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A B S T R A C T

Recent severe droughts and storms has led to severe disturbances in Central European forests, highlighting the 
urgent need for adaptive forest management strategies and restoration. Using a multi-criteria decision analysis 
(MCDA) approach, this study prioritizes forest restoration areas across ownership boundaries by integrating 
remote sensing data, climate projections, and site-specific characteristics. Key indicators of forest resilience—
drought stress risk, stand-level tree species diversity, and landscape-level rarity—were assessed, revealing that 
approximately 18.5 % of the study area in Lüchow-Dannenberg, Germany, requires urgent restoration due to 
high drought stress risk, as well as low diversity and rarity. European beech and Norway spruce stands exhibit the 
highest projected drought stress risk, whereas Scots pine and oak stands show comparatively low drought stress 
risk. Pine-dominated stands exhibit the lowest diversity and landscape rarity, while beech and oak contribute 
significantly to biodiversity. Sensitivity analyses reveal that weighting different indicators affects restoration 
prioritization, emphasizing the need for context-specific adaptive management strategies that take into account 
site conditions (e.g., soil moisture, climate exposure) and forest type (e.g., converting pure pine stands into more 
diverse, mixed stands to increase resilience.

This work underscores the importance of forest inventory data in 
guiding a multidimensional approach to forest stewardship and high
lights how big data analytics can enhance forest science and decision- 
making. The study provides a practical framework for policymakers 
and forest managers to allocate resources efficiently, enhancing the 
resilience and sustainability of Central European forests in a changing 
climate.

1. Introduction

In the ongoing battle against climate change, the imperative to adapt 
forests to drifting environmental conditions has become increasingly 
paramount. The cumulative effects of storms and drought in recent years 
have led to extensive disturbances in European forests and demonstrate 
the urgency of adaptation (Buras et al., 2020; Marini et al., 2017; 
Schuldt et al., 2020; Senf and Seidl, 2021). Large parts of the Central 

European forests are neither close to nature, which might grant resis
tance and resilience (BMEL, 2015; Hennenberg et al., 2017; PGL and LP, 
2021), nor well mixed in order to spread risks (Bolte et al., 2009; Fuchs 
et al., 2024; Markowitz, 1991; Paul et al., 2020). The aims for the 
adaptation of Central European forests to climate change are to improve 
them structurally and functionally, i.e. enrich biodiversity by species 
composition and genetics, as well as by layering (Mansourian et al., 
2020; Stanturf, 2016; WBW, 2022). Given the widespread forest damage 
and the resulting high demand for restoration under simultaneously 
limited capacities, further prioritisation of climate adaption measures is 
crucial (Anderegg et al., 2022; Pach et al., 2018).

Steps towards an order of preparing climate-smart forest ecosystems, 
have often been proposed but however in practice not implemented or 
realized yet (Knoke et al., 2020; Singh et al., 2015; Walentowski et al., 
2017). Robust information on forest conditions and the potential for 
forest restoration is lacking so far, especially for informing policy 

Abbreviations: CHM, Canopy Height Model; CMIP, Common Management Information Protocol; NFI, National Forest Inventory; ODS/ L, Other Deciduous with 
Short/ Long life expectancy; RCM, Regional Climate Model; RCP, Representative Concentration Pathway; SWB, Site water balance.
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makers. Up to now, in German forestry, federal state and ownership 
boundaries have been limiting for information availability and thus 
forest restoration, as forest management plans are not mandatory for 
small-scale private forests. In state-owned forests, a permanent 
ownership-wide inventory is conducted. However, the datasets from 
state forest services are different with the sampling methods varying 
greatly to cross-ownership national forest inventories (NFI; Böckmann 
et al., 1998; Gschwantner et al., 2022). This data gap makes it difficult to 
develop a comprehensive understanding of forest conditions and the 
necessary measures for climate adaptation as well as societal demands.

In the context of forest planning, decision support systems (DSS) 
have been used successfully for the long-term analysis of forest devel
opment in the past (Blattert et al., 2018; Linkevičius et al., 2019; 
Nordström et al., 2019; Thrippleton et al., 2023, 2021). For this purpose, 
forest inventories coupled with growth simulators and MCDA methods 
were utilized to assess different management scenarios in a changing 
climate (Blattert et al., 2017; Bugmann and Seidl, 2022; Maréchaux 
et al., 2021; Reyer et al., 2015; Wolfslehner and Seidl, 2010). In addition 
to the analysis of the optimal management, information on the priori
tization of forest stands with regard to restoration efforts is crucial for 
decision makers. However, a practicable and robust DSS is largely 
lacking in this context.

The methodology outlined herein integrates various data sources, 
including climate data projections, such as site-specific characteristics 
and remote sensing data, to comprehensively assess each stand’s 
drought stress risk, tree species diversity at the stand level (stand- 
level diversity), and rarity of each stand at the landscape-level (Grier 
and Running, 1977; Heinrichs et al., 2019; Möllmann and Möhring, 
2017; Müller et al., 2022). While these indicators have individually been 
recognized for their relevance to ecosystem resilience, this study is, to 
our knowledge, the first to develop and apply a multi-criteria decision 
analysis (MCDA) that simultaneously incorporates all three criteria to 
prioritize forest restoration efforts across ownership boundaries at a 
landscape scale. Additionally, the temporal urgency of restoration is 
captured through a vegetation height model as a proxy for forest stand 
age (Senf et al., 2021; Socha et al., 2023), further refining the prioriti
zation process. This novel approach aims to provide a robust, spatially 
explicit decision support tool that enhances the capacity of forest 

managers and policymakers to allocate restoration resources effectively 
and foster climate-resilient forest ecosystems.

2. Material and methods

2.1. Study region

The study area, encompassing about 47,000 ha of forest which cover 
38 % of the area’s land surface, lies within the county of Lüchow-Dan
nenberg in the North German Lowlands (Fig. 1a). This county in Lower 
Saxony also borders three other federal states (Fig. 1b). Characterized by 
its diverse topography and vegetative composition, the region offers a 
representative sample of the broader landscape dynamics typical of 
northern Germany temperate oceanic climate (Beck et al., 2018).

Comprising primarily coniferous and only few deciduous forests, the 
vegetation of the study area is notable for its dominance by Scots pine 
(Pinus sylvestris L.; hereinafter “pine”), constituting approximately 67 % 
of the forest cover (Fig. 1c). Pedunculate and Sessile oak (Quercus robur 
L., Quercus petraea (Matt.) Liebl., hereinafter “oak”) represent the second 
most abundant species, accounting for 11 %, while Norway spruce (Picea 
abies L.; hereinafter “spruce”) occupies a lesser proportion, amounting to 
3 % of the forest. European beech (Fagus sylvatica L.; hereinafter 
“beech”) only plays a minor role in the main stocking so far. The study 
area was further chosen because it is characterized by a wide range of 
soil moisture and soil nutrient availabilities. Elevation ranges from 6 to 
145 m a.s.l., while in the period from 1991–2020 the climate was 
characterized by a 9.6 ◦C air temperature mean and a 629 mm m² a− 1 

annual precipitation sum (DWD, 2022). The future climate will change 
significantly in the study area and is characterised in Section 2.2.

