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Abstract

Background: Winter moth (Operophtera brumata) and mottled umber moth (Erannis defoliaria) are forest
Lepidoptera species characterized by periodic high abundance in a 7–11 year cycle. During outbreak years they
cause severe defoliation in many forest stands in Europe. In order to better understand the spatio-temporal
dynamics and elucidate possible influences of weather, stand and site conditions, a generalized additive mixed
model was developed. The investigated data base was derived from glue band catch monitoring stands of both
species in Central and North Germany. From the glue bands only female moth individuals are counted and a
hazard code is calculated. The model can be employed to predict the exceedance of a warning threshold of this
hazard code which indicates a potential severe defoliation of oak stands by winter moth and mottled umber in the
coming spring.

Results: The developed model accounts for specific temporal structured effects for three large ecoregions and random
effects at stand level. During variable selection the negative model effect of pest control and the positive model effects
of mean daily minimum temperature in adult stage and precipitation in early pupal stage were identified.

Conclusion: The developed model can be used for short-term predictions of potential defoliation risk in
Central and North Germany. These predictions are sensitive to weather conditions and the population
dynamics. However, a future extension of the data base comprising further outbreak years would allow for
deeper investigation of the temporal and regional patterns of the cyclic dynamics and their causal influences
on abundance of winter moth and mottled umber.

Keywords: Operophtera brumata, Erannis defoliaria, Generalized additive mixed model, Weather effect, Insect
pest outbreaks

Introduction
The vitality of oak on many European forest sites is
repeatedly threatened by outbreaks of herbivorous in-
sects. These insect infestations play a significant role
in the decline of individual trees and sometimes even
of complete stands of oak. Delb (2012) sees damage
to oak by defoliating insects in spring as the trigger
for this process. The oak’s ability to regenerate after
defoliation is clearly limited when the crown shows

more than 40% damage (Kätzel et al. 2006). Moreover,
when defoliation takes place in several successive
years the crown becomes increasingly and perman-
ently damaged and the oak’s vitality diminishes
(Fischer 1999; Petercord 2015). In combination with
extreme weather conditions and other pests following
moth outbreaks, for example oak mildew (e.g. Ery-
siphe alphitoides) and metallic wood-boring beetles
(Agrillus spec.), this can result in a complete dieback
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of the tree (Hartmann and Blank 1998; Meshkova
2000; Thomas et al. 2002; Kätzel et al. 2006; Thomas
2008; Bressem and Steen 2012).
In this study, data of mottled umber moth (Eran-

nis defoliaria) and winter moth (Operophtera bru-
mata) (short MUWM) from North and Central
Germany were analysed. These related species usu-
ally occur together (Altenkirch 1981) and periodic-
ally defoliate entire oak stands in spring. In this way
they weaken their host and act as a predisposition
factor for severe damage, such as oak decline (Man-
ion 2003). Therefore MUWM are both important
and frequently monitored herbivorous insects in
Germany. As both species have a similar biology
their combined population density is estimated
using glue band catches. The amount of caught fe-
male MUWM serves for the calculation of the haz-
ard code. When these codes exceed the warning
threshold of one, a potential severe defoliation of
the host tree in the following spring is expected
(Altenkirch 1966; Altenkirch 1981). Therefore, the
hazard code also provides a warning threshold for
the forest owner that pest control might be neces-
sary in the coming spring.
The abundance of MUWM shows a periodic dy-

namic that is spatially synchronized over large areas.
This is characteristic for many forest insects (Lieb-
hold and Kamata 2000). These population cycles are
assumed to be caused by delayed abundance
dependent factors, especially specialised parasitoids
(Berryman 1996; Ruohomäki et al. 2000; Klemola et
al. 2010) and host plant defences (Klemola et al.
2004; Tenow et al. 2013). Spatial synchronization is
the result of dispersal (either of the defoliating Lepi-
doptera or of their enemies) or trophic interaction
with populations of other species, e.g. parasitoids,
that are mobile or spatially synchronous (Ydenberg
1987; Ims and Steen 1990; Liebhold et al. 2004).
Furthermore, geographical variation in habitat qual-

ity might influence the synchrony of population dy-
namics (Peltonen et al. 2002). Regional stochasticity
(Moran 1953), such as synchronous weather variabil-
ity, might also lead to spatial synchronization (“Moran
effect”).
There are several studies that deal with the identi-

fication of the potential influential factors on the
population dynamics pattern of MUWM in Europe,
many of them distinguishing weather effects as driv-
ing components. Jepsen et al. (2009) discovered a
coherent pattern of spatial synchrony of the start of
the vegetation period and defoliation by geometrid
moths in boreal birch forests in northern Fenno-
scandia. Thus, they assume that weather effects in
spring, which influence the phenology of both host

plant and geometrid moth, might act as “Moran ef-
fects”. Likewise, van Asch and Visser (2007) suppose
that years with high synchrony between bud burst
and egg hatch of winter moth might lead to a mass
outbreak because synchrony is crucial for the moth
development and has several consequences on its
fitness. Topp and Kirsten (1991) discovered that the
fecundity of female winter moths is temperature
dependent and, therefore, assume that coincidence
between imago eclosion and optimal temperatures
might be a precondition for mass outbreaks. In
Fennoscandia, important regulating influences on
population density of the related autumn moth
(Epirrita autumnata) appear to be egg mortality
caused by minimum winter temperatures, followed
by parasitism and, finally, the varying food plant
quality (Virtanen and Neuvonen 1999).
However, the causes for the spatio-temporal cyclic

population patterns of many forest Lepidopteran
pests are rather complex and their identification
and understanding remains a scientific challenge
(Liebhold and Kamata 2000; Koenig 2002; Liebhold
et al. 2004). In order to understand and quantify
potential influential factors on the population dy-
namics pattern of MUWM, we compiled an exten-
sive data base of glue band inventories, weather, soil
and stand data and developed an additive mixed lo-
gistic regression model (GAMM). The derived
model has two major aims and applications:

1. Analysing the influence of weather, stand and site
conditions on the warning threshold exceedance of
MUWM.

2. Quantifying significant model effects to allow for
short-term predictions of threshold exceedance as
part of an early-warning system and to optimize
monitoring intensity.

