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A B S T R A C T

Canopy gaps are crucial structural elements of forests, supporting biodiversity and influencing forest dynamics 
and ecosystem health. Airborne laser scanning (ALS) is commonly used for forest gap analysis and typically 
outperforms digital aerial photogrammetry (DAP), especially in detecting smaller gaps. However, ALS data 
availability remains limited compared to DAP. Given the broader availability and cost-effectiveness of DAP, this 
study aimed to overcome its technical drawbacks in canopy gap detection by applying a cross-technological 
approach with multiple data sources. This involves ALS-derived reference data fused with spectral and height 
information from DAP. We developed a deep learning-based method, employing a convolutional neural network 
(CNN), specifically the U-Net architecture, for detecting canopy gaps. The U-Net was trained using gap polygons 
automatically generated from ALS-derived canopy height models (CHMs), combined with true digital ortho
photos (TDOPs) and DAP-based CHMs. Adding spectral information from TDOPs was intended to help detect 
shadows typically associated with smaller canopy gaps, which are often missed in DAP-based CHMs. The model 
was tested in the Solling, a forest area in a low mountain range in Central Germany. Performance was evaluated 
in independent test areas representing a gradient of structural heterogeneity. Overall, our model achieved 
moderate to high segmentation performance (IoU: 0.67–0.77; F1-score: 0.56–0.74). Once trained, it can be 
applied to image-derived inputs, improving canopy gap detection F1-score by on average 0.08 compared to using 
DAP-based CHMs alone. Our results demonstrate a novel approach for detecting canopy gaps without ALS data, 
suggesting applications across broader spatial and temporal scales.

1. Introduction

Canopy gaps are a characteristic structural element of many of the 
world’s forests, developing e.g. after natural disturbances such as 
storms, insect infestations, or fires (Jucker, 2022; Muscolo et al., 2014; 
Schliemann and Bockheim, 2011) or simply through natural tree mor
tality. There is no universally accepted definition of what a “canopy gap” 
is (Jucker, 2022). In the most general sense, gaps can be described as 
openings in the canopy caused by treefall (Schliemann and Bockheim, 
2011), forming an integral part of natural forest dynamics (Runkle, 
1982; Watt, 1947; Whitmore, 1989).

Within canopy gaps, environmental conditions usually differ from 
those of the surrounding forest, e.g., in terms of light availability, tem
perature, soil moisture, and nutrients (de Freitas and Enright, 1995; 
Horváth et al., 2023; Hou et al., 2024; Ritter et al., 2005). Depending on 
the size of the gap, the gap-specific microclimate influences upcoming 

tree species composition inside the gap as part of natural regeneration 
processes (Bagnato et al., 2021; Nagel et al., 2010; Vodde et al., 2015). 
According to the gap partitioning hypothesis (Denslow, 1980), resources 
for tree regeneration are distributed diversely in canopy gaps, enabling 
the coexistence of trees with different survival strategies (Kern et al., 
2013). Besides tree species composition, also animal species composi
tion is influenced by canopy openings, as shown, e.g., for insects 
(Eckerter et al., 2021) or birds (Pollock et al., 2020). Biodiversity 
generally tends to increase after gap formation due to increased struc
tural heterogeneity of otherwise closed canopy forests (Heidrich et al., 
2020; Schall et al., 2018). Considering this, harvesting regimes have 
been developed that try to mimic natural disturbances (Gustafsson et al., 
2020; Kuuluvainen et al., 2021; Mason et al., 2022), aiming to restore 
more structurally diverse forests including canopy gaps (Muscolo et al., 
2014).

Therefore, knowledge of the spatial distribution of gaps in forest 
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stands is important for forest management and monitoring purposes. In 
particular, studying the gap development processes over time, including 
gap formation, expansion, shrinking, and closure, offers the opportunity 
to understand the dynamics that shape forest structure, biodiversity, and 
ecosystem function (Jucker, 2022; McCarthy, 2001). Early research on 
canopy gaps and their dynamics was performed by measuring and 
mapping them in the field using definitions suggested by different 
ecologists (Runkle, 1992). Such terrestrial studies are still conducted 
today (e.g. Feldmann et al., 2018). However, manually mapping canopy 
gaps in the field is very time consuming. As an alternative, remote 
sensing has emerged as a valuable technology for the assessment of 
canopy gaps (St-Onge et al., 2014).