The forest ownership in Lüchow-Dannenberg is dominated by pri
vate forests ranging from less than one hectare up to 5400 ha in size 
(Junack, 1989). Together they cover an area of 32,000 ha (69 %), while 
state forests comprise 13,000 ha (31 %) (vTI, 2015). Both state and 
private owned forests have an outstanding long tradition in forest 
restoration (Junack, 1924; von Unruh, 1936) –with only moderate 
achievement of the restoration goals. The famous big calamities in the 
study region have not ended until today (Habermann, 2017). All forest 
owners follow the integrative and multifunctional way of German 

Fig. 1. a Forest cover in Europe (Burgoin et al., 2024) and b location of the Lüchow-Dannenberg county at 11◦ E lon. and 53◦ N lat. in the German federal state of 
Lower Saxony, c distribution of main tree spp. groups (ODS/ ODL: Other deciduous trees with short/ long life expectancy) according to Blickensdörfer et al. 
(2024, 2022).
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forestry (Axer et al., 2023; Borrass et al., 2017; Larsen and Nielsen, 
2007; Mölder et al., 2020; Simons et al., 2021). Alongside continuous 
cover forestry (Mason et al., 2022), operations such as small-scale 
clear-cuts are practised, which underlines a highly diverse manage
ment that could mitigate disturbances and facilitate restoration (Muys 
and Messier, 2023; Potterf et al., 2023). Furthermore, about 900 ha are 
strictly preserved forests where no management takes place at all 
(Bollmann and Braunisch, 2013; Engel, 2020; Steinacker et al., 2023).

According to the third German NFI, the forests in the study region 
have an mean age of 86 years in 2024 (vTI, 2015) which suggests a 
generational succession. Therefore, the biggest issue evolves around tree 
species selection under deep uncertainty (Albert et al., 2017; Knocke 
et al., 2024; Marchau et al., 2019) if priority restoration areas have been 
defined.

2.2. Remote sensing and site-specific data

A remote sensing-based dataset was used to determine the drought 
stress vulnerability of tree species, the tree species diversity within the 
stand and the rarity at landscape level (Fig. 1). Tree species detection 
was based on the spectral-temporal reflectance signature in Sentinel-2 
satellite imagery, as assessed from Blickensdörfer et al. (2022). The 
resulting map provides information on the canopy-dominating tree 
species at a spatial resolution of 10 m for the stocked forest area, as 
defined by Langner et al. (2022). The mapped tree species distribution 
refers to the years 2017 and 2018, as satellite imagery of this time period 
was used for the analysis. The data set captures the condition of the 
forests before the extensive damage caused by the severe drought years 
of 2018–2020 in Germany. There were 11 tree species and tree species 
groups classified according to their spectral characteristics. NFI data was 
used to train the classification model and to estimate the classification 
accuracy at the national level. For a comprehensive description of the 
methods and data we refer to Blickensdörfer et al. (2024, 2022).

A Digital Surface Model (DSM) was utilized to delineate average 
forest stand heights (Fig. 2) (GeoBasis-DE/ LGLN 2024). Specifically, we 
employed the latest Canopy Height Model (CHM) with a resolution of 1 
m, which is readily available by the land surveying office of the federal 
state Lower Saxony (GeoBasis-DE/ LGLN 2024). This height model was 
generated using airborne laser scanning data collected between 2013 
and 2019. To get the average stand heights, we sampled the 1 m reso
lution CHM down to 50 m grid cells used in the other metrics. And to 
mitigate the effect of low canopy height values in forest gaps, which 
would lead to biased stand heights, the 95th percentile height within 
each grid cell was used.

In addition to the remote sensing data, climate and soil data was 
processed and used to derive the forest restoration area.

Climate projections for the period 2071 to 2100 were obtained from 
the ReKliEs-De project (Regional Climate Projection Ensemble for Ger
many; Hübener et al., 2017; Warrach-Sagi et al., 2018). Within the CMIP5 
generation, the RCP8.5 scenario was chosen in order to investigate an 
extreme climate shift towards 4.8 ◦C temperature and 8.5 W m− 2 radia
tion rise (van Vuuren et al., 2011). Thus, the General Circulation Model 
(GCM) ‘Hadley Centre Global Environment Model’ (HadGEM2) combined 
with the empirical-statistical regional climate model ‘Wetterlagen-ba
sierte Regionalisierungsmethode’ (WettReg18) were chosen to represent 
the most extreme climate projection (Kreienkamp et al., 2013; Martin 
et al., 2011). By selecting these statistical climate projections, we stand in 
line with conservative estimates typical for forestry, which often consider 
unfavorable (‘pessimum’) conditions to evaluate the resilience of man
agement options. The regional climate projections were regionalized to 
50 × 50 m grid cells. For these projections, the climatic water balance 
(CWB) during the vegetation period (the difference between potential 
evapotranspiration and precipitation) was calculated for a 30-year 
climate period of 2071–2100 (Allen et al., 1998; Nuske, 2022).

In addition to the CWB, the soil’s available water capacity (AWC) of a 
site was considered to determine the site water balance (SWB; Fig. 3; Grier 
and Running, 1977). Utilizing the pedotransfer function of Puhlmann and 
Wilpert (2011) and the input data from the forest site mapping, the soil 
water capacity was calculated where available. Otherwise, input variables 
from the 1 : 50,000 soil map were used (Gehrt et al., 2021).

2.3. Multi-criteria decision analysis

2.3.1. Forest restoration urgency
To identify and prioritize forest areas most in need of restoration, we 

apply a multi-criteria decision analysis (MCDA) approach. MCDA allows 
the integration of different ecological and management-related in
dicators into a single, comparable score.

Among the various MCDA methods, we use the multi-attribute value 
theory (MAVT), a well-established technique grounded in utility theory. 
MAVT is particularly suitable for our purpose because it can translate 
multiple, diverse indicators into a unified, dimensionless value between 
0, representing the poorest condition, and 1, representing the best 
condition. This enables direct comparison across spatial units.

In our application, we do not use MAVT to select a single “best” 
alternative, as in classic decision problems, but rather to produce a 
spatially explicit ranking of forest stands according to restoration ur
gency. This ranking is based on three key indicators: drought stress risk, 
diversity at stand level, and rarity at landscape level.

For each grid cell i, the drought stress indicator Di and the two rarity 
Ri and diversity Ei indicators are combined using equal weighting to 
produce the overall restoration value Gi: 

Fig. 2. Distribution of canopy heights in the study area. The map shows the canopy heights based on a Canopy Height Model (CHM) with 50 × 50 m resolution.
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Gi = 0.5 × Di + 0.25 × Ri + 0.25 × Ei (1) 

The result is a value Gi that describes the urgency of the restoration. 
The higher the value, the lower the urgency of restoration. The lower the 
restoration value, the greater the urgency of restoration.

A value function can be applied either by linear transformation or by 
direct evaluation (Demetriou, 2014; Eisenführ et al., 2010). While the 
results of a linear transformation are dependent on the data set and 
change with it, direct evaluation is independent and globally applicable.

Both the choice of value functions and their weights have a very 
strong impact on the results of the respective decision problem and thus 
on the decision as such. Depending on the objective, however, a 
weighting of the indicators could be useful in order to further specify the 
forest restoration activity. A sensitivity analysis was therefore carried 
out with all possible combinations. The sensitivity analysis was con
ducted to explore the impact of different weightings on the forest 
restoration value Gi.

The temporal component of urgency is represented by the vegetation 
height model (cf. 2.3. Remote Sensing and Site-specific Data). Forestry 
management practices often define certain height or age thresholds at 
which a stand should be regenerated (Albert et al., 2015; Knocke et al., 
2023, p. 98; Pach et al., 2018). If the height data indicates that the stand has 
reached or is approaching these thresholds, this suggests an increasing 
urgency to initiate regeneration measures—such as underplanting.

2.3.2. Drought stress risk assessment
Drought stress risk is a crucial criterion as it directly impacts the 

resilience and health of forest ecosystems, particularly in the face of 
climate change. By assessing drought stress, the methodology helps to 
identify areas and vegetation types most vulnerable to water scarcity, 
which can lead to increased susceptibility to diseases, reduced growth 
rates (Albert et al., 2018; Schmidt, 2020), and ultimately higher mor
tality rates among trees (Bigler et al., 2006). The inclusion of drought 
stress as a factor allows for targeted adaptation measures, such as the 
selection of drought-tolerant species (Albert et al., 2017) or the imple
mentation of water management practices to ensure the sustainability 
and functionality of ecosystems.

