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Comparing the Logarithmic Transformation and the
Box-Cox Transformation for Individual Tree Basal
Area Increment Models
Christoph Fischer

Individual tree growth models are increasingly being used in silviculture scenario simulation at the stand level or in forecasts of wood supply on a large scale, and there
is a correspondingly substantial number of published diameter increment models. In most cases, the relationship between individual tree basal area increment or diameter
increment and covariables was described by a linear regression. In doing so, the logarithmic transformation for left-sided variable transformation was used exclusively
to meet the assumptions of regression analysis. The Box-Cox transformation is one alternative that has scarcely been used to date in forest growth modeling.
The two transformation approaches were compared using a simple individual tree basal area increment model with four tree species. The results were as follows:
(1) the Box-Cox transformation yielded a better residual structure of the models by reducing the skew; (2) the transformation bias is smaller using the Box-Cox
transformation; (3) the mean squared error of estimation is smaller with the Box-Cox transformation; and (4) the Box-Cox transformation leads to systematically higher
estimated values than logarithmic transformation. On the basis of the results presented here, it is recommended that the Box-Cox transformation should be considered
as a viable alternative in statistical modeling in forestry and in other fields as well if the transformation of variables is required.
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The accurate prediction of stand development over time is essen-
tial for forest planners. In Europe, forest management tradi-
tionally relied on yield tables for making such predictions.

However, for the management of structurally diverse forests, yield tables
are increasingly unsuitable as a planning instrument (Monserud and
Sterba 1996). For this reason, individual tree growth models were de-
veloped to support forestry planning and management (e.g., Stage
1973, Wykoff et al. 1982, Pretzsch 1992, Hasenauer 1994, Nagel
1999). The advantage of these models in comparison to stand-based
models lies in their greater flexibility. Thus, prognoses are possible for
heterogeneous forest stands in which the composition of tree species,
age, and vertical structure, as well as spatial occupation patterns can vary
considerably. One important element in individual tree growth mod-
eling is the growth prediction of the tree dbh using linear or nonlinear
regression techniques. In both approaches, the dependent variable is
either the actual diameter increment or the basal area increment of the
individual tree, which is then converted to a diameter increment. The
predictor variables fall into three categories: the characteristics of indi-
vidual trees such as dbh, basal area, height, crown parameters, and age;

competition at the stand or tree level; and site variables such as water
and nutrient supply, altitude, direction of slope, temperature regime,
and others.

Several authors use nonlinear regression to estimate increment as a
function of individual tree attributes (e.g., Colbert et al. 2004) or as a
function of tree attributes and competition indices (e.g., Yang et al.
2009). Expanded models contain tree attributes, competition indices,
and several site parameters as predictors (Pretzsch et al. 2002, Weiskittel
et al. 2007, Bollandsas and Naesset 2009). More often, however, incre-
ment is estimated by means of linear regression. In Cole and Lorimer
(1994), Nagel (1999), Jögiste (2000), Mailly et al. (2003), and Leder-
mann (2010), individual tree attributes and competition indices are
used as predictors. Expanded models containing additional site param-
eters are presented in numerous studies (e.g., Wykoff 1990, Monserud
and Sterba 1996, Uzoh and Oliver 2008, Lhotka and Loewenstein
2011, Pokharel and Dech 2012).

In contrast to nonlinear approaches, the application of linear
regression often requires a transformation of the dependent vari-
ables to meet model assumptions. That means homoscedasticity and
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a normal distribution of the residuals. In many cases, however, the
most important reason for the preference for the linear approach is
that the relationships between the transformed response variables
and the predictors can be approximated by linear model effects.
However, transformation is at the expense of dealing with a bias
after retransformation to the original scale of measurement (e.g.,
Smith 1993). In modeling diameter or basal area increment by
linear regression, the response variable is usually logarithmically
transformed (see the literature citations above).