Numerous remote sensing technologies were employed to study 
canopy gaps, ranging from satellite images (Dalagnol et al., 2019; Gar
barino et al., 2012; Hobi et al., 2015; Lassalle and de Souza Filho, 2022), 
aerial images (Nyamgeroh et al., 2018), and uncrewed aerial vehicle 
(UAV) images (Chen et al., 2023; Getzin et al., 2014; Htun et al., 2024; 
Xia et al., 2022) to airborne laser scanning (ALS) (Asner et al., 2013; 
Dalagnol et al., 2021; Goodbody et al., 2020; Gorgens et al., 2023; 
Hagemann et al., 2022; Krüger et al., 2024; Reis et al., 2022; Vepa
komma et al., 2008), UAV laser scanning (Chung et al., 2022), and 
terrestrial laser scanning (Seidel et al., 2015). In image-based studies, 
methods involve visual image interpretation and manual delineation of 
gaps (e.g. Hobi et al., 2015), as well as automated tracking of gaps 
(Lassalle and de Souza Filho, 2022; Seidel et al., 2015). In contrast, laser 
scanning-based investigations rely on the technology’s ability to auto
matically identify gaps by detecting canopy height deviations between 
gaps and the surrounding forest (St-Onge et al., 2014). ALS is the most 
widely used technique due to its objectivity and accuracy in measuring 
three-dimensional forest structures over large areas (Jucker, 2022). The 
accuracy and reliability of ALS-based canopy heights have established 
this technology as the standard for evaluating gap detection methodol
ogies (Dietmaier et al., 2019; White et al., 2018), and tools designed for 
forest gap analysis with ALS-derived canopy height models (CHMs) have 
been developed (Silva et al., 2019). Image-based CHMs, derived via 
digital aerial photogrammetry (DAP), are however a cost-effective 
alternative to ALS (Goodbody et al., 2019) and studies have high
lighted the potential of using photogrammetric height data to detect 
canopy gaps (Renaud et al., 2017; Solano et al., 2022; Zielewska-Büttner 
et al., 2016a). Two comparative analyses (Dietmaier et al., 2019; White 
et al., 2018) revealed a better performance of ALS CHMs for accurately 
mapping forest canopy gaps, especially regarding small canopy open
ings, which frequently occur in mature and old-growth forest stands. 
The detection of those smaller gaps is often not possible based on DAP- 
derived CHMs, as these tend to be inaccurate in dark shadow areas, 
frequently occurring in gaps (White et al., 2018; Zielewska-Büttner 
et al., 2016a).

Nevertheless, considering the lower cost of aerial imagery and their 
prevailing frequent and wide availability compared to ALS data, 
methods to accurately detect canopy gaps in DAP-derived CHMs would 
be beneficial.

The aim of this study was to overcome the technical drawbacks of 
DAP-derived CHMs regarding canopy gap detection and to develop an 
image-based method for accurately mapping canopy gaps. Therefore, we 
applied a cross-technological approach with multiple data sources in 
which ALS-derived canopy gaps provide the reference for training and 
validation of a convolutional neural network (CNN) to detect canopy 
gaps based on true digital orthophotos (TDOPs) and DAP-derived CHMs. 
The idea of combining the DAP-derived CHM with the TDOP was to 
equip the CNN with spectral information that allows for the identifica
tion of shadows, which usually characterize smaller canopy gaps that 
would otherwise not be detected using DAP-derived CHMs alone.

2. Materials and methods

2.1. Study area

This study was conducted in the Solling region (Fig. 1), a low 
mountain range in Central Germany where elevations range up to 527 m 
a.s.l. The area is characterized by temperate forests, although large areas 
are also dominated by the boreal coniferous tree species Norway spruce 
(Picea abies (L.) Karst.). European beech (Fagus sylvatica L.) is the second 
most frequent tree species in the area. Other tree species, such as Scots 
pine (Pinus sylvestris L.), Douglas fir (Pseudotsuga menziesii (Mirbel) 
Franco), European larch (Larix decidua Mill.), and oak (Quercus robur L., 
Quercus petraea (Mattuschka) Liebl.) are occasionally found. The forests 
in this area have historically undergone intensive management, leading 
to the establishment of extensive pure spruce stands. In recent decades, 
the region has experienced disturbances from wind-throw and bark 
beetles, affecting large areas of spruce forest. As a result, many stands 
are now undergoing conversion into more structurally diverse mixed 
forests. These disturbances, along with selective logging, contribute to 
the heterogeneous forest structure typical of Central European forests.

2.2. Data acquisition and pre-processing

We used data from an aerial survey carried out in September 2023. 
Digital aerial images and ALS point clouds were acquired in one over
flight (duration of two days) with a UltraCamEagle M1 camera system 
and a VQ-780II-S Riegl Lascerscanner. The aerial images have four 
spectral bands (RGB and NIR) with a ground sampling distance (GSD) of 
0.05–0.08 m, taken with an overlap of at least 80 % along-track and 66 
% across-track. The point density of the ALS point cloud was at least 16 
points m− 2. Mean flight height during the survey was 1290 m a.s.l. 
Further acquisition parameters can be found in Table 1.

The pre-processing of the ALS point clouds was primarily conducted 
using the lasR package (Roussel, 2024) in R 4.4.0 (R Core Team, 2024). 
However, the classification into ground points and non-ground points 
was done using the lasground_new function from LAStools (version 
230330) (Rapidlasso GmbH, 2021), as this specific algorithm is not 
available in lasR and performed well with our data. The classified point 
clouds were normalized with a triangulation of the ground points. After 
this, two filters were applied: The first filter removed points above 55 m 
and below − 1 m, as those were considered outliers. The second filter 
dropped remaining points classified as ‘noise’ using an isolated voxel 
filter, as implemented in the lasR package (resolution of the voxels: 5 m, 
maximal number of points: 6). Subsequently, resampling to 0.5 m res
olution CHMs raster files was done using the highest point per pixel 
(point-to-raster method). Finally, pits and spikes were filled in the CHMs 
and the merge function (terra package (Hijmans, 2024)) was used to 
generate one single CHM raster file from all individual CHM tiles.