Based on the SWB for the selected climate scenario and model 
(Fig. 3), the drought stress vulnerability of the current stand is estimated 
for each 50 × 50 m grid cell. This indicator integrates the AWC and the 
CWB for a given period (Grier and Running, 1977). The value function of 
drought stress risk is based on tree species-specific SWB threshold values 
derived from Albert et al. (2017). A monotonically increasing sigmoid 
curve was selected as the shape of the function (see Fig. 4). The 
threshold values of the tree species from Albert et al. (2017) were set as 

intersections of the curve with the values 0.25 (high risk threshold) and 
0.75 (low risk threshold). The values used were selected to allow more 
differentiation in the dry and moist areas and thus keep the loss of in
formation to a minimum.

Let (x1j, 0.25) and 
(
x2j,0.75

)
be the two points that define the 

monotonic sigmoid function for a given tree species j representing the 
drought stress threshold values. The general formula is: 

dij =
1

1 +

(
1

0.75 − 1
)

∗ e

(

− r×

(

xi −

(
x1j − x2j

2

))) (2) 

The function interpolates sigmoidal relationships between these two 
points for a given tree species j. xiis the SWB value for the i-th grid cell 
and r is the slope parameter of the sigmoid function. It is determined 
using the nleqslv function to solve the equation associated with the sig
moid curve, given the input coordinates (Hasselman, 2023).

Let dij be the standardized drought stress score specifically associ
ated with the j-th tree species for the i-th grid cell. pij is the proportion of 
the j-th tree species in the i-th grid cell, where j ranges from 1 to the total 
number of tree species n. Then the weighted standardized drought stress 
score Di for the i-th grid cell can be calculated as: 

Di =
∑n

j=1
pij × dij (3) 

The weighted standardized drought stress score can range from 0 to 

Fig. 3. Spatial visualisation of the site water balance (SWB) as the sum of the available water capacity and the climatic water balance for the period 2071–2100 for 
the HadGEM2/WETTREG climate model.

Fig. 4. Drought stress score depending on the site water balance for the 
different tree species groups.
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1, with lower values indicating higher drought stress risk.

2.3.3. Diversity at stand level
Stand-level diversity is selected to evaluate the variety of tree species 

within a stand, which is essential for maintaining ecosystem resilience 
and ecological balance. Diverse stands are generally more resilient to 
pests, diseases, and environmental stressors, as different species and 
genetic variability can buffer the system against disturbances (Pretzsch 
and Grote, 2023; Yachi and Loreau, 1999). By assessing diversity at this 
level, the methodology aims to support biodiversity conservation and to 
foster stands that can adapt better to changing environmental condi
tions. High biodiversity also contributes to enhanced ecosystem ser
vices, such as carbon sequestration, soil fertility, and overall ecosystem 
productivity (del Río et al., 2022; Pretzsch et al., 2015; Steckel et al., 
2020).

Information on the species composition of dominant trees at the 
stand level (0.25 ha) was derived from remote sensing data and used to 
calculate diversity indices for identifying stands with low species di
versity. Firstly, the species richness (S) as the total number of tree spe
cies within the i-th 50 × 50 m grid cell was determined. For this purpose, 
the 10 × 10 m cells of the remote sensing data set (Fig. 1c) were 
aggregated. 

Hʹ = −
∑S

i=1
pi × ln (pi) (4) 

Subsequently, the Shannon index (Hʹ) at the 50 × 50 m was derived 
from the species richness (S) and the proportions (pi) of 10 × 10 m pixel 
cells belonging to the i-th species using the following formula (Shannon 
and Weaver, 1949): 

EH =
Hʹ

lnS
(5) 

Evenness (EH), on the other hand, is a measure of how evenly the tree 
species are distributed among the different species within the 50 × 50 m 
grid. It is often expressed as:

Hʹ is the Shannon index and S is the total number of species in the 
community. Evenness ranges from 0 (completely unequal distribution of 
pixel cells among species) to 1 (total even distribution).

By computing evenness, an evaluation of each stand based on tree 
species composition can be conducted. This allows the identification of 
stands with particularly low species diversity, which can then be 
diversified for risk prevention purposes.

2.3.4. Rarity at landscape level
Landscape-level rarity is selected to assess the contribution of rare 

tree species to the gamma (γ) diversity, or overall biodiversity, across a 
landscape. Rare elements can significantly enhance γ-diversity by add
ing unique species compositions and ecological niches that would not 
otherwise be represented (Qiao et al., 2023; Schall et al., 2020). This 
criterion allows for the identification of areas that, despite covering 
smaller spatial extents, contribute disproportionately to the richness and 
diversity of the entire landscape (Sebald et al., 2021). By focusing on 
rarity, the methodology supports conservation strategies that aim to 
protect these uncommon elements, thus maximizing γ-diversity and 
fostering ecosystem resilience at a larger scale.

At the landscape level, the regional importance of each tree species is 
assessed concerning its suitability for restoration. To achieve this, a 
rarity value was calculated for each stand based on the proportions of 
tree species, which examines the relative rarity of each tree species 
within the landscape. The rarity value function was adjusted so that rare 
species have a high rarity weight, while common tree species have a very 
low rarity weight (Fig. 3). To determine the rarity of a tree species, the 
proportions of tree species within a radius of 1700 m were extracted 
from remote sensing data (Fig. 1c). This represents a landscape area of 
907 ha. Let Aij represent the proportion of the j-th tree species within the 

i-th buffer. The rarity value function for each tree species within the 
buffer can be formulated as follows: 

Rij = 1 − A k
ij (6) 

The exponent k is calibrated based on a reference proportion pcx and 
a target rarity score pcy, and is calculated as follows: 

k =
log

(
1 − pcy

)

log (pcx)
(7) 

For the rarity value, it was assumed that a species has a rarity value 
of 0.75 if it represents 50 % of the species composition (Fig. 3). Then, to 
calculate the rarity-weighted values for the raster-cell RWi, we used the 
proportions of tree species within the raster cell pij to weight the rarity 
values Rij accordingly.

RWi =
∑n

j=1 pij ∗ Rij(8)

3. Results

3.1. Drought stress risk

The analysis of the drought stress scores for different tree species 
shows a remarkable differentiation with regard to their susceptibility to 
drought stress at their sites in the study area (Table 1): Oak shows high 
values with an average drought stress score of 0.86 and a median of 

Table 1 
Summary statistics of drought stress scores for different tree species. The table 
presents the mean, median, standard deviation (SD), minimum, and maximum 
values of drought stress for each tree species. It is important to note that these 
drought stress scores are derived from the combination of observed site water 
balance (SWB) and species composition.

Tree species mean median SD min max

Oak 0.86 0.95 0.20 0.05 1.00
Beech 0.12 0.01 0.25 0.00 1.00
Other deciduous trees with short life 

expectancy
0.95 0.99 0.10 0.32 1.00

Other deciduous trees with long life 
expectancy

1.00 1.00 0.00 0.95 1.00

Spruce 0.06 0.00 0.15 0.00 0.99
Douglas fir 0.86 0.92 0.18 0.15 1.00
Pine 0.99 1.00 0.01 0.87 1.00
Larch 0.97 0.99 0.04 0.53 1.00

Fig. 5. Rarity value function depending on the proportion of tree species. A 
rarity score of 0.75 is assigned for a tree species proportion of 0.5.
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0.95, which indicates a relatively low susceptibility to drought stress. 
Pine with a mean value of 0.99 or ODS and ODL appear to be similarly 
unsusceptible. This means that these tree species are less affected by 
drought stress under the projected SWB (Fig. 3). In comparison, beech 
and spruce show significant differences in their drought stress scores. A 
mean drought stress score of 0.12 is projected for the existing beech 
stands and a mean drought stress score of 0.06 is projected for the spruce 
stands. However, there are also a few sites with a lower drought stress 
score for both tree species (Table 1 and Fig. 5).