In this article, the Box-Cox transformation (Box and Cox 1964) is
evaluated as an alternative method. To date, this type of transformation
has rarely been applied in forest growth modeling. The Box-Cox trans-
formation belongs to the family of exponential transformations and was
analyzed in detail by Sakia (1990, 1992), whereas in Garcia (1983),
Eastaugh and Hasenauer (2011), Mønness (2011), and Serinaldi et al.
(2012), forestry-related examples of its use are given. In this approach,
in contrast to logarithmic transformation, a transformation parameter
that is dependent on the distribution of the data is at first estimated.
This makes the Box-Cox transformation more flexible than other meth-
ods because the conversion into the transformed scale is specifically a
function of the distribution of the data. In this study, we examine
whether this flexibility also affects the goodness of fit and the predictive
quality of statistical models. For this purpose, the Box-Cox-transforma-
tion and the logarithmic transformation are compared using an indi-
vidual tree basal area increment model. The model fitting for both
transformation approaches is done using repeated individual tree mea-
surement data for four tree species. The data were acquired over the
course of a large-scale forest inventory in Northwest Germany. The
following three issues will be addressed: a comparison of the goodness-
of-fit statistics and examination of transformed and retransformed
model residuals; a comparison of the mean squared error (MSE) by
cross-validation; and an analysis of the predicted diameter growth.

Materials and Methods
Data

The data used for model fitting were drawn from repeated indi-
vidual tree measurements from the first and second National Forest
Inventory (NFI) in the federal German states of Lower Saxony and
Schleswig-Holstein. The first inventory (NFI 1) was carried out
between 1986 and 1989, and this was repeated between 2001 and
2003 (NFI 2). The NFI is a cluster sample with permanent sample
plots. The sample plots in the east and south of Lower Saxony are
arranged in a 4-km square grid, which is based on the Gauss-Krüger
coordinate system. In the lowlands of western Lower Saxony the
grid is 2.83 � 2.83 km in size, and in Schleswig-Holstein it is 2 �
2 km. Each sample plot consists of a square with sides of length
150 m, where the southwest corner of each square is the intersection
point of the grid. If one corner of the square is forested, that corner
becomes the center of a subplot and data for different objects are

surveyed. Trees (dbh �10 cm in NFI 1; dbh �7 cm in NFI 2) are
surveyed by means of the angle count sampling method (Bitterlich
sampling) with a basal area factor of 4 m2/ha. The tree species, dbh,
age, and the base-of-the-trunk coordinates are recorded for each
monitored tree (Bundesministerium für Ernährung und Land-
wirtschaft 2014). This study is based on data from 3,045 NFI sub-
plots with repeated individual tree measurements. Four tree species
were studied: oak (Quercus robur L.), beech (Fagus sylvatica L.),
spruce (Picea abies L.), and pine (Pinus sylvestris L.) (Table 1).

Model Construction
In this study, the diameter increment of individual trees was

indirectly modeled through the relationship of basal area increment
to dbh, age, and competitive status. The basal area in larger trees
(BAL) (e.g., Wykoff 1990) was used as a competition index. To take
into account any occurrence of nonlinearity in the effects of the
covariables, a generalized additive model (GAM) was used. This
method is implemented in the R library mgcv (Wood 2006, R Core
Team 2015). The 5-year basal area increment ig5 (cm2) of a tree is
expressed through the equation

ig5 � c � � � f1�dbh� � f2�age� � f3�bal� (1)

where c is a constant to eliminate negative values, � is the intercept, and
fn are smoothing functions defined as “thin plate” regression splines. In
line with other studies using similar types of data (Monserud and Sterba
1996, Andreassen and Tomter 2003, Pukkala et al. 2009), the model
was formulated without random effects. In view of the high number of
systematically distributed sample plots, the comparatively low number
of trees monitored per plot (on average 4.5 trees per plot over all sam-
pled tree species) and the lack of repeated measurements of individual
trees (only one recorded increment per tree), the probability of a
grouped structure in the data was deemed to be negligible.

Before model fitting, the dependent variable from Equation 1
was transformed using two methods. For the logarithmic transfor-
mation (natural logarithm), the relationship between the original
and the transformed scales of a variable is given by

y� � ln� y� (2)

y � expy�

The second method used is the Box-Cox-transformation (Box and
Cox 1964). The relationship between the transformed and the orig-
inal data is

y� �
y� � 1

�

y � � y� � � � 1�
1
� � � � 0 (3)

Table 1. Summary statistics of the modeling data.

