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Abstract

Background: Forest soils are an important reservoir of organic carbon (OC) and a poten-

tial source or sink for atmospheric CO2. Prediction of OC stock changes under ongoing

climatic and management changes requires a spatial explicit base. Knowledge of the ver-

tical distribution of OC stocks is very important, since varying soil layers may be affected

differently by environmental change.

Aim: Three-dimensional regionalization of OC stocks of the forest floor (FFC) and 5 cm

depth increments of themineral soil (SOC) of Hesse, Germany.

Methods: Datasets of the second National Forest Soil Inventory (NFSI II) were used for

parametrization of hierarchical generalized additive models (hGAM). Validation was per-

formed by a 10 times repeated 10-fold cross-validation, and spatial model uncertainty

was assessed.

Results: Depth-dependent validation indicated that model performance was best

between15 and60 cm (amount of variance explained≈0.5). All covariates showedplausi-

ble partial effects. FFC stockswere predicted to be highest under coniferous forestwith a

high influence of N deposition. Climate and potential cation exchange capacity affected

SOC stocks markedly, whereas soil class and parent material were most important for

the depth distribution. Overall, average predicted OC stocks were between 78.0 and

92.5 t ha–1, amounting to 67.6 to 80.1 Mt for all forest soils of Hesse. Between 16% and

24% were stored in the forest floor. Sixty-eight percent to 69% of predicted SOC stocks

were stored in the upper 30 cm.Model uncertaintywas highest at locationswith high ele-

vation or groundwater influence.

Conclusions: This work provides the first spatial explicit database for OC stocks of forest

soils in Hesse at an intermediate scale. Stocks can be assessed flexibly for varying depth

fromthe forest floordown to100cm.Uncertainty analysis informsabout locations,where

themodel results have to be handled with care.
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1 INTRODUCTION

One of the manifold services of forest ecosystems is carbon (C)

sequestration. Globally, forests store about 80% of terrestrial above-

ground biomass and 70% of soil organic carbon (SOC; Jandl et al.,

2007). de Vos et al. (2015) estimated the total forest SOC stock

for 22 EU countries to 21 Gt down to 100 cm, and an additional

3.5 to 4 Gt C in forest floors (FFC). At least one-third of SOC was

stored below the topsoil (30 cm depth). Especially forest floor and

topsoil organic carbon is sensitive to environmental changes, such

as climate and management (Jandl et al., 2007). However, the tra-

jectory of changing organic carbon (OC) stocks in forest soils over

time strongly depends on specific site conditions, dynamic equilibrium

state, the capacity of soils to stabilize C, or initial forest stand and

tree species (Angst et al., 2019; Mayer et al., 2020; Soucémarianadin

et al., 2018).

There is a great effort inmonitoring of FFC and SOC stocks through

space and time, such as the International Co-operative Programme on

Assessment and Monitoring of Air Pollution Effects on Forests (ICP

Forests Level II) or extensive national forest soil inventories (NFSI;

de Vos et al., 2015; Fleck et al., 2016; Wellbrock et al., 2019). The

grid-based sampling approach in extensive monitoring gives by design

representative values for larger areas (Webster and Oliver, 2007).

Repeated sampling also documents changes in C stocks over time,

although small-scale heterogeneity of soil properties introduces con-

siderable uncertainty (Kravchenko andRobertson, 2011;Meiwes et al.,

2009; Schrumpf et al., 2011). Moreover, changes can be interpreted in

retrospective, but projections based on climate and management sce-

narios are needed for sustainable planning in forestry (Albert et al.,

2017). Spatially explicit information is a necessary prerequisite for

sound decisions, but availability is scarce, especially regarding OC

stocks at intermediate scales (Arrouays et al., 2020). This also holds

true if the vertical distribution of OC across the soil profile is desired

(Nauman andDuniway, 2019).

Mapping of soil properties generally bases on relationships between

the variable of interest and environmental factors (Jenny, 1941;

McBratney et al., 2003). These relationships are quantified by vari-

ous (geo-)statistical models, such as machine learning, regression-like

models, co-kriging, or combined approaches (Cianfrani et al., 2018).

Often, total stocks ormean concentrationswithout informationonver-

tical distribution of OC were predicted (e.g., de Brogniez et al., 2015;

Fleck et al., 2017; Heitkamp et al., 2020). Three-dimensional infor-

mation of OC stocks, however, is important because environmental

changes affect OC in varying depth differently. Data from the first

and second NFSI in Germany demonstrated that FFC stocks declined

in some regions, but this was more than compensated by increas-

ing SOC stocks in the topsoil (Grüneberg et al., 2019). Therefore,

dynamic modeling will benefit from knowledge of vertical OC distri-

butions (Camino-Serrano et al., 2018; Ziche et al., 2019). There are

two main approaches for modeling spatial explicit depth distributions.

For the so-called 2.5D approach, OC contents or stocks are estimated

separately for predefined depth increments. This has the advantage

that model complexity is relatively low, but at the cost of multiple

model setup and parametrization. Moreover, predictions for prede-

fined depth increments may not be flexible enough for users’ needs,

disconnected models can produce discontinuous profiles, and uncer-

tainty analysis across the profile is challenging (Hengl et al., 2014). In

3D models, either a depth function is predicted into space (Yang et al.,

2016), or “depth” is directly incorporated as a covariate in the predic-

tive model (Ma et al., 2021, and references therein). These approaches

potentially circumvent some disadvantages of 2.5D modeling. How-

ever, using depth as a covariate was shown to increase uncertainty

in data-driven approaches (Ma et al., 2021; Nauman and Duniway,

2019). Ma et al. (2021) therefore recommended to develop pedologi-

cal knowledge-driven approaches.

The magnitude of soil SOC stocks depends on the complex inter-

action between temperature, moisture, soil properties (e.g., texture,

pH values), tree species, forest management, and litter quality (Burke

et al., 1989; Carey et al., 2020; Lal, 2005). With climate change, how-

ever, not only temperatures and moisture will change in the future,

but also the amount and quality of litterfall due to intentional or

unintentional changes in tree species. The projected changes in soil

water conditions could have significant impacts on forests growth,

biogeochemical cycles, and biotic or abiotic risks, especially for the

widespread Norway spruce stands (Panferov et al., 2009; Thiele

et al., 2017). Thus, there is a need for adaptive management strate-

gies including the introduction of alternative tree species and higher

proportions of mixed instead of monospecific, often pure conifer-

ous forest stands (Paul et al., 2019; Temperli et al., 2012). A first

step to guide OC preserving management is the provision of spa-

tial explicit information on the three-dimensional distribution of OC

stocks.

Our objectives were to predict FFC and depth distribution of

SOC stocks in forest soils by (1) parameterization of a parsimo-

nious 3D model using data of the NFSI and pedological knowledge

(Ma et al., 2019), and (2) quantify associated spatial uncertainty.

The federal state of Hesse, Germany, was used as an exemplary

region.

2 MATERIALS AND METHODS

2.1 Study area

The federal state of Hesse is situated in Central Germany. Climate is

temperate-humid and mean annual temperature (MAT, 5.2 to 10.6◦C)

and precipitation (MAP, 537 to 1385 mm y-1) in the period from

1971 to 2000 depend strongly on elevation (80 to 950 m above sea

level). Forests cover 42% (8690 km2) of Hesse. European beech (Fagus

sylvatica L.) is the most frequent species (ca. 31%), followed by Norway

spruce (ca. 22%; Picea abies [L.] H.KARST), oak (ca. 14%,Quercus spp. L.),

and pine (ca. 10%, Pinus spp. L.; Hessisches Ministerium für Umwelt,

Klimaschutz, Landwirtschaft und Verbraucherschutz, 2015). Mixed

forest stands dominate (51%) while coniferous and broadleaved

stands have similar proportions (27% and 22%, respectively; HVBG,

2018). Parent material of forest soils often (86%) contains variable
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proportions of loess with solifluctive mixing with acidic, base poor,

base rich, or carbonatic bedrock. Fluviatile substrates (6%), eolic sand

(4%), and deep loess (4%) are less important, but still notable parent

materials. Cambisols (63%), Stagnosols (12%), and Luvisols (12%) are

themostwidespreadReference Soil Groups, andAnthrosols (colluvial),

Leptosols, and Gleysols each cover 3.5% to 4%. Histosols make up only

0.1% of the forest area. However, Gleysols and Stagnosols may contain

histic horizons. More details can be found in Heitkamp et al. (2020).

2.2 National Forest Soil Inventory

The second National Forest Soil Inventory (NFSI) took place between

2006 and 2008 along an 8× 8 km grid. The number of sampling plots in

Hesse (n = 139) was too low to fit complex statistical models. There-

fore, NFSI plots of the neighboring federal states Lower Saxony and

Saxony-Anhalt were added to the dataset (n = 380). The full dataset

of the three federal states with similar environmental conditions was

used for model parametrization and validation, while predictions were

applied to the soil map polygons of Hesse. Each sampling plot was

described regarding environmental conditions, such as tree species

composition, topographical attributes, and, as far as possible, site his-

tory. A soil profile and 8 additional points (satellites) placed around the

profile (r = 10 m) were characterized and sampled at every grid point.

A mixed sample was created from the profile and the satellites. A very

detailed description of the sampling layout, including a map with sam-

pling points, is provided byWellbrock et al. (2019). Sampling depthwas

at least down to bedrock or 90 cm. Sampling was stratified according

to depth into the forest floor and intervals of 0–5, 5–10, 10–30, 30–

60, and 60–90 cm. Sampling, sample preparation and analysis followed

standardized procedures (Evers et al., 2019; Paar et al., 2016; Well-

brock et al., 2019). Briefly, all samples were dried and sieved to 2 mm.

Bulk density of fine soil wasmeasured by repeated volumetric samples

(3 × 250 cm3 per interval in general) after subtraction of the volume

and weight of coarse fragments. Coarse fragments (> 2 mm for soil,

> 20 mm for forest floor) were weighed after sieving and very coarse

fragments (soil,> 6.3 cm) were estimated in the field. Texture was esti-

mated in the fieldmanuallywith so-called “texture-by-feel-procedure.”