Materials and methods
Study species and study area
The life cycle of the univoltine geometrid species mot-
tled umber (Erannis defoliaria) and winter moth (Oper-
ophtera brumata) in Europe is characterized by an
overwintering egg-stage close to the buds of the host
tree, hatching in spring in synchrony with the host
plant’s budburst, a long pupation stage from summer to
autumn in the soil and emergence of the adults from the
ground in autumn, usually after the first frost nights,
with highest activity from evening hours until midnight
(Schwenke 1978). In middle Europe, MUWM densities
follow periodic peaks approx. Every 7–11 years (Myers
1988; Tenow and Nilssen 1990; Delb 2012). In outbreak
years, the polyphagous larvae might entirely defoliate

Hittenbeck et al. Forest Ecosystems             (2019) 6:4 Page 2 of 18



broadleaves and conifers, with a preference for oak
(Connell and Steyer 2007).
The MUWM populations were monitored with glue

band catches. These were applied to (usually) ten rep-
resentative trees (extreme examples from one up to
36 trees per stand) within monitoring stands from the
middle of October to the middle of December. The
wingless female moths eclose from the pupae in the
ground and crawl up the tree stem, where they copu-
late with the winged males. The glue band catches
were checked every second week and the females
counted and removed. The sum of MUWM females
stuck to the glue bands over the whole monitoring
period was used to calculate the hazard code hc,
which is a common measure in forest protection
management conducted by the Northwest German
Research Institute (NW-FVA). As mottled umber
moths need approx. 2.5 times as much food as winter
moths (Schwenke 1978), the hc is calculated as
follows:

hc ¼ number♀winter mothþ 2:5 � number♀mottled umber
tree stem circumference cmð Þ

ð1Þ
Values of Eq. 1 denote a potential severe or even en-

tire defoliation in the following spring (Altenkirch
1966; Altenkirch 1981). We analysed 1711 hazard codes
(means per stand and year), dating from between 1993
and 2015, and stemming from 626 different stands in
Lower Saxony, Hesse, Saxony-Anhalt, Brandenburg and
Mecklenburg-West Pomerania (Fig. 1). The original
counts, separated by species and tree girth, were not
available for most data before 2006, as only the hc was
recorded (540 of 1711 hc without original counts).
Therefore, the use of the original counts would have re-
sulted in a loss of data, especially in the length and
amount of time series (see Table 7 and Fig. 7 in
Appendix). An analysis of the available original counts
behind the hazard codes revealed that the population
dynamics of winter moth are similar to those of

Fig. 1 Location, within Germany, of monitoring stands that provide the data base for model building. Colour indicates the assignment of the
stands to three ecoregions
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mottled umber (see Figs. 8 and 9 in Appendix). How-
ever, there is a slight time lag between the density
peaks of winter moth and those of mottled umber
and, therefore, the correlation between both densities
is weak (Pearson correlation coefficient of 0.35). This
hardly affects the target value hc, as the data is
clearly dominated by winter moth counts. The female
winter moth densities already account for 81% of the
hazard codes and 73% of the threshold exceedances.
For this reason, the hc was used as a dependent
variable.
The whole sampling area was divided into three ecor-

egions: the atlantic “Northwest German Lowlands”, the
subatlantic to subcontinental “East German Lowlands”
and the subcontinental area “Central German High-
and Lowlands” (Fig. 1). As well as comparable climatic
and geological conditions, each ecoregions comprised
similar population dynamics of MUWM (Fig. 2). The
hazard codes, a simple measure of the MUWM abun-
dance, display an oscillating course during the last 22
years (Fig. 2), with distinct differences in pattern be-
tween the ecoregions. For example, only the ecoregion
“East German Lowlands” shows a further periodic peak
from 2011 to 2014.
The exact assignment of the glue band stands to

the ecoregions resulted from the model develop-
ment process described in the section of Model de-
velopment, but is presented here for a better
understanding and description of the data. The bor-
ders of the ecoregions are largely identical with
those of the federal states, which might not only
result from climatic differences but potentially also

from different systems of data collection in the fed-
eral states.
The data bases for the three ecoregions are rather

different with respect to the length of time series for
single monitoring stands. Many stands have only one
or few observations, which were mainly collected by
forest practitioners, while only a few monitoring
stands have a scientifically recorded time series of
several years duration (Fig. 3). The majority of the
monitoring stands lay in the region “East German
Lowlands” (413 of 626 stands), but for many of them
there were only a few observations. Most time series
data with at least 10 years of observations originate
from the region “Central German High- and Low-
lands” (17 of 37 stands in this ecoregion). The
amount of data records is also unevenly distributed
both in time and space. The region “Northwest Ger-
man Lowlands” has the smallest database of all re-
gions (282 of 1711 records), the “East German
Lowlands” the largest (1026 of 1711 records) (see
Table 5 in Appendix). Moreover, there are years with
very few measurements (e.g. 1993, 1994, 2001, 2002
and 2006, see. Table 5 in Appendix).

Weather, stand and site data
Regionalized weather data with a resolution of 1 day
(Köhler et al. 2015) were used to generate variables
that potentially effect the development of MUWM.
For this purpose, daily mean and minimum tempera-
tures and daily precipitation sums were aggregated
for certain fixed periods of the year that cover the
different developmental stages of the moth. In