Species Np Nt

Dbh Age BAL

Mean Range Mean Range Mean Range

. . . . . . . .(cm) . . . . . . . . . . . . . . .(yr) . . . . . . . . . . . . .(m2/ha) . . . . . .
Oak 693 1,646 35.9 10.0–153.2 88 17–269 13.1 0.0–77.1
Beech 927 3,137 32.5 10.0–149.0 85 12–279 18.7 0.0–99.1
Spruce 997 3,162 32.2 10.0–96.8 53 9–176 17.4 0.0–74.8
Pine 1,265 4,351 31.0 10.0–80.0 54 11–196 13.0 0.0–64.0

Np, number of subplots; Nt, number of measured trees.
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y� � ln� y�
y � expy� � � � 0

The Box-Cox transformation is equal to the logarithmic transfor-
mation when � � 0. The value of the transformation parameter �
can be estimated iteratively using the maximum-likelihood method,
where the log-likelihood term is defined as

L��� � k �
n

2
SSE�z���� (4)

with k as an integration constant, z(�) � y(�)/ym
(��1), and with ym

as the geometric mean of the response. SSE is the sum of the
squared residuals of the regression z(�) (Venables and Ripley
2002, p. 171). Sakia (1992) gives further information about the
mathematical background. The value of � is optimal when L is at
its maximum.

One consequence of the use of transformations is that trans-
forming the predicted values back again (retransforming) leads to
systematic distortions of estimates in the original scale (bias).
There are diverse adjustment factors available to help avoid this
effect, especially for the logarithmic transformation (e.g., Spru-
gel 1983, Smith 1993). To facilitate comparison, a single adjust-
ment factor suggested by Snowdon (1991) was used here for both
transformation methods, which is calculated as the quotient of
the sum of the observed values and the predicted values. This
approach has been used in various studies (e.g., Nyström and
Kexi 1997, Condes and Sterba 2005, 2008, Adame et al. 2008).

	 �

�
i�1

n

yi

�
i�1

n

ŷi

(5)

with n being the number of observations, yi being the observed
values, and ŷi being the estimated values in retransformed scale.
Multiplying the retransformed values by 	 ensures that the mean
predicted basal area increment corresponds to the mean observed
basal area increment. 	 simultaneously serves as a measure of the
transformation bias. The mean of the estimated values ŷi shows no
bias when 	 � 1.

Model Evaluation
The coefficient of determination was used as the criterion for

goodness of fit

R2 � 1 � ��i�1

n

� yi� � ŷi��
2

�
i�1

n

� yi� � y���2� (6)

with y�i and ŷ�i as the observed and estimated values in the trans-
formed scale.

In a second step, the residual structure, in both transformed and
retransformed scale, was graphically analyzed. The skew of the dis-
tribution of the transformed residuals was calculated. This quanti-

fies the type and extent of any asymmetry in the distribution and is
independent of the unit of measurement.

skew �
1

n�
i�1

n �yi� � ŷi�

S �3

(7)

with s as the SD of the transformed residuals. If the data are exactly
normally distributed, the skew will be zero. If there is a skew to the
right, the value will be negative, whereas a positive value indicates a
skew to the left.

The two transformation methods were compared using a cross-
validation of the MSE in the retransformed scale. The MSE is a
measure of the estimation accuracy of the model and is given by

MSE � �
i�1

n � yi � ŷi � 	�2

n
(8)

For cross-validation, 75% of the observations for each tree species
were randomly selected from the complete available data set. A
parameterization of the basal area increment model was carried out
on this subset of the data using both transformation methods. This
process was repeated 100 times, enabling a comparison of the vari-
ability of the MSE by the distributions produced.

Results
For both transformation methods, the effect of each covariable

on the basal area increment is significant, as indicated by the P values
(Table 2). The fitted model for oak using the Box-Cox transfor-
mation shows a slightly higher R2 value, whereas for beech the
difference between the two transformation methods is marked.
For spruce and pine, there is no difference in R2 between the two
types of transformations. The adjustment factor 	 quantifies the
relative transformation bias. The values for 	 obtained after a
logarithmic transformation are, depending on tree species, between
1.123 (pine) and 1.147 (beech), meaning that the observed values
are on average 12 to 15% greater than the retransformed estimates.
Use of the Box-Cox transformation yields a considerably smaller
transformation bias, i.e., 8% for oak and beech (	 � 1.081 and 	 �
1.084) and 5% for pine and spruce (	 � 1.052 and 	 � 1.053). The
estimates of the confidence interval for the transformation parame-
ter � for all tree species do not allow for the value zero, meaning,
according to the likelihood estimate for � in Equation 4, that the
logarithmic transformation is not appropriate.

The effects of the covariables are nonlinear and show similar
patterns for all tree species and for both types of transformation. As
an example, the results for Norway spruce are displayed (Figure 1).
It is apparent that the dbh has a positive effect on increment. Age
and competition, on the other hand, always have a negative effect.
Because of the extensive data set, the confidence intervals across the
whole range of values indicate robust estimates, with increasing
scattering evident only in the peripheries.