The work of de Vos et al. (2016) indicates that it is sufficient to esti-

mate the soil texture manually with well-trained soil scientists instead

of conducting particle size analyses in the laboratory. Total C wasmea-

suredbydry combustion. InorganicCwasdeterminedbygas volumetry

andOCwas calculated as the difference between total and inorganicC.

OC stocks were calculated by multiplying OC concentration with the

stock of the fine fraction (< 2 mm for soil, < 20 mm for forest floor;

Wellbrock et al., 2019).

Soil classes were determined in the field using the German classi-

fication system (Ad-hoc-Arbeitsgruppe Boden, 2005) and translated

to Reference Soil Groups (IUSS Working Group WRB, 2015). Par-

ent material was characterized in the field combining information of

substrate origin and pedogenetic processes (Ad-hoc-Arbeitsgruppe

Boden, 2005).

2.3 Environmental covariates

Ourmodel follows thewidely accepted SCORPAN-approach (Arrouays

et al., 2020; McBratney et al., 2003). It expands on the state factor

theory of Jenny (1941) using soil properties (S), climate (C), organ-

isms (O), relief (R), parent material (P), age (A), and space (N) as covari-

ates for predictive soil modeling. We did not directly include covari-

ates for the factors relief, age, and space. Relief was not included,

because its effect was already captured by the profiles in the soil map

(Heitkamp et al., 2020). Age was unknown, but we assumed no major

differences throughout Hesse. The impact of space was tested (see

below). An overview of the used covariates is given in Table 1. Climate

data were regionalized to the centroids of the units of the soil map

of Hesse. Briefly, daily temperature and precipitation data of the cli-

mate stations of the German Meteorological Service (Deutscher Wet-

terdienst, DWD) was interpolated using ordinary kriging (precipita-

tion) and generalized additive models (temperature, using elevation

and spatial coordinates). Elevation was taken from the digital eleva-

tion model with 25 m resolution (DEM25). Daily data from the period

1971 to 2000 was aggregated to mean annual temperature (MAT)

and precipitation (MAP). The period was chosen since it is the current

baseline for regional climate change scenarios (Hübener et al., 2017).

Total atmospheric nitrogen deposition was taken from Schaap et al.

(2015) using a grid resolution of 1 × 1 km. Spatial distribution of forest

types (broadleaf, mixed, coniferous) was available from the “Amtliches

Topographisch-Kartographisches Informations system” (ATKIS;HVBG,

2018).

All other used covariates were either determined during the NFSI

or extracted from the Hessian soil map (scale 1:50,000; Hessisches

Landesamt für Naturschutz, Umwelt und Geologie, 2018). If avail-

able, using point information of the NFSI for model parametrization

was preferred over spatial information due to issues with generaliza-

tion or positioning. The soil map contains 1143 generalized soil pro-

files under forest (as defined by ATKIS). Each profile informs about

soil depth (maximum 200 cm), genetic horizons, and parent material,

as well as classes of coarse fragments, bulk density, organic matter

content, and texture according to the German classification scheme

(Ad-hoc-Arbeitsgruppe Boden, 2005). Soil classes were translated into

Reference Soil Groups (IUSS Working Group WRB, 2015) and parent

material from the NFSI was converted into the Hessian classification

(Heitkamp et al., 2020). Podzolization was derived from horizon sym-

bols indicating different degrees of leaching of organic matter from

the A-horizon, accumulation of organic matter in the B-horizon, and

the presence of sesquioxides. Classes of coarse fragments and texture

were converted into numerical values by using the class midst. Poten-

tial cation exchange capacity (CECpot), was used as a surrogate for soil

texture, and was calculated for the NFSI and soil map profiles as:

CECpot(cmolckg
−1) = 0.5 clay(%) + 0.05 silt(%) + h, (1)

where h is the organic matter class (classes: h0–h6), resulting in an

addition of 0, 0, 3, 7, 15, 25, and 50 cmolc kg
–1 (Bug et al., 2020).
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TABLE 1 Utilized variables for model development of forest floor C stocks (FF) andmineral SOC profile (MI). Note, that some variables where
only used to calculate covariates of themodel. Values are the range of the data and values in brackets indicate themedian

Source/method Data range

Covariate Model NFSI Spatial NFSI Soil map

Climate FF/MI Regionalization of DWDdata MAT: 4.7–10.5 (8.7)

MAP: 458–1554 (722)

MAT: 5.2–10.6 (8.2)

MAP: 537–1385 (760)

N deposition FF Schaap et al. (2015) 10.6–34.7 (15.8) 9.9–23.5 (15.7)

Forest type FF/MI Field ATKIS 3 levels 3 levels

Parent material FF/MI Field Map 9 levels 8 levels

Soil class FF/MI Field Map 10 levels 10 levels

Soil horizons Calc Field Map – –

Podzolization FF/MI Calc 6 levels (p1–p6) 4 levels (p1–p3, p6)

Organic matter class Calc Calc Map 7 levels (h0–h6) 7 levels (h0 – h6)

Coarse fragments MI Field, Lab Map 0–90 (5.2) 0 – 90 (13.1)

Texture Calc Field Map Sand: 3–92.5 (44.2)

Silt: 4.9–89.0 (31.6)

Clay: 2.5–80.3 (12.0)

Sand: 2.8 – 92.5 (21.6)

Silt: 4.5 – 87.8 (52.7)

Clay: 2.3 – 84.8 (14.3)

CECpot MI Calc 1.5–70.8 (11.7) 1.5–80.2 (13.5)

Abbreviations: DWD data, German Meteorological Service (Deutscher Wetterdienst, DWD); Field, field data of the NFSI (Wellbrock et al., 2019); ATKIS,

Amtlich TopografischesKataster Informationssystem (HVBG, 2018);Map, soil map ofHesse, scale 1:50,000 (Hessisches Landesamt fürNaturschutz, Umwelt

und Geologie, 2018); Lab, lab data of the NFSI (Wellbrock et al., 2019); Calc., either calculated from, or used to calculate another covariate (details see text).

2.4 Data treatment

NFSI profiles, which do not occur as units in the Hessian soil map, e.g.,

Treposols, or Plaggic Anthrosols, were excluded from the analysis. In

addition, profiles with histic horizons were excluded, because involved

processes of OC storage are very different from mineral horizons. In

total, 25 from the 380 available NFSI profiles were excluded (final n =

355 profiles for forest floor and down to 90 cmmineral soil).

All numeric variables (mineral soil) were subjected to equal-area

splines to obtain 5 cm depth increments using the function “mpspline”

of the R package GSIF 0.5–5.1 (Hengl et al., 2019). Equal-area splines

preserve themean value of the property of interest within the sampled

depth increment and redistribute the value within the sampled depth

using information from above and below the layer (Bishop et al., 1999).

A detailed discussion on the methodology is given by Hartemink and

Minasny (2016), and Malone et al. (2009). The shape of the function is

controlledby theparameter λ, whichdetermines the trade-off between

the goodness of fit and the roughness of the spline. The goodness of

fit was determined by re-calculating the splined value to the original

depth increment of the sample. We observed that low λ gave appar-

ently better fits, but resulted in unrealistic depth sequences in case

of large differences between observed layers (producing overshoots).

This was a larger issue for texture, because of huge differences in case

of multilayered parent material. The chosen λ values were 0.05, 0.05,
0.01, and 0.5 for SOC concentration, bulk density, coarse fragments,

and texture (sand, silt, and clay), respectively. When sand, silt, and clay

did not sumup to 100%we applied an error correctionwith amass bal-

ance. This was a minor issue, with errors mostly occurring at decimal

places (25 and 75% quantile = 100%). The most extreme sums were

96% and 105%. SOC stocks were calculated for five cm depth incre-

ments. SOC stocks and concentrations of sand, silt, clay, and coarse

fragments of the 5 cm increments were recalculated to the original

sampling depths and evaluated by linear regression (R2 > 0.99, |inter-

cept|< 0.5% ofmaximum, slope= 1.00). Each profile in themineral soil

consisted of a maximum of 18 (NFSI, 90 cm) or 20 (soil map, 100 cm)

depth increments.

2.5 Model parametrization and validation

Due to our available spatial data, models should be able to handle non-

normal distributions, non-linear relationships, as well as categorical

variables. Generalized additivemodels (GAM;Wood, 2017)meet these

criteria. GAMs base on the construction of flexible, potentially non-

linear smooth functions, which relate to the predictor. This is an advan-

tage in 3Dmodeling.Other approaches have to develop separate depth

functions and predict their parameters into space or model each layer

separately. This step is unnecessary with GAMs, as depth can be used

as a global smooth term, which allows for the prediction of continu-

ous depth functions combined with soil-forming factors (SCORPAN) in

a singlemodel. Recently, Pedersenet al. (2019) presented the approach

of hierarchicalGAMs (hGAM),which introduced the inclusionof group-

specific effects into the GAM framework. Group-specific effects mod-

ulate the shape of the global function. This is an attractive model prop-

erty, as some factors may not change so much the total OC stock (i.e.,

the integral of the added smooth functions), but rather the distribution

among depth (i.e., the shape of the depth smooth function). Therefore,

hGAMs (Pedersen et al., 2019)were chosen formodeling the 3Ddistri-

bution of SOC stocks in forest soils of Hesse.
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The hGAMs were run with the package mgcv in R 3.6.2 (R Core

Team, 2017;Wood, 2019). The smoothing parameter k determines the

wiggliness of the smooth functions. If k is too high there is a risk for

overfitting and if k is too low a part of the variation in the data may

not be captured well. The optimal value for the smoothing parameter

kwas adjusted by comparing k’with the estimated degrees of freedom

(edf) given by the command gam.check. Furthermore, model improve-

ment was checked by comparing AIC values and the smooth for partial

effects was checked visually. Residuals of themodels were checked for

normality and randomness, and results were evaluated for goodness-

of-fit andquality (AIC). The residuals (e(s)) were also checked for spatial

auto-correlation by using amixed GAM in the form:

e(s) ∼ s(x, y),

random = list(id ∼ 1),

family = gaussian(link = “identity”)

(2)

where x and y are spatial coordinates, and id is the identifier for the

individual profile. This takes care of the (non-spatial) auto-correlation

within each profile (the depth increments).

