
Abstract
Modeling the 3D canopy structure of trees provides the
structural mapping capability on which to assign distributed
values of light-driven physiological processes in tree
canopies. We evaluate the potential of automatically
extracted skeletons from terrestrial lidar data as a basis
for modeling canopy structure. The automatic and species
independent evaluation method for lidar data of trees is
based on the SKELTRE algorithm. The SKELTRE skeleton is
a graphical representation of the branch hierarchy. The
extraction of the branch hierarchy utilizes a graph splitting
procedure to extract the branches from the skeleton. Analyz-
ing the distance between the point cloud points and the
skeleton is the key to the branch diameter. Frequency
distributions of branch length and diameter were chosen to
test the algorithm performance in comparison to manually
measured data and resulted in a correlation of up to 0.78 for
the branch length and up to 0.99 for the branch diameter.

Introduction
Branch systems of trees are the result of ramification and
branch elongation processes that occur, outside the tropics,
in an annual rhythm. The pattern of branch elongation and
radial diameter growth can reveal the dendritic growth
history of trees with the same accuracy as growth-ring
chronologies of the trunk (Roloff, 1986). The annual rhythm
of growth conditions is reflected in the branching pattern
of trees and will finally be represented in the skeleton.
Furthermore, the dendrochronological patterns are closely
correlated to other structural quantities of tree canopies
like appending leaf or woody biomass (Niklas, 1994).
Allometric equations were established on this basis for many
tree species in order to derive the amount of woody biomass
(Bartelink, 1997), leaf biomass (Burger, 1945) or distribution
of leaf biomass in space (Fleck, 2002) from more easily
measured features such as trunk or branch diameters. 
3D-canopy light modeling depends on such spatial informa-
tion as the distribution of biomass and is the key to a
number of physiological processes in the canopy that express
the vitality and performance of trees (Fleck et al., 2004).
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From a remote sensing viewpoint, the automated
assessment of branch dimensions in the canopy is unprece-
dented. Terrestrial laser scanners measure thousands of
distances per second between the instrument and its sur-
roundings at regular horizontal and vertical angles (Shan and
Toth, 2008) in order to represent a high-resolution 3D point
cloud. Thus, terrestrial lidar enables the measurement of
the complete three-dimensional structure of the branching
system. This branching information can be made available to
modelers in biology and forestry. An automated evaluation
procedure would make it possible to overcome tedious
measurement procedures or inaccurate estimations of the
branching system.

In one sense, laser scanning produces a discrete surface
sampling of a real world object and represents it as a point
cloud. Single scans must be made from different scanning
positions to render the whole object. The scans have to then
be co-located into one common coordinate system. The
process of aligning scans into a common coordinate system is
called registration. The drawback of the registration procedure
is that regularity in the scan data vanishes, and the point
cloud becomes unorganized. Furthermore, the height distribu-
tion of the reference points to perform the registration is
critical (Henning and Radtke, 2006) and influences the
registration result. The study of unorganized point clouds as
an object representation and the possible information to be
extracted from point clouds is an area of active research.
Although the majority of research has focused on the extrac-
tion of surface parameters from the point cloud, e.g., Pfeifer
et al. (2004) and Henning and Radtke (2008), this paper
describes a new method to reveal the branching information
using the example of leafless apple trees. The fully automatic
approach presented here does not depend on species informa-
tion, such as allometric relationships. Obtaining the branch-
ing system from unorganized point clouds (Figure 1) can help
in various point cloud applications. The target application of
this paper is the extraction of the branch length and diameter
from laser-scanned orchard trees. The SKELTRE-skeleton used
in this research represents the tree’s branching system as a
graph. Such a graph consists of vertices which are connected
by edges. Every vertex corresponds to a distinct part of
the point cloud and is embedded into the centre of the
corresponding point cloud part. The edges are assumed
as straight connections between the embedded vertices.
The skeleton extraction from a point cloud faces several
algorithmic challenges, such as centeredness, topological
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correctness, and robustness to noise. These challenges
are described in more detail in Bucksch et al. (2009a) and
Bucksch et al. (2010).

Review of Tree Skeletonization from Laser Scanned Point Clouds
Literature on skeletonization of trees from real data like
laser scans is limited, although skeletonization is a heavily
studied topic in theory. For general information about
skeletal structures, the reader is refereed to Biasotti et al.
(2007), while the review given here is related to tree skele-
tonization as a special case.