The photogrammetric workflow for processing the aerial images 
entailed the orientation of the images, their orthorectification, and 
dense-image-matching to generate 3D point clouds. Oriented images 
and TDOPs were provided by the State Office for Geoinformation and 
Surveying of Lower Saxony (Landesamt für Geoinformation und Land
esvermessung Niedersachsen). Image-matching was done in Trimble/ 
Inpho software MATCH-T DSM (version 9.2). The integrated matching 
strategy is a combination of semi-global-matching and feature-based- 
matching executed on different pyramid levels (Trimble, 2019). We 
started by setting the pyramid level to 10 for the matching process and 
subsequently used three different last pyramid levels (2, 1, and 0). This 
resulted in point densities of 11–18 points m− 2 for level 2, 45–69 points 
m− 2 for level 1, and 180–275 points m− 2 for level 0. All point clouds 
were afterwards thinned to a point density of 4 points m− 2 to reduce file 
size by selecting the highest point within a grid cell of 0.5 m resolution. 
Corresponding to the initial point densities, the thinned point clouds and 
resulting digital surface models (DSMs) were of differing quality, 
regarding the depiction of crown shapes and the amount of noise pixels. 
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We did this, to test for the model’s applicability to image-based CHMs of 
varying quality. Using an ALS-based digital terrain model, these DSMs 
were eventually normalized using a digital terrain model and filtered 
similarly to the ALS-based point clouds to generate DAP-based CHM 
raster files in 0.5 m resolution.

2.3. Gap detection in ALS-based CHMs

Several gap detection approaches have been applied in studies on 
canopy gap detection utilizing ALS. They can be divided into methods 
with fixed or variable height thresholds, whereby the first is set to a 
single value by the user while the second is variable as it considers the 
tree heights surrounding a gap (White et al., 2018). The criteria to define 
a gap, such as the maximum vegetation height inside the gap or the gap 

area, vary substantially in the literature; a common definition is lacking 
(Jucker, 2022). For our study, we defined gaps as follows: A gap is an 
area of 10 to 5000 m2 on which the trees are only half as high as the trees 
surrounding the gap.

The minimum area was set to 10 m2, a compromise between 
potentially noise gaps and small openings, which are particularly com
mon in temperate natural deciduous forests (Drößler and von Lüpke, 
2005). The maximum gap area was set to 5000 m2 to exclude open areas 
that lack typical forest gap characteristics. Three different thresholds (5 
m, 10 m, and 15 m) were chosen for the maximum vegetation height 
inside a gap. For each height threshold, the vegetation surrounding a 
gap within a 20 m buffer should always be twice the maximum vege
tation height inside the gap, with at least 75 % of the values within the 
buffer exceeding this threshold. This led us to create three height stages: 
5 m inside the gap, 10 m within the buffer; 10 m inside the gap, 20 m 
within the buffer; 15 m inside the gap, 30 m within the buffer. By doing 
this, we ensure a clear distinction between a gap and its surrounding 
trees corresponding to a sharp breach in the surface of the canopy (St- 
Onge et al., 2014).

The ForestGapR package (Silva et al., 2019) was used to automati
cally detect gaps based on the three different vegetation height thresh
olds inside the gap. The lowest value (5 m) corresponds to the minimum 
tree height at which vegetation can be considered a forest according to 
the FAO definition (FAO, 2020). The canopy gaps were detected for each 
vegetation height threshold with the area sizes mentioned above. Sub
sequently, the gaps were filtered by creating the 20 m buffer around 
each gap. The 25th percentile was calculated to ensure that at least 75 % 
of the values within the buffer exceeded a certain canopy height, cor
responding to twice the maximum vegetation height inside the gap.

2.4. Training and test dataset preparation

For model training, an area of 1837.5 ha located in the eastern part of 
the study area was used (Fig. 1). The TDOP was downsampled from 0.07 
m to 0.5 m to match the resolution of the CHMs and normalized to a 

Fig. 1. Location of the Solling area in Germany with its main forest types. Rectangles represent the training area (dot line) and testing areas (solid line) described in 
Section 2.4. Germany borders: © BKG (2024) dl-de/by-2-0, forest types: © EEA (2020).

Table 1 
Acquisition parameters of the imagery and LiDAR (Light Detection and Ranging) 
survey.

Parameter Description

Mean flight height 1290 m a.s.l.
Mean aircraft speed 240 km h− 1

Flight dates 4 Sep. 2023 (train area, test area 1 and 3) 
5 Sep. 2023 (train area, test area 2)

Overall duration of the flight 11:15 h
Camera: UltraCamEagle M1
- Focal length 100.5 mm
- Spectral resolution four-band (RGB and NIR)
- GSD 0.05–0.08 m
- Overlap 80 % / 66 %
- Pixel size 5.2 μm
LiDAR-sensor: VQ-780II-S Riegl
- Scan angle ± 20◦

- Mean swath width 939 m
- Mean swath overlap ~61 %
- Pulse repetition rate 933 kHz
- Scan frequency 210 Hz
- Point density min. 16 points m− 2
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value range of 0–255 (conversion from 16 bit to 8 bit). The CHM was 
computed in three different quality levels with each covering only a 
third of the training area. Hence, the three CHMs were mosaicked to 
cover the whole training area before they were stacked to the four 
spectral bands of the TDOP. For technical reasons of model training, the 
ALS-based detected canopy gaps as raster mask (0 = non-gap, 1 = gap) 
were also stacked to the same file (Fig. 2).

To test our model, three areas of size 1 × 1 km were selected from the 
study region (Fig. 1). These test areas were deliberately chosen based on 
visual aspects to represent a diverse range of forest structures and illu
mination conditions. The forest type composition of the training and test 
areas, derived from the forest type layer shown in Fig. 1, is provided in 
Table 2. The test datasets were generated as previously described for the 
training dataset. According to the three different pyramid levels and 
resulting CHMs, three test datasets were created per area (Fig. 3) to 

examine if the point density and thereof derived CHM quality influences 
model prediction.