Based on the drought stress analysis, the area required for forest 
restoration can initially be quantified on a site-specific and climatic 
basis. Approximately 32,000 ha have a drought stress score above 0.9 
and thus a low risk of drought stress (Fig. 6). The high percentage of pine 
trees is responsible for this (Fig. 1), as they receive a very low drought 
stress score (Table 1 & Fig. 4). Nevertheless, approx. 5,000 ha of the 

study area have a standardized drought stress score < 0.5 (Fig. 6). This 
means that this combination of tree species and sites is probably at risk 
in the face of climate change. Such areas are mainly stocked with spruce 
or beech.

3.2. Diversity at stand level

From the distribution of the number of species and their proportions 
(Fig. 1), the evenness for the study area also shows that many stands are 
very homogeneous in terms of species composition (Fig. 7). An area of 
35,134 ha of forest has an evenness of <0.5. Only 5,363 ha have a high 
evenness score above 0.9. In the north-west of the study area in 
particular, there are more mixed stands, resulting in higher evenness 
scores. Especially in the centre-east of the study area, there are large 
stands of pine trees without a mixture.

Fig. 6. Spatial representation of drought stress score within the study area. The map illustrates the distribution of drought stress score across different regions, with 
colour intensities indicating varying levels of risk. The histogram displays the frequency distribution of dry stress risk values across the entire area, with the x-axis 
representing the risk levels and the y-axis representing the cumulative hectare values.

Fig. 7. Spatial representation of evenness within the study area. The map displays the distribution of evenness across different regions, with colour intensities 
reflecting gradients of evenness. The histogram depicts the frequency distribution of evenness values across the entire area, with the x-axis representing evenness and 
the y-axis representing the cumulative hectare values.
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Looking at individual tree species, pine stands show the greatest 
homogeneity with an average evenness of 0.25 (Table 2). Spruce (mean 
= 0.66) and Douglas fir (Pseudotsuga menziesii (Mirb.) Franco; mean =
0.67) show moderate evenness values, reflecting more balanced species 
distributions, though they still experience some dominance. Oak (mean 
= 0.58) and beech (mean = 0.65) also exhibit moderate evenness, with 
oak and beech stands maintaining relatively higher diversity compared 
to pine-dominated areas (Table 2).

3.3. Rarity at landscape level

Fig. 8 shows the rarity of the tree species at landscape level, i.e. 
γ-diversity. It can be seen that, above all, mixed oak or beech stands in 
pine-dominated areas, for example in the north-west of the study area, 
have a high rarity and receive correspondingly high rarity weights. The 
analysis of tree species-specific rarity values provides further insights 
into these patterns. Oak (mean = 0.67) and beech (mean = 0.82) exhibit 
relatively high rarity values (Table 3). This indicates their contribution 
to γ- diversity, as they are less common in the broader context.

In areas of neighboring pine stands, there is a particular lack of 
species at the landscape level and the pine stands show low rarity values 
(mean = 0.43; Table 3). 29,135 ha have a rarity of <0.5. Of this area, 

14,000 ha have a rarity <0.2, which indicates very low mixing at the 
landscape level (Fig. 8). These monocultures exhibit low diversity at the 
landscape level.

3.4. Combining the indicators

Based on the derived drought stress risk assessment, the species di
versity at stand level and the rarity at landscape level, the final step is to 
prioritize the forest restoration areas using a multi-criteria evaluation.

Fig. 9 shows the aggregated restoration values with equal weighting 
of the indicators for the study area. It can be seen that the eastern part of 
the study area, in particular, is highly worthy of restoration due to an 
increased future risk of drought stress and low diversity at stand and 
landscape level. At the same time, there are forest stands, for example, in 
the north-western part of the study area, which show a low risk of 
drought stress and a high species diversity at stand and landscape level.

Assuming a threshold value of 0.5 for a high forest restoration pri
ority, approximately 18.5 % (8,689 ha) of forest stands have a high 
restoration priority, while 81.5 % (38,214 ha) have a low restoration 
priority.

Fig. 10 shows the histogram of canopy height distribution for the 
8,689 ha identified with high restoration priority (i.e., restoration values 

Table 2 
Summary statistics of Evenness scores for different tree species. The table pre
sents the mean, median, standard deviation (SD), minimum, and maximum 
values of Evenness scores for each tree species.

Tree species mean median SD min max

Oak 0.58 0.72 0.35 0.00 1.00
Beech 0.65 0.75 0.30 0.00 1.00
Other deciduous trees with short life 

expectancy
0.72 0.78 0.23 0.00 1.00

Other deciduous trees with long life 
expectancy

0.65 0.74 0.30 0.00 1.00

Spruce 0.66 0.73 0.27 0.00 1.00
Douglas fir 0.67 0.73 0.26 0.00 1.00
Pine 0.25 0.00 0.36 0.00 1.00
Larch 0.71 0.76 0.23 0.00 1.00

Fig. 8. Spatial representation of landscape-level species rarity within the study area. The map illustrates the species rarity of each cell, with colour intensities 
indicating varying degrees of rarity. The rarity of each grid cell was calculated in relation to the proportion of tree species within a radius of 1700 m The histogram 
displays the frequency distribution of rarity scores across the entire area, with the x-axis representing rarity levels and the y-axis representing the cumulative 
hectare values.

Table 3 
Summary statistics of rarity scores for different tree species. The table presents 
the mean, median, standard deviation (SD), minimum, and maximum values of 
rarity scores for each tree species.

Tree species mean median SD min max

Oak 0,67 0,79 0,31 0,00 1,00
Beech 0,82 0,95 0,24 0,04 1,00
Other deciduous trees with short life 

expectancy
0,58 0,61 0,29 0,04 1,00

Other deciduous trees with long life 
expectancy

0,61 0,67 0,31 0,02 1,00

Spruce 0,78 0,84 0,20 0,04 1,00
Douglas fir 0,77 0,83 0,21 0,04 1,00
Pine 0,43 0,40 0,28 0,00 1,00
Larch 0,72 0,79 0,25 0,04 1,00
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< 0.5) in the study area. The distribution highlights the varying stages of 
forest development within these areas. Most of the high-priority resto
ration areas exhibit average canopy heights indicative of mid- 
successional stages, suggesting that these stands may benefit from in
terventions aimed at promoting structural diversity and resilience. A 
minor proportion of forest stands have average canopy heights towards 
the lower or upper end of the range. These forest stands in the early or 
late successional stage may require different management approaches. 
The varying average stand heights, as a proxy for successional devel
opment stages, suggest that targeted forestry measures, such as thinning 
or species diversification, could be strategically applied depending on 
the specific successional stage and restoration goals. This can guide the 
temporal prioritization of restoration efforts.

3.5. Sensitivity

The sensitivity analysis reveals the impact of different weighting 
schemes on the restoration value. Overall, the sensitivity analysis 
highlights the importance of carefully selecting appropriate weightings 
based on the objectives of the study. This tailored approach enables a 
more nuanced understanding of forest restoration dynamics and en
hances the specificity of the results.

The largest area of restoration is observed with a weighting of 0.5 
each for rarity and diversity, and 0 for drought stress (Fig. 11). With this 
combination, 33,600 ha are analyzed that have a restoration value lower 
than the threshold value of 0.5. Conversely, if only the drought stress 
risk is considered and the other two variables are weighted with 0, the 
lowest forest restoration area is obtained. Around 5,000 ha with a 
restoration value lower than 0.5 will then be derived, demonstrating 
that drought stress alone identifies a much smaller area needing 
restoration.