Gorte et al. (2004) presented a first approach to tree
skeletonization using mathematical morphology. Their
algorithm used the sequential data thinning method of
Palágyi et al. (2001) and applied it to terrestrial laser scan
data. The morphological operations of opening and erosion
were used to produce a skeleton (Serra, 1982) and applied
to a rasterized point cloud, in which every raster cell
contained several measuring points. One drawback of this
algorithm is the large number of parameters that need to be
controlled, such as the resolution of the raster and the type
and size of the structuring element. From a theoretical
perspective, centering within the point cloud is difficult and
connectivity cannot be guaranteed. This approach was later
extended to the so-called Dijkstra skeletonization (Gorte,
2006). The connectivity of the skeleton was improved by
comparing different raster resolutions. The major common
drawback is that the extraction of a centerline from an object
like a tree requires a completely represented object hull in
order to fill the inner volume with raster cells. Occlusion
effects often make this difficult to achieve with trees.

Bucksch et al. (2008) used an adaptive octree to subdi-
vide the point cloud. Their octree subdivision relied on the
directions in which the point cloud passes through the
octree cell sides. This is the key to operate on only a few
data points if necessary. The algorithm requires only one
input parameter, which is the minimum allowable cell
size to terminate the subdivision process. From this octree,
an initial graph, the so-called octree graph, is extracted
(Figure 2c). This octree graph is reduced to the SKELTRE-
skeleton (Figure 2d). The reduction follows a set of rules,
which are applied to redundant structures in the graph.

Recently a semi-automatic approach using tree allome-
tries to produce a model of a tree designed for visualization
purposes was introduced by Xu et al. (2007). The described
procedure computes a rough skeleton of the main branches
up to approximately 66 percent of the tree height. The
remaining tree is generated based on prior knowledge and
creates a plausible model for visualization. A similar
approach was introduced by Yan et al. (2009). They used a
clustering method to extract the skeleton from a laser scanned
tree without leaves. Yan et al. (2009) compared their results
qualitatively to Xu et al. (2007) based on examples. They
concluded that their clustering algorithm represents the
branching system better than the approach of Xu et al. (2007).

Methods

Study Area

The study was mainly conducted in apple orchards of the
Annapolis Valley, Nova Scotia, Canada close to the city of

(a)                                                      (b)                                                    (c)

(d)  (e) (f)

Figure 1. Registered 3D-point clouds of the six investigated apple trees with trunk
diameters of: (a) Apple 1, 7.3cm, (b) Apple 2, 6.7cm, (c) Apple 3, 3.9cm, (d) Apple
4, 5.9cm, (e) Apple 5, 8.1cm, and (f) Apple 6, 7.4cm.



PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING Mar ch  2011 231

(a) (b)

(c) (d)

Figure 2. Simplified processing steps of the SKELTRE algorithm: (a) the point cloud of
Apple 4, (b) the generated octree from Apple4, (c) the extracted octree graph to be
retracted to the SKELTRE-skeleton shown in (d).

Kentville (45°4'39"N, 64°29'45"W). The six investigated
apple trees (Malus x domestica Borkh.: “Honeycrisp”) were
located in two orchards that belong to the test sites of
the Atlantic Food and Horticulture Research Centre (Fleck
et al., 2010a). Three apple trees grew on a trellis system,
and the other three trees stood as single trees in rows. The
orientation of the rows is from North to South with a
tree spacing of 3 m within each row and a spacing of 5 m
between rows. Trees of comparable height were located
next to the investigated trees. The manually-measured
trunk diameters ranged from 3.9 cm to 8.1 cm. The tree
height of the six apple trees varied from 1.27 m to 3.03 m.

Field Measurements
Each tree was scanned in March 2006 with the 3D-laserscan-
ner Imager 5003 (Zoller�Fröhlich, Germany) from four sides
(approximately North-East, South-East, South-West, North-
West) at a distance of about 4 m to the trunk. The laser
scanner was placed at different heights above the ground
(between 1 m and 2.3 m) in order to maximize coverage of
the measured tree surface. The scanner resolution was set to
“High” which is equal to a horizontal and vertical angular
step width of 0.036 degrees and results in a 10,000 pixel

resolution for 360 degrees. A branch of the tree was identi-
fied as elongated woody element with a minimum diameter
of 3 mm, inserting at a ramification point (node) on another,
usually a thicker branch or trunk element. The branches of
each tree were numbered for reconstructing the branch
hierarchy, and their length was measured following the
elongation direction of the branch. The diameter of each
branch was measured at its base and tip, about 1 cm before
the node or end bud. The diameters of branches were
measured with a caliper in two directions and averaged. If
both diameter measurements were more than 1 mm apart, a
third diameter measurement was taken and the average of
three measurements was taken. Branch diameters thicker
than 5 cm were derived from circumference measurements
with a meter tape assuming the trunk or main branch to
have a circular cross-section.