2.5. Model training and evaluation

We employed a U-Net, a CNN architecture first introduced by 

Fig. 2. RGB true digital orthophoto (RGB-TDOP) of the whole training area (left) and zoomed-in subarea (white rectangle): RGB-TDOP (top right), airborne laser 
scanning (ALS)-based canopy height model (CHM) (center right), and digital aerial photogrammetry (DAP)-based CHM (bottom right). All displayed canopy gaps 
(here as polygons) were derived from the ALS-CHM.

Table 2 
Forest type composition in training and test areas. Remaining pixels represent 
non-forest areas.

Area Broadleaved (%) Coniferous (%)

Training area 61 36
Test area 1 77 22
Test area 2 87 12
Test area 3 96 2
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Ronneberger et al. (2015), which is well suited for image segmentation 
tasks and has been effectively used in forest-related studies 
(Freudenberg et al., 2022; Schiefer et al., 2020; Wagner et al., 2019). It is 
characterized by its encoder-decoder structure. The encoder part con
sists of several convolutional layers, which extract features from the 
input images, followed by pooling operations that reduce spatial infor
mation while preserving essential features. In the decoder part, spatial 
information is progressively restored with upsampling operations 
(Kattenborn et al., 2021). Skip connections between corresponding 
encoder and decoder layers ensure that the model can use relevant 
features extracted earlier to improve final output, making it a fully 
convolutional network (Long et al., 2015).

We used a ResNet34 (He et al., 2016) as backbone, pre-trained on 
ImageNet. To adapt the backbone to our input of five channels (RGB, 
NIR, and DAP-based CHM heights), we added an extra convolution layer 
to convert these five channels into a three-channel format compatible 
with ResNet34 (Iakubovskii, 2019). This enabled compatibility with the 
pre-trained weights while preserving the additional input information. 
The model architecture is illustrated in Fig. 4. We applied a sigmoid 

activation function to obtain model predictions as probabilities for each 
pixel between 0 and 1. The Adam optimizer (Kingma and Ba, 2014), 
initialized with a learning rate of 0.001, was used for stochastic gradient 
descent. We used binary cross-entropy (BCE) as loss function, which is 
widely used for binary semantic segmentation tasks, such as, in our case, 
distinguishing gaps from non-gaps. BCE calculates the difference be
tween the predicted output and the true binary mask as follows: 

BCE = −
1
N
∑N

i=1
yi log(p(yi) )+ (1 − yi) log(1 − p(yi) ) (1) 

Where y is the label of the true binary mask, p(y) is the predicted 
probability of pixel i being a canopy gap, and N is the total number of 
pixels in the image.

The training dataset was split into multiple tiles of size 224 × 224 
pixels, which can be handled by the model (Fig. 5). From the complete 
dataset, 80 % were used for training and 20 % for validation. The split 
was performed randomly to ensure a diverse representation of canopy 
gap characteristics in both sets. In order to increase the diversity of the 
training dataset and to prevent overfitting, data augmentation was 

Fig. 3. Example test area: RGB true digital orthophoto (RGB-TDOP) (top left), and a zoomed-in subarea (white rectangle) showing digital aerial photogrammetry 
(DAP)-based canopy height models (CHMs) calculated based on point clouds with 234 p/m2 (top right), 59 p/m2 (bottom left), and 15 p/m2 (bottom right).
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applied by rotating the tiles by 90, 180, and 270 degrees. We evaluated 
the performance of our model after each epoch during the training 
process by calculating the BCE loss, the intersection over union (IoU), 
and the F1-score for both the training and validation datasets. The 
metrics are defined as follows: 

IoU =
TP

TP + FN + FP
(2) 

precision =
TP

TP + FP
(3) 

recall =
TP

TP + FN
(4) 

F1 − score = 2×
precision × recall
precision + recall

(5) 

Where TP are the true positives, FP are the false positives, and FN are 
the false negatives.

The maximum number of epochs was set to 100. However, the 
implementation of an early stopping ensured that training was stopped if 
the validation F1-score did not improve for 10 epochs. Additionally, the 
learning rate was reduced after 5 epochs of no improvement in the 
validation F1-score. The whole model workflow was written in Python 
3.10.12 and is mainly based on the Segmentation Models library 
(Iakubovskii, 2019). We trained the model on a computer equipped with 
an AMD Ryzen Threadripper PRO 5975WX processor (3600 MHz, 32 
cores) and 256 GB internal memory.

2.6. Model application and comparison with DAP-derived canopy gaps

The model was applied to the three test areas of size 1 × 1 km not 
used during model training. To obtain a binary canopy gap mask, we 
thresholded the pixel-wise predicted probabilities at 0.3, 0.4, and 0.5, to 
determine differences in the predicted gaps and their accuracy. We 

calculated the IoU, precision, recall, and the F1-score to assess predic
tion accuracy. Additionally, the predicted gap area per test area (in 
hectare and percent) was calculated to complement these metrics. All 
metrics and the predicted gap area were computed only within valid 
prediction extent, as the final predictions cover a smaller area (~0.8 
km2) than the original test tiles (1 km2) due to the tiling process.

Further, we compared our CNN-predictions of canopy gaps with 
those obtained using a DAP-based CHM alone. We did this by applying 
our canopy gap detection method, described in Section 2.3, to the DAP- 
based CHMs of the three test areas (only highest CHM quality). IoU, 
precision, recall, and F1-score were calculated again using ALS-derived 
canopy gaps as reference. The total number of canopy gaps as well as the 
number of canopy gaps ≤50 m2, which we considered small gaps, were 
obtained for all three mapping outcomes (ALS-based, DAP-based, CNN- 
prediction).