4. Discussion

Drought stress risk, diversity at the stand level, rarity at the land
scape level and stand age are the key criteria underscoring the multi
faceted nature of forest resilience. By applying our indicator-based 
approach, we can quantify these aspects across the study area, enabling 
the identification of priority areas for management and restoration. The 
following discussion evaluates the strengths and limitations of our 
approach while interpreting the findings in the context of existing 
research.

4.1. Drought stress risk

In the 21st century, a warmer and, in many regions, drier climate is 
expected (IPCC, 2014). For Central Europe, mean precipitations may not 
change substantially, but seasonal shifts –particular drier summers –are 
projected (Hübener et al., 2017). Consequently, an increase in the fre
quency and intensity of forest disturbances such as drought, storms, and 
bark beetle outbreaks is anticipated (Seidl et al., 2017; Senf and Seidl, 
2021; Anderegg et al., 2022; Patacca et al., 2023). These changes imply 
significant impacts on forest functioning and resilience (Allen et al., 
2010; Senf et al., 2020). These impacts can be stress, disease and tree 
mortality (Rykiel, 1985). Causes of mortality (i.e., factors, agents, 
pathogens) are complex and are often classified as predisposing, inciting 
(primary) and contributing (secondary) factors, which can form a 
decline spiral and possibly lead to death (Manion, 1991, p. 333). In this 
context, climate change-induced droughts become the most prominent 
factor (Buras et al., 2020; Senf et al., 2020). Secular drought has to be 
seen as a predisposing factor and heavy drought events depict inciting 
causes for lethal stress (Bigler et al., 2006; Rykiel, 1985). Generally, it is 

Fig. 9. Aggregated restoration values with equal weighting of the indicators for the study area. This map illustrates the prioritization of forest restoration areas based 
on a multi-criteria evaluation, incorporating drought stress, stand-level species diversity, and landscape-level rarity.

Fig. 10. Distribution of the canopy height of stands with increased restora
tion priority.
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difficult to distinguish if tree mortality is caused by a pathogen itself, or 
if a tree has died with this pathogen present.

Actual vulnerability to drought can also be clouded by background 
mortality (i.e., influenced by competition), especially in dense forests 
(Archambeau et al., 2020; Kulha et al., 2023; Sánchez-Salguero et al., 
2015) or at edges (Biber and Pretzsch, 2022; Buras et al., 2018). 
Therefore, our drought stress risk assessment was designed to identify 
site-specific areas where mortality and vitality reduction are most likely. 
This encapsulates both growth reactions and the risk of exposure to bi
otic factors using the SWB (Jaime et al., 2019; Martinez del Castillo 
et al., 2024).

Norway spruce stands in the study area grow on a SWB of ≤ 0 mm 
within the vegetation period and thus possess the highest drought stress 
risk according to Albert et al. (2017; Table 1). Our findings are sup
ported by the significant reduction in radial growth in drought years 
(Lévesque et al., 2014; Vitali et al., 2017) and increased susceptibility to 
biotic pests. Biotic pests, such as the spruce bark beetle (Jönsson et al., 
2012; Marini et al., 2017; Stadelmann et al., 2013), contribute second
arily to tree death (Manion, 1991, p. 333). Therefore, the drought stress 
assessment we have applied (Fig. 4) is aligned with present studies that 
identify spruce stands as highly endangered (Aldea et al., 2024; Brandl 
et al., 2020; Fuchs et al., 2024; Honkaniemi et al., 2020; Lévesque et al., 
2014).

Within the study region, Scots pine is the most abundant species 
(Fig. 1). However, it is also seen as having high drought stress, i.e. 
mortality risk (Bigler et al., 2006; Haberstroh et al., 2022; Hartmann 
et al., 2022; Lemaire et al., 2022; Patacca et al., 2023; Rehschuh and 
Rühr, 2021), while its hardiness and (epigenetic) adaptation potential is 
simultaneously praised (Bose et al., 2020, 2024; Brichta et al., 2023). 
Predisposing factors for tree death of pine are often associated with 
drought, as soil and climatic stressors affect health in the long term. 
Stony, shallow soils with low water capacity (Bose et al., 2024) and 
insufficient nutrient supply (Bose et al., 2020) primarily challenge pine 
in continental regions (Diers et al., 2024; Enderle et al., 2024). High 
stand densities (del Río et al., 2017; Jaime et al., 2019; Sohn et al., 

2016), senescing old trees and missing (Steckel et al., 2020) or inap
propriate admixtures (Špulák, 2023) also predispose pines.

The growth trends of pine in Europe vary strongly (Pretzsch et al., 
2023). Central European pine stands, which are found in our study area, 
appear to compensate for the growth impairments caused by warmer 
and drier summers by stimulating growth through warmer late winter 
periods (Diers et al., 2024, 2023). Furthermore, there are indications 
that larger pines are more affected by drought than smaller trees (Merlin 
et al., 2015; Mueller-Dombois, 1987). This size–vulnerability relation
ship is directly represented in our CHM (Fig. 2) and taken into account in 
further prioritization (Fig. 10).

Appropriate forest management of pine stands can mitigate drought 
stress. Thinning reduces competition for water, thereby lowering 
drought stress (Sohn et al., 2016, p. 20). The risk of pest outbreaks (i.e., 
bark beetle, butterfly or jewel beetle gradations), such as those linked to 
drought and higher temperatures (Netherer and Schopf, 2010; Ray et al., 
2016; Skrzecz et al., 2020), further increases stress and vulnerability of 
pine. Even if biotic pathogens increase in intensity and frequency in the 
future (Jabłoński et al., 2019), they will continue to be linked to a 
drought-related weakening of the trees. This favors plant and fungal 
parasites as dieback due to mistletoe or Diplodia sapinea (Fr.) Fuckel 
(Brodde et al., 2023; Dobbertin and Rigling, 2006).

Recent studies show that Sessile and Pedunculate oak have a high 
resistance to drought and show less damage and lower mortality 
compared to beech and spruce (Brandl et al., 2020). Our assessment 
confirms these findings (Fig. 4): Stands with a high proportion of oak 
showed the lowest drought stress values for the projections within the 
study area (Table 1). While other tree species in the northern German 
lowlands show a decline in growth with higher temperatures, oaks show 
a positive basal area increment trend (Enderle et al., 2024). This ca
pacity to adapt to the warmer conditions and the increasing likelihood of 
summer droughts projected for Central Europe under future climate 
scenarios emphasizes their importance as a key species for the design of 
climate-resilient forests (Gribbe et al., 2024; Rubio-Cuadrado et al., 
2018; Vrška et al., 2017).

Fig. 11. Illustration of the sensitivity analysis, in which the variables drought stress, rarity at landscape level and diversity in the stand were weighted variably. The 
weighting of evenness is derived from the difference between the drought stress weight and the rarity weight. The forest restoration area with a multi-attribute value 
< 0.5 is shown as a coloured gradient.

M. Axer et al.                                                                                                                                                                                                                                    Trees, Forests and People 22 (2025) 101079 

9 



From the preceding discussion it is apparent that assessing drought 
risk is complex (Pretzsch et al., 2013). Our methodology addresses this 
by weighting tree species according to their proportional representation 
in a stand (Section 2.3.2), providing a practice-oriented framework for 
classifying drought stress risk. As a result, less drought-tolerant species 
such as beech and spruce benefit from being mixed with 
drought-tolerant species such as oak or pine (Fig. 4). While intuitive, this 
approach only partially accounts for species interactions, such as facil
itation or competition (Bauhus et al., 2017; Pretzsch et al., 2013). In 
mixed forests, synergistic effects –such as complementary water and 
nutrient use –can reduce overall drought stress, even when individual 
species exhibit high stress levels. For pine stands, the inclusion of 
drought-tolerant species like oaks enhances resilience through resource 
complementarity (Giberti et al., 2023; Steckel et al., 2020). Conversely, 
competition from spruce, even when limited to the understory, can 
intensify drought stress for co-occurring species (Špulák, 2023). A 
higher survival rate was observed for spruce in mixed stands, also in a 
drier and warmer climates (Brandl et al., 2020; Neuner et al., 2015). As 
noted by Grossiord et al. (2014) and Forrester et al. (2016), drought 
stress can sometimes be lower in mixed forests. However, this is not a 
general pattern they found, as there were many two-species mixtures 
where both species had higher water stress compared to their 
monocultures.