Data Processing
Registration of the scans was done with the NEPTAN-based
registration algorithm in Z�F Laser Control based on 14 to
18 artificial targets that were placed on the ground and fixed
to ladders at a height of about 2 m in order to achieve a
homogeneous distribution of tie points common to multiple
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Plate 1. Ideal principle of the branch splitting proce-
dure. The red subgraph is the extracted branch from the
trunk base. Skeleton graph vertices are marked in
black, the trunk base vertex in green, and branching
vertices are shown in yellow. The edge a is an incoming
edge, and edge b is an outgoing edge of a branching
vertex in direction from the root point to the branching
vertex. The skeleton graph is centered within the dotted
point cloud.

scans. The 3D-point cloud was transferred to the software
Cyclone (Leica Geosystems) and subsamples representing a
single tree were isolated (Fleck et al., 2007). Skeletonization
of each 3D-point cloud was performed with the SKELTRE
algorithm (Bucksch et al., 2009a), an algorithm used to
extract a skeleton from the unorganized point clouds of the
trees. The space occupied by the tree point cloud (Figure 2a)
is subdivided by an octree. An octree subdivides the space
into cubic cells (Figure 2b).

From these octree cells, a graph is extracted. The graph
extraction is based on an estimate of how the actual surface
represented by the point cloud crosses the octree cell sides.
The edges of the SkelTre-skeleton indicate the crossing
direction through the octree cells. Every edge belongs to two
vertices and is associated with a directional edge label. The
edge labels produced by the algorithm, guarantee that the
initially extracted graph is reduced to a one-dimensional
skeleton by merging neighboring vertices. Neighboring
vertices are defined to be connected by an edge. In order to
decide which neighboring vertices are merged, a set of rules
is used to assure that the branching of the tree corresponds
to the branching of the skeleton, Bucksch et al. (2009a) and
Bucksch et al. (2010). One benefit of the SKELTRE skeleton is
that the centeredness of the vertices corresponds to a unique
point cloud part. Here centeredness is the center of gravity
of all points belonging to a vertex. Another benefit is that
the extracted branching hierarchy is embedded into a well-
known topological framework (Bucksch et al., 2010).

Correctness of the branching hierarchy is a prerequisite
to enable proper navigation through the tree structure, while
centeredness enables us, e.g., to measure diameters and
length of tree parts. The resulting skeleton graph produced
by the skeletonization algorithm is shown in Figure 2d next
to the point cloud it originated from.

Figure 2 also shows one of the major mathematical
problems with laser scanned trees, the youngest branches
are strongly under-sampled (Bucksch et al., 2009a). Further-
more, at higher crown densities, the amount of occlusion
effects is increased, leading to gaps in the point cloud
because of insufficient coverage of the tree surface. A small
incidence angle between the laser beam and the tree surface
can lead to increased noise, because of the round surface
geometry of the branches (Soudarissanane et al., 2008).
Increased noise may also be due to tie points being
unevenly distributed in space (Fleck et al., 2010b). The
increased noise leads to the fact that some (especially
smaller) branches may not be skeletonized. For details on
this particular skeletonization algorithm, the reader is
referred to Bucksch et al. (2009a) and Bucksch et al. (2010).

Branch Length Estimation
The output of the skeletonization process is a graph 
(Figure 2d) consisting of vertices connected by edges centered
within the tree. Estimation of branch length requires a graph-
splitting procedure (Plate 1) to segment the skeleton graph
into subgraphs representing a single branch. Three steps are
involved to derive single branches from the skeleton graph:

1. Determination of the trunk base vertex; we have chosen the
vertex with the smallest z-coordinate as the trunk base.

2. A tracing along the graph to follow the branch vector.
3. A criterion for deciding which edge belongs to the currently

followed branch at branching vertices; the criterion used was
based on the deviation from a 180° elongation of the branch
axis; note that vertices with more than two incident edges
represent the start of a new branch.