2.5.1 Model formulation and knowledge-driven
variable selection for OC stocks in the forest floor

Processes affecting FFC stocks are different, at least in their effect

sizes, from processes in the mineral soil. It was therefore not reason-

able to predict forest floor andmineral soil stocks in a singlemodel. Soil

class and podzolization mainly reflect acidity state and water dynam-

ics. Forest type indicates the different decomposability of incoming lit-

ter. MAT and MAP both affect plant productivity and decomposition

dynamics (Djukic et al., 2018; Etzold et al., 2020). This is modulated

by the type of parent material, which affects water dynamics, acidity,

and biotic activity. Nitrogen deposition is related to plant productivity

and was reported to decrease the speed of decomposition at the later

stage (ca. 30% mass loss; Berg, 2014; Etzold et al., 2020). Finally, the

month of sampling time simply reflects the annual dynamics within the

forest floor due to litterfall and decomposition. A gamma distribution

with log-link was used to account for the properties of the FFC data.

The R-code for the final model with 23 model degrees of freedom and

329 residual degrees of freedomwas:

ffc_tha ∼

soilclass_g+

soilclass_g+

forest+

te
(
mat_c, map_mm, k = 3, bs = c(“tp”, “tp”)

)
+

te
(
mat_c, map_mm, by = pamat, k = 3, bs = c(“tp”, “tp”), m = 1

)
+

s
(
month, k = 4, bs = “cc”, m = 2

)
+

s
(
ndep_kghay, k = 3, bs = “tp”, m = 2

)
,

family = Gamma(link = “log”), method = “REML”
(3)

where ffc_tha is the OC stock in the forest floor (t ha–1), soilclass_g

is the grouped soil class (Ad-hoc-Arbeitsgruppe Boden, 2005), pod-

sol_g the grouped degree of podzolization, forest is the forest type

(broadleaf, coniferous, mixed), mat_c and map_mm are the MAT (◦C)

andMAP (mm y–1), month is themonth of sampling (1–12), ndep_kghay

is the N deposition (kg ha–1 y–1), and pamat is the class of par-

ent material. For further details regarding the implementation of R

code, see Pedersen et al. (2019) and for technical model terms (s, te,

k, bs, tp, m, cc, by) refer to Wood (2019). After running the model,

some levels of the covariates soil class and degree of podzoliza-

tion were summarized, because their effect sizes were rather simi-

lar. Degree of podzolization was classified into absent (p1), interme-

diate (p2–5), and strong (p6). The 10 soil classes were classified into

five groups: BC (Braunerde/Cambisol, and Terrae calcis), TY (Schwarz-

erden/Chernozem and colluvial Anthrosol), DLR (Pelosol/Vertisol,

Parabraunerde/Luvisol, and Ah/C-Böden/Leptosol), P (Podzol), and GS

(Gley/Gleysol, and Pseudogley/Stagnosol).

2.5.2 Model formulation and knowledge-driven
variable selection for OC stocks in the mineral soil

Climate was incorporated as the two-dimensional smooth function of

MAT and MAP and affects plant productivity and decomposition of

SOC. The effect of soil texture is well known and we used CECpot as

a derivate for the intercorrelated variables sand, silt, and clay. Since

wemodeled SOCstocks as opposed to concentrationswe incorporated

the volume percentage of coarse fragments. Soil depth (the top of the

increment) was used as a global smooth and the function was mod-

ulated by group-specific effects of soil class, degree of podzolization,

parent material, and forest type. Soil classes mirror several processes

that potentially affect depth distribution. Translocation and transfor-

mation processes may alter the depth or capacity of SOC storage.

Luvisols, for example, are characterized by clay migration (partly cov-

ered by changes in CECpot) induced by pH gradients. Depth distribu-

tions of Gleysols and Stagnosols are affected by their water dynamics.

Effects of the degree of podzolization are associatedwith the presence

of sesquioxides, pH effects, and organic matter redistribution. Parent

material reflects the effects of nutrient availability, pH, andbiotic activ-

ity. The forest type potentially affects depth distribution of SOC by dif-

ferences in rooting systems and depth, varying incorporation of litter,

fine root turnover, and also by affecting the soil pH. A gamma distribu-

tion with log-link was used to account for the properties of the SOC

data. The R-code for the final model with 89model degrees of freedom

and 6085 residual degrees of freedomwas:

soc_tha ∼

te
(
mat_c, map_mm, k = 5m = 2, bs = “tp”

)
+

s
(
cecpot_cmolckg, k = 5, m = 2, bs = “tp”

)
+

s
(
skel_vproz, k = 5, m = 2, bs = “tp”

)
+

s
(
top, k = 5, m = 2, bs = “tp”

)
+

s
(
top, soilclass, k = 5, m = 2, bs = “fs”

)
+

s
(
top, podsol, k = 5, m = 2, bs = “fs”

)
+

s
(
top, pamat, k = 5, m = 2, bs = “fs”

)
+

s
(
top, forest, k = 5, m = 2, bs = “fs”

)
,

family = Gamma
(
link = “log”

)
, method = “REML” (4)
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where soc_tha is the SOC stock (t ha–1),mat_c andmap_mm are theMAT

(◦C) andMAP (mmy–1), cecpot_cmolckg is the potential cation exchange

capacity (cmolc kg–-1), skel_vproz is the content of coarse fragments

(vol.%), top is the upper border of the depth increment (cm), soilclass is

the soil class (Ad-hoc-ArbeitsgruppeBoden, 2005), podsol is the degree

of podzolization, pamat is the class of parent material, and forest is the

forest type (broadleaf, coniferous, mixed). For further details regarding

the implementation of R code, see Pedersen et al. (2019) and for tech-

nical model terms (s, te, k, bs, tp,m, cc) refer toWood (2019).

2.5.3 Validation

Model validation follows the suggestionsofKempenet al. (2018). Inter-

nal model quality measures were calculated with the parametrization

dataset.We also tested ourmodelswith a 10-fold cross-validation pro-

cedure. For this purpose, the data were randomly partitioned into 10

parts (“folds”), nine parts for model training and one part for evalua-

tion of predictions. The foldswere subsequently switched, so that each

fold was used as test and training test. The base for randomly selected

training and prediction sets were individual profiles (not datapoints),

since depth increments within one profile are auto-correlated (Nau-

man and Duniway, 2019). Ten-fold cross-validation was repeated 10

times in order to get an idea ofmodel stability. Since the Reference Soil

Groups Pelosol and Chernozem were present with only one and two

profiles, respectively, they had to be excluded from cross-validation (n

= 352 profiles).

Following Kempen et al. (2018) we present four quality measures,

which all base on the prediction error e at location s:

e(s) = Ẑ(s) − Z(s), (5)

where Ẑ(s) is the predicted and Z(s) the observed value at location

s. Prediction errors followed a normal distribution around zero. The

mean error (ME) is a measure for systematic bias and was calculated

as the mean of e(s). Negative values of ME indicate systematic under-

estimation by the model and vice versa. Mean absolute relative error

(MARE) and root mean squared error (RMSE) are measures for accu-

racy. The MARE is the mean of |e(s)| expressed as the portion of the

mean of OC stocks. MARE indicates the relative mean difference of

predictions and observations. Using the RMSE gives higher empha-

sis on extreme deviations between predictions and observations. Both

MARE and RMSE indicate congruity of prediction and observation at

zerowith increasingly worse fits with increasing values. The amount of

variation explained (AVE), also called model efficiency, is roughly anal-

ogous to R2 values. A value of zeromeans that the prediction is as good

as the observedmean value of the population. Negative values indicate

that themean is a better predictor, and a value of one indicates congru-

ence of predicted and observed values. AVEwas calculated as:

AVE = 1 −

∑N
i=1

(
Ẑ(si) − Z(si)

)2

∑N
i=1

(
Z(si) − Z̄

)2 . (6)

2.6 Sensitivity analysis

The mgcv package offers visualization of partial effects of the GAM.

This is useful and informative when familiar with GAMs. However, the

interpretation of additive effects at log-scale in combination with the

hierarchical approach is not always straightforward. Hierarchical par-

tial effects alter the shape of the global smoother. This allows some

interpretation of the relative effect in the model, but impedes inter-

pretation of the effect on OC stocks in the original unit (t ha–1). There-

fore, we decided to present standardized SOC stock profiles and FFC

stocks. We conducted a standard sensitivity analysis by varying only

one covariate of interest at a time, and keeping all the other covari-

ates constant (Guckland et al., 2012). Numerical covariates were kept

at the median of the whole dataset (Table 1), whereas the most com-

mon class was used for categorical covariates. Then, OC stocks were

predicted across the depth gradient and presentedwith their 95% con-

fidence intervals (CI). The standard errors (log-scale) from the 5 cm-

wise predicted C stocks (log-scale) were multiplied by 1.96 to obtain

CIs. The log-values were added or subtracted from the predictions and

then back-transformed to the original scale. Note that this results in

asymmetric CIs. Since climatic effects on OC stocks were modeled by

the two-dimensional smooth function ofMAPandMAT,wepresent the

full effect range only for 0–5 cm (mineral soil) and exemplify the effect

of MAT at a givenMAP for the full depth. For the forest floor, two con-

trasting parent materials are presented. This approach aimed to test

theeffect strengthof individual covariates, rather than toproduce real-

istic profiles or environmental combinations.