Despite the complexity of mixed forest effects, the presented drought 
stress risk classification to prioritize forests for restoration (Fig. 6) re
flects increasing mortality projections for lowland conditions (Allen 
et al., 2010; Nothdurft, 2013). The chosen climate model (Fig. 4) can be 
updated and adapted at any time to reflect new data or advances in 
climate science (Eyring et al., 2016; Pirani et al., 2024), ensuring that 
the drought risk assessment remains robust and relevant under changing 
conditions.

4.2. Diversity at stand level

The evaluation of biodiversity at the stand level provides valuable 
insights into its resilience (Yachi and Loreau, 1999). The incorporation 
of remote sensing data allowed for wall-to-wall mapping of tree species 
diversity in the study area and across ownership boundaries. Earlier 
approaches mainly served nature conservation purposes (Foody and 
Cutler, 2006; Madonsela et al., 2017; Redowan, 2015; Starčević et al., 
2020). By calculating diversity indices such as species richness, Shannon 
index, and evenness, we identified critical regions for forest restoration 
requiring diversification.

The species distribution data we applied to model diversity indices is 
derived from optical satellite imagery with a spatial resolution of 10 m 
(Sentinel-2 data; Blickensdörfer et al., 2024). Consequently, there are 
certain limitations of this data in terms of species mapping and thus 
biodiversity indices. As wavelengths of optical satellite imagery are not 
able to penetrate the upper canopy layer, we only get information about 
the topmost trees. Potential species only present in the understory are 
not assessed. Because the reflectance of 10 m pixels consists of mixed 
signals, the processed information is only valid for the dominant species 
and might miss smaller trees; it is therefore less accurate for mixed forest 
stands. Additionally, the model was trained to accurately map the main 
tree species and is less accurate for rarer tree species. These limitations 
will most likely lead to underestimated biodiversity indices and should 
not be compared to indices based on field data. All these factors have to 
be considered when interpreting the results of the present tree species 
distribution and biodiversity indices. Nonetheless, the applicability re
mains, especially in the case of structurally poor stands (Fig. 1c). The 
uncertainties of the species map have been quantified in Blickensdörfer 
et al. (2024), which should guide the interpretation of results.

Our findings demonstrate that many stands within the study area 
exhibit low canopy tree species diversity, with a significant proportion 
showing evenness values below 0.5 (Fig. 7). As stands with low species 
diversity are generally more susceptible to pests, diseases, and 

environmental stressors (Messier et al., 2022), this highlights a notable 
vulnerability. A review by Jactel et al. (2005) confirmed the ‘diversi
ty-stability theory’, stating that mixed stands are generally less affected 
by pests than pure stands.

The comparison of tree species within our study shows that pine 
stands are particularly species-poor (Table 2). Numerous findings indi
cate that these species-poor pine stands are more severely affected by 
pests: The susceptibility of pure pine stands to needle-feeding insects 
was shown early on to decrease when deciduous trees are admixed 
(Lüdge, 1971). Higher densities of parasitoid wasps as antagonists of 
pest insects have been detected when deciduous trees, especially oak, 
were admixed (Jäkel and Roth, 2004). Furthermore, the probability of 
bark beetle infestation was higher for stands with a high pine basal area 
(Jaime et al., 2019). However, under the influence of recent mega
droughts in Central Europe (Bose et al., 2022; Büntgen et al., 2021), 
evidence has emerged suggesting that very high species diversity can 
increase the likelihood of functionally redundant neighbors. This, in 
turn, reduces niche complementarity and intensifies interspecific 
competition, ultimately leading to higher mortality (Searle et al., 2022; 
Shovon et al., 2024).

In addition to biotic risks (Guyot et al., 2016), the diversity of forest 
stands also influences their resistance to abiotic factors, such as forest 
fires. Forest fires are expected to increase as a result of climate change 
due to lower precipitation and higher temperatures (Fig. 3). Evidence 
from fire-prone regions indicates that mixed forests containing both 
coniferous and deciduous tree species are less fire-prone than pure 
coniferous forests (Hély et al., 2001, 2000). In addition, fires in mixed 
forests tend to be spatially less extensive and their damages on the tree 
level less intense (González et al., 2006; Silva et al., 2009; Wang, 2002).

The preceding discussion shows that evenness emerges as a suitable 
indicator for assessing the resilience of forest stands, as low values 
indicate heightened susceptibility to biotic and abiotic stress factors. The 
predominance of pure pine stands in the center-east of the study area, 
underscores the need for targeted interventions to improve yield, 
ecological stability and economic viability (Knoke et al., 2008; Silva 
Pedro et al., 2015; Spathelf and Ammer, 2015). Pure stands could be 
diversified through management strategies such as mixed-species 
planting, seeding or natural regeneration facilitation to enhance struc
tural and functional diversity (Axer et al., 2022; Fischer and Fischer, 
2012; Fischer et al., 2016; Huth et al., 2017; Spathelf et al., 2018; 
Stanturf, 2016; von Lüpke and Sennhenn-Reulen, 2023).

Conversely, the higher evenness scores in the north-west region of 
the study area reflect a greater proportion of mixed stands, suggesting 
these areas may serve as benchmarks or reservoirs of resilience. This 
contrast between regions emphasizes the importance of spatially explicit 
strategies in forest management. By prioritizing the diversification of 
homogenous stands, especially in regions with low evenness, forest 
managers can mitigate risks and enhance the adaptability of forest 
ecosystems to changing environmental conditions (Schoene and Bernier, 
2012).

4.3. Rarity at landscape scale

Forest management thrives to diversify stands regarding species, 
structures (layering) and genetics, i.e. α-diversity (Kimmins, 2004; see 
4.2. Diversity at stand level). However, this process inevitably leads to 
an alignment of forest types across the landscape (Fuchs et al., 2024; 
Pretzsch, 2019). As different forest sites promote β-diversity, so that 
swamplands or weak nutrient levels differentiate stocking (Stein et al., 
2014), there are calls to focus more on β- and γ-diversity across the 
landscapes. β- and γ-diversity have been identified as important ele
ments for the functioning of ecosystems (Mori et al., 2018; Schuler et al., 
2017). Sebald et al. (2021) showed that mixing tree species between 
stands is at least as effective as mixing tree species within stands to 
mitigate disturbances. This includes structures, species and management 
concepts (Müller et al., 2022).
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We developed an approach for how to combine both viewpoints by 
enhancing diversity within stands through the evenness index (Larsen 
and Nielsen, 2007; Markowitz, 1991; Pretzsch et al., 2013) and by 
keeping rare elements at a landscape scale through the rarity index, even 
if they are monospecific or maladapted (Heinrichs et al., 2019). The 
approach of lowering the weight of common species supports diversity 
maximisation, while taking into account the ecological importance of 
rare species (Fig. 3). As numerous studies have shown, individual trees 
or groups of old oaks or beeches in homogeneous coniferous forests, in 
particular, create diverse ecological niches for different species groups 
(Koch Widerberg et al., 2012; Pilskog et al., 2016; Wehnert et al., 2020). 
Assessing the ecological value of single tree admixtures is even more 
important in landscapes with predominance of a single tree species over 
large areas (Fig. 1).

