, the SCA of a species is related to the intensity of com-
petition experienced by tree recruitment for the resource light. It is 
indicative of the relative amount of light that penetrates the canopy, 
given a certain value of basal area, and is thus strongly modulated 
by species composition (Leuschner & Ellenberg, 2017). Apart from 
that, the SCA is also related to the abundance of conspecific trees or 
at least trees of similar successional strategies in terms of shade tol-
erance (cf. Table A1). To understand the effect of this variable, one 
therefore needs to consider its implications in extreme situations. 
For example, if a forest consisted of Betula pendula only, this would 
result in the lowest possible value of SCA, whereas actual light avail-
ability at the forest floor is co-determined by basal area and stem 
density. This is the reason for the residual patterns indicating a non-
linear effect of SCA in the CH FR data (cf. Figure B6).

The estimated effects of the SCA confirm that, in the absence 
of large disturbances, stands develop toward a state where shade-
tolerant species are more dominant, that is, the shifting mosaic 
steady-state theory (SMSS, Bormann & Likens,  1979; Shugart & 
West,  1981). Furthermore, the concept of different life strategies 
such as competitor, stress tolerator, and ruderal (CSR, Grime, 2006; 
Halpern, 1989; West et al., 1981) is supported by our finding that 
distinct differences in effects of SCA between levels of shade tol-
erance exist. This is specifically evident from the finding that larger 
SCA (i.e., the dominance of late successional tree species) has neg-
ative effects on the recruitment of early successional tree species 
but positive effects for late successional tree species (see Figure 5). 
This contrasting pattern underpins the importance of shade casting 
for the recruitment of trees into larger size classes (DBH ≥4 cm). Our 
findings complement the results of previous studies dealing with 
the effect of shade casting on the forest herb layer (e.g., Verheyen 
et al., 2012) and on tree seedlings (e.g., De Lombaerde et al., 2019). 
While the relevance of SCA is plausible from an ecological perspec-
tive, it is represented unexpectedly well in all study regions regard-
less of the assessment method, the environmental conditions, and 
the observed species composition.

Stem density is an important variable to describe stand develop-
ment stage, jointly with basal area (Pretzsch, 2009). While basal area 
is generally more informative regarding the development stage of 
a forest, stem density alone is a problematic variable when analyz-
ing the tree recruitment rates because distinguishing between tree 
recruitment being a consequence or a cause of high stem density is 
difficult. For this reason, stem density can only be interpreted by 
considering its interaction with basal area. We found that stem den-
sity generally has a positive effect on recruitment of trees for the 
size classes considered here (DBH ≥ 4 cm) but this effect is becoming 
weaker with increasing basal area (Figure 6). This is consistent with 

the findings by Zell et al.  (2019), but comparisons to other studies 
are difficult because tree density is not usually used for modeling 
tree recruitment. Instead, mean tree diameter is often used (Klopcic 
et al., 2012, 2014; Yang & Huang, 2015), which is comparable with 
stem density only under the assumption that all stands are even-
aged, which is clearly not the case in our data sets. Additionally, 
mean tree diameter is usually associated with basal area and there-
fore its effects are difficult to distinguish from those of stem density.

