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Abstract
Bark beetles (Curculionidae: Scolytinae) spend most of their life in tissues of host plants, with several species representing 
economically relevant pests. Their behaviour is largely guided by complex olfactory cues. The compound verbenone was 
discovered early in the history of bark beetle pheromone research and is now sometimes referred to as a ‘universal bark beetle 
repellent’. However, some studies aiming to protect trees with verbenone have failed. In fact, most research effort has gone 
into applied studies, leaving many questions regarding the ecological functions of verbenone for various species unanswered. 
Here, we review and analyse the scientific literature from more than 50 years. Behavioural responses to verbenone are com-
mon among pest bark beetles (< 1% of scolytine species studied so far). Indeed, attraction is inhibited in 38 species from 
16 genera, while some secondary species are unaffected or even attracted to verbenone. It is not clear whether the beetles 
can control the biosynthesis of verbenone; its release may not be an active signal by the beetles, but a passive cue resulting 
from microorganisms during host colonisation. In this context, we advocate to recognise a bark beetle and its microbiome 
as an entity (‘holobiont’), to better understand temporal release patterns and deduce the specific function of verbenone for a 
given species. Surprisingly, natural enemies are not commonly attracted by verbenone, but more taxa need to be studied. A 
better understanding of the ecological functions of verbenone will help to make verbenone-based tools more effective and 
improve integrated pest management strategies.
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Key message

• Verbenone is long known and now sometimes referred to 
as a ‘universal bark beetle repellent’.

• Research focus has mostly gone into applied studies, 
leaving many ecological questions unanswered.

• Here, we review the scientific literature from more than 
50 years to interpret present knowledge.

• The function of verbenone as an active signal or passive 
cue may vary across bark beetle species.

• Filling identified gaps of knowledge will improve ver-
benone-based pest management approaches.

Communicated by Antonio Biondi.
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Introduction

Bark and ambrosia beetles of the weevil subfamily Scoly-
tinae are exceptional as they spend almost their entire life 
inside the protective tissues of various plants. Thus, some 
of them are, or have the potential, to become economically 
relevant pests in agricultural and forest ecosystems, even 
though the great majority are harmless to living plants (Gre-
goiré and Evans 2004; Raffa et al. 2015). During the short 
phase of adult dispersal, they have to find and colonise a 
host tree, and encounter mating partners. This critical period 
of their life cycles is characterised by high mortality rates 
due to natural enemies and abiotic stressors (Lindgren and 
Raffa 2013). Thus, there is a strong selection on efficient 
recognition for both suitable host plants and mates. Host 
and mate searching behaviours, as well as host choice, are 
regulated by complex interactions of different environmental 
cues, which may be visual, gustatory, and olfactory, originat-
ing from conspecifics and heterospecifics of various trophic 
levels (Byers 1989, 2004; Borden 1997; Strom et al. 1999). 
Semiochemicals are olfactory cues that can be grouped by 
their origin and their implications for the sender and the 
receiver (Nordlund and Lewis 1976). Bark beetles rely on 
a broad range of semiochemicals (Borden 1997), includ-
ing pheromones that are released and received by individu-
als from the same species, and allelochemicals that medi-
ate communication between species (Nordlund and Lewis 
1976). The latter are further divided into kairomones that 
are released by one species (e.g. host trees) and are to the 
benefit of the receiver of another species (e.g. bark beetles), 
allomones that are beneficial for the emitter of another spe-
cies, and synomones that are to the benefit of both the sender 
and the receiver species (Nordlund and Lewis 1976).

Bark beetles deploy different strategies to interact with 
their hosts. They can be classified according to whether 
they colonise dead or dying trees (hereon referred to as 
‘secondary’ species), they live in vital trees as parasites 
or their colonisation results in the death of their host trees 
(hereon referred to as ‘primary’ species) (Lindgren and 
Raffa 2013). Additionally, bark beetles can be gregari-
ous—i.e. many individuals aggregate to colonise a tree by 
the attraction of male and female conspecifics—or solitary 
(Raffa et al. 2015). Following host acceptance, gregari-
ous bark beetle species start to release aggregation phero-
mones to attract conspecifics for mating and to collectively 
overcome tree defence (Silverstein et al. 1966; Raffa and 
Berryman 1983; Berryman et al. 1985). There is a large 
variety of mating systems in bark beetles, e.g. in respect to 
the sex that initiates the gallery or the number of females 
per male in polygynous mating systems (Kirkendall 1983).

Gregarious bark beetle species risk to suffer intraspe-
cific competition from too many galleries inside a tree 

that will reduce the survival odds of the offspring and 
thus decrease fitness (Anderbrant et al. 1985; Sallé and 
Raffa 2007). Two non-mutually exclusive mechanisms 
have been proposed to terminate the colonisation of a tree: 
the cessation of the synthesis of aggregation pheromone 
components, and the release of anti-aggregation phero-
mones (Byers and Wood 1980; Byers et al. 1984; Vité 
and Francke 1985; Pureswaran et al. 2000). Most scolytine 
species are non-gregarious, including solitary bark beetles 
without known aggregation pheromones, as well as most 
of the paraphyletic group of ambrosia beetles, cultivating 
fungi in the wood as a food source (Lindgren and Raffa 
2013; Hulcr and Stelinski 2017). In non-gregarious and 
secondary species, the effect of interaction with conspe-
cifics is even more disadvantageous because there is no 
gain from collective colonisation, instead all conspecifics 
impose immediate competition for limited resources (Raffa 
2001), which means that also these species presumably 
have an advantage in detecting and reacting to non-suita-
ble, possibly already colonised, host trees.

In the context of avoidance of non-suitable hosts, ver-
benone has been discovered in bark beetles more than half 
a century ago (Renwick 1967). It was early proposed as 
an anti-aggregation component (Renwick and Vité 1969; 
Rudinsky 1973). Libbey et al. (1974) and Rudinsky et al. 
(1974) were the first to use the term ‘anti-aggregative phero-
mone’ with the purpose of terminating attacks (Byers et al. 
1984; Leufvén et al. 1984; Byers 1989; Hunt and Borden 
1990) and shift new attacks to adjacent trees (Bakke 1981). 
Because verbenone is also associated with the decay of 
wood infested by bark beetles (Byers et al. 1989), it is also 
referred to as an indicator of old and thus unsuitable host 
material (Lindgren and Miller 2002b; Byers 2004). Indeed, 
much of the verbenone biosynthesis may actually be derived 
from microbes inside or outside the beetles’ bodies and the 
respective contributions of insect vs. microbes to verbenone 
biosynthesis are still elusive (Byers et  al. 1984, 1989; 
Leufvén and Birgersson 1987; Hunt and Borden 1990). In 
some bark species, verbenone may thus be an actual ‘signal’, 
that is purposefully released by the sender–and would thus 
be called a pheromone—while in other species, it may be a 
passive ‘cue’ emitted by microorganisms (Leonhardt et al. 
2016).

Today, the concept of verbenone as a ‘universal bark 
beetle repellent’ (Audley et al. 2020; Huber et al. 2020) or 
a ‘general sign of host unsuitability’ (Byers 2004) is well 
established and is, besides non-host or green leaf volatiles 
(Byers et al. 1998, 2004; Zhang and Schlyter 2004), one 
of the most prominent bark beetle aggregation inhibitors 
(Mafra-Neto et al. 2022). Numerous studies focussed on 
the potential of verbenone in pest population management 
as a repellent tree protectant (e.g. Richerson and Payne 
1979; Bedard et al. 1980; Livingston 1983; Borden et al. 
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1997). However, this has impeded the further investiga-
tion of its ecological function and underlying response 
mechanisms (Borden 1997). Some studies also failed to 
demonstrate the inhibitory effect of verbenone (e.g. Jakuš 
et al. 2003), leading some authors to speak of ‘a history 
of unpredictability’ (Progar 2003). The major reason is 
that we still know little about the reasons why verbenone 
seems to be a ubiquitous cue in many bark beetle species, 
while applied studies observe so much uncertainty. There 
are still many open questions on the ecological and evo-
lutionary roles of verbenone for the highly diverse group 
of bark beetles with various life histories. Is it an actual 
anti-aggregation pheromone synthesised by the beetles 
themselves or rather an indicator of poor host quality (deg-
radation or competition)? Does it only inhibit attraction 
under the presence of aggregation pheromones to mask a 
fully colonised host or is verbenone repellent itself also 
in the absence of attractive compounds? Does it mediate 
intraspecific and also interspecific competition for breed-
ing habitat and food resources? And finally, if verbenone 
is so commonly associated with bark beetles, are higher 
trophic levels such as predators and parasitoids also able 
to rely on verbenone to detect their prey?

Here, we summarise and synthesise a broad body of 
literature from more than 50 years of basic and applied 
research on the effects of verbenone on bark and ambrosia 
beetles. We focus on pheromone biosynthesis and per-
ception and infer its ecological implications in the com-
munication of these insects. A simple quantitative meta-
analysis was conducted on a few species for which the 
response to verbenone has been studied, to relate a species’ 

response to verbenone with its mating system and its host 
use behaviour (primary vs. secondary species).

In the following, we first focus on the emission of ver-
benone in space and time. Q1.1.: Who and where?—Which 
organisms produce verbenone? Which anatomical structures 
are involved in biosynthesis? What are the relevant path-
ways? Q1.2.: When and how much?—In which phases of 
host colonisation is verbenone produced? Which quantities 
are ecologically relevant? The second part then focusses 
on the receivers of verbenone as a behaviourally relevant 
cue. Q2.1: Olfaction and neurophysiology—How is ver-
benone detected? Q2.2: Behaviour—What is the behavioural 
response of bark beetles to verbenone, and which factors 
influence this response? Finally, the role of verbenone is set 
into a larger ecological and evolutionary context discussing 
its implications on intra- and interspecific interactions, as 
well as trophic relationships.

The roles of verbenone in the natural history 
of bark beetles—an overview

Verbenone emittance—Who is producing it?

Verbenone, i.e. 4,6,6-trimethyl-bicyclo[3.1.1]hept-3-en-2-
one or 2-pinen-4-one (CAS 80–57-9, Fig. 1), is a monoter-
pene ketone with two enantiomers: (–)-S- and ( +)-R-ver-
benone. It was first identified as an oxidation product in 
coniferous turpentine oil (Blumann and Zeitschel 1913). 
Accordingly, it can be found in various gymnosperm tree 
species (Shepherd et al. 2007), including common bark 

Fig. 1  Chemical synthesis of 
verbenone from its pre-precur-
sor α-pinene and its precur-
sor verbenol with all existent 
isomers
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beetle host species (Flechtmann et al. 1999; Dvořáková et al. 
2007; Liazid et al. 2007; Szmigielski et al. 2012), but also 
in various angiosperm species (e.g. Shepherd and Sullivan 
2013; Guo et al. 2017; Pedrali et al. 2019; Çetin and Güdek 
2020).

Q1.1: Who and where?—Which organisms produce 
verbenone?

Chemical synthesis

Verbenone synthesis almost inevitably occurs under an aero-
bic environment when one or both of the two precursors 
α-pinene, a major component of conifer resin (Lieutier et al. 
1989; Nagel et al. 2022) or verbenol, an oxidation prod-
uct of the former, are present (Blomquist et al. 2010; Ram-
akrishnan et al. 2022; Fig. 1). The conversion of verbenol to 
verbenone can occur spontaneously by autoxidation (Bhat-
tacharyya et al. 1960), but this only seems to matter after 
long time spans: the percentage of verbenone in turpentine 
oil from Picea abies increased from initially 0.2% to 50% 
after 20 days (Dvořáková et al. 2007), even though this can 
(Flechtmann et al. 1999), but does not necessarily lead to 
an increase in verbenone release from cut logs after a com-
parable time span (Pettersson and Boland 2003). The oxi-
dation of verbenol into verbenone is irreversible (Leufvén 
et al. 1984; Lindmark-Henriksson et al. 2003) and without 
by-products (Brand et al. 1976).