Fig. 2 Chronological development of hazard codes in 1993–2015, differentiated by 3 ecoregions, dotted line indicates the warning threshold of 1
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addition, the number of frost days per period for
adult and egg stages was deduced from days with
daily mean and daily minimum temperatures below
0 °C respectively. As synchronization between bud-
burst and larval hatch is essential for the moth devel-
opment (van Asch and Visser 2007), the start of the
vegetation period for pendunculate oak (Quercus
robur) was calculated on the basis of daily mean tem-
peratures using the R-package vegper (Nuske 2015),
which implements the algorithm described by Menzel
(1997). High temperatures in April might lead to an
earlier egg hatch and an asynchony with bud-burst, as
Selås (2000) observed on Tortrix viridana, whose first
instar larvae also require bursting buds. Therefore,
variables describing temperature in April were calcu-
lated as well. Late frost in spring that might kill the
moth larvae is indicated by a variable that contains
the last day with frost in spring. Overall, 46 weather
parameters were calculated and tested for their effects
on the dynamics pattern (see Table 6 in Appendix).
Additionally, the recent forest inventories and the

forest site mapping provided various potential co-
variates (stocking degree, oak proportion, stand age
and nutrient level) (Table 1). Potentially influencing

topographical and geographical parameters were cal-
culated using SAGA (Conrad et al. 2015) on the
basis of a digital terrain model with 25-m reso-
lution: altitude, aspect, slope, diurnal anisotropic
heating (Böhner and Antonić 2009) and general
curvature (Zevenbergen and Thorne 1987a). Infor-
mation on stand age, oak proportion and stocking
degree was only available for 1033 (60%) observa-
tions, information on nutrient level for 1121 (66%)
observations.
Furthermore, the binary parameter pesticide de-

scribes whether or not a pest control was carried
out on the glue band stand in spring, before data
collection. In total, 65 pest control events were
registered.

Model development
For model development, MUWM abundance, repre-
sented by the hazard code hc, was transformed into a
binary variable hc _ cat = I{hc ≥ 1} with a threshold value of
1 – note that different definitions of the threshold value
will lead to varying frequencies of damage occurrences
and therefore to different models (Hanewinkel et al.
2004). Using the threshold value of 1285 observations

Table 1 Various parameters describing the monitoring stands

Parameter Unit Min Max Description

age years 20 239 Stand age of oak

oak_perc % 2 100 Oak proportion based on the basal area

stocking_degree 0.25 1.54 Ratio of absolute stand density to a reference level from yield table

dgm25 m a.s.l. 4.1 452.9 Altitude

budburst day in year 107 139 Day of oak’s budburst (Menzel 1997)

Fig. 3 Number of monitoring stands with length of time series from only one observation up to 20 observations, differentiated by the
three ecoregions
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were defined as events and 1426 as non-events of
threshold exceedance.
The transformation into a binary response results in a

loss of information. However, regression models for
count data could not be used for approx. 30% of the hcs
due to the loss of the original count and tree girth infor-
mation. Using the hc as response directly would be an
alternative. However, in modelling count data it is rather
uncommon to employ densities, such as hc, rather than
using the original discrete counts and, if necessary,
an offset-term to account for differing sample units.
In our case, differing sample units are present since
the tree girths vary. The main reason for modelling
the original counts is the possibility of applying
distribution functions for count data, such as
zero-inflated Poisson or negative binomial, which
can handle positively (right-) skewed and
zero-inflated data, like that in our present study.
When modelling densities, for instance hc, model
approaches, such as generalized additive models for
location, scale and shape gamlss, are more compli-
cated, since distribution functions for positively
skewed and zero-inflated continuous data are appro-
priate. Therefore, we used a simple binary regression
as a first approach, but more sophisticated modelling
will be a topic of our future research.
The effects of potential covariates on hc_cat were

investigated using generalized additive mixed regres-
sion models (GAMM), assuming a Bernoulli distribu-
tion with logistic link-function. Hence, model
predictions are probabilities for a threshold exceed-
ance of the hazard code.
The developed model should be able to describe

the cyclic variability of MUWM abundance with its
large-scale spatial pattern (Fig. 2), i.e.
spatio-temporal autocorrelation. Factors that are
spatially correlated (e.g. climatic and geological con-
ditions) were considered via three ecoregions, in
order to eliminate any confounder of the causal ef-
fects. There might be additional small-scale
spatio-temporal variation on the stand level. How-
ever, neither modelling of stand-specific population
dynamics, nor complex spatio-temporal structures
(Augustin et al. 2009) was possible, since only a
small subsample of the database originated from lon-
ger per-stand time series (Fig. 3) and the sample
stands were spatially rather unequally distributed.
Therefore, a quite simple spatio-temporal component
was introduced into the model, whereby the tem-
poral patterns are described flexibly by a smooth
function fecoregion(j) of year j, varying with the
three-level categorical variable ecoregion. Since
time-effects are mean-centered, main effects for eco-
region (β0ecoregion) were additionally included.

The database comprises longitudinal repeated mea-
surements for a subsample of monitoring stands. In
order to fulfil the assumption of independently dis-
tributed residuals, stand level random effects bi were
introduced to account for within-stand correlation
(Zuur et al. 2009). Ignoring this clustered data struc-
ture would lead to under-estimated standard errors of
model effects (Pinheiro and Bates 2006). Moreover,
the implementation of random effects made it pos-
sible to describe the simplest possible pattern of ran-
dom between-stand variability, by assuming stand
specific levels of threshold exceedance probability, but
still allowing for a common cyclic pattern within an
ecoregion.
These considerations led to the basic model, a

generalized additive mixed regression model
(GAMM), which describes (1) stand-specific levels of
threshold exceedance probability, (2) correlation be-
tween the time series observations of single stands
and (3) a very simple large-scale spatial pattern of
flexibly modelled temporal dynamics:

E hc catijjxij
� � ¼ πij ¼ h β0ecoregioni þ f ecoregioni jð Þ þ bi

� �

β0ecoregioni ¼ I ecoregioni¼Af g � β0ecoregion;A þ…þ I ecoregioni¼Cf g
�β0ecoregion;C f ecoregioni jð Þ ¼ I ecoregioni¼Af g � f ecoregion;A jð Þ þ…þ I ecoregioni¼Cf g
� f ecoregion;C jð Þ

ð2Þ
with hc _ catij~Bernoulli(πij), conditional probability

πij = P(hc _ catij = 1| j, ecoregioni) for hazard code class
hc _ cat in monitoring stand i in year j being equal to
one, inverse logistic-link function h, temporally struc-
tured linear predictors with main regional effects
β0ecoregion, p, p = A, B, C three ecoregion-specific one
dimensional smoothing functions (penalized thin plate
regression splines), fecoregion, p(j), p = A, B, C to de-
scribe specific cyclic population dynamics for the
three ecoregions and random intercepts bi � N ð0; σ2

bÞ
that are assumed to be normally and identically dis-
tributed with mean 0 and variance σ2

b . I{condition} are
indicator functions as denoted by:

I conditionf g ¼ 1; if condition is met=true;
0; else:

�

This basic model was used to optimize the alloca-
tion of the monitoring stands to the three ecoregions:
Stands close to the border of the ecoregions were
relocated to the neighbouring ecoregion if this led to
a lower Akaike information criterion (AIC, Akaike
1974) of the model. This was the case for 14 moni-
toring stands. After this iterative optimization of the
ecoregions, the causal covariates were selected via a
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stepwise variable selection process described below,
which led to the following model:

πij ¼ h β0ecoregioni þ f ecoregioni jð Þ þ f 1 x1ij
� �þ…þ f n xnij

� �þ bi
� �

ð3Þ
with one dimensional smoothing functions f1,… , fn
(mean-centered penalized thin plate regression splines)
for n continuous predictor variables x1ij,… , xnij in moni-
toring stand i in year j and β0ecoregioni and f ecoregionið jÞ as
described in Eq. 2.
Overall, this model formulation allows for an assess-

ment of small-scale spatial variation via random effects,
as well as large-scale spatio-temporal population dynam-
ics patterns and fixed effects of causal covariates via
smooth non-linear model terms.

Variable selection, confusion matrix and ROC-curve
The basic model was extended by testing potential
causal predictors via a non-automatic procedure. In
this stepwise forward variable selection the BIC was
used as selection criteria instead of the less strict
AIC. After each variable selection step the confusion
matrix with the model’s sensitivity (ratio of correctly
predicted events (1-values)) and specificity (ratio of
correctly predicted non-events (0-values)), as well as
the ROC (receiver operating characteristics) curve
with AUC (area under curve) values served as add-
itional instruments to evaluate the model’s prediction
ability. AUC values of 0.5 represent a random predic-
tion. Hosmer and Lemeshow (2000) give a rule of
thumb for the AUC that values between 0.7 and 0.8
represent an acceptable, and values greater than 0.8
an excellent discrimination.
The logistic regression model does not predict the bin-

ary class itself but the probability for an event. Hence,
the confusion matrix is calculated by transforming the
probability back into the binary response by setting a
certain cutpoint. In the present survey, following the ap-
proach of Overbeck and Schmidt (2012) for their bark
beetle infestation model, the cutpoint was defined as op-
timal, which minimizes the sum of false negative and
false positive prediction rate.
One characteristic has to be taken into consider-

ation when calculating the confusion matrix for a
mixed effect model (Eq. 3). In order to separate the
amount of variance explained by the causal covariates
and by the random effects respectively, the confusion
matrix and AUC of the model were calculated using
predictions with and without random effects. The
comparison of both metrics allows an additional
evaluation of the model improvement when a further
causal covariate is added to the model. In this con-
text, a model with a higher variance partition

explained by fixed causal effects is considered to be
better, since the potential for a generalisation of the
model predictions is higher.

Model validation
In order to validate the model, a leave-one-out cross
validation of single measurement occasions was car-
ried out. The purpose of the validation was to assess
the prediction error for the next future monitoring in
stands where at least 2 previous assessments are
available. For this purpose, only those 777 measure-
ment occasions that hold at least two prior measure-
ments were considered as validation data sets, since a
robust estimate for the stand random effect should be
guaranteed. All records from the stand of those valid-
ation measurement occasion that were chronologically
younger were not used for model calibration. The 777
validation data records originate from 194 stands.
For interpretation of the results, the predictions of the

validation procedure were compared to the predictions
of the same 777 measurement occasions based on the
original model fit. For this purpose, the different metrics
from the confusion matrix and the ROC curve were cal-
culated on the basis of the full models (i.e. using fixed
and random effects), applying the optimal cutpoint
0.433. Additionally, the mean prediction error (differ-
ence between the binary observation and the predic-
tions) was computed.
All calculations were carried out in the R environ-

ment (R Core Team 2015). The development of the
general additive mixed models was realised with help
of the R-packages mgcv (Wood 2011). The R-package
pROC (Robin et al. 2011) served for calculations of
the AUC.

Results
Model development
The final developed logistic additive mixed model for
predicting the probability for threshold exceedance of
the female moth abundance is defined as follows:

πij ¼ h β0ecoregioni þ f ecoregioni jð Þ þ β1 pesticideij þ f 1 prec pupaij
� ��

þ f 2 tmin imagoij
� �þ biÞ;

ð4Þ

with πij, h, β0ecoregioni þ f ecoregionið jÞ and bi defined as

in Eq. 2, pesticideij: dummy coded binary variable indi-
cating the use of pesticide in the prior spring in stand i
and year j, β1: regression coefficient, prec _ pupaij: mean
daily precipitation sum during the early pupal stage
(01.06.–31.08.), and tmin _ imagoij: mean daily minimum
temperature in adult stage (15.10.–14.12.) of moni-
toring stand i in year j, f1, f2: one dimensional
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smoothing functions (penalized thin plate regression
splines). The data of prec_pupa ranges from 9 to 44
(mm × 10), those of tmin_imago from − 13 to 68 (°
C × 10).
Based on a model that includes only random effects

(Eq. 4.1), the stepwise selection of covariates via fixed
effects led to model improvements using the BIC as a
first simple model performance criterion (Table 2).
The BIC of the model decreased when a smoothing

function for year j was added as a temporal structured
effect describing the cyclic population dynamics (Eq.
4.2). Both the additional implementation of the main ef-
fects of the three ecoregions (Eq. 4.3) and the temporal
effects that are specific for each ecoregion (Eq. 4.4) fur-
ther improved the model significantly (BIC decreases
from 2338 to 2007 and 1962). The temporal structured
effects (Eq. 4.4) vary for each ecoregion but also show
similarities, for example low abundance levels around
year 2000 (Fig. 4). The broad confidence intervals of the
temporal model effect in the “Northwest German Low-
lands” (Fig. 4 left) indicate less reliable predictions than
in the other two ecoregions.
The binary variable pesticide was implemented prior

to the further variable selection process (Eq. 4.5) because
pest controls are intended to reduce the abundance of