3. Results

3.1. Model training

Model training was stopped after 19 epochs, as the F1-score for the 
validation dataset reached its highest value of 0.64 and did not improve 
during the following 10 epochs. Similarly, the validation IoU reached a 
value of 0.48 after epoch 19 and did not improve in subsequent epochs. 
The BCE validation loss reached 0.14 at epoch 19 and decreased only 
slightly to 0.13 at epoch 25. However, we defined the best model based 
on the validation F1-score. Hence, the model trained for 19 epochs was 
selected for further application to unseen test areas.

3.2. Prediction of canopy gaps on unseen test areas

Fig. 6 shows the three test areas and the corresponding predictions of 
canopy gaps. As an example, smaller subareas from one of the test areas 
are visualized in Fig. 7. From a visual perspective, the predictions of 

Fig. 4. Simplified U-Net architecture with a ResNet34 backbone. An additional convolution layer was added to adapt the five-channel input (RGB, NIR, DAP-CHM) to 
the three-channel format required by ResNet34.
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canopy gaps align well with the ALS-based true mask. However, some 
larger openings detected in the ALS-based CHMs are either missing or 
appear disconnected in the predictions, especially in test area 3. In the 
zoomed-in subareas (Fig. 7), particularly the one in the center, it is 
clearly visible that smaller canopy gaps, which are absent in the corre
sponding DAP-based CHM but distinct in their spectral characteristics 
from the surrounding trees, were predicted accurately.

To assess the impact of CHM quality, we evaluated model perfor
mance across three pyramid levels (2, 1, and 0) used in the image- 
matching process, which resulted in different point densities and can
opy surface representations. These are referred to as CHM quality levels. 
The corresponding evaluation metrics per test area and DAP-based CHM 
quality level are shown in Table 3. The IoU varied only slightly between 
the quality levels for each area. Similarly, the F1-score showed minor 
differences across the quality levels, balancing fluctuations in precision 
and recall. The largest differences in the F1-score between quality levels 
were observed for test area 3, where both recall and precision varied the 
most. Precision was higher than recall across all quality levels in test 
areas 1 and 3, whereas recall exceeded precision in test area 2. Overall, 
the model performed best on test area 2 (mean IoU ≈ 0.77, mean F1- 
score ≈ 0.74), while it performed worst on test area 3 (mean IoU ≈
0.69, mean F1-score ≈ 0.60). Considering the predicted gap area, a 
slight overestimation of canopy gaps was observed for test area 2, 

whereas in test areas 1 and 3, the predicted gap area was below the true 
gap area. In test area 1, the predicted gap area closely matched the true 
gap area, particularly for CHM quality levels 0 and 1. A general decrease 
in the predicted gap area was noticed across all test areas for CHM 
quality level 2 (lowest point density).

The metrics as well as the predicted gap area were based on a 
threshold of 0.5 for prediction probabilities, as it provided the best re
sults for test areas 1 and 2. Although a lower threshold (0.3) resulted in 
marginally better performance for test area 3, we prioritized consistency 
and comparability across all test areas and thus selected the threshold 
that performed best overall.

3.3. Comparison with DAP-derived canopy gaps

ALS- and DAP-based CHMs for all three test areas, along with their 
corresponding canopy gap raster masks, are provided in the Supple
mentary Data (Fig. S1). Table 4 presents IoU, precision, recall, and F1- 
scores for the DAP-derived canopy gaps compared to those obtained 
from ALS (the reference). IoU and F1-score were lower when using a 
DAP-based CHM alone for canopy gap detection compared to the model 
predictions. However, this difference was not equally pronounced across 
all three test areas. While the metrics differed only slightly for test area 
2, the differences were more substantial for test areas 1 and 3. This is 

Fig. 5. Example 224 × 224 pixel tiles showing the channels used for model training. For illustrative purposes, the red, green, and blue channels are shown as one 
RGB true color image. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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also evident in the canopy gap raster masks (see Supplementary Data, 
Fig. S1), where several gaps are missing in the DAP-based mask for both 
test areas compared to the ALS-based mask, also reflected by the low 
recall values (0.46/0.37). On average, the model improved the F1-score 
by 0.08 compared to using DAP-based CHMs alone. Visually, this is 
particularly noticeable for smaller canopy gaps detected in ALS-based 
CHMs, which are often absent in DAP-based CHMs. The distribution of 
gap sizes, separated by the different sources (ALS, DAP, prediction), also 
shows this lower proportion of smaller canopy gaps in the DAP-based 
CHMs (Fig. 8). This trend of missing gaps is particularly evident up to 
a gap size of approximately 50 m2, while the distribution of such smaller 
gaps in the predictions more closely aligns with that of the ALS-based 
gaps. Table 5 shows that relative proportions of small canopy gaps (≤
50 m2) are lower in DAP-based CHMs compared to ALS-based detection, 
whereas the model predictions show higher proportions relative to ALS- 
based canopy gaps. While these proportions offer insights into the 
general representation of small gaps, they do not reflect spatial agree
ment with ALS-based gaps.

4. Discussion

4.1. Segmentation performance and influencing factors

ALS is a highly effective technology for detecting and tracking can
opy gaps. Several studies demonstrated its suitability, in particular, for 
characterizing canopy gaps across large forested areas in different re
gions of the world (Goodbody et al., 2020; Gorgens et al., 2023; Hage
mann et al., 2022). DAP, as an alternative to ALS for canopy gap 
detection, has shown lower performance, particularly in detecting small 
canopy openings in old seral stage forests (Dietmaier et al., 2019; White 
et al., 2018). To address these limitations, we developed a cross- 
technological approach in which a CNN was trained to predict canopy 
gaps based on height information from DAP-based CHMs and spectral 
information from TDOPs. ALS-derived canopy gaps served as reference.