Apart from autoxidation, the beetles themselves or associ-
ated microorganisms enhance verbenone production. These 
include the beetle-associated ascomycete blue stain fungi 
(Cale et al. 2019; Kandasamy et al. 2023), yeasts (Brand 
et al. 1976; Leufvén et al. 1984; Hunt and Borden 1990) 
and bacteria (Xu et al. 2015). Also, wood-degrading basidi-
omycetes have been shown to biotransform α-pinene to 
verbenol (Busmann and Berger 1994; Trapp et al. 2018), 
as well as saprophytes (Bhattacharyya et al. 1960; Agrawal 
et al. 1999). The capability to convert verbenol to verbenone 
seems to be common among bark beetle-associated microor-
ganisms: Leufvén et al. (1984) found six yeast species from 
the guts of Ips typographus, capable of converting cis-ver-
benol to verbenone. In fact, microorganisms might not only 
be capable of biosynthesising verbenone, they might even 
be the main responsible agents. For example, in Dendroc-
tonus valens fed with antibiotics, the verbenone amounts in 
guts and frass were considerably lower in both sexes com-
pared to the antibiotic-free control group (Xu et al. 2015), 
but it is not clear whether the remaining amounts were due 
to autoxidation or the beetles’ metabolism. Also, numerous 
bacterial isolates were capable of converting cis-verbenol 
to verbenone, including Pseudomonas spp., Serratia sp. 
and Rahnella aquatilis, which also made a high proportion 
of the bacterial community in the gut and frass (Xu et al. 

2015). Similarly, in Dendroctonus ponderosae suppression 
of associated microorganisms even completely inhibited the 
synthesis of verbenone (Hunt and Borden 1989), suggesting 
that the beetles alone do not biosynthesise verbenone. These 
examples demonstrate the potential importance of microor-
ganisms in verbenone biosynthesis; however, it is still less 
clear, to what extent they contribute under natural conditions 
(Hunt and Borden 1990) and whether autoxidation could 
also be relevant. In conclusion, it seems that bark beetles 
accelerate the inevitable decay of host tissue by introducing 
microbes, resulting in the release of verbenone. However, 
to our knowledge, no enzymes that mediate the conversion 
of verbenol to verbenone have been characterised so far, so 
that the underlying biochemical processes are not known.

Stereochemistry

Verbenone, its direct precursors verbenol and its pre-precur-
sor α-pinene are chiral compounds (Fig. 1). The intermediate 
product verbenol also possesses two geometric isomers (cis- 
and trans-verbenol). In many studies, the optical isomers 
of verbenone originating from bark beetles are not further 
differentiated (e.g. Shepherd et al. 2007; Zhang et al. 2007a, 
b; Shi and Sun 2010; Liu et al. 2019; Ramakrishnan et al. 
2022) and are thus comparatively poorly assessed.

It seems that (–)-verbenone might be the more relevant 
enantiomer in bark beetle chemical ecology. It was pre-
dominant in hindgut extracts from male Pseudips orientalis 
(Zhang et al. 2011), Ips nitidus (Zhang et al. 2009) as well 
as Ips pini (Pureswaran et al. 2000), and it was the only con-
version product from trans-verbenol of two ophiostomatoid 
fungi associated with D. ponderosae (Cale et al. 2019). The 
enantiomeric configuration of verbenone is determined by 
its pre-precursor α-pinene (R-, S-, or racemic) (Lindmark-
Henriksson et al. 2003; Fang et al. 2020). Concordantly, 
verbenone biosynthesis may not be enantioselective within a 
species but depend on the host substrate. As a consequence, 
also the resulting ratios of both verbenone enantiomers are 
variable within a species. For example, in D. frontalis ratios 
of (+)- and (–)-verbenone varied strongly (between 20 and 
80%) among sexes and across geographic regions for males 
(Grosman et al. 1997), probably due to variation in enantio-
meric ratios of α-pinene (Lindström et al. 1989; Taft et al. 
2015). A rather strong intraspecific variation in the ratio of 
both enantiomers is consistent with the finding that typi-
cally both enantiomers elicit a behavioural response to some 
degree (e.g. Byers et al. 2018, see Q2.1; but see Dickens 
1979; Raffa 2001; Zhang et al. 2006).

The geometric configuration of the intermediate substrate 
verbenol also seems to be important. Both enantiomers of 
verbenol can lead to the synthesis of verbenone. cis-Ver-
benol can also be converted to trans-verbenol (Leufvén 
et al. 1984; Hunt and Borden 1990; Lindmark-Henriksson 
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et al. 2003), but the reverse reaction has not been reported. 
This one-way reaction might represent a ‘dead end’ and 
impede verbenone synthesis, e.g. only three of six yeast 
strains extracted from the guts of I. typographus were able 
to produce verbenone from trans-verbenol, but all six were 
able to do so when cis-verbenol was the substrate (Leufvén 
et al. 1984). In two Dendroctonus species trans-verbenol 
was the predominant isomer: both sexes of D. brevicomis 
were capable of converting either enantiomer of α-pinene 
to the respective enantiomer of trans-verbenol and myrtenol 
with only trace amounts of cis-verbenol (Byers 1983a, b; 
Byers et al. 1984). Similarly, two ophiostomatoid fungi typi-
cally associated with D. ponderosae exclusively produced 
(–)-verbenone from trans-verbenol (Cale et al. 2019). The 
fate of cis-verbenol to be converted directly to verbenone 
or to trans-verbenol instead also depended on the optical 
configuration of cis-verbenol for at least some of the yeasts 
extracted from I. typographus (Leufvén et al. 1984). Prob-
ably due to these differences in the synthesis, typically one 
of the two isomers of verbenol predominates in a given 
species. Interestingly, the respective other enantiomer can 
typically be found to a smaller extent, as is the case in I. 
typographus (Birgersson et al. 1984; Leufvén and Birgersson 
1987; Schlyter et al. 1987; Birgersson and Bergström 1989; 
Ramakrishnan et al. 2022), D. frontalis, and D. ponderosae 
(Grosman et al. 1997; Pureswaran et al. 2000).

Site of verbenone biosynthesis

Unlike other insect species where pheromones are biosyn-
thesised in specific cells or glands located in the abdomen 
and/or epidermal cells (Tillman et al. 1999), bark beetles do 
not have specific organs for pheromone biosynthesis (Titti-
ger and Blomquist 2016). Instead, evidence from many spe-
cies suggests that the major organ of verbenone synthesis 
is the hindgut (Table 1), as is also described for most bark 
beetle pheromones (Byers 1989), particularly those derived 
from host monoterpenes (Tittiger and Blomquist 2016). This 
is coherent with the finding above that verbenone biosynthe-
sis is mostly mediated by microorganisms, which are located 
in the gut.

The relative contribution of the gut to verbenone emis-
sion from bark beetle infestations, however, is not yet clear. 
Verbenone amounts increased in headspace samples of Scots 
pine logs infested with Tomicus piniperda over 5 days, while 
non-infested control logs released little verbenone at a con-
stant rate (Byers et al. 1989), stressing the importance of 
bark beetle colonisation for verbenone emission. Other stud-
ies likewise detected verbenone outside the beetles’ bodies. 
For instance, bacteria associated with D. valens, like Pan-
toea conspicua, Enterobacter xiangfangensis, Staphylococ-
cus warneri and at least six other species, were responsible 
for the conversion of verbenol to verbenone in adult frass 

(Xu et al. 2015, 2016; Cao et al. 2018). Leufvén and Birgers-
son (1987) analysed the chemical composition of the phloem 
around galleries of I. typographus at different attack phases 
on Norway spruce. They proposed four possible pathways 
explaining the occurrence of oxygenated monoterpenes—
including verbenone—in the phloem, which could (i) either 
be released by the beetles and thereafter absorbed by the 
phloem, (ii) synthesised by associated microorganisms, (iii) 
oxygenated via host-derived enzymes, or (iv) via autoxi-
dation (Leufvén and Birgersson 1987). Thus, a substantial 
amount of verbenone could be produced in close proximity 
outside the beetles; however, the relative importance of each 
source is still not clear.

Sex‑specific differences

Across many species with different mating systems, males 
seem to produce more verbenone compared to females. In 
Dendroctonus species, females are the gallery-initiating sex. 
In female D. brevicomis, no verbenone was detected, while 
considerable amounts were found in males (Byers 1983a). 
This was also the case for D. ponderosae, where a switch 
in verbenone synthesis from females to males was proposed 
upon mating (Pureswaran and Borden 2003). The same was 
proposed for D. frontalis (Rudinsky 1973), which is in con-
flict with the finding of another study that found that hindgut 
extracts from male beetles had 68-fold greater amounts of 
verbenone compared to females already right after emer-
gence (Grosman et al. 1997). In agreement, solvent extrac-
tion and chemical analysis of male and female D. brevicomis 
that had recently landed on a ponderosa pine showed that 
females lacked verbenone and males had a high amount of 
verbenone, which declined after joining a female in her gal-
lery (Byers and Wood 1980; Byers et al. 1984). Regard-
less of the time point, males in Dendroctonus seem to have 
greater amounts of verbenone. Interestingly, in Grosman 
et al. (1997) the females were found to accumulate trans-
verbenol, which might be further oxidised to verbenone 
later on. An accumulation of trans-verbenol in females was 
also reported for the monogynous Conophthorus coniperda, 
while males contained verbenone (Birgersson et al. 1995). 
It is not clear whether the verbenol-to-verbenone ratio also 
changes in the females of these species during colonisa-
tion or if trans-verbenol is directly released without further 
oxygenation. Also in the monogynous species T. piniperda, 
males contained more verbenone than females (Lanne et al. 
1987), while this was the opposite in Tomicus minor (Wu 
et al. 2019). In Ips spp. and other polygynous species, males 
initiate the galleries and are typically the main aggregation 
pheromone producers (Byers 1989). Accordingly, almost no 
aggregation pheromone components were found in female I. 
typographus (Birgersson et al. 1984), I. nitidus (Zhang et al. 
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Table 1  Mean or range of absolute amounts of verbenone reported for individual bark beetle species across various phases of colonisation

Species Time point/phases Origin/method Amount (♂, ♀) of ver-
benone (range or mean)

References

Dendroctonus armandi Unmated ♀ in nuptial 
chamber, 1♀ + 1♂, 
1♀ + 2♂

Hindgut extracts, beetles 
from natural windthrows

♀: 36–73 ng/beetle Xie and Lv (2012)

Dendroctonus brevicomis After 18 h exposure to 
α-pinene and right after 
emergence

Hindgut extracts, beetles 
from laboratory rearing

♂: 620–2800 ng/beetle
♀: no verbenone detected

Byers (1983a)

After 18 h exposure to 
α-pinene and right after 
emergence

Hindgut extracts, beetles 
from laboratory rearing

adult ♂: 2300–2800 ng/
beetle

♀: no verbenone detected

Byers (1983b)

Daily for 13 days Hindgut extracts, beetles 
from induced infestation 
on standing tree

♂: 0–1600 ng/beetle
♀: no verbenone detected

Byers et al. (1984)

Dendroctonus frontalis Unmated ♀,
mated beetles,
oviposition

Headspace sampling from 
individual boreholes on 
natural attack site

140—300 ng/2 h Pureswaran and Sullivan 
(2012)

After emergence Hindgut extracts, beetles 
from natural infestation 
emerged under laboratory 
conditions

♂: 3300–7900 ng/beetle
♀: 30–120 ng/beetle

Grosman et al. (1997)