2.7 Spatial prediction and uncertainty

The soil map polygons were merged with the ATKIS layer to include

information about the forest type. This resulted in a finer division

of polygons as given in the original soil map, but borders were pre-

served (Heitkamp et al., 2020). Information of the other spatial layers

for model variables (MAT, MAP, N deposition; Table 1) was extracted

using their center ofmass (centroids inside the polygons) of the ATKIS-

soil map. Each soil map polygon is related to one of the 1143 soil pro-

files (Section 2.3), which was prepared for the predictions as described

above (Section 2.4). OC stockswere then predicted to the soilmap pro-

file data at the log-scale including standard errors. Predictions were

done for the forest floor (assumed sampling month: June) and 5 cm

depth intervals down to 100 cm. This is a small extension in compar-

ison to the parametrization set (0–90 cm). Although slightly outside

the parameter range, we judged this as acceptable to obtain results

for the standard depths of 100 cm. Results were transformed to the

original scale. Profiles with histic horizons or anthropogenic substrate

were excluded from the predictions. This was about 0.33% of the total

forest area. Overall, predictions were made for 194,879 mapped soil

units and 3,897,580 data points (soil units including depth increments)

for an area of 8669 km2. Predicted data for the whole area of Hesse

were aggregated across depth increments for a better overview. Cho-

sen strata are (a) forest floor andmineral soil, (b) division of themineral
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soil into top and subsoil (0–30 cm, 30–100 cm), and (c) standard depth

increments of the global soil map (0–5 cm, 5–15 cm, 15–30 cm, 30–60

cm, and 60–100 cm).

Model validation results in measures of the overall performance

of the model (Kempen et al., 2018). In contrast, uncertainty is spa-

tially explicit (Heuvelink, 2018). There are several sources of uncer-

tainty. However, a complete uncertainty analysis is beyond the scope

of this manuscript and total uncertainty is probably larger (see Dis-

cussion). Here, we present solely structural model uncertainty (sensu

Heuvelink, 2018) without explicitly taking attribute, positional, and

covariate uncertainty into account. Structural model uncertainty is

presented either as the range of the 95% CI or as the margin of error

(95% confidence level), using error propagation rules for summation

of depth increments (for calculation see 2.6). Due to asymmetric CIs,

the upper and lower boundaries of themargins of error differ. Themar-

gin of error is defined as the difference between the predicted value

and the highest (upper boundary) or lowest value (lower boundary) of

the 95% CI. The margin of error is expressed as a relative value for the

depth increments to provide better comparability between them.

3 RESULTS

3.1 Carbon stocks of the NFSI

Figure 1 presents the observed and predicted forest soil OC stocks

from the forest floor down to 85–90 cm of the three federal states

Lower Saxony, Saxony-Anhalt, and Hesse (NFSI dataset). Overall, the

data range of observed and predicted stocks was very similar. The

interquartile range (IQR) of observed FFC stocks (t ha–1) was 6.8 to

30.7 (median: 17.5). Predicted FFC stocks were slightly higher, with an

IQR from 8.9 to 30.4 (median: 18.4). SOC stocks (t ha–1) were highest

in 0–5 cm (observed IQR: 17.2 to 30.4, median 22.1; predicted IQR:

16.5 to 30.2, median 22.7). There was a sharp decline until approx-

imately 25–30 cm with observed and predicted medians of 4.4 and

5.0, respectively. The SOC stocks declined to minimum medians of 1.1

(observed) and1.2 (predicted)with IQRof 0.4 to1.8 (observed), and0.8

to 1.6 (predicted). In general, observed extreme values (> 1.5 × IQR)

were not captured verywell by the predictions. Only at 0–5 cmdepths,

extremes of the predictions clearly exceeded the extremes of observed

OC stocks.

The observed sumof SOC stocks (mineral soil 0–90 cm) ranged from

17.4 to 396.4 t ha–1 with an IQR of 63.9 to 119.0 t ha–1 (median: 84.8

t ha–1). Predicted stocks were slightly higher (range of 27.8 to 411.8,

median: 91.0), but had a lower IQR of 68.2 to 115.3 t ha–1.

3.2 Model performance and validation

Visual comparisonbetweenobserved andpredictedOCstocks showed

a generally good agreement (Figure 2). All residualswere randomly dis-

tributed around zero, and showed no spatial autocorrelation (Equa-

tion 2; significance level for intercept and the term s(x,y) > 0.49

F IGURE 1 Boxplots of OC stocks in the forest floor and the
mineral soil (0–90 cm). Observations and predictions of the combined
NFSI datasets of Hesse, Lower Saxony, and Saxony-Anhalt (n= 355
profiles). Depth represents the upper border of the increment. FF:
Forest floor; Line: median; Box: interquartile range (IQR); whiskers: up
to 1.5× IQR+ 75th percentile or 25th percentile; points: potential
outliers outside of whisker range; notches: median± 1.58× IQR /

√
n

and adjusted R2 ≤ 0.001). A comparison between internal validation

(parametrization) and cross-validation showed that the latter pre-

dictions performed slightly worse (Figure 3). The standard deviation

between cross-validation runs was low. This indicated good stability

of the models. In the following, we present the results of the cross-

validation, if not stated otherwise.

Stocks of FFC showed the highest scatter (Figure 2), but no system-

atic bias (Table 2; ME 0.20 ± 0.07 t ha–1). The RMSE was highest (13.7

± 0.2 t ha–1) with aMARE of 43± 0.4%. The AVE was 0.37± 0.02. The

worst performance of the mineral soil model was observed at 0–5 cm

depth. The scatter was relatively high and a subpopulation (predicted

SOC stocks > 40 t ha–1) was overestimated (Figure 2). This resulted in

a high RMSE (9.7± 0.3 t ha–1), a lowAVE (0.12± 0.05), and the highest

ME (1.2±0.1 t ha–1; Figure3A,B,D).However, theMEwas still less than

5%of themean and theMARE one of the lowest (29± 0.6%) compared

with the other depth increments. The overestimated sub-population

(n = 14 of 355) seemed to act as a leverage point, strongly affecting

calculations of RMSE and AVE. When ignoring predictions > 40 t ha–1

AVE increased substantially to0.35.With increasingdepth,MEbecame

very small and the RMSE decreased (Figure 3A,B), as also the SOC

stocks (Figures 1 and 2). There was generally a gradual increase of the

MARE from 29% to 63% with increasing depth. The AVE (Figure 3D)

showed a less directional pattern. TheAVE in themineral soil increased

to a maximum of 0.57 ± 0.01 at 15–20 cm, remained relatively stable

around 0.5 down to 40–45 cm, and decreased afterward to 0.22± 0.03
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F IGURE 2 Observed and predictedOC stocks in different soil depth increments, and the sum of all mineral soil depth increments (combined
NFSI dataset of Hesse, Lower Saxony, and Saxony-Anhalt, n= 355 profiles). Note that axes were scaled to fit the data range

at 85–90 cm. This pattern is also well reflected in the distribution of

values around the 1:1 line of the scatter plots (Figure 2).

It is noteworthy that model performance for the whole dataset of

the mineral soil (0–90 cm in 5 cm depth increments) was much bet-

ter than for depth-wise stratification (Table 2). The total SOC stocks

(Σ 0–90 cm, i.e., the sum of all depth increments 0–90 cm) is scat-

tered tightly around the 1:1 line (Figure 2). Consequently, the valida-

tion measures (Table 2) showed no systematic bias, compared to indi-

vidual depth increments a lowMARE (23±0.4%), andahighproportion

of explained variance (AVE 0.60± 0.02).

3.3 Effect strength of covariates and sensitivity
analysis

3.3.1 Forest floor

The FFC stock was expected to be clearly affected by forest type.

Indeed, all other factors being constant, FFC stocks under mixed

forests were predicted to be 1.8, and under coniferous forest 2.4 times

larger than under broadleaf forests (Figure 4A–D). Soil classes with

similar effect sizes were grouped together. Colluvial soils as well as



3DMAPPINGOF FOREST SOIL CARBON 9

F IGURE 3 Global map quality measures from internal
(parametrization) and 10-times repeated 10-fold cross-validation
(cross, means, and standard deviation) of themineral soil model (NFSI
dataset, n= 355 profiles). (A)Mean error (ME); (B) root mean squared
error (RMSE); (C) mean absolute relative error (MARE); (D) amount of
variance explained (AVE)

Chernozems showed the lowest FFC stocks of 2.6 and 6.2 t ha–1 under

broadleaf and coniferous forest, respectively. Four times higher FFC

stocks were predicted for water-affected soils (Gleysol and Stagnosol,

10.8 and 26.1 t ha under broadleaf and coniferous forest). With an

increasing degree of podzolization (classes absent: p1; intermediate

p2–p5; strong: p6) FFC stocks increased gradually by a factor of 1.8.

Increasing N deposition from 10 to 35 kg ha–1 y–1 also increased FFC

stocks 2.6 times. Samplingmonth affected FFC stocksmore subtly. The

minimumFFCstockswere75%of themaximum.Thiswasequivalent to

an apparent intra-annual dynamic of 2 and 4.7 t ha–1 under broadleaf

and coniferous forest, respectively.

The effect of climate on FFC stocks on acidic parent material was

uniform across the range of MAT-MAP combinations that occur in the

used datasets (Figure 4E). There was a trend toward higher FFC stocks

at more cool and wet conditions. The highest FFC stocks occurred at

cool (MAT approx. < 6◦C) and wet (MAP approx. 900 to 1200mm y–1)

conditions,whereas at verywet conditions aboveMAPof1200mmy–1

FFC stocks decreased again. This effect, however, occurred at the bor-

der of the parameter space. On base rich parent material, there was

a much more complex effect of climate on FFC stocks (Figure 4F).

The most notable difference as compared to acidic parent material

occurred at low MAP, where FFC stocks were predicted to increase

steeply. The lowest FFC stocks were predicted to occur at intermedi-

ateMAP and highMAT.

3.3.2 Mineral soil

The covariates MAT-MAP combination, CECpot, and coarse fragments

donot interactwith thedepth smoother. Therefore, their effect onSOC

stocks was similar throughout the depth increments, that is, the pro-

portion between two levels of the covariate was the same.