The skeleton graph allows navigation through the tree
point cloud. At every vertex with more than two incident
edges (marked red in Plate 1) the graph has to be split into

the currently followed branch and newly starting branches.
By tracing the graph from the trunk base, we can identify
the edge a (Plate 1) reaching a branching point. The incident
edge ‘b’ forming the angle closest to 180 degree between ‘a’
and ‘b’ is selected to continue tracing (purple subgraph in
Plate 1). All other incident edges are marked as branch bases
from which a new trace can be started. This procedure also
provides the branch hierarchy as an output. The skeleton
graph is geometrically embedded into the tree point cloud
and the Euclidean length of all edges in one trace is used as
the branch length.

Branch Diameter Estimation
The output of the branch length estimation is a segmenta-
tion of the tree in its branches. Every branch is represented
as a graph containing either two vertices (v1 and v2) with
one incident edge or several vertices between v1 and v2
with two incident edges. In other words, a branch is repre-
sented as a collection of line segments having no branching
points.

One property of the SKELTRE-skeletonization procedure
(Bucksch et al., 2009a) is the relationship between every
vertex in the skeleton graph to a set of points pi in the
point cloud. As the skeleton graph is assumed to be
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TABLE 1. COMPARISON OF THE OVERALL EXTRACTED LENGTH BETWEEN
SKELETON AND FIELD MEASUREMENT AND THE OVERALL EXTRACTED LENGTH OF
BRANCHES WHERE A DIAMETER COULD BE OBTAINED. THE RATIO IN THE LAST

COLUMN IS THE RATIO BETWEEN COLUMN 1 AND COLUMN 3

Overall length of
branches with 

Overall length Overall length of extractable diameter
Tree of the skeleton the field data and ratio

Apple 1 95.9 m 68.1 m 57.3 m (60%)
Apple 2 47.4 m 41.7 m 35.3 m (74%)
Apple 3 40.9 m 37.9 26.8 m (66%)
Apple 4 52.3 m 53.9 44.3 m (85%)
Apple 5 128.4 m 122.8 104.6 m (81%)
Apple 6 111.8 m 103.4 75.1 m (67%)

m
edian of point distances

Figure 3. The distances of points pi of the 3D-
point cloud to the skeleton were evaluated as
bin-counts in a step width of 0.005 m. The
median of the point distances (vertical line)
determined the reference bin for diameter estima-
tion. The chosen reference bin in this case is the
peak left of the median diameter estimation.

centered in the point cloud (Plate 1), the distances of all pi
to the skeleton represent the radius of the branch. Because
a pi corresponds to a vertex and not to an edge, we
calculate the distances of all pi to all incident edges of the
corresponding vertex. Note that the maximum number of
incident edges is two. The smallest distance to one of the
edges was used for further processing. After calculating
the distances of all pi, a histogram was calculated with
bin-size 0.005 m (Figure 3). Starting from the bin contain-
ing the median of all distances (vertical line in Figure 3),
the peak closest to the median-bin was selected as a
reference bin for the branch radius. The average value of
this bin was taken as the radius of the branch. This
method was adapted for terrestrial laser scan data from
Bucksch et al. (2009b).

Data Preparation
The diameter measurements from the manual and auto-
mated methods were sorted in ascending order. This
sorting enabled a one-to-one comparison of the measured
values, because the manually-measured tree hierarchy
differed from the one measured automatically. Further-
more, the manual measurement contained more measured
branches than the automatic measurements, because
branches smaller than 3 mm in diameter are not captured
by the laser scanner, respectively, result in noise which is
filtered out by the scanner software. As mentioned in
Bucksch et al. (2009a), finer branches result in a single
line due to individual points representing the entire width
of a twig. This makes it impossible to extract a diameter
from it. Due to this limitation, the smaller branches from
the manual measurement were removed to assure two
equally sized datasets. It should be stated that the length
remained extractable because the length point data is
represented independently from the diameter point data.
This expected difference in the extractable diameter is also
shown in Table 1. To compare the manual measurements
to the automatic measurements, a linear regression was
calculated for all six trees.

Results and Discussion

Skeletons
The algorithm showed good stability to gaps and robustness
to noise in the point cloud (Figure 4). Where gaps in the
measured data occur, the algorithm still detected the two
parts of a branch on both sides of the gap. This resulted in
the simulation of a higher number of branch segments than
we measured by hand. Small artifacts were sometimes
rendered at the trunk base due to parts of surrounding
ground elements (grass, moss or soil) represented in the 
3D-point cloud.