Dendroctonus ponderosae 12–120 h Headspace samplings from 
individual boreholes after 
artificial inoculation

0–400 ng/mL (in 4 h) Cale et al. (2015)

12–108 h Headspace samplings from 
individual boreholes after 
artificial inoculation

0–250 ng/mL Taft et al.  (2015)

Newly emerged,
unmated,
mated

Beetle extracts, beetles 
from naturally infested 
logs emerged under labo-
ratory conditions

♂ + ♀: 0–66 ng/beetle Pureswaran and Borden 
(2003), Pureswaran et al. 
(2000)

Newly emerged,
unmated,
mated

Headspace sampling from 
grouped beetles in the 
laboratory, beetles from 
naturally infested logs 
emerged under laboratory 
conditions

♂: 3–5 ng/beetle
♀: 10–40 ng/beetle

Pureswaran et al. (2000)

Dendroctonus rhizophagus No feeding; after 24 h of 
feeding, unmated and 
mated

Hindgut extracts (passive), 
beetles from inoculation 
on logs in the laboratory

♂: 27–54 ng/beetle
♀: 17–107 ng/beetle

Cano-Ramírez et al. (2012)

Unmated, mated, oviposi-
tion, after male re-emer-
gence

Hindgut extracts (passive), 
beetles from natural 
infestation site

♂: 0–150 ng/beetle
♀: 75–300 ng/beetle

Cano-Ramírez et al. (2012)

Dendroctonus valens Newly emerged,
unmated,
mated

Hindgut extracts, beetles 
from baited traps in the 
field

♂: 5–31 ng/beetle 
♀: 1–27 ng/beetle

Shi and Sun (2010)

After 96 h of feeding Gut extracts, beetles from 
pine phloem medium

♂: 31 ng/beetle
♀: 71 ng/beetle

Xu et al. (2015)

Ips amitinus NA Hindgut extracts, beetle 
origin not clear

♂: verbenone as minor 
component

Zuber (1994)

Ips cembrae 6 phases Hindgut extracts, beetles 
from natural infestation

♂ + ♀: < 5 ng/beetle Zhang et al. (2000a, b)

Ips nitidus Unmated, mated ♂ with 1, 
2 and 3 ♀

Hindgut extracts, beetles 
from natural infestation

♂: 20–84 ng/beetle
♀: no verbenone detected

Zhang et al. (2009)
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2009), Ips duplicatus (Zhang et al. 2007b) and P. orientalis, 
including also verbenone (Zhang et al. 2011).

As described above, the biosynthesis of verbenone 
is linked to the host substrate and the detoxification of 
α-pinene. However, since both sexes usually feed on the 
same substrate, differences in the amounts of verbenone 
must be derived from differences in the downstream path-
ways. When the microbial conversion of cis-verbenol 
to verbenone was inhibited by antibiotics, the resulting 
verbenone concentration in the guts and in the frass was 
considerably more reduced in female D. valens, compared 
to males (Xu et al. 2015). This indicates that the relative 
importance of specific biosynthesis pathways may differ 
between the sexes, possibly by sex-specific microbial com-
munities (see Xu et al. 2016; Whittle et al. 2021). In the 
guts of I. typographus performing maturation feeding, high 
amounts of verbenone were initially found in both sexes 
(Ramakrishnan et al. 2022). This changed after the end 

of the maturation feeding and the emergence from brood 
trees, when verbenone was only found in males. Appar-
ently, something in the metabolism must have changed 
(but this is not discussed further in the study). Similarly, 
male D. brevicomis exposed to vapours of the precursor 
α-pinene contained verbenone in detectable amounts while 
females did not (Byers 1983b). For other pheromone com-
ponents, it has been shown that sex-specific differences 
are also due to differences in gene expression (reviewed 
in Blomquist et al. 2010). Sex-specific differences in the 
amounts of pheromone components are common in bark 
beetles (Birgersson et al. 1995; Byers 1989). It is note-
worthy that in most cases this sex bias in verbenone con-
tent is of quantitative, not qualitative nature. It remains 
unclear though, whether the male bias in the synthesis of 
verbenone in many bark beetles is due to differences in the 
microbiome, differences in the feeding behaviour, a mix-
ture of both, and/or whether active regulation is possible.

Table 1  (continued)

Species Time point/phases Origin/method Amount (♂, ♀) of ver-
benone (range or mean)

References

Ips pini Newly emerged,
unmated,
mated

Headspace sampling from 
grouped beetles in the 
laboratory, beetles from 
naturally infested logs 
emerged under laboratory 
conditions

♂ + ♀: 5–20 ng/beetle Pureswaran et al. (2000)

Ips typographus 0–7 days Headspace sampling from 
individual boreholes on 
natural attack site

0–120 ng/3 h Birgersson and Bergström 
(1989)

7 phases Hind and midgut extracts, 
beetles from natural 
infestation

♂: < 1 ng/beetle
♀: no verbenone detected

Birgersson et al. (1984)

6 phases Gut extracts, beetles culti-
vated on logs

♂ + ♀: < 5 ng/beetle Ramakrishnan et al. (2022)

Unmated, mated ♂ with 1, 
2, and 3 ♀

Hindgut extracts, beetles 
from natural infestation 
site

♀: 18–66 ng/beetle Xie and Lv (2013)

Pseudips orientalis Unmated ♂ Hindgut extracts, beetles 
from natural windthrow

♂: ~ 80 ng/beetle Zhang et al. (2011)

Tomicus brevipilosus 5 phases according to gal-
lery length

Hindgut extracts, beetles 
from natural infestation 
site

♂: 0–9 ng/beetle
♀: 0–10 ng/beetle

Liu et al. (2019)

Tomicus minor Recently mated Hindgut extracts, beetles 
from windthrown trees

♂: ~ 1 ng/beetle
♀: ~ 0.4 ng/beetle

Lanner et al. (1987)

Not clear if beetles were 
allowed to feed

Hindgut extracts, pre-
emerged beetles from 
natural infestation site

♂: 0–10 ng/beetle
♀: 0–13 ng/beetle

Wu et al. (2019)

Tomicus piniperda 1–140 h, unmated females 
or mated with males

Headspace sampling from 
inoculated windthrow

0–240 ng/h Byers et al. (1989)

Recently mated and nuptial 
chamber terminated

Hindgut extracts, beetles 
from windthrown trees

♂: 0.7–3.8 ng/beetle
♀: 0.1–2.3 ng/beetle

Lanner et al. (1987)

Tomicus yunnanensis Not clear if beetles were 
allowed to feed

Hindgut extracts, pre-
emerged beetles from 
natural infestation site

♂: < 5 ng/beetle
♀: < 5 ng/beetle

Wu et al. (2019)
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Q1.2: When and how much? In which phases of host 
colonisation is verbenone produced?

Concentrations and release rates

The composition of pheromone bouquets in bark beetles is 
typically studied from gut extracts or by headspace sam-
pling. Only few studies analysed the content in the phloem 
or frass. Relative to its precursors, the amounts of verbenone 
are typically low. The amount of verbenone was only around 
20% of the amount of verbenol in gut extracts of P. orientalis 
(Zhang et al. 2011), only 4% in Dendroctonus banksiana 
(Cale et al. 2015), but 50% in recently mated D. valens, 
whereas this was only 6% compared to the α-pinene con-
tent (Zhang and Sun 2006). These ratios from tissue extracts 
also seem to be reflected in the actual emission patterns. 
The maximum release rate of verbenone compared to the 
respective verbenol precursor was three times lower in D. 
frontalis and I. typographus (Birgersson and Bergström 
1989; Pureswaran and Sullivan 2012). Most pheromones 
would be assumed to require short half-life spans because 
the information they convey is only valid for a short period 
of time (Shiota and Sakurai 2020). This may not be the case 
for verbenone as an indicator of poor habitat quality, because 
these conditions—once attained—are unlikely to improve 
again. Instead, the low availability of verbenone may be 
explained by its high sensitivity to sunlight under which 
it is photoisomerised to (+)-chrysanthenone (Kostyk et al. 
1993), filifolone (Fettig et al. 2009a) and other transforma-
tion products (Erman 1967).

Absolute amounts of verbenone vary within a species 
depending on the host tree quality and feeding substrate 
(Byers 1983a; Raffa 2001; Taft et al. 2015), but also among 
individuals within a tree (Birgersson and Bergström 1989). 
Most individuals contain rather low levels, while only few 
individuals produce large amounts (Grosman et al. 1997; 
Zhang et al. 2000a, b). Absolute verbenone amounts com-
monly range from 0 to 100 ng per individual in a broad 
range of bark beetle species (Table 1). It is remarkable 
that in I. typographus maximum amounts of verbenone 
were less than 5 ng/beetle for both sexes across multiple 
life stages before and after mating (Birgersson et al. 1984; 
Ramakrishnan et al. 2022)—and another study even failed 
to detect verbenone at all (Birgersson et al. 1988)—even 
though verbenone is thought to be a relevant component 
in the pheromone communication of that species (Schlyter 
et al. 1989). Only low amounts of verbenone were also found 
in I. amitinus (Zuber 1994, Table 1) and I. cembrae (Zhang 
et al. 2000a, b). Contrarily, considerably larger amounts 
of verbenone (600–8,000 ng/beetle) were detected in male 
Dendroctonus brevicomis (Byers 1983a, b; Byers et al. 1984) 
and D. frontalis (Grosman et al. 1997). It is not clear why 
these two species contain up to tenfold more verbenone than 

other species, even from the same genus. Larger or heavier 
beetles may also produce larger amounts of pheromones 
(Anderbrant et al. 1985; Pureswaran and Borden 2003). 
However, body size cannot be the main factor here because 
D. frontalis is the smallest Dendroctonus species (Six and 
Bracewell 2015), and also D. brevicomis has an average 
body length of only 3.9 mm (Valerio-Mendoza et al. 2019). 
In all three studies cited above, beetles have been dissected 
right after emergence, so that the much larger amounts of 
verbenone compared to other species could be in parts due 
to an exhaustive maturation feeding and thus be a matter of 
timing. In fact, samples of callow adult males and females 
taken from under the bark, and emerged males and females 
of D. brevicomis showed that only emerged males contained 
large amounts of verbenone (Byers 1983b). At least in D. 
frontalis, also the relative amount of verbenone was high: it 
made up to 96% of the oxygenated monoterpenes (Grosman 
et al. 1997), which indicates that verbenone may be of great 
relevance for this species. The remarkably high amounts of 
verbenone may possibly be derived from differences in the 
metabolism of D. brevicomis and D. frontalis from that of 
other bark beetles and could indicate an active control of the 
synthesis, which requires further investigation.

Data on atmospheric verbenone concentrations, both 
natural background concentrations and in the proximity 
of trees colonised by bark beetles, are scarce. Verbenone 
has been identified from conifer needle litter (Isidorov 
et al. 2003), and atmospheric concentrations of around 
0.17–1.32 ng/m3 have been found in urban, agricultural 
and also coniferous forest landscapes (Shimmo et  al. 
2004). While such concentrations are presumably below 
behaviourally relevant thresholds, these results can serve 
as a baseline to understand the natural dynamics in the 
release of verbenone from bark beetle infestations. The 
only estimation of verbenone release from an infested tree 
was reported in Salom et al. (1992) as unpublished data 
assuming that 0.45 mg/h of verbenone would be released 
from a tree infested with 1,400 pairs of D. frontalis. Head-
space sampling around 50 artificial boreholes from female 
T. piniperda revealed release rates of up to 240 ng ver-
benone per hour (Byers et al. 1989). Assuming the same 
number of 1400 pairs per tree, this would correspond to 
a release of 0.01 mg/h. Further studies from other bark 
beetle species and host trees are needed to provide infor-
mation on ecologically relevant concentrations that are 
perceived by the beetles under natural conditions. In that 
regard, it is not yet clear how the concentrations meas-
ured in the gut relate to actual verbenone release rates. 
For I. typographus, it has recently been found that the 
aggregation pheromone component cis-verbenol can be 
stored as verbenyl oleate in the fat body (Ramakrishnan 
et al. 2022). This finding suggests that there might be an 
active regulation of pheromone emission by a controlled 
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release of these stored compounds. Future studies should 
link the amounts of pheromone components in the gut to 
actual release rates and extrapolate these values to the 
landscape scale. Finally, these findings should then be 
related to the bark beetles’ perception by their olfactory 
system and resulting behaviour (Q2).