Climatic effects on SOC stocks were predicted to be quite complex

(Figure 5A,B). We exemplify the effect at the median of MAP of 760

mm y–1 for a temperature gradient at 0–5 cm. At 7.3◦C SOC stocks

were highest (13.3 t ha–1) and decreased by 3.7 t ha–1 at 7.8◦C. A fur-

ther increase ofMAT to8.2◦C led to predicted SOCstocks of 8.9 t ha–1.

Then, SOC stocks increased again to 10.2 t ha–1 with a further increase

in temperature to8.7◦C.At the givenMAPa further increaseof 1 t ha–1

was predicted for a MAT of 9.3◦C. The polygons (Figure 5B) indicate

the data range of MAT and MAP in the NFSI dataset and the map of

Hesse. It shows that the map contains combinations of MAT and MAP,

which were not covered by the parametrization dataset. These results

have to be handled with care (see discussion). The effect of CECpot on

SOC stocks was very pronounced (Figure 5C). At 0–5 cm only 2.9 t

SOC ha–1 were predicted with a CECpot of 1.5 cmolc kg
–1. SOC stocks

increased up to 18 t ha–1 with a CECpot of 70 cmolc kg
–1. Compared

to the absence of coarse fragments, SOC stocks decreased to 89% and

75% at 10% and 25% of coarse fragments, respectively (Figure 5D).

This mirrors almost perfectly the effect of coarse fragments in SOC

stock calculation. The decrease in SOC stocks with increasing shares

of coarse fragments was not proportional. At 50% and 90% of coarse

fragments SOC stocks were 58% and 17% of the maximal stock with-

out coarse fragments, respectively.

The covariates soil class, podzolization, parent material, and for-

est type were included as hierarchical effects of the global smoother

for soil depth. Predicted SOC stocks for different soil classes did not

TABLE 2 Global map quality measures from internal (parametrization) and cross-validation for the forest floor (FF), all depth increments
(0–90 cm), and the sum of the SOC stocks of themineral soil (Σ 0–90 cm). Values for the 10-fold cross-validation aremeans with standard
deviations of 10 replications

Internal validation Cross-validation

Layer ME (t ha–1) MARE (%) RMSE (t ha–1) AVE (–) ME (t ha–1) MARE (%) RMSE (t ha–1) AVE (–)

FF 0.19 39 12.40 0.49 0.21 (0.07) 43 (0.4) 13.71 (0.16) 0.37 (0.02)

0–90 cm 0.05 32 3.32 0.79 0.03 (0.02) 36 (0.3) 3.69 (0.05) 0.74 (0.01)

Σ 0–90 cm 0.89 19 25.40 0.74 0.46 (0.33) 23 (0.4) 31.60 (0.60) 0.60 (0.02)

Abbreviations:ME, mean error;MARE, mean absolute relative error; RMSE, root mean squared error; AVE, amount of variance explained.
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F IGURE 4 Selected examples for the covariates’ sensitivity of the forest floor model. The covariate of interest varies, whereas the other
covariates are set to themedian values of the spatial datasets (see Table 1), or the dominant category (soilclass: Cambisol; degree of podzolization:
absent; parent material: base poor). The shaded area or the error bars represent the 95% confidence interval. The interaction ofMAT andMAP is
given for acidic and base rich parent material. The black polygon is the data coverage of the NFSI dataset and the red polygon is the data coverage
of the spatial dataset. FFC: forest floor carbon (t ha–1); MAT: mean annual temperature (◦C), MAP:Mean annual precipitation (mm y–1); grouped
soil classes: TY (Chernozem/Schwarzerde and colluvial Anthrosol), DLR (Vertisol/Pelosol, Luvisol/Parabraunerde, and Leptosol/Ah/C-Böden), BC
(Cambisol/Braunerde and Terrae calcis), P (Podzol), and GS (Gleysol/Gley and Stagnosol/Pseudogley); Degree of podzolization: absent (p1),
intermediate (p2–5), and strong (p6)

vary widely. Predicted SOC stocks for the whole profile (0–100 cm,

range of 95% CI) of the five selected soil classes Luvisol, Cambisol,

Stagnosol, Gleysol, and Podzol were 51–55, 56–60, 55–60, 56–63, and

70–76 t ha–1, respectively. However, soil class had the largest effect on

the depth distribution of SOC (Figure 5E). Gleysols had the lowest SOC

stocks at the surface, but were predicted to store higher amounts at

deeper parts of the profile. Highest SOC stocks at the top were found

in Stagnosols, which had in turn lower stocks in lower-profile parts.

Luvisols had, compared to other soil classes, the lowest stocks approx-

imately at a depth of 15–30 cm. Podzols were predicted to show high

SOC stocks in the upper third of the profile. The effect of podzoliza-

tionwasnot as straightforwardas expected (Figure5F). Thedegreesp1

and p3 did not differ in their size and depth distribution, and the lowest

stocks were predicted. The highest stock at the top of the profile was

predicted for p4, followed by p6 and p2. The most notable difference

in depth distribution of SOC in regard to parentmaterial was predicted

between acidic and base rich (Figure 5G). Soilswith acidic parentmate-

rial showed higher SOC stocks at the top compared to base rich soils.

This was reversed at ca. 40 cm depths. Soils originating from eolic sand

or fluviatile parent material were predicted to have higher SOC stocks

that cannot be explained by other covariates throughout the profile

(seeDiscussion). The effect of forest typewas generally very small (Fig-

ure 5H). Mixed stands showed slightly higher stocks at the top and this

was reversed in the lower part of the profile.
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F IGURE 5 Standardized SOC profiles to evaluate the covariates’ sensitivity of themineral soil model. The covariate of interest varies as given
in the legend, whereas the other covariates are set to themedian values of the spatial datasets (see Table 1) or the dominant category (soil class:
Cambisol; degree of podzolization: p1; parent material: base poor, forest type: coniferous). The shaded area is the 95% confidence interval. The
interaction ofMAT andMAP is given for the 0–5 cm depth increment (B). The dots within the surface plot (B) indicate the values given in the depth
profile forMAT (A). The black polygon is the data coverage of theNFSI dataset and the red polygon is the data coverage of the spatial dataset. SOC:
soil organic carbon (t ha–1); MAT: mean annual temperature (◦C), MAP:Mean annual precipitation (mm y–1); CECpot: potential cation exchange
capacity (cmolc kg

–1); Coarse: Coarse fragments (> 2mm, vol.%); DoP: Degree of podzolization; Pamat: Parent material; Soil classes: B:
Cambisol/Braunerde, G: Gleysol/Gley, L: Luvisol/Parabraunerde, P: Podzol/Podsol, S: Stagnosol/Pseudogley

3.4 Spatial distribution of carbon stocks and
uncertainty

Regarding the spatial distribution (histograms in Figure 6), about 25%

of the forested area had OC stocks of 50 to 70 t ha–1, the majority

(35%) were in the class of 70 to 90 t ha–1, and 20% between 90 and

100 t ha–1 (Figure 6A). The highest OC stocks (> 110 t ha–1)

were predicted in mountainous areas, groundwater-affected locations

(Gleysols), or depressions. The mineral soil OC stocks largely resem-

bled this pattern, however on a lower level (Figure 6B).

The mountain areas were also characterized by the largest uncer-

tainty (Figure 7). The upper margin of error of the Rhön Mountains

(East), the Vogelsberg (center), parts of the Rhenish Massif (North-

West), and theOdenwald (South)wasmostly>21 t ha–1 (lowermargin

> 15 t ha–1). Especially for the Vogelsberg, uncertainty for mineral soil

stocks without FFC was considerably smaller (margins of error of 6 to

12 t ha–1). Uncertainties in themineral soil remained large for theRhön

Mountains, the Odenwald, and also parts of the Rhine Plains (South-

West). Almost 70% to 80% of the forest area showed margins of error

of 3-9 t ha–1 for total stocks, and for mineral SOC stocks margins of

error of< 6 t ha–1.

The spatial distribution of OC stocks in the depth increments

(Figure 6C–F; forest floor, 0–5 cm, 50–55 cm, and 95–100 cm) was

generally right-skewed. The flattest distribution was predicted for the
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F IGURE 6 Maps of predictedOC stocks for (A) the whole profile from the forest floor (FF) to 100 cm depth, (B) the sum of themineral soil
(0–100 cm), (C) the forest floor, (D) 0–5 cm depth, (E) 50–55 cm depth, and (F) 95–100 cm depth. The inset histograms show the spatial distribution
over forest soils of Hesse. Note that the two figures within each row share the same legend. Thus, there are different scales between rows, despite
of the same color regimes
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F IGURE 7 Mapped absolute model uncertainties of total OC stocks (sum of forest floor andmineral soil) andmineral soil (0–100 cm). The
upper row shows the upper boundary, and the lower row the lower boundary of themargins of error (95% confidence level). The inset histograms
show the spatial distribution over forest soils of Hesse. Note that upper and lower boundaries of themargins of error differ due to
back-transformation from the log scale

forest floor. FFC stocks between 5.5 and 14.5 t ha–1 were predicted

for almost half of the forest area. Considerable proportions (12.4%)

had FFC stocks between 23.5 t ha–1 and 32.5 t ha–1 or even higher

(4.7%). High FFC stocks were generally estimated for mountainous

areas, but also when acidic parent material occurred (e.g., East Hessian

Highlands). Whereas the highest SOC stocks (mineral soil) were also

predicted for high elevations, this was not necessarily true for acidic

parent material. Within the mineral soil, there was, as expected, a

steep decrease of SOC stocks with depth. At 0–5 cm, SOC stocks were

between 10 and 19 t ha–1 at approx. 90% of the area (Figure 6). At

intermediate depth (50–55 cm) two-thirds of the forested area had

SOC stocks between 1 and 2.5 t ha–1, and at the lowest depth, 74% of

the area had less than 1 t SOC ha–1 (95–100 cm). Spatial distribution

within the mineral soil in different depth increments was relatively

uniform. That is, mountain areas or water affected soils showed high

stocks throughout the profile.