Branch Length
Digitally rendered branch lengths were compared to the
hand measurements based on frequency distributions of the
total amount of branches of a tree. The branch length was
categorized in length classes of 5 cm from 0 to maximum
occurring branch length of each tree. The results for the six
apple trees demonstrating this categorization are shown in
Figures 5 and 6. While the algorithm detected a much
higher number of small segments (classes up to 5 cm and up
to 10 cm) and did recognize a few longer branches that were
measured as separate entities in the hand measurements, the
pattern in the middle classes between 20 cm and 65 cm was
usually well correlated between both methods (Figure 5 and
Figure 6).

The correlation between the automatically detected
branch-length classes of all apple trees except the lowest
two classes and their associated hand-measured branch-
length classes yielded an r2 of 0.48 (Plate 2). A regression
line showed that the branch number in hand-measured
branch-length classes was on average 49.3 percent of the
branch number in the associated branch-length class of the
automatically detected branches. Since this percentage did
not substantially vary over branch-length classes, all branch-
length classes appeared to be similarly affected by gaps in
the 3D-laserscanner data. The overall length of the skeleton
and the manually measured length in the field differed not
substantially except for Apple 1. The point cloud of Apple 1
contains some parts of the trellis system, which could not be
filtered out and count therefore to the overall skeleton
length. On average, the field measured length deviated 7.2
percent from the automatically extracted length for all trees
except Apple 1. Remember here, that the chosen trees are
orchard trees containing a high proportion of branches with
diameter smaller than 1 cm, unlike bigger trees in a forest,
where longer and wider branches occur. These observations
are also reflected in Table 2.

The described analysis procedure was applied to six
apple trees as shown in Table 1. It can be seen that the
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result is not heavily dependent on the crown complexity. As
an indicator of crown complexity, the trunk diameter is
given in Table 2.

Branch Diameter
For the six candidate trees the frequency distributions of
field and automatic diameter measurement were calculated,
as shown in Figure 7 and Figure 8. A high similarity of the
histogram shape could be observed and assessed by linear
regression (Table 2). A Chi-squared test to evaluate the good
results of the histograms showed that there is no significant
difference between the frequency distributions of field and
the automatic measurements. For all trees correlation
coefficients above 0.9 for the diameter could be achieved
(Table 2). We expected a greater influence of the edge effect
on the finer branches, which was already observed by Lichti
et al. (2002) and Boehler et al. (2003).

A larger difference between the skeleton measurement
and the manual measurement can be observed at the
largest value representing the trunk. Two aspects explain
this behavior. First, the field measurements were made
with a measuring tape, which measures the convex hull of
the rough trunk (the trunk outside the bark), while the
automatic procedure measures the smallest distance to the
skeleton of the data points obtained from the hull and
selects a suitable bin close to the diameter. Second, the
field measurement relies on the main vertical axis of the
tree, which does not reflect possible curvatures of the
trunk. This difference could be assessed by an alternative
test measurement with the Cyclone software (Leica Geosys-
tems). Cylinders were fitted into several slices along the

trunk using a standard least squares fitting method. We
noticed differences from the manual field measurements of
up to 2 cm due to bulges not considered in the manual
measurement. These results are comparable to the results
found in Henning and Radtke (2006), who evaluated the
measurement error of trunk cross sections in a forest using
a terrestrial laser scanner. They observed errors in the
order of 1 cm to 2 cm. The smaller branch sizes of the
studied orchard trees demand a different method for
diameter estimation, because of increased noise due to the
edge effect. The better correlations found for the tree
diameter compared to the length measurements is
explained by the differences induced by different branch
segmentation between field measurement and automatic
measurement, which is also the main reason for the
generally higher number of branches in the automatic
diameter detection compared to the field measurements.
The results here show that the frequency distribution of
diameters is robust to branch hierarchy errors resulting
from branch segmentation process. In Plate 3 the scatter
plot of all diameters at all automatically and manual
measured diameters are shown. The scatter plot assumes
that all diameters are extracted in one-one correspondence
of field and automatic measurement. Therefore the diame-
ters of the field measurements where matched to the
closest automatic measurement and shows a qualitative
measure of the diameter estimation in the color coding
The coloring of the scatter plot gives a qualitative measure
for the number of points used to calculate the diameter in
the selected histogram bin. The coloring reflects the
normalized amount of points with respect to the maximal

(a) (b) (c)

(d) (e) (f)

Figure 4. Skeletons of the six investigated apple trees (compare with 3D-point clouds in
Figure 1): (a) Apple 1, (b) Apple 2, (c) Apple 3, (d) Apple 4, (e) Apple 5, and (f) Apple 6.
Different grey scales represent the different segments identified by the algorithm.
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amount used for a diameter calculation. If a one-to-one
correspondence of the diameters is assumed, the overall
regression is given as 0.98 and the p-value of 0.0 indicates
that the field measurement fully correlates with the
automatic measurement. Note that this assumption is
based on the good correlation results of the frequency
distributions. The observable grouping behavior emerges
from the histogram binning used to estimate the diameter.
The calculations where done with SciPy package in
Python.