Phenology of verbenone emission

If verbenone was a ‘perfect’ anti-aggregation pheromone, 
it should be expected not to occur at the early stages of an 
infestation by gregarious species (Fig. 2, solid blue line), 
because at this point mates are still needed to collectively 
overcome tree defence (Raffa and Berryman 1983). The 

Fig. 2  Schematic overview on the temporal verbenone release pat-
terns from monogamous and polygynous bark beetles, (i) trajectory as 
expected for an ideal anti-aggregation pheromone to avoid overpopu-
lation (‘active’ pathway, blue solid line), (ii) trajectory as expected if 
verbenone synthesis is a passive, unavoidable consequence of feed-
ing activity (‘passive’ pathway, green solid line) or (iii) trajectories 
reported in the literature obtained from gut extracts (thin solid lines), 
phloem extracts (short-dashed lines) and atmospheric concentrations 
(long-dashed lines). Note that the developmental stages on the x-axis 
are evenly spaced for the sake of simplicity. In reality, these rela-

tive time spans would be species-dependent and strongly vary with 
ambient temperature. Amplitudes are relative within a study and not 
standardised among studies. All species presented here are gregarious 
except D. rhizophagus6. References: 1Cale et al. (2015), 2Pureswaran 
and Sullivan (2012), 3Birgersson and Bergström (1989), 4Shi and 
Sun (2010), 5Xie and Lv (2012), 6Cano-Ramírez et  al. (2012), 7Liu 
et al. (2019), 8Zhang et al. (2009), 9Birgersson et al. (1984), 10Ram-
akrishnan et  al. (2022), 11Zhang et  al. (2000), 12Byers et  al. (1984), 
13Xie and Lv (2013), 14Leufvén and Birgersson (1987), 15Taft et  al. 
(2015)
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amount of verbenone is then expected to increase immedi-
ately upon mating and further with an ongoing infestation 
in accordance with its putative function as an indicator of 
high colonisation densities and in order to shift an attack 
to a neighbouring tree (Renwick and Vité 1969; Rudinsky 
et al. 1974; Vité and Francke 1985; Byers 2004). But even 
in solitary bark beetle species, as well as ambrosia beetles, 
an attraction inhibitor like verbenone should not be released 
before mating was successful. In accordance, verbenone 
concentrations released from unmated females of the gre-
garious species D. frontalis were low and not significantly 
different from galleries with unsuccessful attacks, while the 
amount doubled once males joined the gallery (Pureswaran 
and Sullivan 2012). Also in the guts of freshly mated D. 
valens verbenone occurred in a similar high amount as cis- 
and trans-verbenol (Zhang and Sun 2006). 

Several other studies, however, contradict this expected 
pattern by either showing that (i) verbenone amounts decline 
after construction of the nuptial chamber and/or mating, and 
that (ii) significant amounts of verbenone can already occur 
before mating (Fig. 2, thin solid lines). For instance, the 
amount of verbenone was reported to decrease after mat-
ing and during oviposition in both sexes of D. rhizophagus 
(Cano-Ramírez et al. 2012), I. nitidus (Zhang et al. 2009), I. 
typographus (Birgersson et al. 1984) and female D. armandi 
(Xie and Lv 2012).

Furthermore, verbenone has often been found at the 
early stages of the life cycle. For example, after maturation 
feeding but before emergence as in I. typographus (Ram-
akrishnan et al. 2022) or right after emergence as in D. fron-
talis (Grosman et al. 1997), D. brevicomis (Byers 1983a; 
Byers et al. 1984), D. ponderosae, and I. pini (Pureswaran 
et al. 2000). Some studies show that verbenone is also pre-
sent some time after feeding has occurred, e.g. when land-
ing on a tree (Byers et al. 1984) and during construction of 
the nuptial chamber (Zhang et al. 2007b, 2009; Xie and Lv 
2013; Taft et al. 2015), which might be explained by feeding 
residues in the guts. However, callow beetles (during matu-
ration feeding) of D. brevicomis of either sex did not contain 
verbenone in detectable amounts at this stage (Byers 1983b), 
but after dispersal when landing on a host pine tree (Byers 
et al. 1984) so that maturation feeding must have occurred in 
between or the production of verbenone from ingested host 
precursors occurred with some delay.

Instead of a steady increase in verbenone concentration 
over time, as observed in D. ponderosae during the first five 
days of colonisation (Cale et al. 2015), T. piniperda (Byers 
et al. 1989), T. yunnanensis, and T. minor (Wu et al. 2019), 
several studies suggest an early initial increase in verbenone, 
followed by a decline and then a steady increase in at least 
one sex (Birgersson and Bergström 1989; Taft et al. 2015; 
Liu et al. 2019; Ramakrishnan et al. 2022). These two result-
ing peaks might correlate with the production of ‘primary’ 

and ‘secondary resin’ as tree defence (Leufvén and Birgers-
son 1987). Moreover, the later increase may correspond to 
what would be expected in decaying host tissue even without 
bark beetles and/or their associated microorganisms in the 
form of autoxidation (Flechtmann et al. 1999; Dvořáková 
et al. 2007).

The fact that verbenone can often be found in bark beetles 
before mating challenges its role as a ‘perfect’ anti-aggre-
gation pheromone. Instead, the occurrence of verbenone 
rather seems to be a passive consequence during phases of 
intense feeding activity instead of a controlled release of an 
ideal anti-aggregation pheromone (Fig. 2, solid green line; 
Pureswaran and Borden 2003; Shi and Sun 2010; Cano-
Ramírez et al. 2012). This is in line with the strong linkage 
of verbenone to the host tissue quality and availability of 
the precursor compounds α-pinene and verbenol (Shi and 
Sun 2010; Cano-Ramírez et al. 2012; Cale et al. 2015). Also 
from an energetic perspective, it might be favourable for the 
beetles to rely on host compounds as cues instead of de novo 
synthesis (Byers 1983a, 1989). According to the ‘sender-
precursor hypothesis’, what we observe could be the transi-
tion phase of a semiochemical—with an original ecologi-
cal meaning (‘elevated bark beetle activity’)—to an actual 
pheromone. This hypothesis postulates that the presence 
of a compound associated with a specific state (here: the 
intense feeding of conspecifics) causes the evolution of the 
receiver’s sensory capacities necessary to detect that cue and 
the employment as a pheromone (Stökl and Steiger 2017). 
Assuming an ongoing evolution regarding the employment 
of verbenone, it is therefore possible that some beetle species 
can actively regulate biosynthesis (i.e. produce a signal), 
while others cannot (i.e. rely on a cue).

The finding that verbenone is synthesised to a large extent 
by associated microorganisms might further explain why 
verbenone is a semiochemical used by many scolytine spe-
cies. At least some of the verbenone-synthesising yeasts, 
including Candida nitratophila, Hansenula capsulate and 
Pichia pinus were detected in the two geographically sepa-
rated species D. ponderosae and I. typographus (Hunt and 
Borden 1990). In case microbial species are commonly 
shared among phylogenetically distant scolytine species, the 
ability of verbenone biosynthesis could be gained relatively 
quickly by incorporating the respective microbial species 
by means of horizontal transfer. The detection capability 
and response to verbenone could then be interpreted as an 
adaptation allowing to detect and respond to a ‘universal’ 
bark beetle microbiome.

Studies on the temporal occurrence of verbenone based 
only on extracts from adult beetles also may thus under-
estimate the amounts that occur in proximity to an infes-
tation, particularly during advanced stages of an infesta-
tion, because they ignore verbenone originating from other 
sources outside the beetles, e.g. the gallery walls (Leufvén 
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and Birgersson 1987). This issue should not arise from head-
space samplings that inherently include volatiles emitted 
from any source. It must therefore be assumed that vola-
tile samplings, contrary to extracts, more accurately reflect 
the verbenone concentrations that are relevant for newly 
arriving mates. Verbenone amounts in headspace samples 
indeed increased for D. ponderosae from host acceptance 
to oviposition (Cale et al. 2015) and in I. typographus after 
mating (Birgersson and Bergström 1989), but not in D. fron-
talis where the concentration increased before mating and 
declined again afterwards (Pureswaran and Sullivan 2012). 
In I. typographus, also the verbenone concentration inside 
the phloem showed a strong increase with the onset of ovi-
position (Leufvén and Birgersson 1987). Byers et al. (1989) 
observed a continuous increase in verbenone released from 
artificially inoculated windthrown pines with T. piniperda 
during the first five days and commented that this does not 
match with observations from gut extracts. It therefore seems 
that the expected increase in verbenone with later stages of 
bark beetle colonisation to indicate unsuitable habitat rather 
originates from sources outside the beetles, suggesting once 
more the importance of associated microorganisms.

So far, only one study investigated verbenone concentra-
tions associated with larval frass. In the laboratory, phloem 
extracts had significantly higher proportions of verbenone 
when D. valens larvae were also present and larval frass 
extracts from Dendroctonus micans and D. valens collected 
in the field both contained verbenone (Grégoire et al. 1991). 
Thus, also larval activity may contribute to the release of 
verbenone and is another potential source not captured by 
gut analysis of adult beetles, possibly leading to an under-
estimation of relevant verbenone amounts. However, most 
studies ended before substantial larval activity could occur 
(i.e. they did not observe later than early oviposition) so 
that this bias is of low relevance for the literature compari-
son that is presented here. If the release of verbenone from 
larval frass occurs in the host tree, this may serve to prevent 
colonisation of the same tree by newly arriving beetles and 
also trigger the dispersal of the emerging beetles away from 
the maternal tree to prevent inbreeding.

According to the strict definition, pheromones are chemi-
cal signals that act within a species (Wyatt 2010). The find-
ings here suggest the importance of associated microorgan-
isms in the verbenone synthesis and sources outside the 
beetles. This obviously contradicts the concept of a phero-
mone sensu stricto requiring the sender and receiver to be 
from the same species. According to the classification of 
semiochemicals, verbenone must therefore rather be clas-
sified as an allelochemical if produced by microorganisms 
and perceived by bark beetles (Nordlund and Lewis 1976). 
Six (2013) advocates the concept of bark beetles as a ‘hol-
obiont’, i.e. the entity of a bark beetle and its associated 
microorganisms, which may be more useful in this context 

than the taxonomic unit ‘species’ in case a more accurate 
functional understanding of the ecology of bark beetles is 
needed. This concept also seems useful to be applied in 
regard to verbenone, because even if the origin of this com-
pound lies outside the beetles’ bodies, the relevant biological 
agents are clearly associated with bark beetle colonisation.