Uncertainty for FFC stocks was generally high compared to other

soil layers (Figure 8). Most upper margins of error were in the range

of 20-60% of the modeled FFC stock (lower margins: 17 to 37%).

Upper margins of error of > 100% occurred mostly at high elevations.

Throughout all depth increments of the mineral soil, upper margins

of error of > 100% (lower margins > 50%) were found at the Hoher

Meißner (North), Rhön Mountains (East), and parts of the southern

Odenwald (South). The predictions of mineral SOC stocks for the

Vogelsberg (center) did not have exceptionally high uncertainty, in

contrast to the forest floor. In general, uncertainty throughout the

depth increments resembled the pattern of the AVE (Figure 3). At

0–5 cm, 90% of the relative upper margins of error were between

10% and 30% (lower margins: 9-23%). Uncertainty was lowest in the

intermediate parts of the profiles. At 50–55 cm, 86% of the area had

upper margins of error between 10% and 20% (lower margin: 9-17%).

Relative uncertainty increased with depth. At 90–100 cm, 84% of the
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F IGURE 8 Mapped relative model uncertainties for (A) the forest floor, (B) 0–5 cm depth, (C) 50–55 cm depth, and (D) 95–100 cm depth.
Upper and lower boundaries of themargins of error (95% confidence level) are given as % of the predicted value. The inset histograms show the
spatial distribution over forest soils of Hesse. Note that upper and lower boundaries of themargins of error differ due to back-transformation from
the log scale

upper margins of error were between 20% and 40% (lower margins:

17-29%), and 14% had upper margins of error between 40% and 60%

(lowermargins: 29-37%).

3.5 OC stocks of the entire federal state

In total, forest soils of Hesse (without soils with histic horizons) were

predicted to store between 67.7 and 80.1 Mt OC (range of the 95%

CI; Table 3). Between 16 and 24% (10.4 to 19.9 Mt) were stored on

the forest floor. The upper 30 cm of the mineral soil, often referred to

as “topsoil,” stored 68 to 69% of SOC, which leaves 17.6 to 19.4 Mt

OC in the subsoil (30–100 cm). As area-weighted average, the total

OC stocks (forest floor to 100 cm depth) ranged (95% CI) from 78.0 to

92.5 t ha-1 (Table 3). FFC stocks rangedon area-weighted average from

12.0 to 22.9 t ha–1 (Table 3).

4 DISCUSSION

4.1 Model performance

Comparing model performance with other studies is not always

straightforward. Varying model approaches, different scales, predic-

tion of concentrations or stocks, and a lack of standardized valida-

tion measures hamper direct comparisons (Lamichhane et al., 2019;

Vereecken et al., 2016). The most-reported measure is probably the

coefficient of determination (R2). However, the coefficient of determi-

nation could be biased, insufficient, and misleading (Li, 2017). It is not

always clear howR2 valueswere achieved, for example, froma separate

approach or directly from some model output, or if they refer to train-

ing or test data. Most commonly, observed and predicted values are

analyzed by linear regression. Unfortunately, intercept and slope (i.e.,

potential bias) of the regressionmodel are seldom reported andmodel
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TABLE 3 Vertical distribution of predictedmean and total C
stocks in the forest soils of Hesse, Germany. Figures are the lower and
upper boundary of the 95% confidence interval (CI) with averages
given in brackets. Note that the CI was used as ameasure of model
uncertainty, without taking other sources (attribute, positional, or
covariate, sensu Heuvelink, 2018) into account. SOC stocks and their
uncertainty were aggregated frommodelled 5 cm depth increments

Layer OC stocka (t ha–1) Total stockb (Mt) Proportion (%)

Total 78.0–92.5 (84.1) 67.6 - 80.1 (72.9) 100

Forest floor 12.0–22.9 (16.5) 10.4–19.9 (14.3) 16–24 (20)

Mineral soil 63.9–72.4 (67.7) 55.3–62.7 (58.6) 76–84 (80)

Top and subsoil (mineral soil)

0–30 cm 42.7–51.0 (46.4) 37.0–44.1 (40.2) 68–69 (69)

30–100 cm 20.4–22.4 (21.3) 17.6–19.4 (18.4) 31–32 (31)

Global soil map increments (mineral soil)

0–5 cm 13.6–20.3 (16.5) 11.7–17.6 (14.3) 22–27 (24)

5–15 cm 13.8–17.7 (15.5) 11.9–15.3 (13.5) 23 (23)

15–30 cm 13.2–15.7 (14.3) 11.4–13.6 (12.4) 21–22 (22)

30–60 cm 12.9–14.6 (13.6) 11.1–12.6 (11.8) 19–21 (20)

60–100 cm 7.2–8.2 (7.7) 6.2–7.1 (6.6) 11–12 (11)

aArea-weightedmean;
btotal sum of forested area (8690 km2).

performance can be low despite of high R2 values (Li, 2017; Piñeiro

et al., 2008). When comparing our AVE with R2 values from other pub-

lications, we assume that the authors presented bias-free data. In this

case, AVE and R2 measures are well comparable (Li, 2017). Achieved

R2 values in spatial modeling of OC contents or stocks were reported

to range from 0.1 to 0.7, but mostly between 0.3 and 0.5 (de Brogniez

et al., 2015; Gomes et al., 2019; Ma et al., 2021; Mulder et al., 2016;

Nussbaum et al., 2014; Russ et al., 2021). Large-scale studies often had

lower R2 values around 0.2 to 0.3, whereas small-scale studies often

reachR2 values around 0.5 (Chakan et al., 2017;Nussbaumet al., 2014;

Russ et al., 2021). Validation for depth increments often showedworse

performance than the full model. The pattern of low performance at

the top, best performance at intermediate depths, and again lower per-

formance at lower-profile depthswas also reportedbyothers (Nauman

and Duniway, 2019; Russ et al., 2021). Ma et al. (2021) concluded that

this is a feature of sampling density and data properties and could be

fixed by sampling smaller increments at the top of the profile. How-

ever, especially sampling of forest soils is challenging. Division of the

forest floor and the top of the mineral soil may introduce sampling

errors (Jansen et al., 2005; Russ et al., 2021). Moreover, effects of for-

mer, often unknown, management are strongest at the topmost parts

of soil profiles (Poeplau et al., 2020; Springob et al., 2001).While direct

management effects were reported to be minor in lower parts of soil

profiles (de Vos et al., 2019), subsoil sampling, and modeling inherits

its challenges. The tendency of higher coarse fragments concentration

combinedwith lowOCconcentrations introduceshigheruncertainty in

sampling andmeasurement (Throop et al., 2012). A special challenge is

posed by polygenesis (Richter and Yaalon, 2012). At least below 70 cm

depth, therewere three profiles in our datasetwith high observed SOC

stocks (Figure2). Thosewerenotmetby thepredictions. The threepro-

files were polygenetic, one having a fossil Podzol profile below eolic

sand deposits. The other two were classified as fluviatile soils. How-

ever, one profile had colluvialmaterial on top, and the otherwas under-

lain by a fossil, carbonate-rich solifluctive soil. Although the impact of

soil erosion and burial is not a particularly new challenge (Van Oost

et al., 2005), there is currently no easy solution in spatial modelling to

capture these effects.

The wide scatter of FFC predictions (Figure 2) can additionally be

attributed tomissing spatial informationabout the forest standageand

canopy structure (Bárcena et al., 2014; Böttcher and Springob, 2001;

Penne et al., 2010), or detailed species composition (Rehschuh et al.,

2021). Overall, total model and depth patterns performance are well

within the upper range of reported studies. We attribute this to the

inclusion of pedological knowledge in the model (Ma et al., 2019), but

also to the detailed soil map of Hesse.Without spatial explicit informa-

tion of soil properties, most of our covariates could not have been used

for spatial modeling and upscaling fromNFSI plots to forest sites of the

federal state of Hesse.

We found that aggregated SOC stocks (i.e., stocks of 0–90 cm of the

mineral soil) had better validation measures as compared to individ-

ual depth increments. We suspect that this finding can be explained

by inaccuracies of the modeled depth distribution. If modelled and

observed depth gradients are shifted, the consequence is an overesti-

mation at one layer and an underestimation in a neighboring layer. This

shift in the depth distribution could be cancelled out, when aggregating

OC stocks over several depth increments.

4.2 Ecological relevance and sensitivity of
covariates

In the following paragraphs, we discuss the sensitivity of individual

covariates using standardized OC profiles. The standardized profiles,

however, do not represent fully realistic conditions. For instance, we

kept the proportion of coarse fragments constant with depth, which

would realistically increase. Another example is the combination of

soil classes and parent materials, which would not naturally occur.

Therefore, the reader has to keep in mind that the standardized pro-

files serve the purpose to interpret the effect of a single covariate

and not represent naturally occurring combinations of environmental

conditions.

4.2.1 Forest floor

Stocks of FFC under broadleaf forest were reported to be on average

44% of coniferous forest stocks (Peng et al., 2020). This finding fits

very well with our results (Figure 4; 41% FFC stock under broadleaf,

compared to coniferous forest). de Vos et al. (2015) showed that tree

species affected FFC stocks markedly. This was also the case in the

NFSI dataset (not shown; Grüneberg et al., 2019), but statewide spatial
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coverage of tree species composition is incomplete and could thus not

be used for regionalization.

Soil classes were grouped according to their effect sizes on FFC

stocks. Colluvial soils andChernozemswere predicted to have the low-

est FFC stocks. This can be explained due to high biotic activity in these

soils (Persson andWirén, 1993; Schaefer et al., 2009). Water-affected

soil classes (Gley- and Stagnosols) showed the highest FFC stocks due

to impeded decomposition by high moisture, and lower rooting depths

(Chapin III et al., 2011). Strongly acidic conditions in Podzols also ham-

per decomposition and bioturbation (Persson andWirén, 1993; Schae-

fer et al., 2009). The effect of acidity is also consistent with the pre-

dicted effects of the degree of podzolization.