MUWM considerably. This covariate showed a sensitive,
significant negative effect in the case of a pest control
application. Moreover, the BIC of the model decreased,
hence the variable pesticide was selected as a predictor
(Eq. 4.5). The resulting model served as a new basic
model for the model selection process described in
chapter 2.3.
Two further covariates were selected in this process,

both describing the weather condition in certain moth
developmental stages. None of the other potential pre-
dictor variables that led to a further decrease in BIC
showed a significant and plausible model effect.
The first predictor that was selected comprises the

mean daily precipitation during the early pupal stage
(01.06.–31.08.), prec_pupa. This covariate shows a sig-
nificant positive and non-linear model effect, i.e. higher
humidity in this period results in a higher probability of
threshold exceedance (Fig. 5 left). The effect gradient is
especially strong at values between 25 and 30.
The mean daily minimum temperature during

adult stage (15.10.–14.12.), Tmin_imago, was selected
as second causal covariate. This predictor shows a
positive, nearly linear effect: higher minimum tem-
peratures in this stage lead to higher probabilities of
threshold exceedances (Fig. 5 right). Because of the

Fig. 4 Temporal model effects of Eq. 4.4 (logistic level) specific for the three ecoregions; left: Northwest German Lowlands, middle: East German
Lowlands, right: Central German High- and Lowlands. Grey areas mark the 95% confidence intervals

Table 2 Various logistic regression models fitted during the stepwise selection process

Model BIC

4.1 πij = 1 + bi 2352

4.2 πij = h(f(j) + bi) 2338

4.3 πij = h(β0 ecoregion i + fi(j) + bi) 2007

4.4 πij = h(β0 ecoregion i + fecoregion i(j) + bi) 1962

4.5 πij = h(β0 ecoregion i + fecoregion i(j) + β1pesticideij + bi) 1954

4.6 πij = h(β0 ecoregion i + fecoregion i(j) + β1pesticideij + f1(prec_pupaij) + bi) 1781

4.7 πij = h(β0 ecoregion i + fecoregion i(j) + β1pesticideij + f1(prec_pupaij) + f2(tmin_imagoij) + bi) 1756

Hittenbeck et al. Forest Ecosystems             (2019) 6:4 Page 8 of 18



linear tendency of the model effect, the model was
refitted assuming a strictly linear effect of Tmin_i-
mago. However, this simplification led to a consider-
ably higher BIC (1818 instead of 1781) and was not
employed. In order to check for the robustness of
the effect pattern of the selected covariates, the
model was refitted for various warning thresholds
(0.6, 0.8, 1.2, 1.4). This analysis revealed that the ef-
fects have little sensitivity to the chosen threshold,
as they showed a similar pattern as in Fig. 5.
The stepwise model selection led to decreasing BICs,

but the AUC did not change much (see Table 3), since
the variance explained through fixed and random effects
in total remains more or less constant. However, when
predicting using fixed effects only, the AUC is lower but
still indicates an excellent discrimination and it increases
with each added predictor. The accuracy and sensitivity
of predictions without random effects also have an

increasing tendency, while the specificity slightly
decreases.

Sensitivity analysis
The influence of the single model parameters on
the model predictions were illustrated with a sensi-
tivity analysis. For this purpose, predictions over
time were calculated without random effects and
the variable to be tested was varied, while all other
model predictors were set constant (ceteris pari-
bus). Three scenarios were set up, representing
optimum, mean and minimum conditions for the
moth development. The covariates were fixed on
values that approximately represent optimal, mean
and poor conditions in the developmental moth
stage concerned (dotted lines in Fig. 5). In order to
avoid extrapolation, only combinations were used
that are represented in the data basis. For this

Fig. 5 Effects of prec_pupa (mm × 10) (left) and tmin_imago (°C × 10) (right) on the probability of threshold exceedance of the hazard code (Eq. 4.7).
Grey areas mark the 95% confidence intervals of the model effects, dotted vertical lines represent minimum, mean and optimum conditions for moth
development, later applied in the sensitivity analysis

Table 3 Model statistics of the stepwise selection process, calculated from predictions employing the full models including fixed
and random effects, as well as predictions using fixed effects only (right part of the table). For comparison, the optimal cutpoints
that were derived for the full models were also employed for the fixed effects predictions

Model Cutpoint Predictions based on fixed
and random effects

Predictions based on fixed effects only

Sensitivity Specificity Accuracy Auc Sensitivity Specificity Accuracy AUC

4.4 πij = h(β0 ecoregion + fecoregion(j) + bi) 0.439 0.568 0.973 0.906 0.930 0.316 0.954 0.848 0.831

4.5 πij = h(β0 ecoregion + fecoregion(j) + β1pesticideij + bi) 0.422 0.604 0.967 0.906 0.930 0.316 0.957 0.850 0.836

4.6 πij = h(β0 ecoregion + fecoregion(j) + β1pesticideij +
f1(prec_pupaij) + bi)

0.427 0.596 0.966 0.904 0.915 0.467 0.927 0.850 0.850

4.7 πij = h(β0 ecoregion + fecoregion(j) + β1pesticideij +
f1(prec_pupaij) + f2(tmin_imagoij) + bi)

0.433 0.586 0.966 0.903 0.924 0.446 0.945 0.862 0.860
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Fig. 6 Three different scenarios (optimum, mean and minimum weather conditions for moth development) of the predicted probabilities of
threshold exceedance in the three ecoregions over time. Upper: Northwest German Lowlands, center: East German Lowlands, lower: Central
German Lowlands; the horizontal dotted line marks the optimal cutpoint cp
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reason, the covariate pesticide was set to zero for
all scenarios since the data set contains only few
records with pest control.
The sensitivity analysis shows that the predictions

are highly sensitive to changes of the covariates in
all three ecoregions (Fig. 6). Under optimal condi-
tions for moth development the probability of
threshold exceedances is considerably higher than
under mean conditions, which in turn has a higher
level than the probabilities under unfavourable con-
ditions. The better the conditions for moth develop-
ment, the longer become the periods where the
calculated probabilities lie above the optimal cut-
point of 0.433. Both mean and optimum scenarios
show a typical cyclic fluctuation of the population
dynamics. Under bad weather conditions the prob-
ability for threshold exceedances varies only slightly
and the predicted cyclic dynamic is weak. These
plausible biological patterns directly result from the
employed logistic link function, which defines the
highest sensitivity for mean probabilities.
When comparing regional predictions, the

“Northwest German Lowlands” show the highest
probabilities for each weather scenario. Under optimal
conditions the probabilities remain above the
optimum cutpoint of 0.433 for 9 years. In the other
two ecoregions probabilities of above 0.433 are only
predicted for a maximum of five successive years.
Under mean conditions the predicted probabilities in
the “Northwest German Lowlands” reach peaks of
above 0.433 twice during the investigated period, only
once in the “Central German High- and Lowlands”
and never in the “East German Lowlands”. The pre-
dicted probabilities under unfavourable weather con-
ditions are at a level distinctly below the optimal
cutpoint in all three ecoregions.