Interestingly, verbenone is not the only example for com-
pound pairs of which the terpene alcohol is an attractant and 
the corresponding ketone a repellent. For example, seude-
nol (3-methyl-2-cyclohexen-1-ol) is part of the aggregation 
pheromone of D. pseudotsugae and seudenone (3-methyl-
2-cyclohexen-1-one) is inhibitory (Brand et al. 1976; Foote 
et al. 2020). Quercivorol ((1S,4R)-4-isopropyl-1-methyl-
2-cyclohexen-1-ol) is an attractant for the species complex 
Euwallacea fornicatus and piperitone (6-isopropyl-3-me-
thyl-1-cyclohex-2-enone), the ketone of a constitutional iso-
mer of quercivorol, and significantly lowered the attractive-
ness in a baited trap experiment (Dodge et al. 2017; Byers 
et al. 2018, 2020). This phenomenon might be explained by 
a parsimonious use of chemical compounds on one hand, 
and a well-preserved chain of behaviours within the sco-
lytine beetles that includes attraction at the early stages of 
colonisation and anti-aggregation at later stages.

Verbenone reception and behavioural 
response

Q2.1: Olfaction and neurophysiology—How 
is verbenone detected?

Antennal and neuronal response

The antennal response to verbenone, as measured via elec-
troantennograms (EAG) or gas chromatographic–electroan-
tennographic detection (GC-EAD), is well established across 
several genera (Whitehead 1986; Pureswaran et al. 2000; 
Schlyter et al. 2000; Zhang et al. 2006; Shepherd et al. 2007; 
Zhang et al. 2007a, b; Andersson 2012; López et al. 2013; 
Ranger et al. 2014; Kandasamy et al. 2023). On the neuro-
logical level, both sexes tend to respond in a similar way 
(Ascoli-Christensen et al. 1993; Zhang et al. 2006; Cano-
Ramírez et al. 2012; Shepherd and Sullivan 2013; Zhao 
et al. 2017), even though D. armandi showed a sex-specific 
response to different verbenone amounts (Zhao et al. 2017).

Unfortunately, the comparison of actual response thresh-
old concentrations among species is nearly impossible 
for several reasons. Enantiomers, if not differentiated in 
a study—as is often the case—can function as different 
compounds and may possess completely different antennal 
detection thresholds (Dickens 1979). Comparison is further 
impeded since studies differ in test concentrations, the time 
span in between two stimuli, and the order in which different 
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dosages are presented. Different solvents are used, which can 
affect the electrophysiological responses that are presented 
as absolute or often as normalised output relative to con-
trols of different quality. Thus, it is unclear what the actual 
concentration of a compound is that reaches the antenna in a 
given study, and how this concentration compares to relevant 
concentrations in nature, making comparisons among stud-
ies difficult (Andersson et al. 2012).

Signal processing and interaction with other stimuli

Even though it is well established that verbenone elicits 
a neuronal response in bark beetle antenna, it is not fully 

clear how the signal is further processed and how it inter-
acts with other incoming stimuli, e.g. attractive host cues 
or aggregation pheromones. Odour detection by olfactory 
receptor neurons (ORNs) in bark beetles is summarised 
in Andersson (2012). In brief, the responsible organs are 
the antennae (Fig. 3) and, to a lesser extent, the maxillary 
palps. They contain olfactory sensilla, which are hair-like 
structures housing the ORNs. These neurons express the 
odorant receptors (ORs) that bind the odour molecules 
to trigger neuronal responses. It is further thought that 
odorant-binding proteins (OBP) (Dickens 1997), also 
called pheromone binding proteins when a pheromone is 
the target compound (Breer 1997), may play an important 

Fig. 3  Odour detection at the example of Ips typographus. The bark 
beetle antenna a, b contains olfactory sensilla which are organised c 
in two distinct undulating bands A, B and one distal area C. The sen-
silla containing the olfactory receptor neurons (ORN) that respond to 
verbenone have been found primarily in B, to a lower extent in A and 
they appear to be completely missing in C. One sensillum generally 
contains two ORNs which house the odorant receptor (OR) mem-
brane proteins in the dendrites of these neurons d. An OR that pri-

marily responds to verbenone has so far not been identified and it is 
not yet clear whether odorant binding proteins (OBPs) play a role in 
the detection of verbenone. The inhibitory effect of verbenone on the 
attraction to the aggregation pheromone is most likely caused by inte-
gration of the incoming stimuli in the central nervous system. (Fig-
ure modified from Jacquin-Joly and Merlin (2004), Andersson et al. 
(2009) and Kandasamy et al. (2023), figure credit to Fenris Mäling)
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role for a compound to solubilise and get access to the 
OR. Recently, MaltOBP1 has been identified in the long-
horn beetle Monochamus alternatus with a high binding 
affinity to ( +)-α-pinene and (–)-verbenone (Zhang et al. 
2020). Interestingly, its expression was not limited to the 
antennae, but also occurred in the legs, wings and to some 
degree also in other parts of the body. To our knowledge, it 
is still an open question whether OBPs that bind verbenone 
exist also in bark beetles and whether the detection of ver-
benone is limited to the antenna.

To act as an inhibitor (see Q2.2), verbenone must some-
how interfere with an attracting stimulus. This can either 
occur inside the olfactory organs i) as ‘peripheral inhibition’, 
e.g. by direct interference with ORs for attractive stimuli or 
by the interactions between ORNs housed inside the same 
sensilla (Andersson et al. 2010; Su et al. 2012), or ii) in 
the central nervous system by central integration of attrac-
tive and aversive signals (Visser and de Jong 1988; Byers 
1989). In I. typographus, an ORN class responding specifi-
cally to verbenone was originally reported by Tømmerås 
(1985) and later by Andersson et al. (2009). However, in 
more recent single sensillum recordings by Kandasamy 
et al. (2023) including additional monoterpene ketones, the 
same ORN class also showed similar responses to α-and 
β-isophorone (the latter reported in low amounts in the gut 
of mated females; Birgersson et al. 1984), suggesting that 
verbenone detection is less specific than previously thought. 
The verbenone-responsive neurons are not co-localised in 
the same sensilla as neurons detecting the aggregation pher-
omone components cis-verbenol or 2-methyl-3-methyl-2-ol, 
respectively; several of the cis-verbenol neurons are instead 
co-localised with ORNs detecting the inhibitory spruce 
defence compound 1,8-cineole (Andersson et al. 2010). This 
in combination with the fact that verbenone does not inhibit 
the ORN classes that detect aggregation pheromone com-
ponents suggests that the verbenone stimulus is most likely 
integrated centrally in the nervous system and thus activates 
neuronal circuits responsible for an aversive behavioural 
response. In addition to the verbenone-responsive ORN class 
thoroughly characterised in I. typographus, neurons primar-
ily responding to this compound have been reported also in 
other species such as I. pini, D. pseudotsugae, and D. fron-
talis (summarised in Andersson 2012). Thus far, an OR that 
is responsible for the recorded ORN responses to verbenone 
remains to be identified. Certain compounds (i.e.  C6 green 
leaf volatiles and 2-phenylethanol) that are ecologically 
relevant for several species within the Curculionidae were 
recently shown to activate evolutionarily conserved ORs 
with highly similar response specificities in different spe-
cies (Roberts et al. 2022). The widespread use of verbenone 
among scolytine beetles begs the question of whether this 
compound also is detected by an OR that has been conserved 
across this beetle subfamily.

Understanding the neurological signal transduction in 
response to an olfactory stimulus is only the first step. But 
how does the change in neuro-activity affect the beetle’s 
physiology? This question has been even less addressed 
so far and remains speculative. Dickens and Payne (1978) 
found a reduced muscle potential in the antenna of freshly 
emerged D. frontalis as an immediate response to trans-
verbenol and verbenone. However, it is unlikely that a 
single change in muscle potential will affect the complex 
host search behaviour. Byers et al. (2004) observed flying 
P. bidentatus actively avoiding baited traps with additional 
non-host tissue by changing the direction of flight when 
approaching the traps by 0.5–1 m. An active flight response 
away from a non-attractive cue also seems more logical than 
an inhibition of the flight muscles, which would not allow 
the beetles to actually avoid non-suitable hosts. It therefore 
seems that the behavioural response to verbenone involves 
a complex—and largely unknown—interplay of a multitude 
of distinct factors, probably also including the physiological 
and nutritional state of an individual.

Q2.2: What is the behavioural response of bark 
beetles to verbenone and which factors influence 
this response?

Behavioural response to verbenone

For at least 45 scolytine species (45/53 species that were 
studied) from 18 different genera, a behavioural response 
to verbenone was described (Table 2). Most reports refer to 
coniferophagous bark beetles, but also some angiosperm-
feeding species (e.g. Kohnle et al. 1992; Audley et al. 2020) 
and ambrosia beetles (e.g. Ranger et al. 2014; Byers et al. 
2020, 2021; Martini et al. 2020) respond to verbenone.

Most studies tested for, and also proved, ‘inhibition’ by 
verbenone (Table 2, Fig. 4), which is defined here as the 
reduced or completely suppressed attraction response to an 
otherwise attractive source (Table 3). Experimental release 
rates of verbenone point sources range from only ~ 1 mg/d 
(e.g. Erbilgin et al. 2008; Burbano et al. 2012; Byers et al. 
2018, 2020) up to ~ 100 mg/d (Bertram and Paine 1994a; 
Hayes et al. 1994; Gillette et al. 2014), but most of the 
times intermediate release rates around 20–50 mg/d were 
used (e.g. Borden et al. 1992; Fettig et al. 2013; Strom et al. 
2013; Agnello et al. 2017; Audley et al. 2020). Inhibition 
was most prominently studied in the economically impor-
tant species D. ponderosae, D. frontalis, D. brevicomis and 
I. typographus (Table 2). While most work confirms the 
inhibitory effect of verbenone, some studies did not find 
an inhibitory effect (e.g. Niemeyer et al. 1995; Jakuš et al. 
2003; Shepherd and Sullivan 2013). From 53 species for 
which we found relevant studies, 38 (≈ 72%) were inhibited 
by verbenone (Table 2). The proportion was slightly larger 
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in primary (20/24 ≈ 83%) compared to secondary species 
(16/23 ≈ 70%). Verbenone never completely inhibits the 
response to attractants, and only in some studies the attrac-
tion of baited traps was reduced to a level similar to that of 
blank controls (e.g. Ranger et al. 2013; Audley et al. 2020) 
or more than 90% (e.g. Tilden and Bedard 1988; Hayes 
and Strom 1994). In other cases, the reduction was around 
or below 50% (e.g. Strom et al. 1999; Zhang et al. 1999, 
2006; Fettig et al. 2009b; Zhao et al. 2017). Accordingly, 
also attacks on host trees treated with verbenone are typi-
cally not completely suppressed (e.g. Lindgren et al. 1989; 
Bertram and Paine 1994a; Gillette et al. 2012a). The fact 
that some beetle individuals ‘ignore’ the verbenone signal 
(Fig. 5) is also supported by the finding from several Den-
droctonus species that trees protected with pure verbenone 
or verbenone-containing blends often show a greater number 
of unsuccessful attacks: the number of attacking beetles is 

reduced to a level so that tree defence cannot be overcome 
and comparatively more beetles—namely those ignoring 
verbenone–die in the resin (Shea et al. 1992; Lindgren and 
Borden 1993; Fettig et al. 2009a).  