Atmospheric nitrogen deposition is known to increase plant pro-

ductivity, alter the amount and chemistry of litter, and often resulted

in increased OC storage in vegetation and soils (de Vries et al., 2009;

Etzold et al., 2020; Kwon et al., 2021). Several studies have shown

that in N-poor ecosystems, the addition of N is likely to stimulate

early-stage litter decomposition, whereas in N-sufficient ecosystems

inhibitory effects have been reported through reduced activity of lig-

nolytic fungi and a decreased exoenzymatic activity (Janssens et al.,

2010).Mayer et al. (2020) reported that nitrogen addition consistently

increased soil OC stocks across a wide range of forest ecosystems.

Most studies (see de Vries et al., 2009) used fertilization experiments

or isotopic tracers to deduct nitrogen-inducedOCaccumulation in soil,

resulting in increases of 5 to 30 kg C (kg N)–1. For example, Forsmark

et al. (2020) reported a gradual increase in FFC stocks under Scots Pine

by ca. 5, 6, 7, and 14 t ha–1 with additions of 3, 6, 12, and 50 kg N ha–1

y–1 for 13 years. In our study, the difference of FFC stocks between

N deposition rates between 10 and 35 kg ha–1 y–1 was 22 t ha–1 in

coniferous forests (Figure 4C). Although this is more than the reported

14 t ha–1 increase at higher deposition rate (Forsmark et al., 2020), the

different time of exposure could account for this difference. Accumu-

lation of FFC can also be mediated by acidification with increasing N

deposition (Meesenburg et al., 2019; Meiwes et al., 2009; Persson and

Wirén, 1993).

Since the NFSI was carried out over the course of 3 years, we

accounted for sampling time. The seasonal dynamics of litterfall and

decomposition were captured well by the model (Figure 4D). We

choose the month of June for predictions, since FFC stocks in this

month represent the average over the seasonal course.

Theeffect of climatedifferedbetweenvaryingparentmaterials (Fig-

ure 4E,F). The general assumption is that decomposition of litter is

hampered under cool, dry, and wet conditions, where FFC stocks are

consequently high (Djukic et al., 2018). However, this pattern was con-

firmedmainly on the biome scale, when averaging litter decomposition

across site conditions within a specific biome (Bradford et al., 2016;

Djukic et al., 2018). At finer scales, specific site conditions modulate

the accumulation of FFC stocks, and thresholds of a certain factor may

override the effects of others (Prescott, 2010). Berg (2014) even pos-

tulated that the effect of climate is mostly indirect by its effect on lit-

ter quality. Parent material exerts a strong effect on nutrient avail-

ability (Heitkamp et al., 2020) and, thus, litter quality. Moreover, bio-

genic activity is also related to soil properties, strongly affected by par-

ent material (Ponge et al., 2014). This explains the relatively uniform

effect of climate in soils with acidic parent material (Figure 4), where

other factors than climate dominate the limitation of decomposition.

Manning et al. (2015), for example, reported that the effect of MAT on

decomposition depended on the pHvalue. In soilswith base rich parent

material, the effect of climate is much more pronounced. Decomposi-

tion at intermediate conditions (e.g., moderate moisture and temper-

ature, nutrient-rich litter) is generally favored. With higher precipita-

tion, oxygenwill becomea limiting factor, and at drier conditions,water

availability hampers decomposition (Prescott, 2010), and also biotur-

bation (Schaefer et al., 2009).

4.2.2 Mineral soil

The effect of MAT and MAP on SOC stocks was rather complex (Fig-

ure 5A,B). The general view is, that increasing temperature decreases

and increasing precipitation increases SOC stocks (Jungkunst et al.,

2021; Springob et al., 2001). Most likely, interactions of decomposition

of OC and productivity of vegetation interact with the water balance.

That is, both decomposition of OC and plant productivity is hampered

either by dry or wet conditions, but at different thresholds (Chapin

III et al., 2011; Zhao et al., 2016). This can result in highly non-linear

behavior, which was often not captured by linear models (Yu et al.,

2021). In our data, we see a decrease in SOC stocks at the lowest

MAT and highest MAP, which is likely a consequence of decreasing

plant productivity. The highest effect of temperature on SOC stocks

was found at moderate amounts ofMAP, which fits the findings of Guo

et al. (2006). Of all covariates, theMAT-MAP combinationwas the only

one, where the parametrization dataspace did not fully match with the

dataspace of the prediction dataset (see polygons in Figure 5B).Within

the climatic range of Hesse, plausible, albeit uncertain responses were

predicted. This issuewill be discussed inmore detail togetherwith spa-

tial uncertainties. However, artifacts occurred for sites outside the cli-

matic range of the parametrization and inside the range ofHesse, when

increasing the smoothing parameter k from 5 to 8. This was the case

despite of apparently better model performance within the climatic

range of the parametrization dataset. It shows that predictions outside

the calibration range have to be handled with extreme care.

The effect of CECpot on SOC stocks was very large. Since CECpot

is calculated from texture, this is consistent with the relationship of

SOC stocks or concentrations and the fine fraction (Arrouays et al.,

2006; Burke et al., 1989; Hassink, 1997). Fine particles have high sur-

face areas and stabilize SOC by diverse physicochemical mechanisms

(von Lützow et al., 2006). However, there is a finite capacity of fine

particles to interact with organic matter (Stewart et al., 2007). This

was shown for carbon-rich topsoils under French forests (Chen et al.,

2019). Moreover, the relationship of SOC with fine particles in forest

topsoils was reported as weaker as compared to carbon-poor subsoils

(Schleuß et al., 2014). Thisweakened relationship between texture (i.e.,

the covariate CECpot) and SOC enrichment may also partly explain the

relatively poor fit of our model for the upper depth increments (Fig-

ure 3D).
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The reduction of SOC stocks by increasing volumes of coarse frag-

ments coincided excellent with the equation of stock calculation (Fig-

ure 5D). The higher predicted SOC stocks, as would be expected from

the pure dilution effect of volumetric coarse fraction, can be explained

by two factors. First, plant productivity and consequentlyC input in soil

may be reduced disproportionally. Plants adapt well to environmental

conditions and gather nutrients and water from soil made inaccessible

to sampling (Heisner et al., 2004). Therefore, there may a higher OC

enrichment in the fine soil (< 2 mm) with high contents of coarse frag-

ments. Second, sampling ormeasurement errorsmay be involved. High

contents of coarse fragments occur frequently at lower parts of the soil

profile. OC contents are small and may be close to the detection limit,

which introduces uncertainty. Precise volume-based sampling is also

hampered by the presence of coarse fragments (Throop et al., 2012).

Soil properties as indicated by soil classes induced the largest vari-

ation in the distribution of SOC across the soil profile (Figure 5E). This

can be attributed to pedogenic processes, that is, transformation, accu-

mulation, and translocation (Kögel-Knabner and Amelung, 2021). For

example, Luvisols had the lowest stocks in the upper part of the profile

(ca. 10–30 cm), where the eluvial E horizon is located. High SOC stocks

between 20 and 40 cmand low stocks at the topmirror the presence of

the eluvial horizon and OC rich B horizon in Podzols. Especially for the

interpretation of the effects of the soil classes, it is important to keep

in mind that the sensitivity analysis only examines selected conditions.

For instance, Podzols showed the highest total (0–100 cm) SOC stocks,

whereas Gleysols did not differ from other soil classes in total stocks.

This is counterintuitive, since across Europe Gleysols often have very

high SOC stocks, followed by Cambisols and Luvisols, whereas Pod-

zols often have lower stocks (de Vos et al., 2015). The deviation of our

study with respect to model sensitivity effects and field observations

is explained by interaction with other covariates. For example, Pod-

zols stock on sandy soils with lowCECpot, whereas Gleysols often have

intermediate CECpot and develop from fluviatile parent material.

We expected a gradual decrease of SOC at the top (location of the

eluvial A horizon) and a gradual increase at intermediate depth (loca-

tion of the illuvial B horizon) with an increasing degree of podzoliza-

tion. This clear pattern was not apparent in our study (Figure 5F). The

reason for this finding must remain speculative. We suspect that there

is a complex interaction of biotic (plant growth, decomposition) and

abiotic (transformation and translocation) processes, which cannot be

explored in detail within our dataset.

Parent material had a more pronounced effect on total stocks as

compared to the distribution within the soil profile (Figure 5G). Soils

with fluviatile parent material showed higher SOC stocks, presumably

due to high groundwater levels which impede decomposition, and also

by containing allochthonousOCalready present during sedimentation.

Base rich and acidic parent material, however, also showed different

depth distributions. Soils with acidic parent material showed higher

SOC stocks at the top, compared to base rich material. This is most

likely an effect of low abundance of saprophagous organisms (Lumbri-

cidae and Diplopoda) in acidic soils. These organisms play a dominant

role in the incorporation of organicmatter from leaf litter into themin-

eral soil (Schaefer et al., 2009). Parent materials are also often asso-

ciated with texture. This effect, however, should be captured by the

CECpot. Therefore, thehigh SOCstocks predicted for eolic sand (at oth-

erwise constant conditions) means that SOC stocks in eolic sands are

higher than expected from their low CECpot (and other environmen-

tal conditions). Acidic conditions and edaphicmoisture deficit are likely

explaining this finding (Persson and Wirén, 1993), because both fac-

tors impede decomposition.Of course, alsoC input to soil is reduced by

moisture deficit or acidity due to lower plant productivity. However, up

to a certain threshold, plant productivity is less reduced than decom-

position due to different adaption strategies at sub-optimal conditions.

This is, for example, demonstrated by a higher reduction inmicrobial as

compared to plant respiration with increasing moisture deficit (Zhao

et al., 2016).