Low stem density should result in large amounts of available light 
and space for recruitment. However, in our study stem density was, 
with the exception of trait group D2S3 in the CH FR data, positively 
associated with recruitment. There are two possible albeit interde-
pendent explanations for the effects of stem density. First, tree re-
cruitment can take place in a time span that exceeds the inventory 
periods, such that a high abundance of tree recruitment in earlier 
inventories resulted in a high stem density while tree recruitment 
is still going on. Second, the interaction between stem density and 
basal area modulates the effect of stem density and is best explained 
by considering two extreme cases. A forest stand can have low stem 
density for two reasons: (a) a disturbance caused gaps in the stand 
and recruitment did not yet pass the diameter threshold to fill the 
gaps or (b) a few very large trees suppress the emergence of other 
trees. All stages between these two cases can be considered forest 
development stages as a function of stem density and basal area. 
Feldmann et al.  (2018) and Glatthorn et al.  (2018) support this ex-
planation by showing that stem density is lowest for later stages 
of forest development. The relevance of the interaction between 
basal area and stem density for modeling tree recruitment was 
also demonstrated by Zell et al.  (2019). Considering both explana-
tions, the relationship between stem density and tree recruitment 
is mostly driven by aspects related to stand level dynamics and not 
species attributes, which is also supported in our models by the ab-
sence of trait group-specific differences in effect size for stem den-
sity. Another possible explanation is that along elevational gradients 
trees get smaller-statured which results in higher stem density and 
higher mortality. Thus, turnover rate including tree recruitment in-
creases. This explanation however is not supported by the overall 
positive effect of degree-day sum.

4.2 | Climatic effects on tree recruitment

We explain the positive effect of degree-day sum by an increased 
turnover rate. If no other biotic or abiotic factors are limiting, all tree 
species profit from higher temperature because of higher photosyn-
thesis rates that lead to increased growth rates. Nevertheless, the 
effect of degree-day is difficult to link to specific processes without 
considering water-related variables. Although we demonstrated a 
generally positive effect of the degree-day sum on tree recruitment, 
which confirms the findings in Zell et al. (2019), the evidence for dis-
tinct effects of water relations on tree recruitment across large en-
vironmental gradients was rather elusive. Also, no differences in the 
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effect size for the degree-day sum were identified between levels of 
drought tolerance, despite the fact that temperature is an important 
driver of drought stress (Martin-Benito & Pederson, 2015; Williams 
et  al.,  2013). The difficulty in finding consistent effects of water 
relations on tree recruitment is underpinned by the fact that most 
empirical evidence for such effects are based on regional studies 
(Ibáñez et al., 2007; Kroiss & HilleRisLambers, 2015; van Mantgem 
et  al.,  2006). Besides Zell et  al.  (2019), there are no larger-scaled 
studies that considered other variables than precipitation for repre-
senting water relations when modeling tree recruitment. However, 
our findings confirm Zell et al.  (2019), which also found that water 
holding capacity was not useful for modeling species composition 
of tree recruitment. Furthermore, the complexity of climatic effects 
on tree recruitment is evident from various studies. Germination 
and growth is mostly positively affected by temperature (Hobbie & 
Chapin, 1998; Munier et al., 2010; Zurbriggen et al., 2013) but ef-
fects of temperature on survival can be positive, negative, or neutral 
(Loranger et al., 2016; Munier et al., 2010; Zurbriggen et al., 2013). 
Effects of water availability are even more complex and show con-
trasting patterns for germination, growth and survival of seedlings 
(Lett & Dorrepaal, 2018). Apart from the lack of consistent findings 
from our as well as previous studies, it is also questionable if the 
drought gradient covered in our study was sufficient to find a clear 
signal on water relations.

What is the reason for climatic effects being so poorly repre-
sented in our study? One possible explanation is that trees of a 
species may experience ontogenetic shifts, that is, they are able to 
germinate and grow under certain climatic conditions but do not nec-
essarily survive under the same climatic conditions until they reach a 
size class that is considered tree recruitment (cf. Schupp, 1995). For 
example, Máliš et  al.  (2016) showed that the environmental range 
between seedlings and saplings or older trees differs. Another ex-
planation is that microclimate is more relevant for successful recruit-
ment than climate outside the forest stand (von Arx et al., 2013; De 
Frenne et al., 2019; Zellweger et al., 2020). This would also explain 
the strong effect of SCA that directly affects microclimatic condi-
tions on the forest floor. Accounting for the uncertain effect esti-
mates, the ontogenetic differences to deal with climatic stress and 
the relevance of microclimate, a nonlinear, complex relationship be-
tween climate and tree recruitment appears to be the most adequate 
explanation for our results.