Model validation
The results of the 777-fold leave-one-out cross vali-
dations show a lower sensitivity, specificity and
AUC than the original model fit (Table 4). However,
the model performance is still very high, with an
AUC of 0.871. The mean prediction error of the
validation runs and the original fit is about the

same. The variation of the prediction error assessed
by the 5% and 95% percentile is slightly smaller in
the model fit.

Discussion
The model gives satisfying predictions of the prob-
ability of threshold exceedance with only a few pre-
dictors. This is convenient, as it requires little
information. On the other hand, the model does not
consider the effects of other predictors, such as
those influencing the crucial synchrony between egg
hatch and bud burst (van Asch and Visser 2007;
Jepsen et al. 2009). For example, cold winters might
lead to a better synchrony between egg hatch and
budburst (Connell 2014). Moreover, cold and wet
weather around hatching time could kill the first in-
star larvae (Schwenke 1978). Sometimes one ex-
treme weather phenomenon, e.g. heavy rainfall that
washes off the larvae (Habermann et al. 2007) has a
strong regulating impact, but is difficult to describe
by the aggregated parameters. Using extreme weather
values per development stage, for example maximum
daily rainfall or minimum daily temperature per stage,
did not improve the model performance. But it must
be taken into consideration that extreme rainfall
events are often very local and therefore difficult to
describe by regionalized weather data.

Model structure
The model allows analyses of the joint regional and
temporal population dynamics of MUWM because it
describes these patterns by explicit effects. However,
due to limitations of the data base, the spatial com-
ponent could only be specified in a very simple way
via three ecoregions. In contrast, the temporal dy-
namic is flexibly modelled via smooth effects of the
monitoring year specified for each of the ecoregions
(temporally structured effect). Unstructured spatial
effects are modelled via random effects on stand
level. This is a very simple way to allow for stand
specific differences in the cyclic dynamics, since
only the level but not the temporal pattern is
allowed to vary between stands within one eco-
region. Due to these limitations, and even if two
time-varying and stand specific weather covariates

Table 4 Different statistics derived from model validation compared with the metrics from the original model fit calculated for the
777 records of the validation runs. Metrics of the confusion matrix were calculated by applying a cutpoint of 0.433

Sensitivity Specificity Accuracy AUC Prediction error

(5% percentile) Mean (95% percentile)

validation 0.534 0.955 0.907 0.871 (−0.394) –0.016 (0.596)

model fit 0.659 0.964 0.929 0.926 (−0.344) –0.017 (0.471)
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are integrated into the final model, the residuals
show some temporal autocorrelation on stand level.
A check of temporal autocorrelation within stands
revealed that especially the measurements of two
successive years are positively autocorrelated. Pre-
sumably, only the implementation of a temporal
structured effect for each monitoring stand would
eliminate all temporal autocorrelation. This would,
however, require more time-series data than were
available. A complex large scale spatio-temporal ef-
fect (Augustin et al. 2009) was not modelled since
the spatial coverage for most observational years is
rather weak. Moreover, several data originate from
seriously affected stands and from time periods of
higher moth abundance, as the inventory is a legal
preliminary for any pest control application. This
causes a positive bias (overestimation), in space and
time, of the overall abundance level, which has to
be considered in the interpretation of results. As ex-
planatory variables are collected independently of
this sampling scheme, however, estimated effects of
predictors and patterns of population dynamics can
be estimated without bias and with greater accuracy
of estimate per observation (King and Zeng 2001) in
comparison to a fully random sampling design.
The rough description of spatial and temporal popula-

tion dynamics prohibits that the model predicts escalat-
ing probabilities after years of latency, even when
weather conditions are favourable. In the sensibility
analysis, even the strongest increase of predicted prob-
abilities under optimum conditions (year 2001 to 2003,
Fig. 6 upper) takes 2 years. This is consistent with the
observation of Myers (1988) that the population dynam-
ics of cyclic species are not characterized by sudden in-
crements but show a gradual increase over several years.
However, the description of temporal structured effects
for each ecoregion requires sufficient data to calculate
the smooth time-trends fecoregion i(j). The large confi-
dence intervals of the temporal structured effect for the
“Northwest German Lowlands” (Fig. 4 left) indicate that
the predictions are highly uncertain, which might result
in implausible predictions, especially under extreme
weather conditions. In this context, the high predicted
probabilities, which lie above the cutpoint under optimal
weather conditions for “Northwest German Lowlands”
for nine successive years (Fig. 6) in the sensitivity
analysis, seem implausible. Abundance generally de-
creases after a few outbreak years as a result of in-
creasing intraspecific competition (Hunter 1998),
parasites and other antagonists (Schwenke 1978; Ro-
land 1994). There were no such data available during
the modelling process. Hence, more data, especially
for this ecoregion, are likely to improve the model
performance.