‘Attraction’ to pure verbenone or ‘repellence’ (see 
Table 3 for definitions) have been studied considerably 
less, requiring an approach that includes non-baited (pas-
sive) traps with verbenone as the only compound tested. 
Pure verbenone was neither attractive to several Conoph-
thorus species in the field (de Groot and DeBarr 2000; 
Rappaport et al. 2000), nor to I. paraconfusus in a walking 
assay (McPheron et al. 1997). However, verbenone was 
shown to synergise attraction in two scenarios, i) for some 
secondary species and ii) for gregarious species at spe-
cific release rates or specific phases within the population 
dynamics. For example, verbenone only showed a weak 
effect in preventing infestation and brood development 

Table 3  Definition of possible effects of semiochemicals considered for this review. Modified according to Dethier et al. (1960)

Effect Compound Description of resulting beetle behaviour

Attraction Attractant Active movement to the odour source (Dethier et al. 1960)
Repellence Repellent Active movement away from the odour source (i.e. no attraction involved) (Dethier et al. 1960)
Inhibition Inhibitor Attraction inhibition, i.e. the active movement to an attractive source is hampered in the pres-

ence of the inhibitor (modified according to, e.g. Byers et al. 1984; Renwick and Vité 1969; 
Vité and Baader 1990), ‘disruptant’ (e.g. Strom et al. 2013) or ‘anti-attractant’ may be used 
synonymously, while ‘antiaggregant’ (e.g. Strom et al. 2001) would only refer to gregarious 
species and should therefore be avoided in a more general context

Fig. 4  Interaction of the mating system (left) and host use strategy 
(right) of selected scolytine beetles (53 species for which relevant 
studies were available) with their behavioural response to verbenone 
as summarised from the literature (see Table  2). Qualitative clas-
sification of bark beetle species for all three parameters (response to 
verbenone, mating system, and host use strategy) was made accord-

ing to the information presented in Table 2; if multiple response types 
were reported for a species, the most common one was considered. 
Chi-square test was used for testing statistical significance among 
and within groups and Cramér’s V for estimation of the effect size (R 
package: ggstatsplot, Patil (2021)) 
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on pine stumps of the mostly secondary T. piniperda 
(McCullough et al. 1998, but see Schlyter et al. 1988), 
and Hylurgops palliatus (Byers 1992a). Livingston et al. 
(1983) found more Hylurgops planirostris in traps around 
pine bolts naturally infested with D. adjunctus when 
treated with verbenone, but only 19 beetles were caught 
altogether. Attraction of H. palliatus to synthetic pine kai-
romones was increased in one of four similar experiments 
when also verbenone was present and significantly differ-
ent from non-baited control traps (Schlyter et al. 2000). 
Similarly, verbenone also increased the attractiveness 
of baited traps to Trypodendron lineatum (Lindgren and 
Miller 2002a). Lindgren and Miller (2002b) studied the 
response to verbenone of five bark beetle species with dif-
ferent levels of aggressiveness and found that aggressive 
species were inhibited, while trap catches of secondary 
species were not affected by verbenone. They concluded 
that verbenone acts as a signal for decaying wood for pri-
mary species that depend on fresh host material, while sec-
ondary species are indifferent to verbenone. A quantitative 
analysis of the collected literature supports this hypothesis 
by showing a slightly greater proportion of non-respond-
ing species and species attracted to verbenone among sec-
ondary species (6/23 ≈ 26% of species tested) compared to 
primary species (4/24 ≈ 17%, Fig. 4). A high proportion 
of species that are indifferent to verbenone was also found 
among six cone and seed feeding species (Fig. 4, but only 
for six species the response has been tested), suggesting 
that the host use behaviour (i.e. primary, secondary, cone/
seed feeding) is to some extent related to the behavioural 
response to verbenone.

Furthermore, verbenone synergizes attraction to aggre-
gation pheromones for primary species at specific release 
rates or specific phases within the population dynamics. The 
synergistic attraction was observed for C. ponderosae (Rap-
paport et al. 2000), but was not consistent across various 
years. The authors hypothesised that the attractive effect of 
verbenone only occurs at low population densities and disap-
pears at higher population densities (Rappaport et al. 2000). 
Orthotomicus erosus was attracted by high amounts of ver-
benone (40 mg/d), and I. sexdentatus might be attracted to 
moderate amounts of verbenone (release rate of 2 mg/d) 
(Etxebeste et al. 2013), similar to what has been proposed 
for D. frontalis (Rudinsky 1973). The attraction of Ips gran-
dicollis to baited traps was more than doubled by verbenone 
with a release rate of 40 mg/d, but not to verbenone-contain-
ing traps stapled to host trees without bait (Dodds and Miller 
2010). Also, I. typographus was attracted to high release 
rates of verbenone (93 mg/d) in the presence of host kair-
omones, even though the overall number of attacks per tree 
was low (Niemeyer et al. 1995).

Actual ‘repellence’ has been reported even less, but this 
is presumably also because beetle catch numbers are typi-
cally extremely low when passive traps are used without 
any bait (Reeve and Strom 2004): the addition of a repel-
lent cannot decrease the trap catches any further, unless an 
extremely large sample size is used that allows to statis-
tically differentiate the low trap catches of blank traps to 
even lower catches in traps with repellents. For example, 
no repellent effect was observed in T. yunnanensis and T. 
minor using an olfactory walking assay in the laboratory 
(Wu et al. 2019) and in D. brevicomis and I. sexdentatus in 

Fig. 5  Simplified host finding process at the example of the Eurasian 
spruce bark beetle (Ips typographus). 1. In a first step, male pioneer 
beetles find suitable hosts by chance or guided by primary attrac-
tion. 2. Once they establish, they produce aggregation pheromones 
to attract conspecifics of both sexes. 3. Under the presence of ver-
benone (at later stages of the colonisation) further individuals are 

either repelled a or their response to the aggregation pheromone  is 
inhibited b, both resulting in a decrease in landing and attacks on the 
tree. Some individuals, however, ignore or do not manage to avoid the 
verbenone and continue landing on the tree c. (Modified according to 
Vité and Francke (1985), figure credits to Fenris Mäling)
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the field (Etxebeste and Pajares 2011; Fettig et al. 2012a). 
VanDerLaan and Ginzel (2013) tested verbenone without 
additional compounds and thus caught fewer individuals of 
the target species X. germanus and X. crassiusculus than 
in non-baited control traps. This is so far the only study 
providing evidence for a repellent effect of verbenone that 
is not attraction inhibition in the field. Similarly, in walking 
assays, the coffee berry borer Hypothenemus hampei had a 
significant preference for the solvent-only treatment when 
exposed to verbenone (Jaramillo et al. 2013). Technically, in 
studies where only inhibition is tested (i.e. verbenone tested 
against an attractive blend), repellence—if present—can-
not be detected since it would be covered by the inhibitory 
effect. Therefore, for many species it is not known whether 
verbenone may also be a repellent that acts as an inhibi-
tor when presented together with attractants (see Fig. 5-3 
options a, b). This difference, however, is important if we 
want to understand whether verbenone also has an effect in 
the absence of attractive compounds as assumed to be the 
case at later stages of an attack, when the release of aggrega-
tion pheromones expires (Bakke 1981; Zhang et al. 2000a, 
b; Pureswaran and Sullivan 2012). It has also direct impli-
cations for semiochemical-based management approaches 
because this knowledge helps to identify scenarios during 
which the application of the inhibitory verbenone is effica-
cious and when not.

The majority of behavioural studies addressed flight 
response (conducted with baited traps), and comparatively 
few investigated walking behaviour or host colonisation 
(including host finding, host acceptance, oviposition and 
feeding; Table 2) under the influence of verbenone. In case 
more than one behaviour was studied for a species, the 
response is typically coherent in the sense that the inhibi-
tory effect of verbenone affects the behaviour at different 
levels (e.g. Byers and Wood 1980, 1981; Ryker and Yandell 
1983; Byers et al. 1989; Hayes et al. 1994; Zhang et al. 1999; 
Zhang et al. 2006; López et al. 2013; Zhao et al. 2017; Wu 
et al. 2019; and also see Table 2). Concordantly, verbenone 
did not affect the ratio of landing vs. attacking D. brevicomis 
(Bertram and Paine 1994a). Other effects of verbenone have 
rarely been tested, but point in a similar direction. Walking 
D. ponderosae showed arresting behaviour in proximity to 
their aggregation pheromones less frequently in the pres-
ence of verbenone (Ryker and Yandell 1983). In laboratory 
assays with walking I. paraconfusus, increasing release 
rates of (+)-verbenone over four orders of magnitude caused 
declining proportions of both sexes to reach the source of 
their aggregation pheromone components (Byers and Wood 
1981). Inhibition of colonisation might also be due to a 
feeding deterrence by verbenone in at least some species: 
verbenone had no effect on the frequency of incomplete gal-
leries of I. sexdentatus and O. erosus (Etxebeste et al. 2013), 
but it seemed to slow down the boring activity of male I. pini 

(Sallé and Raffa 2007). Feeding performance and acceptance 
of artificial diet were also reduced in I. typographus even 
to a higher degree than was observed for α-pinene (Faccoli 
et al. 2005), a major compound of tree defence in conifers. 
In fact, also the toxicity of verbenone to bark beetles was 
higher than that of α-pinene (Sallé and Raffa 2007). This is 
surprising given the fact that the conversion of α-pinene is 
commonly regarded as detoxification to improve the quality 
of the brood habitat (Hunt and Borden 1989; Lieutier 2004). 
Nevertheless, the toxicity of verbenone is still considerably 
lower compared to neurotoxins used as conventional insec-
ticides (Rivera-Davila et al. 2021).

The beetle response to their pheromones depends on the 
context, e.g. it can vary between generations and through-
out the season (Heber et al. 2021) and also depends on the 
nutritional status of an individual (Bennett and Borden 
1971; Němec et al. 1993). While it is obvious that ver-
benone conveys relevant information to dispersing beetles, 
it is, however, easy to imagine that fatigued individuals may 
be obliged to land on a tree that is rather unattractive due 
to high verbenone emissions and accept a low chance of 
reproduction if the only alternative is incipient exhaustion 
and death. Analysis of the nutritional state of this propor-
tion of individuals that land in verbenone-baited traps could 
shed some light on the importance of bark beetle physiol-
ogy. Altogether, we still know very little about why some 
individuals within a population are indifferent to verbenone 
(Fig. 5-3c) and why these proportions vary strongly among 
different studies, years, and sites. Identification of these 
drivers will enhance our understanding of the fascinating 
ecology of scolytine beetles, but will also help to make the 
practical application of verbenone as a semiochemical for 
pest management more effective.

Dose dependency and synergistic inhibition

Many of the behavioural studies on the response of bark 
beetles to verbenone are driven by a strongly applied back-
ground. Therefore, they often address the questions on effec-
tive doses or relevant concentrations needed to affect beetle 
behaviour. The inhibitory effect of verbenone on baited traps 
in the field seems to be positively correlated with the ver-
benone dosage in general (but see Paine and Hanlon 1991; 
Erbilgin et al. 2008; López et al. 2013; Byers et al. 2018, 
2020). This relation can be linear (Schlyter et al. 1989) but 
also log-linear (Lindgren and Miller 2002b), log–log like 
(Tilden and Bedard 1988; Miller et al. 1995; Lindgren and 
Miller 2002b) or a kinetic decay function of second order 
(Byers et al. 2020). Most frequently, response thresholds 
were described (Ryker and Yandell 1983; Schlyter et al. 
1989; Bertram and Paine 1994b; Devlin and Borden 1994; 
Rappaport et al. 2000; Lindgren and Miller 2002a; Fettig 
et al. 2007; López et al. 2013; Audley et al. 2020), even 
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though this could in some cases be an artefact of sample size 
and/or unlucky choice of verbenone release rates that lead to 
the observation of an ‘all-or-northing’ response threshold. 
The results from field trapping experiments agree with what 
was found on the colonisation behaviour, i.e. stronger inhibi-
tion with higher amounts of verbenone (Salom et al. 1997; 
Borden et al. 2003; Bentz et al. 2005; Schiebe et al. 2011; 
Etxebeste et al. 2013; Byers et al. 2020; Fettig and Mun-
son 2020), but with some exceptions that show a consistent 
inhibitory effect for various dosages that were tested (Bakke 
1987; Safranyik et al. 1992; Devlin and Borden 1994; Fettig 
et al. 2020).