The resulting segmentation maps of canopy gaps and non-canopy 
gaps for our three test areas revealed slightly different performance of 
the CNN, as confirmed by the calculated error metrics. Overall, IoU 
(0.67–0.77) and F1-score (0.56–0.74) showed moderate to small varia
tion across the test areas. While segmentation performance was com
parable for test areas 1 and 2, it was lower in test area 3. The quality 
level of the DAP-based point clouds used for CHM calculation appears to 

Fig. 6. Predictions of canopy gaps for test area 1 (top), area 2 (center), and area 3 (bottom): Each row includes the RGB true digital orthophoto (RGB-TDOP), the 
digital aerial photogrammetry (DAP)-based canopy height model (CHM) (level 0), the true mask showing the reference canopy gaps derived from airborne laser 
scanning (ALS)-based CHMs, and the predicted canopy gaps obtained by the model.
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have a minor impact on segmentation results (IoU variation: ± 0.02, F1- 
score variation: ± 0.04), whereas the variation observed among the 
three test areas was considerably larger (IoU variation: ± 0.05, F1-score 
variation: ± 0.09). This suggests that factors related to test area, such as 
forest structure, may have a stronger influence on segmentation per
formance. We observed a higher number of larger canopy openings in 

test area 3 in comparison to the other two test areas, many of which were 
not, or only partially, predicted by the model. One possible explanation 
is misleading spectral information, as these larger gaps tend to appear 
brighter with fewer shadows than smaller canopy gaps. This may have 
contributed to the lower segmentation performance in test area 3, as 
these large gaps account for a substantial share of the total gap area. 
However, since test area 3 also exhibited the lowest point densities 
across all pyramid levels, indicates that DAP-CHM quality still plays a 
role in canopy gap segmentation by the model, particularly when point 
densities are relatively low (pyramid level 2). The impact of DAP-CHM 
quality on canopy gap detection was also observed by Zielewska-Büttner 
et al. (2016b), who reported a higher number of pixels with missing 
information due to higher pyramid level during image-matching. Such 
pixels are assigned new values via interpolation, which results in 
smoother DAP-CHMs, ultimately reducing gap detection accuracy.

We deduce that the CNN was generally less prone to predict false 
gaps (false positives) but more likely to miss actual gaps (false nega
tives), particularly in test areas 1 and 3, as indicated by the precision and 
recall values and the fact that the predicted gap area was smaller than 
the true gap area in these two areas. This issue is not primarily due to 
undetected small gaps, but rather due to incomplete or entirely missing 
predictions of larger canopy openings by the model.

4.2. Comparison of DAP-based with predicted canopy gaps

The comparison between the predicted and DAP-derived canopy 
gaps demonstrated better performance of the model predictions. As 
indicated by the error metrics, differences between the predicted and 
DAP-derived canopy gaps were particularly distinct for test area 3, 
suggesting that our approach might be beneficial for lower quality DAP- 
CHMs. However, substantial differences in IoU and F1-score were also 
observed for test area 1, despite its relatively high quality DAP-CHM. 
The forest structure, including the prevalence of small canopy gaps, 
may also influence detection accuracy. Test area 1 has a slightly higher 
proportion of smaller gaps (≤ 50 m2) compared to test area 2 and 3. 
Smaller gaps are more challenging to detect in DAP-based CHMs (White 
et al., 2018), which likely contributes to the larger difference in IoU and 
F1-score between the predicted and DAP-derived canopy gaps in test 
area 1. In contrast, test area 2, which had the lowest proportion of small 
gaps relative to the total number of gaps, showed the smallest difference 
in these metrics.

Fig. 7. Test area 1 and three enlarged subareas (white rectangles) representing different types of canopy gap situations: Several larger gaps (top), several smaller 
gaps (center), and a mix of both (bottom).

Table 3 
Intersection over union (IoU), precision, recall, F1-score, and predicted gap area 
per quality level of digital aerial photogrammetry (DAP)-based canopy height 
models (CHMs) for prediction on test area 1 (true gap area ≈ 4.8 ha, 6 %), test 
area 2 (true gap area ≈ 6.8 ha, 8.5 %), and test area 3 (true gap area ≈ 4.4 ha, 
5.4 %).

Pyramid level of DAP- 
based point cloud used 
for CHM calculation 
(point density)

IoU Precision Recall F1- 
score

Predicted gap 
area (ha / %)

Test area 1
Level 0 (234 p/m2) 0.76 0.73 0.70 0.71 4.6 / 5.8
Level 1 (59 p/m2) 0.76 0.74 0.70 0.72 4.6 / 5.8
Level 2 (15 p/m2) 0.76 0.78 0.65 0.71 4.1 / 5

Test area 2
Level 0 (275 p/m2) 0.76 0.69 0.77 0.73 7.6 / 9.4
Level 1 (69 p/m2) 0.77 0.69 0.79 0.74 7.8 / 9.7
Level 2 (17 p/m2) 0.77 0.71 0.77 0.74 7.3 / 9.2

Test area 3
Level 0 (180 p/m2) 0.70 0.74 0.53 0.61 3.1 / 3.9
Level 1 (45 p/m2) 0.71 0.74 0.54 0.63 3.2 / 4
Level 2 (11 p/m2) 0.67 0.80 0.43 0.56 2.3 / 2.9

Table 4 
Intersection over union (IoU), precision, recall, and F1-score comparing canopy 
gaps obtained by digital aerial photogrammetry (DAP)-based canopy height 
models (CHMs) with Airborne Laser Scanning (ALS)-based canopy gaps for the 
three test areas.