The analysis of the model residuals for normal distribution was
carried out using a graphical comparison of empirical and theoreti-
cal quantiles (Q-Q plot). When the logarithmic transformation was
used, the Q-Q plots of the residuals for all tree species are curved,
with clear divergence in the lower quantiles (Figure 2). This pattern,
as well as the negative skew values, points to a distribution skewed to
the right, which means that the contribution of the negative values
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in the lower quantiles is greater than expected in a normal distribu-
tion. Use of the Box-Cox transformation leads to a much better
residual structure, with the reduction of skew lying between 65%
(beech) and 78% (spruce). A divergence from a straight line in the
lower quantile area is still present. However, it is less pronounced for
all tree species. The plots are more consistent, with marginal diver-
gence from the theoretical quantiles.

Validation of the predictive quality of both methods is carried
out in the original scale of measurement. The mean of the retrans-
formed residuals after bias correction was modeled as a function of
the predicted values using a smoothing function (loess-smoothing)
(Figure 3). Both transformation methods estimate the 5-year basal

area increment on average almost without bias, with merely a slight
tendency to overestimate the higher predicted values for the loga-
rithmic transformation. The residuals show a diagonal pattern in the
negative value range, which means that the models only estimate
positive increment.

The results of the cross-validation show significant differences
between the two transformation methods for the MSE of the
models (Figure 4). The median of the response variables trans-
formed by the logarithmic method are 5% higher for oak and
3.5% higher for beech. For spruce, the difference is 1.2%. It
becomes clear that use of the Box-Cox transformation leads to
improved estimate accuracy.

Figure 1. Effects of the predictors on basal area increment for spruce. Shaded areas represent 2 times the SE of the expectation value.

Table 2. Model output of GAM fits.

Transformation Species Term edf P value R2 	 � (CI: 5%; 95% )

Logarithmic Oak f1 (dbh) 8.597 0.000 0.598 1.145
f2 (age) 8.331 0.000
f3 (bal) 3.149 0.000

Beech f1 (dbh) 8.326 0.000 0.535 1.147
f2 (age) 8.559 0.000
f3 (bal) 4.372 0.000

Spruce f1 (dbh) 7.751 0.000 0.303 1.146
f2 (age) 6.569 0.000
f3 (bal) 3.100 0.000

Pine f1 (dbh) 8.082 0.000 0.403 1.123
f2 (age) 8.631 0.000
f3 (bal) 5.071 0.000

Box-Cox Oak f1 (dbh) 8.064 0.000 0.604 1.084 0.372 (0.353;0.382)
f2 (age) 8.380 0.000
f3 (bal) 3.166 0.000

Beech f1 (dbh) 6.446 0.000 0.644 1.081 0.388 (0.380;0.396)
f2 (age) 8.535 0.000
f3 (bal) 4.261 0.000

Spruce f1 (dbh) 7.619 0.000 0.303 1.052 0.563 (0.550;0.576)
f2 (age) 4.399 0.000
f3 (bal) 2.611 0.000

Pine f1 (dbh) 6.686 0.000 0.405 1.053 0.514 (0.495;0.533)
f2 (age) 8.647 0.000
f3 (bal) 1.000 0.000

edf, estimated degrees of freedom for the model terms (degree of smoothing); 	, parameter for bias correction (Equation 5); �, transformation parameter (Equation 3); CI,
confidence interval.
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The effect of the two transformation methods in model ap-
plication was further evaluated. For this purpose, diameter in-
crement of a fictitious tree, which was growing under average
competition (Table 1), was predicted for a period of 30 years
(Figure 5). The difference between the curves increases with
elapsed time, the values of the log model always being lower than
those for the Box-Cox model. At the end of the simulation time
period, the diameter difference lies between 3 and 4 cm, depend-
ing on tree species.

Discussion
Choice of Model

The purpose of the present study is to carry out a comparison of
two transformation approaches. By using easily determined covari-

ables, an attempt is made to reach a compromise between model
plausibility, robustness, and flexibility. With the basal area incre-
ment model, one cannot always assume a strict linear effect, even for
the transformed explanatory variable (e.g., Schröder et al. 2002,
Pukkala et al. 2009, Pokharel and Dech 2012). For this reason, a
generalized additive model was chosen for this study. The link func-
tion does not link the response variable with the predictor over the
entire value range. Instead, it is made up of many locally adapted
smoothing terms, so that genuine nonlinearity in the covariable
effects is taken into account (Figure 1).