Some volatiles from other sources including non-host 
species (and therefore generally referred to as ‘non-host 
volatiles’, NHV) can also inhibit bark beetle aggregation 
(Byers et al. 1998, 2004; Zhang and Schlyter 2004; Huber 
et al. 2020). There is ample evidence across many bark bee-
tle genera, that blends containing various NHVs and ver-
benone elicit stronger inhibition than each compound alone 
(e.g. Zhang et al. 2001; Fettig et al. 2005, 2009b; Shep-
herd et al. 2007; Shepherd and Sullivan 2013; Unelius et al. 
2014), suggesting that there is some kind of synergism in 
attraction inhibition. Even if verbenone and volatiles emit-
ted from plants have different origins and thus ecological 
meanings, the integration of different stimuli can sometimes 
lead to a modified behavioural response compared to the 
stimulus of a single compound (Andersson et al. 2010). For 
this literature analysis, verbenone was considered a synergis-
tic inhibitor (Table 2), if a blend containing verbenone was 
inhibitory compared to bait-only controls, regardless of the 
effect of each individual blend component. From a practical 
point of view, verbenone and other volatile compounds are 
often used together in blends to optimise attraction inhibi-
tion for tree protection (e.g. Zhang et al. 2000a, b; Zhang 
and Schlyter 2004; Unelius et al. 2014; Huber et al. 2020).

Ratios of inhibitors vs. attractants might be more rele-
vant than absolute amounts (Bentz et al. 2005). Byers et al. 
(2020) investigated the effect of relative verbenone concen-
tration compared to the attractant quercivorol in E. forni-
catus and found a sigmoidal positive relationship between 
verbenone release rate and reduction in attraction. This 
might explain why verbenone occurs at the early stages of 
colonisation (see Q. 1.2), but without inhibiting attraction at 
this stage. However, also in studies in which variable abso-
lute amounts of verbenone were tested, the concentrations 
of the attractants were typically not adapted to the varying 
verbenone concentrations. Thus, verbenone-to-attractant 
ratios are not stable, and in fact relative amounts are tested. 
Bertram and Paine (1994b) conducted the only study to dis-
entangle absolute and relative release rates and found that for 
D. brevicomis, absolute release rates were more important 
than ratios. They hypothesised that this could be due to dif-
ferent compound-specific detection thresholds and supports 

their independent perception and additive effects. Finally, 
since natural variation in levels of attractive compounds may 
underlie lower variation compared to inhibitory signals (J.A. 
Byers, pers. comm.), ratios of attractant-to-inhibitor may 
matter for some lower concentrations, while extremely high 
amounts of an inhibitor may be effective regardless of the 
level of attraction.

Ecological implications

Intraspecific signalling and sex‑specific differences

Like most of the aggregation pheromone components that 
attract both sexes of gregarious bark beetle species to medi-
ate the attack on hosts, there is ample evidence that also 
the inhibitory effect of verbenone affects both sexes, for 
example in D. brevicomis (Bedard et al. 1980; Hayes and 
Strom 1994; Strom et al. 2001; Fettig et al. 2005, 2009a; 
Erbilgin et al. 2007, 2008), D. ponderosae (Miller et al. 
1995; Borden et al. 1998; Fettig et al. 2012b) and D. valens 
(Zhang et al. 2006; Fettig et al. 2007), but possibly not in 
D. frontalis (Salom et al. 1992; Hayes et al. 1994) and D. 
rhizophagous (Cano-Ramírez et al. 2012) in which males 
showed a greater response. The latter case also seems to be 
typical for some Ips species. Male I. typographus gener-
ally seem to react more strongly to inhibitory compounds 
(Byers 1993), including verbenone in the context of baited 
traps (Schlyter et al. 1989; Zhang and Schlyter 2003; Unelius 
et al. 2014; but contrary to our pers. obs. in the field). Male 
response to verbenone-baited traps was also more strongly 
inhibited in I. duplicatus (Zhang et al. 2001). The oppo-
site was the case in a multi-year field study on trap logs 
(Bakke 1981). Also in I. paraconfusus, I. latidens and I. 
pini females reacted somewhat more strongly to verbenone 
or no difference between the sexes was observed (Byers and 
Wood 1980, 1981; Miller et al. 1995). Furthermore, the fre-
quencies of ORN classes in I. typographus do not appear 
to differ between sexes (Andersson et al. 2009) and this is 
also valid for the ORN class that detects verbenone (M.N. 
Andersson, pers. obs.). Furthermore, no sex difference was 
found in response to the spatial separation of the aggregation 
pheromone and verbenone (Binyameen et al. 2014). These 
findings suggest that a stronger inhibition of males in some 
Ips species in response to verbenone is likely not due to a 
higher olfactory sensitivity to the compound.

Altogether, one of the differences between the monoga-
mous genus Dendroctonus and the polygynous genus Ips 
may be, that in the latter males react somewhat stronger 
to inhibitory compounds. One might expect that it is more 
crucial for the colonising sex to discern suitable breed-
ing sites. In many other insects where females choose 
the oviposition site, they generally show a stronger 
response than males to host plant volatiles (Szendrei and 
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Rodriguez-Saona 2010). On the other hand, as verbenone 
biosynthesis is rather associated with male bark beetles 
(Q1.1) verbenone could represent a general signal for 
male rivalry (Rudinsky et al. 1974) to avoid competition 
among male conspecifics. According to Kirkendall (1983), 
female-initiated monogyny is the ancient mating system 
of bark and ambrosia beetles. The later joining male has 
an evolutionary benefit by preventing the mating of the 
female with a second male (‘guarding’, Kirkendall 1983) 
and habitat competition by further colonising females. 
Nevertheless, also females should avoid competition from 
other egg-laying individuals, as their offspring compete for 
space and food (Byers and Wood 1980; Byers et al. 1984; 
Anderbrant et al. 1985). The quantitative analysis of life 
history traits likewise suggests that the mating system of a 
species is not strongly associated with its response to ver-
benone (Fig. 4, e.g. inhibition occurred in 17/26 ≈ 65% of 
monogamous, 9/12 ≈ 75% of polygamous and 12/15 ≈ 80% 
of inbreeding species; p = 0.14). In fact, the mating sys-
tem seems to be of low relevance to predict a species’ 
response to verbenone compared to its host use strategy 
(Cramér’s V: 0.19 vs. 0.24, Fig. 4; but, for example, only 
for six cone/seed feeding species a response to verbenone 
was described), at least for the pool of species for which 
a behavioural response to verbenone has been described 
so far (N = 53). The common response to verbenone may 
also be conserved even in genera like Ips that has evolved 
polygynous mating systems. To test this hypothesis, the 
evolutionary origins of verbenone receptors in various spe-
cies of bark and ambrosia beetles need to be investigated. 
Ultimately, sex-specific density regulation may also be 
caused by other compounds that guide female site selec-
tion, e.g. trans-verbenol in D. brevicomis (Byers 1983a, 
1984).

Nevertheless, it is noteworthy that verbenone amounts 
associated with I. typographus and I. paraconfusus are 
relatively low, while for D. brevicomis and D. frontalis 
enormously large amounts were found (Q1.2). Ips typogra-
phus is assumed to require a comparatively high infestation 
density when colonising living trees—more than twice the 
necessary colonisation density as needed for D. brevicomis 
(Raffa 2001). It could be the reason why I. typographus does 
not release large amounts of verbenone and suggests that a 
species-specific interpretation is needed, despite the com-
monly shared inhibitory effect of verbenone. The differences 
between sexes in the response to verbenone observed for 
some scolytine species can also be dose-dependent (López 
et al. 2013; Zhao et al. 2017; Audley et al. 2020) and are 
generally never pronounced: there is no report that one sex 
remained completely unaffected by inhibitory compounds. 
In conclusion, it therefore seems that verbenone is a more 
general indicator of high feeding activity of Scolytinae 
affecting both sexes to some degree to reduce intraspecific 

competition. At this point, a species-specific perspective 
is required to characterise the function of verbenone for 
intraspecific communication and define whether verbenone 
is a passive cue or an actual signal in a given species.

To assess the ecological function of verbenone, also the 
spatial range of its effect needs to be considered. It has often 
been observed that verbenone treatments reduce both the 
risk of infestation for single trees and the colonisation den-
sity within a tree at the same time (Lindgren et al. 1989; 
Safranyik et al. 1992, and pers. obs.; but see Devlin and Bor-
den 1994). Verbenone did not affect the ratio of landing vs. 
successfully colonising D. brevicomis, but caused a reduced 
colonisation density (Bertram and Paine 1994a), suggesting 
its function as a wide-range inhibitor, i.e. to mediate the 
colonisation among trees, but not within a tree. For the same 
species, it was observed that their resting behaviour next to 
the aggregation pheromone was less frequent in the presence 
of verbenone (Ryker and Yandell 1983), underlining its func-
tion as a short-range inhibitor. The ‘active inhibitory range’ 
(AIR) can be defined as the maximum distance at which a 
significant change in beetle behaviour can still be observed 
compared to untreated controls (Zhang and Schlyter 2003). 
Most field studies suggest an AIR of verbenone of only a 
few metres (Shore et al. 1992; Niemeyer et al. 1995; Huber 
and Borden 2001; Jakuš et al. 2003; Zhang and Schlyter 
2003; Ranger et al. 2013; Fettig et al. 2015; Byers et al. 
2018, 2020), only a few report inhibition between 10 and 
15 m (Mafra-Neto et al. 2014). Concordantly, grid distances 
of verbenone point sources typically lie between 5 and 9 m 
in studies where verbenone is tested to inhibit aggregation 
within a whole area (Borden et al. 1992; Devlin and Bor-
den 1994; Fettig and Munson 2020; Fettig et al. 2020) or 
10–15 m (Amman et al. 1989; Lindgren et al. 1989; Devlin 
and Borden 1994; Borden et al. 2003, 2006; Progar 2005). 
For some ambrosia beetle species, however, the AIR might 
be below 1 m, depending on the rate of verbenone release 
(Byers et al. 2020; Rivera et al. 2020). This might be due to 
their low tendency to show a gregarious behaviour (Hulcr 
and Stelinski 2017) and suggests that verbenone might 
have a greater importance for bark beetles as a short-range 
inhibitor to mediate spacing within a tree and thereby limit 
intraspecific competition (Byers et al. 1984). Given that the 
applied verbenone dosages are often unnaturally high (Ber-
tram and Paine 1994a; McPheron et al. 1997; Pureswaran 
and Sullivan 2012), the observed AIR could be overesti-
mated compared to natural conditions. This would at least 
not necessarily contradict the interpretation of verbenone 
as a short-range inhibitor with an AIR of 1 m or less. Bentz 
et al. (1997) did not measure pheromone contents, but inves-
tigated the attack dynamics of D. ponderosae around a focal 
tree that was baited for 24 h. They found that attacks con-
tinued on an already infested tree, while neighbouring trees 
were already under attack before the focal tree was saturated. 
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They concluded that the inhibitory effect of verbenone rather 
lies in the very short range, below one metre, and an attack 
shift to an adjacent tree in this species is most likely caused 
by a spread of the aggregation pheromone plume increasing 
the attractiveness of not yet attacked trees. However, actual 
verbenone concentrations were not measured in this study. 
Byers (1984, 1992b) reported a species-specific, minimum 
distance of spacing apart attack holes for several primary 
bark beetle species. He likewise suggested that in some 
species aggregation pheromones and verbenone may play a 
role in spacing colonisation sites within a tree and allow the 
reduction in intraspecific competition in the phloem layer.