Besides the individual effects of each variable, there is also vari-
ation of species-specific effects within each trait group (Appendix 
S3). Although our grouping regarding shade tolerance yielded plau-
sible results, the groups based on drought tolerance did not allow 
for valuable conclusions. However, although our study did not reveal 
simple linear relationships or general patterns between climatic vari-
ables and trait groups, we showed that the effects of water relations 
on tree regeneration are manifold and may depend on species-
specific properties that may not have been evident in the definition 
of our trait groups or may vary in a nonsystematic fashion with site 
properties.

4.3 | Potential effects of soil fertility and 
forest management

Other aspects that were not dealt with explicitly in our analysis are 
soil fertility and the effect of forest management. Soil fertility was 
not addressed because the focus of this study was to identify the 
importance of tree species tolerance to shade and drought for tree 
recruitment. For this reason, variables directly related to shading or 
drought were preferred. However, we acknowledge that increased 
soil fertility may increase seedling survival in the shade for some tree 
species (cf. Kobe et al., 1995; Walters & Reich, 2000) and therefore 
increase the partly positive effects of SCA for very shade-tolerant 
tree species or weaken the negative effect of basal area. Initially, 
the effect of forest management was considered to be addressed 
explicitly in our analysis because the two data sets from FRs and two 
data sets from NFIs differ fundamentally in this respect. However, 
the heterogeneity of the data sets and the very different sampling 
designs between FRs and NFIs impeded general comparisons be-
tween managed and unmanaged forests. Furthermore, we decided 
against conducting a joint analysis with FR (unmanaged) versus NFI 
(mainly managed) as a variable because possible effects between in-
ventory designs would have been difficult to disentangle from the 
effects of management. Additional difficulties for such an analysis 
are that NFIs also cover unmanaged forests (cf. methods) and that 
harmonizing the DBH threshold would result in a considerable loss 
of information. In our analysis, the only clear difference between FRs 
and NFIs was that the negative effect of basal area on tree recruit-
ment for trait groups D2S3 and D3S4 was stronger in NFIs (managed 
forests). This indicates that species of these groups such as Fraxinus 
excelsior, Alnus glutinosa, Acer pseudoplatanus, or Tilia cordata have a 
reduced abundance in favor of other species, due to forest manage-
ment practices that also include tending measures in regeneration.

4.4 | The relevance of diameter measurement 
thresholds for records of tree recruitment

We expected substantial differences between results of the differ-
ent data sets because diameter measurement thresholds were not 
equal. However, this was not the case as the estimated effects did 
not vary substantially between data sets with diameter measure-
ment thresholds of 4, 7, and 12 cm (Figure 4). This finding is contrary 
to a study on biomass recruitment where a systematic bias caused 
by different size thresholds was found (Searle & Chen, 2017). This in-
dicates that the role of size thresholds differs substantially between 
measures of tree recruitment that are based on recruitment of indi-
vidual trees and overall recruited biomass. An explanation for this 
discrepancy is that recruited biomass aggregates over the processes 
growth, mortality, and recruitment of all trees, and therefore, only 
contains little information on the emergence of individual trees.

Differences in explanatory variables such as stem density and 
basal area only showed slight deviations of the effect estimates 



12198  |     KÄBER et al.

for the GER FR data set. But once both, explanatory and response 
variable, were based on the same diameter measurement threshold 
these deviations almost disappeared. There are two possible reasons 
for this finding: Either the high level of stochasticity in the process 
of tree recruitment or the probability of survival along with tree 
growth does not change on average between diameters of 4 and 
12 cm. While stochasticity is introduced by the multitude of factors 
that drive tree recruitment at all stages relevant to regeneration in 
combination with errors caused by the sampling method (Shoemaker 
et  al.,  2020), survival of trees smaller than 12  cm may be subject 
to more direct interactions between individual trees and the envi-
ronment. In this respect, future studies focusing on the effects of 
biotic and abiotic drivers on survival and growth of trees in smaller 
size classes could yield valuable insights into this important stage of 
forest population demography. Furthermore, if our finding that the 
same factors govern tree recruitment at different size classes is con-
firmed by other studies this could have consequences for the mod-
eling and projection of tree recruitment because trade-offs between 
measurement size thresholds and spatial coverage of empirical data 
may be less severe (cf. Clark et al., 1999).