A further example is rare indicator species (Dufrêne and Legendre, 
1997), such as the forest owl Glaucidium passerinum L.. They are espe
cially present in lowland Spruce forests, whose silvicultural aspects must 
be restored (cf. drought assessment in Fig. 6), and could function as a 
tradeoff and be preserved from the viewpoint of ecology (Rothgänger, 
2023). Light-transmissive coniferous species overall host many special
ized taxa, which promote biodiversity (Brändle and Brandl, 2001; 
Heinrichs et al., 2019) and the multifunctionality of forests with their 
ecosystem services (Schuler et al., 2017).

In addition to nature conservation aspects, the rarity indicators also 
appear to be suitable for forest management. Rare tree species are of 
particular value at the landscape scale as seed trees, as they contribute 
significantly to natural regeneration and thus serve as cornerstones for 
forest restoration (Axer et al., 2022; Dobrovolny and Tesař, 2010; 
Kunstler et al., 2004; Zerbe, 2002). Rare elements are weighted partic
ularly highly (Fig. 3) and can thus be considered as natural regeneration 
potential after disturbances (Schüle et al., 2023; Tiebel et al., 2020). This 
consideration becomes even more crucial when we account for the 
increasing risk of bark beetle infestations, which rises sharply with 
spruce volume at the landscape level (Stadelmann et al., 2013). Simu
lation studies confirm that reducing the proportion of spruce in the 
landscape increases the resilience of the remaining spruce trees 
(Honkaniemi et al., 2020). A study by Kautz et al. (2011) showed that 
the dispersal of the European spruce bark beetle Ips typographus L. is 
strongly dependent on distance and that 95 % of new infestations 
occurred within a radius of 500 m of the previous year’s infestation sites.

From the preceding discussion, the assumption that rare tree species 
make a higher contribution to biodiversity at the landscape scale pro
vides a basis for decision making in forest restoration. The approach 
provides a robust methodology for calculating rarity scores that can be 
linked to site-specific data to support forest restoration prioritisation 
(Fig. 8). These findings underscore the utility of remote sensing in 
biodiversity assessment and decision-making, enabling the identifica
tion of priority areas for intervention.

4.4. Standardization and value functions: global applicability and impact 
of weighting

As already mentioned in chapter 2.3. Multi-Criteria Decision Anal
ysis, the specific definition of the value functions is of crucial importance 
for the results. In order to be able to apply the value functions globally, it 
is equally important not to carry out a purely linear scaled trans
formation. This would make comparability between different scenarios 
impossible. Since the decision model should also be able to be adapted to 
changes in the input data with as little effort as possible, the global 
methods for defining value functions are also suitable here. This also 
allows changes between different data statuses to be quantified.

Furthermore, the results of the decision model are heavily dependent 
on the weighting of the individual indicators. The sensitivity analysis 
shows that the area increases significantly with a higher weighting of the 
diversity indicators (Fig. 11). However, it is up to the decision-maker to 
determine the weighting. There are various approaches for methodically 

determining the weighting (e.g. Analytical Hierarchy Process; Saaty 
et al., 2012).

5. Conclusions

Our study highlights key factors influencing forest resilience, 
including drought stress risk, stand-level diversity, rarity at the land
scape scale, and stand age. While previous approaches in Germany end 
at the ownership boundary (Grüll et al., 2020), we demonstrate how to 
combine site- and remote sensing information at the landscape level. 
The integration of multi-source spatial datasets enables a 
landscape-level assessment, providing robust guidance for forest resto
ration planning.

Key contributions and implications: 

• For forest owners: Prioritize restoration of highly vulnerable or 
species-poor stands, balancing timber production with biodiversity 
enhancement.

• For planners and authorities: Use our multidimensional indicators 
to allocate resources efficiently, identify priority restoration areas, 
and adapt funding mechanisms and silvicultural guidelines.

• For restoration practitioners: The approach supports planning of 
planting, thinning, and species-mixing strategies, incorporating rare 
species and enhancing ecosystem resilience.

Limitations and future steps: 

• While our indicators provide a comprehensive framework, further 
refinement could integrate additional local site conditions or climate 
projections.

• Long-term monitoring is needed to validate model predictions and to 
adapt management strategies over time.

• Expanding the approach to include socio-economic constraints and 
stakeholder preferences could further improve decision-making.

Overall, the analysis emphasizes the necessity of a comprehensive 
and flexible framework for forest restoration prioritization (Cannon 
et al., 2020; Cavalcante et al., 2022; Rayden et al., 2023; Vettorazzi and 
Valente, 2016). Our study demonstrates that a flexible, indicator-based 
framework can accelerate forest adaptation to climate change, foster 
species-rich and resilient ecosystems, and support coordinated action 
among forest owners, policymakers, and practitioners. Given limited 
resources such as seedlings, labor, and subsidies, strategic prioritization 
based on these indicators is crucial for effective forest management 
(Charron and Hermanutz, 2016; Silva et al., 2023).
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Bigler, C., Bräker, O.U., Bugmann, H., Dobbertin, M., Rigling, A., 2006. Drought as an 
inciting mortality factor in scots pine stands of the Valais, Switzerland. Ecosystems 9, 
330–343. https://doi.org/10.1007/s10021-005-0126-2.

Blattert, C., Lemm, R., Thees, O., Hansen, J., Lexer, M.J., Hanewinkel, M., 2018. 
Segregated versus integrated biodiversity conservation: value-based ecosystem 
service assessment under varying forest management strategies in a Swiss case study. 
Ecol. Indic. 95, 751–764. https://doi.org/10.1016/j.ecolind.2018.08.016.

Blattert, C., Lemm, R., Thees, O., Lexer, M.J., Hanewinkel, M., 2017. Management of 
ecosystem services in mountain forests: review of indicators and value functions for 
model based multi-criteria decision analysis. Ecol. Indic. 79, 391–409. https://doi. 
org/10.1016/j.ecolind.2017.04.025.

Blickensdörfer, L., Oehmichen, K., Pflugmacher, D., Kleinschmit, B., Hostert, P., 2024. 
National tree species mapping using Sentinel-1/2 time series and German national 
forest inventory data. Remote Sens. Environ. 304, 114069. https://doi.org/10.1016/ 
j.rse.2024.114069.

Blickensdörfer, L., Oehmichen, K., Pflugmacher, D., Kleinschmit, B., Hostert, P., 2022. 
Dominant tree species for Germany (2017/2018). https://doi.org/10.3220/DATA20 
221214084846.

BMEL, 2015. The forests in Germany. Selected Results of the Third National Forest 
Inventory. Federal Ministry of Food and Agriculture, Berlin.
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Ponette, Q., Pérot, T., Reventlow, D.O.J., Sitko, R., Sramek, V., Steckel, M., 
Svoboda, M., Verheyen, K., Vospernik, S., Wolff, B., Zlatanov, T., Bravo-Oviedo, A., 

M. Axer et al.                                                                                                                                                                                                                                    Trees, Forests and People 22 (2025) 101079 