The forest type (broadleaf, mixed, and coniferous) affected the pre-

dictions only to a small extent (Figure 5H). Rehschuh et al. (2021)

reported from a meta-analysis that mixed forests had on average 9%

higher SOC stocks down to 50 cm mineral soil compared to monospe-

cific beech stands. Summing up our data to 50 cm, we also found that

SOC stocks of mixed compared to broadleaf forests were 10% higher.

However, this small difference was compensated in the depth incre-

ments below 50 cm. Differences in total SOC stocks (0–100 cm) were

not predicted (100.6% and 101.5% of SOC stocks in broadleaf, com-

pared to mixed and coniferous, respectively). This fits the results of

de Vos et al. (2015), who reported that forest stand type had a low

importance in explaining variation in SOC stocks down to 100 cm.

Our analysis did not confirm studies, which report higher SOC stocks

under broadleaf forest as compared to coniferous forest (Grüneberg

et al., 2019; Peng et al., 2020). Our dataset is a subset of that of

Grüneberg et al. (2019), so this finding was surprising at first. How-

ever, Grüneberg et al. (2019) analyzed observed sampling data and the

authors stated that specific site conditions, such as richer parentmate-

rial under broadleaf forest, may contribute to their finding. In our sen-

sitivity analysis, other factors than forest type were held constant. We

conclude that interpretation of the effect of forest type on SOC stocks

has to take into account that site conditions are often not well compa-

rable (Schleuß et al., 2014).

4.3 OC stocks of forest soils in Hesse

The predicted spatial average of total OC stocks (forest floor to 100

cm) of Hesse was between 78 and 92.5 t ha–1 (95% CI, Table 3). This

is less than themedian for German forest soils, whichwas estimated to

105 tha–1 fromdataof theNFSI (forest floor to90cm,Grüneberget al.,

2019).Wellbrock et al. (2017) estimated total forest soil OC stocks for

Germany (including soils with histic properties) to 1215Mt. Therefore,

forest soils ofHesse store 5.6–6.6% (67.6–80.1Mt) of the total amount

stored in German forest soils (Wellbrock et al., 2017), while having

about 8% of the total forest area. Lower OC stocks of Hesse compared

to Germany were attributed to relatively high contents of coarse frag-

ments in the mostly hilly or mountainous terrain (Paar et al., 2016).

Using the NFSI database, Paar et al. (2016) estimated the total OC

stocks from the NFSI for Hesse’s forest soils to 80 t ha–1 (forest floor
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to 90 cm without soils with histic properties). This estimate from spa-

tial representative sampling, which was a part of the parametrization

data set, fits thepredicted rangewell (Table 3).Due to the slightly lower

sampling depth (90 vs. 100 cm) the estimate of Paar et al. (2016) is in

the lower range of the predicted interval. Moreover, OC-rich soils on

fluviatile parent material were underrepresented by the grid sampling

in Hesse (Heitkamp et al., 2020), which may result in a slight underes-

timation of average OC stocks by the NFSI grid sampling. Organic soils

store about 500 to 600 t OC ha–1, but cover only 0.1% of Hesse’s for-

est area. This results in a negligible addition of 0.4 to 0.5Mt to the pre-

dicted total OC stock of Hesse of 67.6–80.1Mt.

The proportion of 16% to 24% of OC stored in the forest floor in

Hesse covers the values of 15–20% (NFSIHesse, observation) and 18%

(NFSI Germany) reported before (Grüneberg et al., 2019; Paar et al.,

2016). Russ et al. (2021) reported a proportion of 30% of FFC for

Brandenburg. The federal-state Brandenburg is characterized by high

proportions of sandy, acidic soils and coniferous forest stands (Scots

pine), which explains this finding. It is well proven that FFC stocks are

generally higher under coniferous forests, as compared to mixed, or

deciduous stands (de Vos et al., 2015). The aim to reduce the share

of pure coniferous forests in Germany therefore leads to the expec-

tation that parts of the FFC stocks will be lost in the future. From a

purely carbon-accounting point of view, this seems counterproductive

to the aim of carbon storage in forest ecosystems. However, it was

shown that FFC is a much more labile pool than SOC in the mineral

soil. FFC stocks react very sensitive to changing environmental condi-

tions, such as management, tree species composition, climate, age of

the forest stand, or litterfall (Brumme et al., 2021; de Vos et al., 2015;

Jandl et al., 2007; Mayer et al., 2020). Forest floor material also serves

as fuel and high stocks can induce or aggravate forest fires. Therefore,

FFC stocks should not be seen as a reliable pool for carbon sequestra-

tion measures. Moreover, the most common coniferous forest species

in Germany, Norway spruce, has been shown to be vulnerable against

climatic extremes (storms, drought) and biotic calamities (Albert et al.,

2018; Schuldt et al., 2020). It would seem grossly negligent to pre-

vent development of resilient forests with the argument of less FFC

storage.

The proportion of SOC stored in the topsoil (68–69% in 0–30 cm;

Table 3) was predicted to be higher than the global average (approx.

50%; Jobbágy and Jackson, 2001), fits the proportion of NFSI obser-

vations (67%), and slightly lower than reported for terrestrial soils of

Brandenburg (approx. 74%; Russ et al., 2021). Increasing SOC stocks

in the subsoil is currently discussed as a mean to reduce the increase

of atmospheric CO2 concentrations (Whitmore et al., 2015), because

SOC in subsoils generally has highmean residence times. The relatively

low proportion of SOC in forest subsoils of Hesse may indicate that

there is some potential for subsoil SOC storage. Although this poten-

tial should not be neglected, limitations of SOC storage should be clear

(Powlsonet al., 2011): (1)AdditionalOCstorage in soil is finite, because

after a certain amount of time a new dynamic equilibrium state will be

reached; (2) increased amounts of SOC can also increase greenhouse

gas emissions, especially N2O; and (3) SOC storage is reversible, for

example, by climatic or land use changes. Regarding recent climatic

extremes with adverse effects on Central European forest ecosystems

(Schuldt et al., 2020) it is important to increase the resilience of man-

aged forests in order to maintain the ecosystem. Site-specific planning

and diversification of planted forests are proposed to achieve this goal

(Messier et al., 2021, and references therein). There are a few indica-

tions that tree diversity also increases SOC storage in a more stable

form (Desie et al., 2019; Mayer et al., 2020; Schleuß et al., 2014). If

true, this would be a win-win situation, which should be incentivized

to forestry stakeholders.

4.4 Spatial uncertainty

The highest uncertainties occurred independent of depth increment

for forest soils at high elevation. The highest elevations are often

characterized by soils with extreme properties, such as high content

of coarse fragments, cool and wet climate, high N deposition, and

otherwise rare soil classes. Three areas always associated with high

uncertainty are the Hoher Meißner (North-East), the RhönMountains

(East), and the Odenwald (South). The combination of MAT and MAP

was outside the parametrization range (Figures 4 and 5). Rhön and

Hoher Meißner hadMAP around 1000mm y–1 withMAT around 6◦C,

whereas especially lower locations of the Odenwald were character-

ized by high MAT (9–10◦C) and high MAP (> 1000 mm y–1). At the

Vogelsberg (center) especially prediction of the FFC stocks was highly

uncertain. Climatic data were within the parametrization range. How-

ever, N deposition was above 20 kg ha–1 y–1 and Stagnosols are pre-

dominant. Both covariates were associated with high uncertainties in

the forest floor model (Figure 4). Mountains are often underrepre-

sented in spatial sampling and predictions are therefore sometimes

even omitted (e.g., de Brogniez et al., 2015). Although locations at high

elevations are not always of high spatial importance, they often store

disproportional high amounts of OC (Hagedorn et al., 2010). Mountain

soils are alsohighly affectedbyclimate change (Rogoraet al., 2018;Tito

et al., 2020). Therefore, it will be important to adjust sampling strate-

gies of inventories to better capture environmental conditions. Other

areas of high uncertainty were characterized by colluvial soils, which

cover 3.9% of Hesse’s forest area, but only three profiles were in our

database (0.8%). Non-histic Gleysols are represented better (11 pro-

files, 3.1% with 3.5% spatial coverage), but exhibit a high variability

of OC stocks. Using spatial information about groundwater levels may

have decreased uncertainty in this case (Russ et al., 2021).

In general, the uncertainty taken into account is solely the model

uncertainty. Heuvelink (2018) lists other sources, such as uncertainty

from attributes, position, or covariates. For example, uncertainties

in temperature, precipitation, and nitrogen deposition estimates

arise from various sources such as data, sampling, or regionalization

errors. In addition, there are errors from the models used to estimate

the total nitrogen deposition (Ahrends et al., 2020). Including these

other sources of uncertainty will probably increase the general level

of uncertainty in our study. However, estimating uncertainty from

sampling, analytical errors, and generalization of spatial data is chal-

lenging (König et al., 2013). While our uncertainty assessment may be
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incomplete, we are confident that the spatial pattern of total uncer-

tainty will not change generally. Therefore, critical regions, where care

has to be taken with interpretation of the predicted OC stocks, were

identified in our study.

5 CONCLUSIONS

With this study,weprovide the first spatially explicitmap forOCstocks

in forest soils of Hesse at a scale of 1:50,000. The predicted OC stocks

of the forest floor and the mineral soil in 5 cm depth increments can

be calculated flexible to desired depths. The effect size and direction

of the used covariates (e.g., climate, forest type, parent material, tex-

ture, content of coarse fragments,Ndeposition, soil depth) are in a con-

vincing range and comparable contexts, as reported by other studies.

This raises confidence that our models fitted observations well for the

right reasons, and is important in communication with forestry stake-

holders, and for climate change mitigation reporting. Our predictions

can be explained and communicated using common pedological knowl-

edge.Uncertainty of the predictions is presented,which is crucialwhen

using OC stocks as the base for dynamic prediction of stock changes

with respect to climate change or forest management. The presented

hierarchical model may well be used in other regions or states, and the

results as a basis for dynamic carbon modeling for assessment of land-

use and climate change effects on OC stocks in forest soils. However,

sound knowledge of the spatial distribution of implemented covariates

is prerequisite for themodel application.
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