4.5 | Methodological considerations

We considered different ways to calculate recruitment rates (see 
Appendix S3: Section A4 and Figure A6) but finally decided to use 
the annual recruitment rate based on the abundance of tree recruit-
ment per ha instead of per-capita recruitment rates. The reason for 
this is that a prerequisite for calculating species-specific per-capita 
rates is the presence of adult trees for each species in the previous 
inventory (Kohyama et al., 2018). This was only the case for a frac-
tion of species and plots across all data sets (Table A5). As a conse-
quence, the decision between per-capita and per-area recruitment 
rates is also a question of data coverage regarding species and envi-
ronmental conditions.

There are various approaches for modeling tree recruitment 
based on different data sets. One option is to use a joint data set 
to fit one general model. We decided against this because the har-
monization of variables due to the different DBH measurement 
thresholds would result in a considerable loss of information (i.e., 
all information for trees smaller than a DBH of 12 cm would have 
had to be discarded; cf. Table 1). Another reason against this option 
is that the inventory designs differed substantially, particularly the 
widely different plot sizes resulted in varying observation errors 
(Král et al., 2010). While the DBH threshold can be increased ar-
tificially (see Figures A2 and A3), period length and plot size were 
dealt with by using model offsets. Sampling designs could be in-
tegrated by using inclusion probabilities that is, stratified sam-
pling. However, this would either result in a considerable loss of 
information or require many model fits using bootstrap techniques 
(Nahorniak et al., 2015). To avoid loss of information or excessive 
computation times, we decided to keep the individual data sets 
separate.

For climatic variables, we considered using means of seasonal 
degree-day sum and water balance over the inventory periods and 
include temporal trends in the study. But this was not useful because 
the time of recruitment cannot be related to a specific point in time 
with a specific climatic condition. In this context, it is important to 
consider that the time until a tree reaches a size that is considered 
recruitment and appears in an inventory can vary between few years 
and 100 years (Bigler, 2016). This issue becomes even more severe 
if size measurement thresholds are larger or vary between data sets. 
Additional problems are caused by the fact that recruitment aggre-
gates over multiple subprocesses (dispersal, germination, growth, 
survival) where each process has different relationships to climate.

One major issue of this study is the quantification of soil and 
water-related variables. We used modeled and interpolated soil data 
to quantify bucket size (Hengl et al., 2017), which resulted in many 
absolute bucket size values to be unrealistically high. Our motivation 
for using these data in spite of their high values was that the ranking 
of the values between plots and data sets is more important than 
their absolute values. However, the linear model resulted in highly 
uncertain effect estimates, confronting us with the difficulty of dis-
tinguishing between uncertainty resulting from a weak or missing 
linear effect of water relations on tree recruitment and uncertainty 
due to poor data quality. The quality of soil data is a major issue 
in environmental modeling that can outweigh climatic signals when 
analyzing relationships between vegetation and climate (Folberth 
et al., 2016; Román Dobarco et al., 2019). Another indication of poor 
soil data quality is a comparison that took place in a later stage of 
this study where a set of soil samples from an ongoing field cam-
paign within the CH FR was compared with the SoilGrid250 based 
variables. This comparison showed there was almost no correlation 
for the calculated bucket size. The reason for such a weak correla-
tion may be that (a) a single soil sample per plot is not representative 
of the entire plot area, or (b) the modeled soil variables from the 
SoilGrid250 data are inaccurate. The conclusion that water relations 
have no effect on tree recruitment appears invalid not only from 
a process-based perspective (cf. Fernandez-Illescas et  al.,  2001; 
Speich et al., 2018), but also when considering experimental studies 
on water relations and forest regeneration (Anderson et al., 2001; 
Aranda et al., 2012; Davis et al., 1999; De Groote et al., 2018; Facelli 
et al., 1999; Madsen, 1995) or studies on the relationship between 
species traits and site conditions (Niinemets & Valladares,  2006), 
which clearly show distinct effects of water relations on tree regen-
eration. In addition to these explanations of the large credible inter-
vals for water household-related variables, we acknowledge that the 
credible intervals estimated from our model are very large, but con-
sistent. Thus, we consider our approach conservative (Matuschek 
et al., 2017).