IoU Precision Recall F1-score

Test area 1 0.69 0.84 0.46 0.59
Test area 2 0.74 0.86 0.58 0.69
Test area 3 0.66 0.91 0.37 0.53
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Studies frequently identified shadow occurrence as a major error 
source in DAP-based canopy gap detection (Dietmaier et al., 2019; White 
et al., 2018; Zielewska-Büttner et al., 2016a), which likely contributed 
to the lower detection rate in our DAP-derived CHMs. However, our 
model may leverage these shadows by utilizing their specific reflective 
properties (Liu et al., 2024) to distinguish between darker gaps and the 
brighter surrounding canopy. Consequently, the advantage of our model 
over DAP-based gap detection is particularly evident in forest areas with 
a high prevalence of smaller gaps. DAP-derived gaps could be used to 
complement the model predictions for larger canopy openings, as these 
are less challenging to detect in DAP-based CHMs, whereas the model 
showed limitations in accurately capturing them.

4.3. Methodological considerations of deep learning for canopy gap 
detection

As this study is among the first of its kind, direct comparisons with 
other studies are challenging. Additionally, technical factors such as 
variations in CNN architectures, as well as environmental differences in 
the investigated forest areas, complicate comparisons. The most com
parable study is that of Htun et al. (2024), who also applied a deep 

learning approach to detect canopy gaps. However, unlike our study, 
they used UAV imagery and derived CHMs. They tested different models 
in an uneven-aged mixed forest in northern Japan and achieved the most 
robust segmentation results with a U-Net using ResNet101 as backbone 
pre-trained on ImageNet. IoU was 0.62/0.66 and F1-score 0.77/0.79, 
depending on the area.

Another study involving deep learning in the context of canopy gap 
detection is that of Lassalle and de Souza Filho (2022). They used very- 
high-resolution satellite imagery to map gaps in mangrove forests and 
simultaneously assess their recovery stage using a Mask R-CNN, a 
framework for instance segmentation (He et al., 2017). Their model 
achieved an overall accuracy of 98,9 % in distinguishing gap and non- 
gap areas. However, the gap areas in their reference dataset covered a 
smaller range, from 27.3 to 861.9 m2, and the general shape of 
mangrove gaps is similar, explaining this high accuracy (Lassalle and de 
Souza Filho, 2022). A direct comparison of the metrics achieved by our 
study is not appropriate, as the methods differ in several aspects, such as 
the approach for reference data generation (manual delineation vs. 
automatic detection) and the source of remote sensing data (UAV/sat
ellite vs. airborne). While the best performing model in Htun et al. 
(2024) utilized only RGB spectral information, they also applied the 
same model architecture incorporating both DAP-CHM and RGB data 
without pre-training. This model showed slightly lower performance 
(IoU: 0.54/0.56, F1-score: 0.70/0.72). However, in the case of non-pre- 
trained models, they highlighted that integrating height and spectral 
information improves model performance, leading to their suggestion to 
pre-train such multi-source models on large multi-channel datasets.

A key limitation in applying transfer learning to remote sensing data 
is that widely used backbones are typically trained on standard RGB 
imagery like in the ImageNet dataset, whereas remote sensing data often 
contain additional information (Kattenborn et al., 2021). This presents a 
potential limitation for our model, as we also pre-trained it on ImageNet 
despite incorporating NIR as an additional spectral band and CHM 
height information. Several remote sensing studies on vegetation ana
lyses utilizing deep learning have pointed to this issue, highlighting the 
need for pre-trained models capable of handling multi-channel data 
(Ecke et al., 2024; Htun et al., 2024). One key aspect of multi-channel 
data in forest applications could be the inclusion of height informa
tion, which has been explored for tree and plant species identification 
with CNNs. However, these studies have shown only minor (Schiefer 
et al., 2020) to none or unclear (Ecke et al., 2024; Kattenborn et al., 
2020) improvements in model performance when adding CHM height 
information to spectral bands, most likely because structural informa
tion such as canopy height is already captured in the imagery through 
patterns of shading and lighting variation (Kattenborn et al., 2020). In 
contrast, in our study, we assume that using only spectral data would not 

Fig. 8. Histograms of gap sizes (10–100 m2) for test area 1 (left), area 2 (center), and area 3 (right). Canopy gaps were obtained from airborne laser scanning (ALS)- 
based, digital aerial photogrammetry (DAP)-based canopy height models (CHMs), and from the prediction.

Table 5 
Total number of canopy gaps and number of canopy gaps ≤50 m2 for the three 
test areas, along with the relative proportions of digital aerial photogrammetry 
(DAP)-based and predicted canopy gaps compared to airborne laser scanning 
(ALS)-based detection.

Total 
canopy 
gaps

Canopy 
gaps ≤ 50 
m2

Proportion of 
total canopy gaps 
rel. to ALS

Proportion of 
canopy gaps ≤ 50 
m2 rel. to ALS

Test area 1
ALS-based 707 525
DAP- 

based
251 169 36 % 32 %

Prediction 662 437 94 % 83 %

Test area 2
ALS-based 687 430
DAP- 

based
412 241 60 % 56 %

Prediction 623 304 91 % 71 %

Test area 3
ALS-based 578 405
DAP- 

based
206 160 36 % 40 %

Prediction 542 390 94 % 96 %
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be beneficial, as the presence or absence of canopy gaps is directly linked 
to the height.