12 

https://doi.org/10.1186/s40663-015-0036-5
https://doi.org/10.3390/f8100363
https://doi.org/10.1186/s40663-018-0152-0
https://doi.org/10.1186/s40663-018-0152-0
https://doi.org/10.1111/gcb.17079
https://doi.org/10.1016/j.foreco.2009.09.001
https://doi.org/10.1126/science.abp9723
https://doi.org/10.1016/j.agrformet.2019.107772
https://doi.org/10.1016/j.agrformet.2019.107772
https://doi.org/10.3389/ffgc.2022.826186
https://doi.org/10.3389/ffgc.2022.826186
http://refhub.elsevier.com/S2666-7193(25)00305-X/sbref0009
http://refhub.elsevier.com/S2666-7193(25)00305-X/sbref0009
https://doi.org/10.1007/978-3-662-54553-9_7
https://doi.org/10.1038/sdata.2018.214
https://doi.org/10.1016/j.foreco.2022.120383
https://doi.org/10.1016/j.foreco.2022.120383
https://doi.org/10.1007/s10021-005-0126-2
https://doi.org/10.1016/j.ecolind.2018.08.016
https://doi.org/10.1016/j.ecolind.2017.04.025
https://doi.org/10.1016/j.ecolind.2017.04.025
https://doi.org/10.1016/j.rse.2024.114069
https://doi.org/10.1016/j.rse.2024.114069
https://doi.org/10.3220/DATA20221214084846
https://doi.org/10.3220/DATA20221214084846
http://refhub.elsevier.com/S2666-7193(25)00305-X/sbref0018
http://refhub.elsevier.com/S2666-7193(25)00305-X/sbref0018
http://refhub.elsevier.com/S2666-7193(25)00305-X/sbref0019
http://refhub.elsevier.com/S2666-7193(25)00305-X/sbref0019
http://refhub.elsevier.com/S2666-7193(25)00305-X/sbref0019
https://doi.org/10.1080/00207233.2014.889472
https://doi.org/10.1080/00207233.2014.889472
https://doi.org/10.1080/02827580903418224
https://doi.org/10.1080/02827580903418224
https://doi.org/10.1016/j.forpol.2016.06.028
https://doi.org/10.1016/j.forpol.2016.06.028
https://doi.org/10.1111/gcb.15153
https://doi.org/10.1016/j.foreco.2024.121873
https://doi.org/10.1111/pce.13729
https://doi.org/10.1111/plb.13380
https://doi.org/10.1016/j.foreco.2019.117652
https://doi.org/10.1046/j.1365-2656.2001.00506.x
https://doi.org/10.1046/j.1365-2656.2001.00506.x
https://doi.org/10.2478/forj-2022-0020
https://doi.org/10.1016/j.foreco.2023.121436
https://doi.org/10.1016/j.foreco.2023.121436
https://doi.org/10.1111/1365-2745.13989
https://doi.org/10.1111/1365-2745.13989
https://doi.org/10.1038/s41561-021-00698-0
https://doi.org/10.5194/bg-17-1655-2020
https://doi.org/10.5194/bg-17-1655-2020
https://doi.org/10.1088/1748-9326/aaa0b4
https://doi.org/10.2760/262532
https://doi.org/10.2760/262532
https://doi.org/10.1007/s10980-020-01111-8
https://doi.org/10.1007/s10980-020-01111-8
https://doi.org/10.1016/j.jenvman.2022.115590
https://doi.org/10.1016/j.foreco.2015.11.003
https://doi.org/10.1016/j.foreco.2015.11.003
https://doi.org/10.5424/fs/2017262-11325


2022. Emerging stability of forest productivity by mixing two species buffers 
temperature destabilizing effect. J. Appl. Ecol. 59, 2730–2741. https://doi.org/ 
10.1111/1365-2664.14267.

Demetriou, D., 2014. The Development of an Integrated Planning and Decision Support 
System (IPDSS) For Land Consolidation. Springer, Cham. https://doi.org/10.1007/ 
978-3-319-02347-2. 

Diers, M., Leuschner, C., Dulamsuren, C., Schulz, T.C., Weigel, R., 2024. Increasing 
winter temperatures stimulate scots pine growth in the North German lowlands 
despite stationary sensitivity to summer drought. Ecosystems 27, 428–442. https:// 
doi.org/10.1007/s10021-023-00897-3.

Diers, M., Weigel, R., Leuschner, C., 2023. Both climate sensitivity and growth trend of 
European beech decrease in the North German Lowlands, while Scots pine still 
thrives, despite growing sensitivity. Trees 37, 523–543. https://doi.org/10.1007/ 
s00468-022-02369-y.

Dobbertin, M., Rigling, A., 2006. Pine mistletoe (Viscum album ssp. austriacum) 
contributes to Scots pine (Pinus sylvestris) mortality in the Rhone valley of 
Switzerland. For. Path. 36, 309–322. https://doi.org/10.1111/j.1439- 
0329.2006.00457.x.
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Jabłoński, T., Tarwacki, G., Sukovata, L., 2019. Pine forest condition in Poland 2015- 
2018. Pine forests: current status, existing challenges and ways forward. In: Proc. Int. 
Sci. Pract. Conf. 2019, pp. 83–88.

Jactel, H., Brockerhoff, E., Duelli, P., 2005. A test of the biodiversity-stability theory: 
meta-analysis of tree species diversity effects on insect pest infestations, and re- 
examination of responsible factors (Eds.). In: Scherer-Lorenzen, M., Körner, C., 
Schulze, E.-D. (Eds.), Forest Diversity and Function: Temperate and Boreal Systems. 
Springer, Berlin, pp. 235–262. https://doi.org/10.1007/3-540-26599-6_12.

Jaime, L., Batllori, E., Margalef-Marrase, J., Pérez Navarro, M.Á., Lloret, F., 2019. Scots 
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Möllmann, T.B., Möhring, B., 2017. A practical way to integrate risk in forest 
management decisions. Ann. For. Sci. 74, 75. https://doi.org/10.1007/s13595-017- 
0670-x.

Mueller-Dombois, D., 1987. Natural dieback in forests. BioSci 37, 575–583. https://doi. 
org/10.2307/1310668.

Müller, J., Mitesser, O., Cadotte, M.W., van der Plas, F., Mori, A.S., Ammer, C., Chao, A., 
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development of pedotransfer functions for water retention and hydraulic 
conductivity of forest soils]. For. Ecol., Landsc. Res. & Nat. Con. 12, 61–71.

Qiao, X., Hautier, Y., Geng, Y., Wang, S., Wang, J., Zhang, N., Zhang, Z., Zhang, C., 
Zhao, X., von Gadow, K., 2023. Biodiversity contributes to stabilizing ecosystem 
productivity across spatial scales as much as environmental heterogeneity in a large 
temperate forest region. For. Ecol. Manage. 529, 120695. https://doi.org/10.1016/j. 
foreco.2022.120695.

Ray, D., Peace, A., Moore, R., Petr, M., Grieve, Y., Convery, C., Ziesche, T., 2016. 
Improved prediction of the climate-driven outbreaks of Dendrolimus pini in Pinus 
sylvestris forests. J. For. Res. 89, 230–244. https://doi.org/10.1093/forestry/ 
cpw007.

Rayden, T., Jones, K.R., Austin, K., Radachowsky, J., 2023. Improving climate and 
biodiversity outcomes through restoration of forest integrity. Conserv. Biol. 37, 
e14163. https://doi.org/10.1111/cobi.14163.

Redowan, M., 2015. Spatial pattern of tree diversity and evenness across forest types in 
Majella National Park, Italy. For. Ecosyst. 2, 24. https://doi.org/10.1186/s40663- 
015-0048-1.

Rehschuh, R., Rühr, N.K., 2021. Diverging responses of water and carbon relations 
during and after heat and hot drought stress in Pinus sylvestris. Tree Physiol. 41. 
https://doi.org/10.1093/treephys/tpab141 tpab141. 

Reyer, C.P.O., Bugmann, H., Nabuurs, G.-J., Hanewinkel, M., 2015. Models for adaptive 
forest management. Reg. Environ. Change 1483–1487. https://doi.org/10.1007/ 
s10113-015-0861-7.

Rothgänger, A., 2023. Spatio-temporal Ecology and Habitat Requirements of the Pygmy 
Owl (Glaucidium passerinum) (Dissertation). Friedrich-Schiller University, Jena. 
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