Interspecific signalling and trophic relationships

Verbenone seems to be ubiquitous among Scolytinae. Thus, 
the question arises whether verbenone might also help to 
avoid competition between sympatric bark and ambro-
sia beetle species. Most studies indicate that this is to the 
benefit of all competing species, rather than imposing an 
advantage for only a single species. For example, the com-
monly co-occurring species I. typographus and Pityogenes 
chalcographus are both inhibited by verbenone (Bakke 
1987; Byers 1993), which is consistent with the fact that 
their interaction is not strictly negative despite an overlap in 
habitat preference (Göthlin et al. 2000; Schebeck et al. 2023,  
and pers. obs. on windfelled Norway spruce). Furthermore, 
three sympatric pine-feeding species I. latidens, I. pini and 
D. ponderosae were equally inhibited by verbenone (Miller 
et al. 1995), and likewise D. ponderosae and D. brevicomis 
(Hayes and Strom 1994). Inhibition by verbenone seems also 
common among sympatric ambrosia beetle species (Werle 
et al. 2019; Rivera et al. 2020). This common response is not 
surprising, since also attractive pheromone components are 
sometimes shared among species (Pureswaran et al. 2008).

The hypothesis that verbenone is a general cue to avoid 
interspecific competition is also supported by the finding 
that the enantiomeric composition of verbenone usually does 
not have a great effect on the species’ response (Bakke 1981; 
Paine and Hanlon 1991; Zhang et al. 2006; Byers et al. 2018) 
and thus is generic. In addition, the enantiomeric composi-
tion of verbenone within a species is rather variable (Q1.1), 
corroborating its general nature. In a complex olfactory 
landscape with high levels of background odours (Byers 
et al. 1984, 2000; Byers 2004; Raffa 2001), this flexibility 
can help to reliably avoid competition among numerous bark 
and ambrosia beetles using the same habitat, but also allows 
secondary species to detect suitable habitats.

Even if verbenone is informative for many sympatric sco-
lytine species and causes the same behavioural response, 
it may still be possible that some species can exploit this 
signal to their advantage. Wu et al. (2019) found that both 
sexes of the sympatric species T. minor and T. yunnanensis 

are inhibited by verbenone. However, they observed that 
verbenone biosynthesis was highest in female T. minor and 
concluded that interspecific competition was regulated by 
the colonising sex of the less aggressive species. Finally, 
slight differences in concentration and release rate, probably 
related to differences in detection thresholds, may further 
affect intraspecific competition. For example, O. erosus was 
attracted to high release rates of verbenone, while verbenone 
at the same release rate caused inhibition in I. sexdentatus, 
and this was the opposite for low release rates (Etxebeste 
et al. 2013). Given that in many studies with a focus on 
practical application, rather unnaturally high release rates of 
verbenone were used (Bertram and Paine 1994a; McPheron 
et al. 1997; Pureswaran and Sullivan 2012), thus, fine-tuned 
and species-specific differences in the response to verbenone 
to regulate interspecific competition might have remained 
undetected.

As verbenone is common among Scolytinae, also bark 
beetle-associated organisms might be able to detect and 
respond to that cue. Predators, like Thanasimus spp., can 
detect (Hansen 1983) and respond to aggregation pheromone 
components of their bark beetle prey (Schlyter et al. 1989; 
Pureswaran et al. 2008; Heber et al. 2021). At least Thanasi-
mus formicarius possesses neurons specific to (–)-verbenone 
(Tømmerås 1985), which elicits strong antennal responses 
with low thresholds (Hansen 1983). Surprisingly, bark bee-
tle predators are not generally attracted by verbenone, even 
though this interaction has been intensely studied, particu-
larly for the two genera Thanasimus (Col., Cleridae) and 
Temnochila (Col., Trogossitidae). Even contrary to the 
expectations, verbenone inhibits the attraction of T. formi-
carius to bark beetle kairomones (Etxebeste and Pajares 
2011; Etxebeste et al. 2013). Also Thanasiumus dubius is 
either inhibited by (Strom et al. 1999; de Groot and DeBarr 
2000) or indifferent to (Payne et al. 1992; Hayes et al. 1994) 
the addition of verbenone to bark beetle pheromone baited 
traps. The response of Temnochila chlorodia is rather vari-
able (Gillette et al. 2009) and might depend on the release 
rate. A relatively high release rate of 50 mg/d increased the 
attraction for that species to host volatiles with and without 
bark beetle kairomones (Fettig et al. 2007) and a low release 
rate of only 2.5 mg/d was inhibitory (Erbilgin et al. 2007), as 
well as intermediate release rates of 8–12 mg/d (Hayes and 
Strom 1994; Strom et al. 2001). Also, Temnochila caerulae 
showed a negative response to verbenone (Etxebeste and 
Pajares 2011). In a field trapping assay on multiple target 
species, Thanasiums undulates, Enoclerus sphegeus, Enoc-
lerus lecontei and Lasconotus complex were inhibited, while 
Lasconotus subcostulatus was not affected (Lindgren and 
Miller 2002a). The attraction of another bark beetle predator, 
Corticeus praetermissus, was not consistent across differ-
ent experiments (Lindgren and Miller 2002a). The authors 
suggested that predators and parasitoids, that either depend 
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on the presence of adult bark beetles or larvae at an early 
stage of development, may also avoid brood systems of a 
certain age and thus negatively react to verbenone. An eight-
component blend containing verbenone was an oviposition 
stimulant for Rhizophagus grandis in a no-choice experi-
ment on larvae from D. valens and D. micans in an artificial 
phloem medium (Grégoire et al. 1991).

Altogether, the evidence that predators of bark and 
ambrosia beetles are attracted to verbenone seems rather 
weak. This might be explained by the fact that the predators 
that are considered in these studies (mostly Thanasimus spp. 
and Temnochila spp.) are typically caught in low numbers 
compared to their bark beetle prey, making it difficult to 
detect significant trends with the same sample size otherwise 
used for gregarious bark beetles. Second, verbenone alone 
might not be attractive for these natural enemies, but require 
the presence of additional yet unknown cues. It would be 
possible that natural enemies only have specific periods dur-
ing which they are susceptible to prey kairomones, while 
at other times they are indifferent, or exhibit seasonal fluc-
tuations in abundance, making it difficult to study attrac-
tion (e.g. see Hayes and Strom 1994; Lindgren and Miller 
2002a). There are a large number of natural enemies that 
prey on adult bark beetles or their larvae from diverse taxo-
nomic groups including parasitoids from Hymenoptera, Dip-
tera, or Acari (Wegensteiner et al. 2015), but these groups 
have so far received no attention regarding their response 
to verbenone. This, however, would be an interesting and 
important aspect to assess the efficacy of verbenone treat-
ments to prevent bark beetle attacks in forest protection.

Conclusions

The antennal detection of and the response to verbenone 
seems to be well conserved in the highly evolved pheromone 
system of bark and ambrosia beetles and may thus represent 
an ancestral state. Verbenone is an attraction inhibitor for 
at least 38 scolytine species from 16 genera, i.e. 73% of the 
species for which the behavioural response has been tested, 
representing < 1% of the existing bark and ambrosia beetle 
species (Hulcr et al. 2015). An exception to this inhibitory 
effect may be found in strongly secondary species, which 
are more often either indifferent to or even attracted by ver-
benone. Attraction was also reported for a few primary spe-
cies for specific release rates or during specific phases in 
the population dynamics. The host usage strategy (i.e. pri-
mary vs. secondary or cone/seed feeding) was more strongly 
related to a species’ response to verbenone than the mating 
system of a species. While many sympatric bark beetle spe-
cies are commonly inhibited by verbenone, it is surprising 
that natural enemies are not consistently attracted by ver-
benone. More research should be invested in studying the 

effect of verbenone on other groups of natural enemies, such 
as parasitoid wasps or predatory flies.

Even if inhibition by verbenone seems most common 
among bark beetles, one should keep in mind that the most 
frequently studied taxa are not necessarily good representa-
tives for the extraordinarily high diversity of lifestyles within 
the Scolytinae and so the description of verbenone as a ‘uni-
versal bark beetle repellent’ can be misleading. The term 
‘inhibitor’ should be preferred over the term ‘repellent’ 
because that is what has been tested and proved in most 
field trapping studies, even though in pest management 
applications the latter is traditionally more common. Even 
if verbenone is an inhibitor to numerous species, its precise 
function may differ among species and vary according to the 
actual source, the timing of synthesis, sex-specific detection 
and response thresholds and the resulting spatial range of 
inhibition, which are not well studied for most species. Most 
importantly, we lack studies on atmospheric verbenone con-
centrations around infested trees as most knowledge about 
pheromone amounts stems from gut extracts, but we do not 
know how these concentrations relate to actual emissions.

The analysis of more than 200 studies suggests that 
verbenone can be interpreted as an intra- and interspecific 
inhibitor of sympatric Scolytinae, most likely to prevent 
overcrowding on densely colonised hosts. However, results 
from studies on the temporal patterns of verbenone synthesis 
often contradict the assumption that verbenone is a com-
pound that is released from adult beetles at later stages to 
terminate colonisation for the avoidance of intra- and inter-
specific competition. Instead, relatively large amounts can be 
found much earlier, for example, in newly emerged beetles, 
too early to deter mates that are still needed to overwhelm 
tree defence and mating at this stage. There is a discrepancy, 
however, between studies on extracts vs. headspace meas-
urements, stressing the importance of verbenone sources 
outside the beetles.

An increase in verbenone amounts at later stages of colo-
nisation may primarily be caused by microbial processes 
outside the beetles’ bodies. At least for many species, instead 
of a pheromone mediating anti-aggregation, verbenone may 
rather be seen as a passive by-product of intense feeding 
activity on α-pinene-rich substrate. Bark beetles and their 
associated microorganisms help to accelerate the oxidation 
to the final product verbenone. The fact that probably a sub-
stantial proportion of this microbial biotransformation of 
verbenol to verbenone occurs outside the beetles’ body also 
contradicts the classification of verbenone as an actual pher-
omone, or requires the perception of beetles as a holobiont 
(Six 2013) as a more explanatory ecological unit. Neverthe-
less, a bark beetle species-specific interpretation is necessary 
to decide whether verbenone can be considered a pheromone 
of the bark beetle holobiont or whether it is rather described 
as an allelochemical. Altogether, it is likely that verbenone is 
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a passive cue rather than an active signal in most species, but 
it remains open whether the beetles can actively control the 
amounts and the time point of verbenone release in response 
to intraspecific competition.

Filling these gaps in a more than 50-year-old field of 
research (Table 4) will on one hand improve our ecological 
understanding of how tiny bark beetles manage to organise 
their attacks to mass aggregate on suitable hosts—some-
thing, still not possible to predict—and can have effects so 
large that they become visible on a landscape scale. On the 
other hand, making use of inhibitory substances is an inter-
esting, environmentally friendly approach to manage bark 
beetle populations in economically used forests and ambro-
sia beetles in horticultural tree crops (Table 4). While aggre-
gation pheromones are routinely used for monitoring pur-
poses, inhibition of mass aggregation with semiochemicals 
still comes with some inherent uncertainty. Despite available 
technologies, semiochemical-based tools are comparatively 
rarely used in agriculture and forestry so far, even though 
conventional insecticides as the historically only alternative 
decrease in acceptance due to their environmental, social 
and human health impact, so that more sustainable alterna-
tives are urgently needed (Gillette and Fettig 2021; Mafra-
Neto et al. 2022). A better understanding of the species-spe-
cific roles of verbenone, including knowledge about actual 
verbenone release rates from infested trees, the active or 
non-active participation of the beetles in verbenone release, 
intrinsic and extrinsic factors that cause beetle individu-
als to not respond to verbenone and the effects on natural 
enemies of bark beetles can help to optimise sustainable 
verbenone-based semiochemical management tools within 
the integrated management of pest populations.
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