Selected variables
During variable selection, the effect of pest control
and two weather variables were chosen as predic-
tors. The binary predictor pesticide is very import-
ant since pest control reduces the probability for
threshold exceedances in the following autumn sig-
nificantly. One selected weather parameter is the
mean daily minimum temperature during adult
stage tmin_imago, with a positive model effect:
higher temperatures during this period lead to
higher probabilities of threshold exceedance (Fig. 5
right). This effect can be explained, since the im-
agines become less active with lower temperatures
and immobile at frost, even though they can sur-
vive temperatures down to − 20 °C (Schwenke 1978,
p. 226). According to Schwenke (1978, p. 226 and
228), the optimum temperature for moth activity
lies around 5 °C to 10 °C. Hence, fewer moths crawl
up and get caught by the glue bands when tempera-
tures are low during emergence period. Topp and
Kirsten (1991) assume that the coincidence between
moth emergence and the optimum temperature of
around 10 °C is a precondition for mass outbreaks.
As the imagines are most active from the evening
until approximately midnight (Schwenke 1978, p.
226), this time frame is better represented by the
daily minimum temperature tmin_imago than the
daily mean temperature. A covariate that describes
the temperature between, for example, 6 p.m. and
midnight during adult stage, might even have a
stronger effect. However, such hourly temperature
values were not at our disposal.
A parameter describing the precipitation in the

early pupal stage, prec_pupa, was selected. This co-
variate’s effect indicates that higher moisture in this
period has a positive influence on the moths’ devel-
opment (Fig. 5 left). According to Schwenke (1978,
p. 228), the main reasons for pupal mortality are de-
hydration, flooding and predators. As flooding can
be largely excluded at the monitoring stands, the
mortality by dehydration offers a plausible explan-
ation for the described covariate’s effect. Influence
by predatory enemies and epizootic disease could
not be investigated in this study, but they can re-
duce the population of MUWM considerably, espe-
cially in pupal stage (Dempster 1983; Berryman
1996; Hunter 1998).
Additionally to the fixed effects, random effects are

predicted on stand-level to account for the clustered
data structure and the non-systematic data sampling.
They contribute considerably to the model perform-
ance, which becomes clear when the predictions are
calculated without random effects (Table 3). In this
case, the AUC is significantly lower, even though it
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still indicates an excellent discrimination. When pre-
dicting without random effects, the model’s AUC in-
creases with every further implemented predictor
because higher proportions of the variance are ex-
plained through fixed model effects. Accordingly, the
variance of random effects decreases (standard devi-
ation of the bi is decreasing from 1.0 in model 4.4 to
0.85 in model 4.7). The effect of the added predictor
specifies a part of the variance that was previously
covered by the random effects.
Stand and soil parameters were not identified as covar-

iates, which might be due to the available data quality
and quantity. Some monitoring stands lacked forest in-
ventory and soil data. Moreover, the stand inventory
data are assessed at 10 year intervals, thus changes be-
tween years are not covered as in the yearly glue band
data. Additionally, the inventory methods vary between
the considered federal states so the data comparability is
problematic. Possible effects of stand and site might also
be superimposed by the high impact of the dynamic
weather conditions.

Model performance and confusion matrix
The accuracy of the predictions is very high. However,
the accuracy deduced from the confusion matrix is a
problematic metric with skewed class distributions of
the binary response. Lawrence et al. (1998) stated that
the model “may always predict the most common class
and still provide relatively high performance”. Hence,
other statistics, such as sensitivity and specificity, are
more meaningful. In the present data set, the amount of
non-events (class 0) is very high – five times as many as
events of threshold exceedance (class 1). It is, therefore,
challenging to achieve a high sensitivity that describes
the number of correct classified events. With a sensitiv-
ity of 0.586 in the original model fit, the events of
threshold exceedances are predicted significantly worse
than the non-events (specificity of 0.966, Table 4). In the
validation, the sensitivity decreases to 0.53. The lower
prediction performance in comparison to the original
model fit, can be explained by the reduced database used
in the 777 model calibrations. Since the validation meas-
urement occasion and all chronologically younger re-
cords of the respective stand were excluded in the
validation runs, the predictions are less accurate than in
the original model fit. However, the model is able to
achieve a prediction accuracy of 90% in the cross valid-
ation and the mean prediction error of the validation
runs is close to zero.

Conclusions
The developed model is able to generally estimate
the large-scale hazard situation. Hence, it could be
used for forest protection planning as part of an

early warning system. As soon as the values for pre-
c_pupa are available (by the end of August), predic-
tions can be calculated, assuming different scenarios
for temperature in the succeeding adult stage, e.g.
values for minimum, mean and optimum conditions
in accordance to the sensitivity analysis (chapter
3.2). Those estimations of threshold exceedances
could help to choose an appropriate monitoring in-
tensity for the coming autumn. But the choice of
the most appropriate cutpoint depends on the
model application. In forest management, one has
to judge the opportunity costs, which means com-
paring the consequential charges by undetected
threshold exceedances with the cost of “false
alarms” that result in unnecessary work input
(Overbeck and Schmidt 2012).
The influences on the MUWM populations are

very complex and many aspects like predators or
parasitisation were not considered explicitly in the
modelling, even though they may have a strong
regulating impact (Dempster 1983; Berryman 1996;
Hunter 1998). Some meteorological variables, such
as wind speed, sunshine and relative humidity,
might give further explanations. Lagged effects of
environmental factors could also be analysed more
intensely in a subsequent study with the help of
lagged nonlinear models (DLNM, Gasparrini 2011).
Furthermore, Tenow et al. (2013) describe outbreak
waves of winter moths that are travelling Europe, so
considering the Europe-wide spatio-temporal
dynamics of outbreaks might give valuable explana-
tions of regional outbreak patterns. The model,
however, gives first hints about existing influences.
Future inventory data, including further population
cycles, would improve the model and allow for
further investigation of additional covariates and the
verification of the identified effects. In this context,
time series data, in particular, are of great value for
model improvements. With the help of such an
extended data base, winter moth and mottled umber
should be investigated separately to clarify whether
their sensitivity to the discovered parameters are the
same.
It has to be taken into consideration that the exceed-

ance of the warning threshold is only an indicator for
potential severe defoliation in the coming spring, but
not every threshold exceedance necessarily leads to de-
foliation. This still depends on the amount of positioned
eggs, the further development of the moths and the syn-
chronisation between egg hatch and budburst. Hence,
the link between hazard code and defoliation requires
additional investigation. Consequently, the model also
provides a basis for further analyses and model
development.
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Appendix

Table 5 Number of data records (observations) of each ecoregion per year

Year ‘93 ‘94 ‘95 ‘96 ‘97 ‘98 ‘99 ‘00 ‘01 ‘02 ‘03 ‘04 ‘05 ‘06 ‘07 ‘08 ‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15