To advance deep learning applications in forestry remote sensing, 
models should not only be pre-trained with spectral imagery, but also 
incorporate height information from laser scanning or DAP-derived 
CHMs, which is often missing in existing datasets (see Table 1 in 
Schmitt et al., 2019). Expanding pre-training to include height data 
could greatly benefit a variety of forest applications related to forest’s 
spatial structure and may be particularly relevant for LiDAR data fusion 
(Balestra et al., 2024).

4.4. Potential of ALS for reference data generation

ALS offers significant potential for generating reference data. CNNs 
require large amounts of labeled data, and a common approach is to use 
remote sensing products for visual interpretation and subsequent 
annotation of the desired class(es) (Kattenborn et al., 2021). However, 
this process is highly labor-intensive and often becomes a bottleneck, 
particularly in complex environments such as forest ecosystems 
(Borowiec et al., 2022). Automatically-derived reference data can help 
overcome this challenge. In our study, we achieved this by automatically 
detecting canopy gaps in ALS-based CHMs, resulting in over 15,000 gap 
polygons for training our model.

A similar approach was applied by Weinstein et al. (2019) for indi
vidual tree detection. They used LiDAR data to automatically generate 
labeled tree crowns as bounding boxes, which were then combined with 
manually annotated labels to train a CNN. Incorporating a small number 
of manually delineated canopy gaps alongside automatically generated 
reference gaps could be a useful addition to further refine our approach.

While ALS enables large-scale and objective reference data genera
tion, the implemented gap definition directly influences what the model 
learns. Parameters such as gap size and height thresholds can vary 
significantly among definitions, as described in Section 2.3, meaning 
that segmentation outputs could differ depending on the gap definition 
applied for reference data generation. Additionally, technical factors 
such as point density, CHM resolution, and the algorithm chosen for 
CHM calculation influence gap detection (Fischer et al., 2024) and, 
consequently, the segmentation by the model. In this study, we used 
high-resolution ALS data with sufficient point density for forest structure 
assessment. Nonetheless, we acknowledge that ALS-derived gaps may 
still contain errors or systematic biases, particularly in areas with dense 
vegetation or complex terrain.

5. Conclusion

While numerous studies have demonstrated that ALS is a highly 
effective technology for detecting canopy gaps, it is still a fact that ALS 
data availability remains limited, whereas DAP data is more frequently 
accessible. This study was designed as a baseline to address the technical 
limitations of DAP for canopy gap detection. We applied a cross- 
technological approach involving ALS data to automatically generate 
reference gap polygons, which were then used to train a CNN with 
spectral (RGBI) and height (DAP-based CHM) information as input data.

Our results demonstrated the feasibility of detecting canopy gaps in 
the absence of ALS data. Once trained on ALS-based reference gaps, our 
model can be applied using only image-derived inputs. Compared to 
using DAP-based CHMs alone for canopy gap detection, the model 
achieved improved segmentation results, which represents a significant 
advancement in particular for detecting small canopy gaps in mature 
and old-growth forest stands. However, the benefit of our approach 
depends not only on technical factors such as DAP-CHM quality, but also 
on environmental conditions like forest structure. While smaller canopy 
gaps were often predicted accurately, the model exhibited difficulties in 
fully detecting larger canopy openings, likely due to misleading spectral 
information in bright, few shadow areas. This issue could be addressed 
by incorporating DAP-derived gaps above a certain area threshold, as 

larger gaps are generally easier to detect in DAP-based CHMs. The in
fluence of DAP-CHM quality, primarily influenced by point density after 
image-matching, on segmentation performance was somewhat ambig
uous, although we observed a trend toward reduced accuracy when 
using CHMs derived from DAP-based point clouds with pyramid level 2. 
While this demonstrates some robustness to quality variations, adequate 
image acquisition quality remains a prerequisite for reliable gap 
detection.

The detection of canopy gaps from only image-derived inputs offers 
promising applications for ecological and forestry practices in regions 
where ALS data availability is limited. It enables temporal analyses over 
longer time periods, which can support forest management and biodi
versity monitoring. Specifically, automated gap detection can facilitate 
monitoring of forest structural complexity and the assessment of natural 
regeneration processes.

The overall performance of our model could be further enhanced if 
pre-trained model architectures incorporating height information were 
available. Additionally, exploring alternative CNN architectures may 
offer further potential to improve segmentation results. Future research 
should focus on testing the model’s transferability to other regions with 
entirely different forest structures and acquisition settings, including 
images captured at different points in time. Nevertheless, the presented 
approach provides a valuable improvement over using DAP-based CHMs 
alone for canopy gap detection.
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St-Onge, B., Vepakomma, U., Sénécal, J.-F., Kneeshaw, D., Doyon, F., 2014. Canopy gap 
detection and analysis with airborne laser scanning. In: Maltamo, M., Næsset, E., 
Vauhkonen, J. (Eds.), Forestry Applications of Airborne Laser Scanning: Concepts 
and Case Studies. Springer, Netherlands, pp. 419–437. https://doi.org/10.1007/ 
978-94-017-8663-8_21.

Trimble, 2019. MATCH-3DX, MATCH-T DSM Manual for Version 9.2 and Higher.
Vepakomma, U., St-Onge, B., Kneeshaw, D., 2008. Spatially explicit characterization of 

boreal forest gap dynamics using multi-temporal lidar data. Remote Sens. Environ. 
112 (5), 2326–2340. https://doi.org/10.1016/j.rse.2007.10.001.
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