The dbh has been identified as a significant term in many previ-
ous studies (Wykoff 1990, Hökkä et al. 1997, Mailly et al. 2003)
and was therefore also incorporated in the model in this study. Site

Figure 2. Q-Q plots of the model residuals after logarithmic transformation (left column) and after Box-Cox transformation of the
dependent variable (right).
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characteristics are further deciding factors in explaining the site-de-
termined difference in individual tree growth. Including these fac-
tors would increase the ecological plausibility and perhaps also the
accuracy of the prediction. However, a higher volume of often dif-
ficult to determine input information is required. This seemed im-
practical for the purpose of this study. The site index is often used as
an alternative to directly measured site variables (e.g., Mailly et al.
2003, Uzoh and Oliver 2008). However, because relatively few
individual tree height measurements were taken in the sample plots,
a reliable calculation of the site index using the available data was not
possible. To build a site effect into the model, tree age was used as a
further covariable. Site influence could then be indirectly inferred by
the dbh/age ratio. Assuming a constant competitive status over time,
a thicker tree is evidence of site conditions that developed more

favorably for the growing tree than those that prevailed for a thinner
tree of the same age.

To describe the effect of competition on individual trees, the BAL
was incorporated in the model. In contrast to a diameter percentile, the
BAL exhibits a realistic relationship to changes in the competitive re-
gime. For instance, the diameter percentile for a reference tree
decreases if another tree with a smaller diameter is removed
(Wykoff 1990, Monserud and Sterba 1996). This inconsistency
does not arise when the BAL is used because the value would
remain unchanged in this case.

All effects of parameterized models could be robustly estimated,
indicated by the P values (Table 2) and confidence intervals of
smoothing splines (Figure 1). The adjusted coefficients of determi-
nation of the models were, despite the comparatively small number

Figure 3. Residuals plotted against predicted values after retransformation. The dashed lines represent the mean residuals as a function
of the predicted values.
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of covariables used, similar to those from the studies of Monserud
and Sterba (1996), Sterba et al. (2002), Andreassen and Tomter
(2003), or Pukkala et al. (2009).

Transformation Methods
One general aspect that should be addressed by the modeler is

whether a variable transformation is necessary. For growth mod-

eling in particular, there are good reasons to use nonlinear func-
tions that describe the change in size of an individual or popu-
lation over time (Zeide 1993). In contrast to linear models or
GAM, these theoretical models have an underlying hypothesis
associated with cause or function of the phenomenon described
by the response variable. Therefore, model parameters are mean-
ingful and more easily interpretable, and predictions that involve

Figure 5. Predicted diameter corresponding to the models presented in Table 1. Starting values for the fictive tree are dbh0 � 10 cm,
age0 � 25 years, and bal0 � mean values for each species according to Table 1 (set as constant).

Figure 4. Results of cross-validation (n � 100) of the MSE. *Significant lower values of distribution mean values (paired t-test, � � 0.05,
99 df). The horizontal line within the box shows the median; the bottom and the top of the box show the 25th and 75th percentiles. The
vertical lines show the maximum and minimum values.
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extrapolations beyond the range of data are more reliable (Feked-
ulegn et al. 1999). Features of biological processes, such as as-
ymptotic behavior, can often be expressed more accurately using
nonlinear models. Another advantage of nonlinear curve fitting
is its economical use of parameters. For describing a growth
process, a competing polynomial model would probably need
more parameters than a nonlinear growth function. However,
this problem can also be avoided by using GAM instead of linear
regression. One disadvantage in comparison to linear regression
or GAM is that there is no analytical solution for parameter
estimation and that convergence of iterative optimization proce-
dures can depend critically on having good stating values. If
multiple independent variables are to be used for prediction,
modifications of the given nonlinear function are required. Be-
cause growth functions usually only allow for one predictor
(Burkhart and Tomé 2012, p. 114 –115), for example, age,
model parameters then must be expressed as functions of the
remaining predictors (e.g., Temesgen and von Gadow 2003).
Another possibility to deal with multiple predictors is to extend
the base model by developing a multiplicative modifier function
that contains the additional predictors (e.g., Pretzsch et al. 2002,
Bollandsas and Naesset 2009). For relatively extensive models
with a large number of predictors (e.g., Monserud and Sterba
1996), linear models or GAM may be more suitable because of
the simpler specification and to avoid convergence problems. In
most cases, however, a variable transformation is then required to
meet the model assumptions, at the expense of dealing with
transformation bias. Nevertheless, transformation is a proven
method in statistical modeling and is often used to linearize the
relationships between dependent and independent variables, to
homogenize the variance of residuals and to normalize regression
residuals. A failure to meet the second and third requirements
will not cause bias in the model estimates but will, however,
reduce the reliability of significance tests and the estimation of
confidence intervals of the regression coefficients.