Conclusions
This paper presents a new approach for extracting the
branching architecture from leafless apple trees. This
approach is based on a skeleton extraction procedure
based on terrestrial laser scan data. On selected examples
we showed that high correlation between manual valida-
tion measurements and automatically extracted branch
length detection is achievable, although problems with

gaps in the 3D-laserscanner data were obvious. The
frequency distributions of the length estimations for
lengths above 5 cm correlated with coefficients of 0.41 to
0.78, while the diameters, where the effect of gaps does
not directly influence the correlation, showed much better
correlations.

The frequency distributions of the diameter estimations
show a high similarity in their shape for diameters bigger
than 0.5 cm. The shape similarity between the frequency
distributions of field data and automatic measurements was
assessed by a linear regression. The correlation coefficients
of all six trees are above 0.9, and show that the branch
segmentation has no bigger influence on the diameter
distributions.

The more complex the canopy structure of trees, the
more gaps are to be expected in the scanned data, a problem
which remains to be solved in the algorithmic calculation.
Skeletonization algorithms such as the proposed SKELTRE
method provide a basis for an adequate gap-filling strategy
in 3D-point clouds with a high degree of occlusion.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Frequency distributions of automatically detected (right) and hand meas-
ured (left) branch lengths (in meters) in the canopy of: (a) and (b) Apple 1, (c) and
(d) Apple 2, and (e) and (f) Apple 3.
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The overall length of the extracted skeleton and the
field measurement varied by only 7.5 percent. A diameter
could be obtained for 72 percent of the overall skeleton
length. The loss of extractable diameters compared to the
extracted skeleton length is reasoned in the strong under-
sampling of the finer branches.

Further work will focus on the evaluation of the
extractable biomass based on the frequency distributions.
For this reason, we expect to improve the correlation of the
branch length by incorporating the diameter into the graph-
splitting procedure. It is expected that the use of a diameter
criterion will fully reveal the branching hierarchy under the
assumption that a new branch is always thinner than the
branch from which it is originating from. The approximation
of the field measurement procedure will enable better
simulation of individual branches, which is useful on trees
with a small number of branches available for regression
analysis. Most notably, the entire extraction process of
branch length and diameters was carried out without the use
of allometric relationships. The use of this method for light-
driven modeling of physiological tree parameters, e.g.,
branch transpiration will be assessed by investigating the
representation of the branch locations of the skeleton
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TABLE 2. RESULTS OF THE CANOPY ANALYSIS OF SIX VALIDATION TREES. THE
CROWN COMPLEXITY IS INDICATED BY THE STEM DIAMETER. THE SIMILARITY OF

THE FREQUENCY DISTRIBUTIONS IS GIVEN AS THE CORRELATION COEFFICIENT
BETWEEN THE FIELD DATA AND THE AUTOMATIC DATA

Tree Diameter of trunk R2 Length R2 Diameter

Apple 1 7.3 cm 0.78 0.92
Apple 2 6.7 cm 0.41 0.95
Apple 3 3.9 cm 0.64 0.98
Apple 4 5.9 cm 0.77 0.99
Apple 5 8.1 cm 0.72 0.98
Apple 6 7.4 cm 0.62 0.99

(a) (b)

(c) (d)

(e) (f)

Figure 6. Frequency distributions of automatically detected (right) and hand meas-
ured (left) branch lengths (in meters) in the canopy of: (a) and (b) Apple 4, (c) and
(d) Apple 5, and (e) and (f) Apple 6.
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Plate 2. Comparison of the frequency distributions in Figure 5 and Figure 6
based on the correlation between branch numbers in the same diameter class.
The point color denotes the individual test trees Apple 1 (red), Apple 2 (blue),
Apple 3 (green), Apple 4 (yellow), Apple 5 (purple), and Apple 6 (white).

Plate 3. Scatter plot over all field measured versus automatically extracted
diameters at branch base for all six apple trees. The colors indicate the
amount of points in the histogram bin used to calculate the diameter: Red =
low amount of points, yellow = average amount of points, and green = high
amount of points.
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