Northwest German Lowlands 1 2 1 1 15 13 2 10 9 8 13 5 7 4 7 5 5 4 124 8 9 11 18

East German Lowlands 12 13 15 16 18 14 13 22 15 8 18 98 14 1 20 10 9 14 44 203 186 184 79

Central German High- and Lowlands 4 12 8 2 1 2 2 2 32 48 49 33 31 31 28 30 17 15 18 19 19

Table 6 Potential predictors that were tested during variable selection, X is the year of data collection, (X–1) is the previous year

Variable Description

tmean_egg_winter1 mean of daily mean temperature for period 15.10.–31.12. (X–1)

tmin_min_egg_winter1 minimum of daily minimum temperature for period 15.10.–31.12. (X–1)

rain_egg_winter1 mean daily precipitation for period 15.10.–31.12. (X–1)

frost.mean_egg_winter1 amount of frost days (daily mean temp. Below 0 °C) for period 15.10.–31.12. (X–1)

frost.min_egg_winter1 amount of frost days (daily minimum temp. Below 0 °C) for period 15.10.–31.12. (X–1)

tmean_egg_winter2 mean of daily mean temperature for period 01.01.–28.02. X

tmin_min_egg_winter2 minimum of daily minimum temperature for period 01.01.–28.02. X

rain_egg_winter2 mean daily precipitation for period 01.01.–28.02. X

frost.mean_egg_winter2 amount of frost days (daily mean temp. < 0 °C) for period 01.01.–28.02. X

frost.min_egg_winter2 amount of frost days (daily minimum temp. < 0 °C) for period 01.01.–28.02. X

tmean_egg_spring mean of daily mean temperature for period 01.03.–14.04. X

tmin_min_egg_spring minimum of daily minimum temperature for period 01.03.–14.04. X

rain_egg_spring mean daily precipitation for period 01.03.–14.04. X

frost.mean_egg_spring amount of frost days (daily mean temp. < 0 °C) for period 01.03.–14.04. X

frost.min_egg_spring amount of frost days (daily minimum temp. < 0 °C) for period 01.03.–14.04. X

tmean_egg mean of daily mean temperature for period 15.10.(X–1)–14.04. X

tmean_egg_late mean of daily mean temperature for period 01.01.–14.04. X

rain_egg mean daily precipitation for period 15.10. (X–1)–14.04. X

frost.mean_egg amount of frost days (daily mean temp. < 0 °C) for period 15.10.(X–1)–14.04. X

frost.mean_winter amount of frost days (daily mean temp. < 0 °C) for period 15.10. (X–1)–28.02. X

frost.min_winter amount of frost days (daily mean temp. < 0 °C) for period 15.10.(X–1)–28.02.X

tmean_earlylarva mean of daily mean temperature for period 15.04.–14.05. X

tmean_latelarva mean of daily mean temperature for period 15.05.–14.06. X

tmin_min_earlylarva minimum of daily minimum temperature for period 15.04.–14.05. X

tmin_min_latelarva minimum of daily minimum temperature for period 15.05.–14.06. X

tmean_larva mean of daily mean temperature for period 15.04.–14.06. X

tmin_min_larva minimum of daily minimum temperature for period 15.04.–14.06. X

rain_mean_earlylarva mean daily precipitation for period 15.04.–14.05. X

rain_mean_latelarva mean daily precipitation for period 15.05.–14.06. X

rain_max_earlylarva max. Daily precipitation for period 15.04.–14.05. X

rain_max_latelarva max. Daily precipitation for period 15.05.–14.06. X

tmean_pupa1 mean of daily mean temperature for period 01.06.–31.08. X

rain_mean_pupa1 mean daily precipitation for period 01.06.–31.08. X

tmean_pupa2 mean of daily mean temperature for period 01.09.–14.10. X

rain_mean_pupa2 mean daily precipitation for period 01.09.–14.10. X
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Table 6 Potential predictors that were tested during variable selection, X is the year of data collection, (X–1) is the previous year
(Continued)

Variable Description

rain_mean_pupa mean daily precipitation for period 01.06.–14.10. X

tmean_imago mean of daily mean temperature for period 15.10.–14.12. X

tmin_imago mean of daily minimum temperature for period 15.10.–14.12. X

rain_mean_imago mean daily precipitation for period 15.10.–14.12. X

frost.min_imago amount of frost days (daily minimum temp. < 0 °C) for period 15.10.–14.12. X

tmean_april mean of daily mean temp. For period 01.04.–30.04. X

tmin_min_april minimum of daily minimum temperature for period 01.04.–30.04. X

tmin_april mean of daily minimum temperature for period 01.04.–30.04. X

veg_start start of vegetation period for Quercus robur following the algorithm described by Menzel (1997)

latefrost latest day in spring/summer when daily minimum temperature lies below 0 °C

april_warm amount of days in April where the daily mean temperature is ≥10 °C

oak_perc oak proportion (in percent)

age stand age

stocking ratio of absolute stand density to a reference level from yield table

nutrient level five categories from 1 to 5 (poor to rich), unitized employing the synopsis by (Schmidt et al. 2015)

dist distant to coast (in m)

aspect calculated aspect of the stand in degree

dgm25 altitude in m a.s.l.

diurnal_anisotropic_heating diurnal heat balance as influenced by topography (Böhner and Antonić 2009)

general_curvature rate of change of slope (Zevenbergen and Thorne 1987b)

slope slope in degree

pestcontrol binomial distributed categorical variable indicating whether pest control

Table 7 Number of data records (observations) where the original counts are available of each ecoregion per year

Year ‘96 ‘97 ‘98 ‘99 ‘00 ‘01 ‘02 ‘03 ‘04 ‘05 ‘06 ‘07 ‘08 ‘09 ‘10 ‘11 ‘12 ‘13 ‘14 ‘15

Northwest German Lowlands 13 12 8 8 8 11 3 4 4 4 6 5 4 124 8 9 11 18

East German Lowlands 1 1 2 2 3 2 3 2 4 2 23 11 17 47 87 186 184 79

Central German High- and Lowlands 1 1 1 1 2 2 2 2 2 2 33 31 31 26 30 17 15 18 19 19

Fig. 7 Number of monitoring stands with length of time series from
only one observation up to 20 observations for data where the
original counts were available, differentiated by the three ecoregions
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