Figure 6 shows to what extent different values for � affect the
relationship between a variable y and the transformed form y�. If the
transformation parameter � lies at or near zero, the logarithmic
transformation would be suitable (Equation 3). The dependent vari-
able would then be scaled on a much smaller value range than would
be the case for a transformation where the values for � are between
0.3 and 0.6, as shown in the results presented above (Table 2). The

confidence intervals of the transformation parameters show, how-
ever, that these are significantly different from zero in every case and
that the logarithmic transformation therefore cannot be regarded as
the better option (Table 2). The higher flexibility of the Box-Cox
transformation leads to a clear improvement of the residual struc-
ture in the transformed mode and especially to a reduction of the
skew (Figure 2).

The multiple fits to randomly chosen partial data sets enabled
a determination of whether the two methods differed systemati-
cally or randomly. It could also be shown using statistical tests as
well as through the graphical analysis of the cross-validation that
the MSE was significantly lower when the Box-Cox transforma-
tion was used and therefore that the predictive accuracy was
higher (Figure 4).

It was shown that the two transformation methods differed not
only in evaluation statistics but also in application. The log-trans-
formation models yield systematically lower estimates for the ob-
served tree species (Figure 5), which leads to ever greater differences
in the diameter values over time. In practice, differences of even a
few centimeters could have an important impact because the dbh is
the deciding parameter in the calculation of volume and biomass, in
stand basal area, in timber grading, or in decisions on whether to
harvest a tree (target diameter).

Serinaldi et al. (2012), in a comparison of different models or
transformations for estimating single tree volume, found results
different from those in the current study. The often used method
of logarithmization of all terms on both sides of the equation
proved to be superior in the description of allometric relation-
ships. Serinaldi et al. (2012) used the Box-Cox transformation to
normalize both dependent and independent variables, whereas in
this study the parameter for left-sided transformation was deter-
mined iteratively by normalizing the model residuals. Further-
more, in their study, Serinaldi et al. (2012) compared the trans-
formation methods solely on the basis of a single model fit. An
analysis of the variability of the goodness-of-fit statistics, by
cross-validation for example, was not carried out. A further ex-
ample of the use of the Box-Cox transformation in forestry is the
study by Eastaugh and Hasenauer (2011), who used it in the
modeling of historical timber usage levels from inventory data.
The only previous use in the field of growth modeling at the level
of the individual tree can be found in Garcia (1983). The Box-
Cox transformation was implemented in a modified Bertalanffy-
Richards model to describe the height development of forest
stands. Neither a residual analysis nor a comparison with other
transformation methods was carried out.

Currently the use of logarithmic variable transformation pre-
vails in other fields of forest growth modeling too, such as fore-
casting the height growth increment (e.g., Hasenauer and Mon-
serud 1997, Fahlvik and Nyström 2006, Uzoh and Oliver 2006,
Nunifu 2009) or crown size (e.g., Hasenauer 1997, Petersson
1997, Hein and Spiecker 2008). On the basis of the results
presented here, it is recommended that the Box-Cox transforma-
tion should be considered as an alternative in statistical modeling
if the transformation of variables is required. In the use of gen-
eralized models (generalized linear model or GAM), it is also
advisable to carry out an additional Box-Cox transformation and
to use the transformation parameter determined in the specifica-
tion of the link function.

Figure 6. Effect of parameter � in Box-Cox transformation on the
rescaling of a variable y (Equation 3).
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PUKKALA, T., E. LÄHDE, AND O. LAIHO. 2009. Growth and yield models
for uneven-sized forest stands in Finland. For. Ecol. Manage.
258(3):207–216.

R CORE TEAM. 2015. R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. Available
online at www.R-project.org/; last accessed July 7, 2015.

SAKIA, R.M. 1990. Retransformation bias. A look at the Box-Cox transforma-
tion to linear balanced mixed ANOVA models. Metrika 37(1):
345–351.

SAKIA, R.M. 1992. The Box-Cox transformation technique: A review. Stat-
istician 41(2):169–178.
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