Another issue is the nonlinear and complex nature of several pro-
cesses that are important for tree recruitment. Although general-
ized linear mixed models (GLMMs) revealed distinct effects of stand 
structure and the degree-day sum on tree recruitment, these models 
were not able to account for water relations and could not elucidate 
whether different levels of drought tolerance affect the relationship 
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between tree recruitment and climate. In recent decades, GLMMs 
were used successfully for analyzing growth and mortality (Cailleret 
et al., 2017; Fortin et al., 2008). However, for the smallest size class 
and especially for modeling tree recruitment and regeneration over 
larger scales, our study showed that many processes are most likely 
dominated by complex relationships with feedback between stand 
structure and climate that cannot be formulated in GLMMs. Thus, 
for further large-scale studies on tree recruitment-environment 
interactions, we strongly recommend the use of alternatives to 
GLMMs, such as process-based Bayesian approaches (Clark, 2003; 
Lines et al., 2020). The advantage of process-based models is that 
they treat complex processes with feedbacks within the stand more 
explicitly. Thus, the sources of uncertainty might be easier to detect. 
Our approach is still valid as it shows that some relationships can be 
described with GLMMs but when it comes to climatic variables that 
are likely to change within the next decades a process-based un-
derstanding is necessary to identify (a) sources of uncertainty (e.g., 
specific soil parameters, microclimate) or (b) the sensitivity of tree 
species to environmental conditions that were never observed. This 
is particularly important when attempting to deal with uncertainties 
regarding water relations and to overcome the lack of high-quality 
soil information.

5  | CONCLUSIONS

Shade tolerance and stand structure proved to be pivotal factors 
that determine tree recruitment at the stand level. In comparison to 
climatic and water-related factors, there is a high degree of uncer-
tainty regarding the role of drought tolerance for tree recruitment. 
In essence, this means that stand structure is suitable to describe 
general patterns of tree recruitment within forest ecosystems but 
larger-scaled factors (i.e., climate and water availability) only show 
weak signals when analyzing tree recruitment with empirical models. 
All factors showed similar effects throughout all size classes repre-
sented in our data. Although temperature partly showed positive ef-
fects on tree recruitment, we could not disentangle the role of water 
relations in this respect. This has major implications for the projec-
tion of the development of forest ecosystems under future climate 
because the drivers of tree recruitment are only known on the local 
scale and remain poorly understood on larger spatial scales where 
variation in climate is high.

Although data sets from different regions that were collected 
based on different sampling protocols are usually quite heteroge-
neous, we conclude that the long-term monitoring of managed and 
unmanaged forests provides a valuable source of information for a 
better understanding of highly stochastic ecological processes such 
as tree recruitment (Lindenmayer & Likens,  2018; Meyer,  2020). 
Particularly in the face of climate change, future research will rely 
on the availability of such data to improve our knowledge of forest 
stand dynamics at larger scales in time and space. One major advan-
tage of using different data sets simultaneously is that confirmatory 
results facilitate drawing conclusions based on different data sets. 

Furthermore, we showed that heterogeneous data sets can be used 
to quantitatively confirm general and qualitatively known patterns 
of tree recruitment in different regions.
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